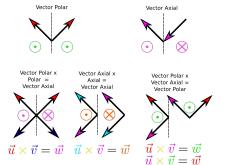
Clase 11 - Ley de Faraday. Aplicaciones.

Prof. Juan Mauricio Matera

12 de abril de 2019

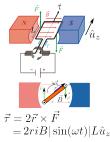

Repaso y motivación.

- ightharpoonup El campo **electrostático** \vec{E} es generado por las cargas eléctricas.
- Este satisface las ecuaciones
- ► La Ley de Gauss: $\iint_{\mathcal{S}} \vec{E} \cdot d\vec{\mathcal{S}} = \frac{Q_{\mathcal{S}}}{\varepsilon_0}$ para cualquier superficie cerrada S
- La Ley de campo conservativo: $\int_{\mathcal{C}} \vec{E} \cdot d\vec{\ell} = 0$ para cualquier curva \mathcal{C} .
- ightharpoonup El campo magnético \vec{B} es originado por corrientes eléctricas.
- El campo magnético en sistemas estacionarios satisface La Ley de Gauss: $\iint_{S} \vec{B} \cdot d\vec{S} = 0$ para cualquier superficie

 $i_{\mathcal{C}}$ es la **corriente neta** rodeada por \mathcal{C} .

cerrada SLa Ley de Ampère: $\int_{\mathcal{C}} \vec{B} \cdot d\vec{\ell} = \int_{\mathcal{S}} \mu_0 \vec{j} \cdot d\vec{\mathcal{S}} = \mu_0 i_{\mathcal{C}}$ para cualquier curva C, cualquier superficie S limitada por C, donde

Vectores Polares vs Vectores Axiales



Vectores Polares	Vectores Axiales
\vec{r}	$d\vec{\mathcal{S}} = \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial u} d$
$ec{v}=rac{dec{r}}{dt}$ $ec{F}=mrac{dec{v}}{dt}$ $ec{E}$	$d\vec{S} = \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial u} d$ $\vec{\omega} = \frac{\vec{r} \times \vec{v}}{r^2}$ $\vec{T} = \vec{r} \times \vec{F}$
$\dot{F} = m \frac{d\vec{v}}{dt}$	
Ē	$ec{eta} = rac{\mu_0}{4\pi} \oint rac{dec{\ell} imes ec{r}}{r^2} \ ec{M} = iec{\mathcal{S}}$
$\vec{ ho}$	$\vec{M} = i\vec{\mathcal{S}}$

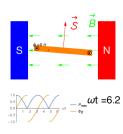
En presencia de campos eléctricos y magnéticos,

- ightharpoonup Una partícula de carga q con velocidad \vec{v} sufre una fuerza $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$
 - ightharpoonup un elemento de **corriente estacionaria** $id\vec{\ell}$ sufre una fuerza
 - magnética $d\vec{F} = id\vec{\ell} \times \vec{B}$. lacktriangle Un momento magnético \vec{M} sufre un torque $\vec{ au} = \vec{M} imes \vec{B}$ y una fuerza $\vec{F} = \nabla (\vec{M} \cdot \vec{B})$ que tiende a alinear \vec{M} con \vec{B} y

arrastrarlo hacia las zonas con mayor intensidad de campo.

- Con estas herramientas analizamos el **motor eléctrico**.
- ► Al circular corriente por un solenoide, en presencia de un campo magnético estático uniforme, este sufre un torque

$$\vec{ au} = N(i\vec{\mathcal{S}}) imes \vec{B}$$


donde \vec{S} es la superficie de una espira, orientada según la circulación de i, N es el número de espiras, y \vec{B} es el campo externo.

Si la espira es forzada a girar en un eje **perpendicular** a \vec{B} con velocidad angular $\vec{\omega}$, la **potencia mecánica sobre** el motor

$$P_{\text{mec}} = \vec{\omega} \cdot \vec{\tau} = \text{N} i \vec{\omega} \cdot \vec{\mathcal{S}} \times \vec{B} = i \text{N} \|\vec{\mathcal{S}}\| \|\vec{B}\| \omega \| \sin(\omega t) \| = \text{N} i \left\| \frac{\partial \vec{\mathcal{S}} \cdot \vec{B}}{\partial t} \right\|$$

es

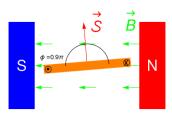
Desde un punto de vista eléctrico, la potencia eléctrica consumida P_e por un elemento de un circuito eléctrico (como un motor) tiene la El Motor Eléctrico y el Generador Eléctrico

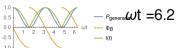
 Debido al principio de conservación de la energía, en un motor

$$P_e = P_{dis} + P_{mec}$$

donde P_{dis} es la **potencia disipada** vía efecto Joule, y P_{mec} es el **trabajo mecánico por unidad de tiempo** que realiza el elemento sobre su entorno.

► En el caso del motor, $P_{dis} = i^2 R =$ donde R es la **resistencia eléctrica** del solenoide, y

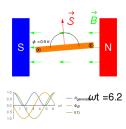

 $P_{mec} = i \frac{d\Phi_B}{dt}$ donde $\Phi_B = N\vec{S} \cdot \vec{B} = ||\vec{S}|| ||\vec{B}|| \cos(\omega t)$ es el **Flujo Magnético** que atraviesa cada espira del solenoide. De esta manera


$$P_{\rm e}=i(\Delta V_R-{\cal E}_{ind})$$

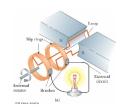
con $\mathcal{E}_{ind} = -\frac{\partial \Phi_B}{\partial t}$ la **Fuerza Electromotriz** inducida en el solenoide.

Generador Eléctrico

Es el mecanismo básico detrás de toda la generación de energía eléctrica, desde las dínamos de bicicleta hasta las centrales termoeléctricas.



Fuerza de Lorentz $\Rightarrow \mathcal{E}_{ind} = -\frac{\partial \Phi_B}{\partial A}$


- Si el solenoide es forzado a girar en sentido opuesto, E_{ind} 0 y por lo tanto el motor genera energía eléctrica.
- Decimos entonces que tal dispositivo es un Generador de energía Eléctrica.
- La corriente que circula en un generador no está fija desde afuera: es forzada a moverse por la Fuerza de Lorentz.
- ightharpoonup Debido a que la \mathcal{E}_{ind} no es

Alternadores

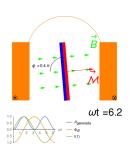
$$\mathcal{E}_{ind} = -\frac{\partial \Phi_B}{\partial t}$$

Cambiando la forma de los contactos, de manera que la corriente siempre circule en el mismo sentido, el generador producirá una FEM

$$\mathcal{E}_{ind} = -\frac{\partial \Phi_B}{\partial t}$$

$$= -NB \frac{\cos(\omega t)}{\partial t}$$

$$= -N\omega B \sin(\omega t)$$


Decimos entonces que el sistema produce una **FEM alterna**, y se lo

Alternador invertido: Solenoide fijo e iman rotante

► Es posible construir un alternador en el que son los imanes los que se mueven, en lugar del solenoide, comprobandose que también

$$\mathcal{E}_{\textit{ind}} = -\frac{\partial \Phi_{\textit{B}}}{\partial t}$$

donde la variación de Φ_B es debida al cambio en \vec{B} .

Observamos que en este caso, E_{ind} existe aún sin un transporte neto de carga en el solenoide, por lo que no podemos explicarla en términos de la Fuerza de Lorentz sobre los portadores: estos se mueven como si estuvieran en presencia de un campo eléctrico externo Ē. En tal caso,

$$\mathcal{E}_{ind} = \oint ec{E} \cdot dec{\ell}$$

 \triangleright \mathcal{E}_{ind} no depende ni de los **portadores**

Ley de Fadaray

Michel Faraday

- ► Fue el primero en unificar la descripción de los fenómenos eléctrostáticos.
- ► En 1821 creo el primer motor eléctrico
- en 1834 publicó las leyes de la electroquímica.
- Introdujo las nociones de líneas de campo, y acción a distancia.

Cosmos - Episodio 10

Ley de Faraday

► En 1932, Faraday realizó una serie de experimentos, cuyos resultados se reducen en la Ley de Inducción que lleva su nombre:

$$\mathcal{E}_{ind} = \oint_{\mathcal{C}} (\vec{E} + \vec{v}_{\mathcal{C}} \times \vec{B}) \cdot d\vec{\ell} = -\frac{\partial}{\partial t} \iint_{\mathcal{S}} \vec{B} \cdot d\vec{\mathcal{S}}$$

donde C es un **camino conductor**, \vec{v}_C es la velocidad con que se desplaza C, v S

Michel Faraday 1791 - 1867

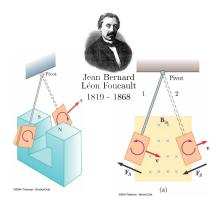
$$\mathcal{E}_{ind} = \oint_{\mathcal{C}} (\vec{E} + \vec{v}_{\mathcal{C}} \times \vec{B}) \cdot d\vec{\ell} = -\frac{\partial}{\partial t} \iint_{S} \vec{B} \cdot d\vec{S}$$

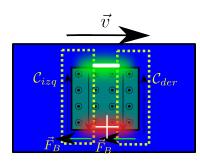
- ▶ Si \mathcal{C} se mueve, pero \vec{B} es constante, recuperamos la Ley de Fuerza de Lorentz.
- ▶ Si S (y por lo tanto C es constante, pero \vec{B} varía en el tiempo, las cargas se mueven como en presencia de un campo eléctrico **No Conservativo**.
- Si C no coincide con un camino conductor, la segunda igualdad sigue siendo válida, pero no podemos hablar de Fuerza Electromotriz inducida.
- Si S es constante, la expresión se reduce a la Ley de Maxwell-Faraday

$$\oint_{\mathcal{C}} \vec{E} \cdot d\vec{\ell} = -\iint_{\mathcal{S}} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

► Vía el teorema de Stokes, esta ley puede expresarse en forma equivalente como

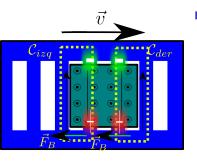
$$\nabla imes \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

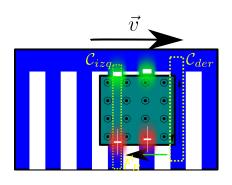

Ley de Lenz


- ► El signo negativo frente a la derivada temporal puede deducirse de la consistencia de la teoría con la conservación de la energía: En presencia de un conductor, una variación de \vec{B} induciría una \mathcal{E}_{ind} que originaría una corriente, que a su vez produciría un campo \vec{B}' , que incrementaría aún más la variación del flujo magnético, y el proceso nunca se detendría.
- Henrich Lenz llegó a esta conclusión y la enunció de esta manera: "Una variación de Φ_B inducirá una ε_{ind} de manera que el campo magnético asociado a la corriente se opondrá a la variación de flujo magnético que le dió origen".

Heinrich Lenz 1804 - 1865

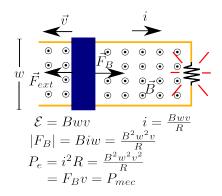
Corrientes de Foucault




En la zona cubierta por el imán, debido al campo magnético y a la velocidad del conductor, se establece una separación de carga.

En los bordes laterales.

- donde el campo magnético cambia, se establecen corrientes, según la **Ley de Lenz**.
- ► El campo se acopla sólo a las corrientes inmersas en él, resultando en una fuerza neta de arrastre.



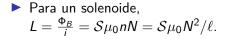
La presencia de huecos no modifica el resulta

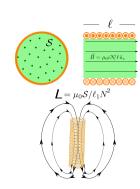
► En el caso del péndulo con forma de peine, debido a que la Ley de Faraday sólo aplica a caminos conductores, sólo predice la acción de una fuerza cuando el borde del imán pasa por uno de los dientes, por lo que el efecto es mucho menor.

Freno Magnético

Autoinductancia e Inductancia Mutua

Autoinducción


- Todo circuito cerrado, por el que circula una corriente produce un campo magnético.
- El flujo magnético a través del área que encierra el circuito es proporcional a la corriente que por él circula.


$$\Phi_B = Li$$

donde L es una constante positiva conocida como **autoinductancia** del circuito. Nótese que Φ_B debe ser evaluado en el sentido de la circulación de la corriente.

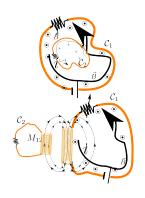
Si en el circuito la corriente varía a razón $\frac{di}{dt}$, la Ley de Inducción de Faraday implica la existencia de una \mathcal{E}_{ind} o fuerza contra-electromotriz en el circuito tal que

Típicamente, L para un circuito corto respecto a la sección de los conductores puede despreciarse. Sin embargo, si en el circuito se incluyen solenoides es posible lograr flujos magnéticos relativamente grandes y en forma localizada. En tal caso, se define la autoinducción L del elemento como aquella que se obtendría al incluir ese elemento en un circuito de autoinducción despreciable.

Inducción Mutua

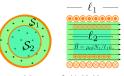
▶ Dados dos circuitos C_1 y C_2 , el campo debido a la corriente que circula por C_1 induce un flujo en C_2 tal que

$$\Phi_B^{(2)} = M_{12}i_1.$$


Llamamos la **Inductancia Mutua** M_{12} a la constante

 Por el principio de acción y reacción,

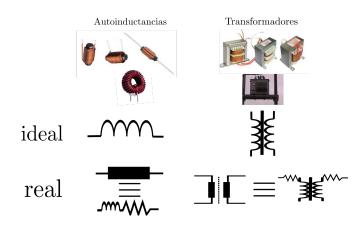
$$\Phi_B^{(1)}=M_{21}i_2$$


con $M_{21} = M_{12}$.

De esta manera, por la **Ley de Faraday** una variación en la corriente en el circuito C_1 inducirá una \mathcal{E}_{ind} en el circuito C_2

J:

- ► En general, la inducción mutua entre conductores es relativamente pequeña, salvo que los circuitos incluyan solenoides acoplados magnéticamente.
- Este es el principio básico de los transformadores de corriente alterna.
- Para dos solenoides enrollados sobre un mismo eje, con secciones S_1 y $S_2 < S_1$, número de espiras N_1 y N_2 y longitudes $\ell_1 \vee \ell_2 < \ell_1$ $M_{12} = M_{21} = \mu_0 N_1 N_2 S_2 / \ell_2$



 $M_{12} = \mu N_1 N_2 \mathcal{S} / \ell$

Representación de componentes inductivos en circuitos

Unidades de Inductancia y Autoinductancia

- ► En el sistema internacional la unidad de Inductancia (y de inductancia mutua) es el Henry o Henrio (H). Algunos valores aproximados de *L* son
- ightharpoonup Cables, $L \approx 10^{-7} \mathrm{H/m}$
- Lámpara incandescente, $L \approx 100 \mathrm{mH}$
- ightharpoonup Lámpara fluorescente $pprox 1 {
 m H}$
- ► Motor eléctrico $\approx 10 \mathrm{H}$