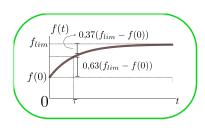
Clase 16 - Transitorios y Corriente Alterna

Prof. Juan Mauricio Matera

28 de octubre de 2024



$$f(t) = f_{lim} + (f(0) - f_{lim})e^{-t/\tau}$$

- Para tiempos menores que τ , las solución varía con velocidad $(f_0 f_{lim})/\tau$ en dirección al valor límite f_{lim} .
- Para tiempos mayores a τ , la solución tiende al valor constante f_{lim} .
- Decimos que entre t = 0 y $t \gg \tau$, el sistema atraviesa un **transitorio**, hasta alcanzar una situación estacionaria.
- ▶ Para $t \approx \ln(2)\tau \approx 0.69\tau$, la diferencia entre f(t) y f_{lim} cae al 50% de su valor inicial.
- Para $t \approx \tau$, la diferencia entre f(t) y f_{lim} cae al 37% de su valor inicial.

- ► La ecuación diferencial lineal de primer orden aparece recurrentemente en ciencias:
 - Movimiento en medios viscosos.Procesos disipativos.
 - Decaimiento radioactivo.
 - Marcha al equilibrio en procesos químicos.
 - Concentración de antibióticos en sangre.
- Nótese que si τ < 0, el comportamiento va en "reversa": la distancia al valor "límite" **crece exponencialmente**. Este tipo de dinámicas representa fenómenos "explosivos", como la propagación de una infección.

Volviendo al circuito *RC*.

 $RC\frac{dV_C}{dt} = \mathcal{E} - V_C \Rightarrow \frac{dV_C}{dt} = \frac{\mathcal{E}}{RC} - \frac{1}{RC}V_C$ de manera que $V_{C,lim} = \mathcal{E}$, $\tau = RC$ y por lo

$$\begin{array}{c|c}
SW/ & C \\
\hline
SW/ & C \\
\hline
SW/ & C \\
\hline
O & T \\
\end{array}$$

 $V_C(t) = \mathcal{E} + (V_C(0) - \mathcal{E})e^{-t/\tau}$

tanto.

$$i = C \frac{dV_C}{dt} = -\frac{C(V_C(0) - \mathcal{E})}{\tau} e^{-t/\tau}$$

que se anula para $t\gg au$.

Si inicialmente el capacitor estaba **descargado**,
$$V_C(0) = Q(0)/C = 0$$
, con lo que

$$i = \frac{C\mathcal{E}}{\tau} e^{-t/\tau} = -\frac{C\mathcal{E}}{RC} e^{-t/\tau} = -\frac{\mathcal{E}}{R} e^{-t/\tau}.$$

A t = 0, la corriente se comporta como si remplazáramos el capacitor por un cable.

Descarga del capacitor

Si, luego de cargar al capacitor, se retira la batería, la ecuación diferencial

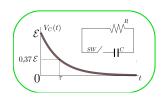
$$\frac{dV_C}{dt} = \frac{\mathcal{E}}{RC} - \frac{1}{RC}V_C$$

se reduce a

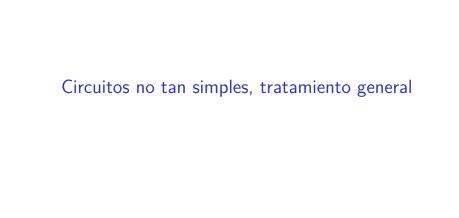
$$\frac{dV_C}{dt} = -\frac{1}{RC}V_C$$

con la condición inicial, $V_C(0) = \mathcal{E}$.

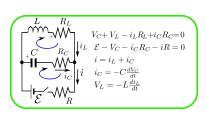
- ▶ De esta manera, $V_{C,lim} = 0$, $\tau = RC$ y $V_C(t) = \mathcal{E}e^{-t/\tau}$.
- La corriente en el circuito será $i = C \frac{dV_C}{dt} = -\frac{C\mathcal{E}}{2} e^{-t/\tau} = \frac{\mathcal{E}}{2} e^{-t/\tau}$



- El signo negativo en la corriente se debe a que su circulación es opuesta que en la carga.
- En la descarga, un capacitor se comporta inicialmente como sí fuerse una **FEM** que decrece a medida que se



Tratamiento general



Remplazando $i \rightarrow i_L + i_C$ y despejando i_L de la segunda ecuación,

$$i_L = \frac{\mathcal{E} - V_C - (R + R_C)i_C}{R} = 0$$

Remplazando en V_L ,

Remplazando en la primera malla,
$$\frac{d^2V_C}{dt^2} + \frac{2}{\tau}\frac{dV_C}{dt} + \omega^2(V_C - V_{C,lim}) = 0$$

$$V_{L} = \frac{L}{R} \left(\frac{dV_{C}}{dt} + (R + R_{C})C \frac{d^{2}}{dt} \right)$$

$$\omega^{2} = \left(\frac{R + R_{L}}{R + R_{C}} \frac{1}{LC} \right),$$

$$V_{C,lim} = \frac{R_{L}}{R + R_{L}} \mathcal{E} \text{ y}$$

$$\tau = \frac{2LC(R + R_{C})}{L + (R(R_{C} + R_{L}) + R_{L}R_{C})C}$$

$$\begin{array}{c|c} L & R_L \\ \hline \\ C & R_C \\ \hline \\ i_C & i_C \\ \hline \\ \mathcal{E} & V_C + V_L - i_L R_L + i_C R_C = 0 \\ i_L & \mathcal{E} - V_C - i_C R_C - iR = 0 \\ i & i_L + i_C \\ i & i_C = -C \frac{dV_C}{dt} \\ V_L = -L \frac{di_L}{dt} \\ \end{array}$$

- Si el ïnterruptor está abierto, $R \to \infty$, $\mathcal{E} \to 0$ y el circuito se reduce a un RLC serie.
- En este caso, la ecuación diferencial toma la misma forma, pero con los parámetros

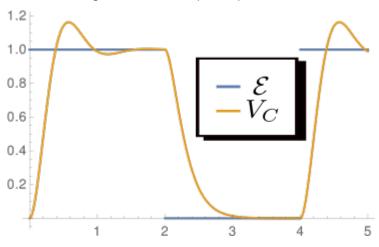
$$\omega^{2} = \frac{1}{LC},$$

$$V_{C,lim} = 0 \text{ y}$$

$$\tau = \frac{2L}{R_{L} + R_{C}}$$

 $\frac{d^2V_C}{dt^2} + \frac{2}{\tau}\frac{dV_C}{dt} + \omega^2(V_C - V_{C,lim}) = 0$

... sin embargo, el transitorio puede presentar oscilaciones:



La ecuación diferencial lineal de segundo orden

$$\frac{d^2f(t)}{dt^2} + 2\tau \frac{df(t)}{dt} + \omega^2(f(t) - f_{lim}) = 0$$

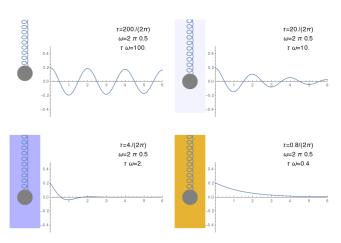
Reordenando la ecuación, y considerando el caso en que f(t) es la posición de una partícula

$$\frac{d^2x(t)}{dt^2} = -\omega^2(x(t) - x_{lim}) - \frac{2}{\tau}\frac{dx(t)}{dt}$$

identificamos la forma de la **Segunda Ley de Newton** para una partícula sujeta a

- 1. Una fuerza elástica.
- 2. Una fuerza de arrastre.
- ► Si $\omega^2 \to 0$, las soluciones son de la forma $x(t) = x_0 + \int_0^t v_0 e^{-t'/\tau} dt'$ (como en un transitorio).
- Si $\tau \to \infty$, las soluciones son de la forma $x(t) = x_{max} \cos(\omega t + \phi_0) + x_{lim}$ (como en un oscilador armónico).

$$\frac{d^2x(t)}{dt^2} = -\omega^2(x(t) - x_{lim}) - \frac{2}{\tau}\frac{dx(t)}{dt}$$



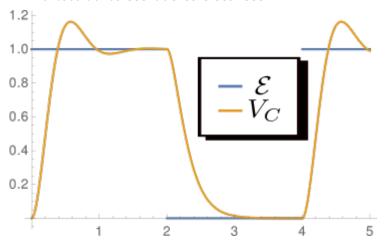
... volviendo al circuito,

... volviendo al circuito,

Observamos que al cambiar la posición de la llave, si

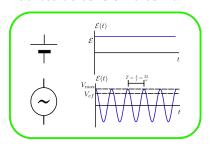
$$au\omega=2\frac{\sqrt{L/C}}{(R_L+R_C)}>1$$
, la tensión en C (y la corriente en L) sufren oscilaciones amortiguadas con una frecuencia $\omega\approx\frac{1}{\sqrt{LC}}$

- ▶ La amortiguación puede eliminarse si la llave se cierra y se vuelve a abrir con una frecuencia cercana a $\omega_0 = \frac{1}{2\pi\sqrt{LC}}$, la frecuencia de resonancia del sistema.
- ► Este es el comportamiento típico de los circuitos *RLC*, que son la base de los **osciladores eléctricos**.



Corriente Alterna

En un circuito de corriente alterna, las baterías son remplazadas por fuentes de **tensión alterna**



En una fuente de tensión alterna la diferencia de potencial entre sus bornes es de la forma

$$V(t) = \sqrt{2}V_{ef}\cos(2\pi f t + \phi_0)$$

donde

- V_{ef} es el valor eficaz de la tensión en la fuente,
- ► f es la **frecuencia** y
- ϕ_0 es un ángulo de fase inicial.
- Si en el circuito tenemos una única fuente de tensión alterna, podemos elegir siempre $\phi_0 = 0$.
- Veremos ahora que las tensiones y corrientes en el resto del circuito también serán armónicas, pero con fases diferentes a ϕ_0

Fuentes de Tensión Alterna

- Alternadores
- Osciladores electrónicos
- ► Señales alternas (ej: transducción de sonido en corriente)

Valor Eficaz

El valor medio (temporal) de una tensión alterna es nulo

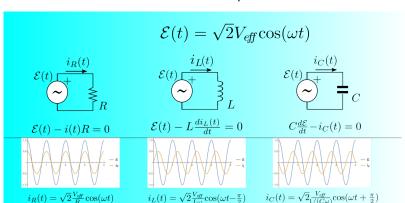
$$\langle V(t) \rangle = \frac{1}{T} \int_0^T V(t) = \sqrt{2} V_{ef} \frac{\int_0^T \cos(\omega t) dt}{T}$$

= $\sqrt{2} V_{ef} \frac{1 - \sin(\omega T)}{\omega T} \rightarrow 0$.

Por ese motivo, se prefiere utilizar para su caracterización su dispersión media cuadrática o valor eficaz:

$$\sqrt{\langle V^2
angle} = \sqrt{rac{1}{T} \int_0^T V^2(t) dt} = V_{ef} \sqrt{rac{\int_0^T 2 \cos^2(\omega t) dt}{T}}
ightarrow V_{ef}$$

Consideremos ahora los casos más simples de circuitos de CA



Impedancia

 Encontramos que en estos tres casos, la corriente es también una función armónica

$$I(t) = \sqrt{2}I_{eff}\cos(\omega t + \phi)$$
 $I_{eff} = V_{eff}/Z$

donde

- Z es la impedancia del elemento
- $ightharpoonup \phi$ es su **diferencia de fase**
- ► En general, toda rama compuesta por elementos lineales, sometida a una tensión armónica transporta una corriente armónica con la misma frecuencia.
- La rama queda caracterizada por sus valores de Z y ϕ .
- Los valores de Z y ϕ dependerán en general de la frecuencia.

Impedancia compleja

Igual que cuando tratamos el caso de las ondas, conviene introducir la impedancia compleja

$$\mathcal{Z} = Ze^{\mathbf{i}\phi}$$

Luego $V(t)=\Re \mathcal{V}(t)$ y $I(t)=\Re \mathcal{I}(t)$ con

$$\mathcal{V}(t) = V_0 e^{-\mathrm{i}\omega t} \;\; \mathcal{I}(t) = rac{\mathcal{V}(t)}{\mathcal{Z}}$$

- $ightharpoonup \mathcal{Z}$ juega un papel equivalente al de la resistencia en circuitos de C.C.
- La potencia media disipasa se expresa como $\langle P \rangle = \Re \mathcal{V}(t) \mathcal{I}(t) = \Re \mathcal{Z} I_{ef}^2$

Potencia entregada por la fuente

La potencia instantanea entregada por la fuente vendrá dada por

$$P(t) = V(t)i(t) = 2\frac{V_{\text{ef}}^2}{Z}\cos(\omega t)\cos(\omega t + \phi)$$

A partir de la identidad cos(a + b) = cos(a) cos(b) - sin(a) sin(b) podemos descomponer esta en dos términos

$$P(t) = P_{resistiva}(t) + P_{reactiva}(t)$$

donde:

$$P_{resistiva}(t) = 2 \frac{V_{ef}^2}{Z} \cos^2(\omega t) \cos(\phi)$$

$$\begin{array}{l} \blacktriangleright \ \ P_{\textit{reactiva}}(t) = -2\frac{V_{ef}^2}{Z}\cos(\omega t)\sin(\omega t)\sin(\phi) = \\ \frac{V_{ef}^2}{Z\omega}\sin(\phi)\frac{d}{dt}\cos^2(\omega t) \end{array}$$

$$P_{resistiva}(t) = 2\frac{V_{ef}^2}{7}\cos^2(\omega t)\cos(\phi)$$

 P_{resistiva} es una cantidad positiva, cuyo promedio temporal viene dado por

$$\langle P \rangle = \langle P_{resistiva} \rangle = V_{ef}^2 \cos(\phi)/Z = V_{ef} I_{ef} \cos(\phi).$$

Nótese la semejanza de esta expresión con aquella para la potencia disipada en una resistencia en circuitos de corriente continua.

 $P_{reactiva}(t) = -2\frac{V_{ef}^2}{7}\cos(\omega t)\sin(\omega t)\sin(\phi) = \frac{V_{ef}^2}{7\omega}\sin(\phi)\frac{d}{dt}\cos^2(\omega t)$

Por otro lado, por ser una derivada total de una función

en energía de los campos que genera el circuito.

periódica, $P_{reactiva}(t)$ tiene valor medio nulo: esta potencia dá cuenta de una conversión reversible de la energía de la fuente

Reactancia y resistencia

Si a una fuente de CA $V(t) = \sqrt{2}V_{ef}\cos(\omega t)$ se conecta

una **resistencia** de valor *R*,

$$i(t) = \sqrt{2}V_{ef}\cos(\omega t)/R$$

por lo que $\phi = 0$ y Z = R.

▶ un Capacitor de capacidad C, se establecerá una corriente entre sus placas de

$$i(t) = C \frac{dV}{dt} = -\sqrt{2} V_{ef} \omega C \sin(\omega t) = \sqrt{2} V_{ef} \omega C \cos(\omega t + \frac{\pi}{2}).$$

Luego, $Z=X_C$ con $X_C=\frac{1}{\omega C}$ la Reactancia capacitiva. En un capacitor, decimos que la corriente adelanta a la tensión en un ángulo de $\phi=\pi/2$.

una **autoinductancia** (ideal) de valor *L*, la corriente se

relacionará con la tensión
$$\mathcal{E}(t)$$
 como
$$\mathcal{E}(t) = L \frac{di}{dt} = -\sqrt{2} L \omega I_{ef} \sin(\omega t + \phi) = \sqrt{2} L \omega I_{ef} \cos(\omega t + \phi + \frac{\pi}{2})$$

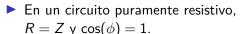
de manera que $Z=X_L$ con $X_L=\omega L$ la reactancia inductiva. En este caso, la tensión adelanta a la corriente $\phi=\pi/2$.

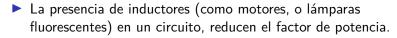
Factor de potencia

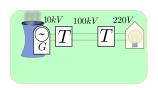
En la expresión

$$\langle P \rangle = V_{ef} I_{ef} \cos(\phi)$$

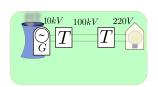
el factor $cos(\phi)$ suele llamarse factor de potencia, y da cuenta de cuanta potencia consume un circuito.







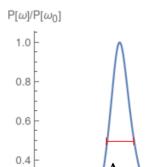
Si para realizar su función, un circuito consume una potencia P, al ser alimentado por una fuente de tensión de valor eficaz V_{ef} , la corriente que atravesará el circuito vendrá dada por $I_{ef} = \frac{P}{V_{ef} \cos(\phi)}$.



- Si la fuente de alimentación se conecta al circuito mediante un cable de resistencia R, la potencia disipada en el cable será $P_{dis} = R_{cable} I_{ef}^2 = \frac{R_{cable} P^2}{V_{ec}^2 \cos^2(\phi)}$.
- Por este motivo, la distribución de energía electrica se optimiza
 - ▶ haciendo el factor de potencia tan cercano a 1 como sea posible.
 - aumentando la diferencia de potencial tanto como sea posible.

Resonancia

- Para ciertas frecuencias, las componentes reactivas de la impedancia pueden anularse. Decimos entonces que la rama se encuentra en resonancia.
- ▶ En particular, en una rama RLC, esto ocurre si la fuente tiene una frecuencia angular $\omega_0 = 1/\sqrt{LC}$.
- Cuando esto ocurre, el factor de potencia es máximo, y la potencia consumida tendrá un máximo, para un valor fijo del valor eficaz de la FEM.



Transformadores

- Una ventaja de la corriente alterna es que es fácil aumentar y disminuir la tensión eficaz mediante el uso de transformadores.
- En el primer bobinado, o primario se conecta una fem alterna de valor eficaz V₁.
- ► En el segundo bobinado o secundario, se conecta un circuito de impedancia $Z \gg M\omega$.
- ► En estas condiciones, la tensión eficaz inducida en el secundario será $\mathcal{E}_2 = \frac{M}{L_1} \mathcal{E}_1 = \frac{N_1}{N_2} \mathcal{E}_1$.

De esta manera, es posible aumentar la tensión durante el transporte de energía, y reducirla para alimentar la red domiciliaria.

Repaso

- ► Combinaciones equivalentes de inductancias reales
 - Combiación serie:

$$L_{eq} = \sum_{k} L_{k} \quad R_{eq} = \sum_{k} R_{k}$$

Combinación paralelo

$$L_{eq} = \frac{1}{\sum_{k} L_{k}^{-1}} \quad R_{eq} = \frac{1}{\sum_{i} R_{k}^{-1}}$$

- Circuitos transitorios con más de una malla:
 - Situación inicial:
 - las inductancias preservan su corriente
 - los capacitores preservan su ΔV
 - Situación estacionaria:
 - las inductancias tienen $\Delta V = 0$ (como un cable).
 - los capacitores tienen i = 0 como un interruptor abierto.

Circuitos RLC

- **D**os tiempos característicos: $\tau = \frac{L}{R}$ y $\frac{1}{W} = \sqrt{LC}$.
- La tensión y las corrientes satisfacen ecuaciones diferenciales lineales de **segundo orden**
- El sistema es equivalente a un oscilador mecánico sujeto a roce.
- Dos régimenes posibles:
 - ightharpoonup régimen oscilacilatorio amortiguado ($\omega au > 1$):

$$i(t) \propto e^{-t/\tau} \cos(\tilde{\omega}t + \phi)$$
.

• régimen sobre-amortiguado ($\omega \tau \leq 1$):

$$i(t) \propto ae^{-t/ ilde{ au}_+} + bae^{-t/ ilde{ au}_-}$$
.

Excitaciones periódicas con frecuencia cercana a $\omega/(2\pi)$ producen una **respuesta resonante**.

- Corriente Alterna
 - ► FEM Alterna

$$\mathcal{E}(t) = \sqrt{2} V_{ef} \cos(2\pi f t)$$

- Depende del tiempo en forma armónica.
- $ightharpoonup V_{ef}$ es el valor eficaz de $\mathcal E$
- f es la **frecuencia** o número de ciclos por segundo.
- ► En las expresiones suele aparecer la **frecuencia angular** $\omega = 2\pi f$.
- Al conectar una **FEM Alterna** a un circuito RLC, la corriente que circula por la FEM será también de la forma

$$i(t) = \sqrt{2}I_{ef}\cos(2\pi ft + \phi)$$

donde I_{ef} es el **valor eficaz** de la corriente y ϕ es un **corrimiento de fase** respecto a la tensión y f queda determinada por la FEM.

Se define la **Impedancia** Z del circuito como el cociente $Z = \frac{V_{ef}}{l_{ef}}$, de manera análoga a la resistencia.

- ▶ Por la **Ley de Ohm**, en una resistencia, $V_{ef} = RI_{ef}$, $\phi = 0$
- Para un capacitor, $V_{ef} = X_C I_{ef}$ con $X_C = Z = \frac{1}{CC}$ la
- reactancia capacitiva y $\phi = \pi/2$.
- ▶ En un inductor, por la **Ley de Faraday** $V_{ef} = X_I I_{ef}$ con

▶ En un circuito general, diremos que $Z\cos(\phi)$ y $Z\sin(\phi)$ son las

 $X_L = Z = \omega L$ la reactancia inductiva y $\phi = -\pi/2$.

componente resistiva y reactiva de la impedancia

respectivamente.

- ► En un circuito de CA, la **potencia instantanea** entregada por la fuente viene dada por P(t) = V(t)I(t).
- Se puede descomponer esta **potencia instantanea** en dos términos $P(t) = P_{reactiva}(t) + P_{resistiva}(t)$.
- P_{reactiva}(t) = $\frac{V_{ef} I_{ef} \sin(\phi)}{\omega} \frac{d \cos^2 \omega t}{dt}$ es la **componente reactiva**.

 Está relacionada con la energía almacenada en los campos
 - electromagnéticos.

 Su signo cambia con el tiempo
 - Su signo cambia con el tiempSu valor promedio es cero.
 - Presistiva(t) = $\frac{V_{ef}I_{ef}\cos(\phi)}{2}\cos^2 \omega t$ es la componente resistiva.
 - Está relacionada con la energía disipada y con el trabajo mecánico que realiza el circuito
 - mecánico que realiza el circuito.

 Su signo es siempre positivo.
 - Su valor medio, al igual que el de la potencia total es $\langle P_{resistiva} \rangle = \langle P \rangle = V_{ef} I_{ef} \cos(\phi)$
 - ▶ El factor $cos(\phi)$ se denomina **Factor de Potencia**.

- Para reducir pérdidas en el transporte de energía eléctrica se busca
 - ightharpoonup Minimizar la I_{ef} en el transporte.
 - Maximizar el Factor de Potencia.
 - Maximizar el valor de la tensión eficaz.
- Para optimizar la tensión en el transporte se utilizan los Transformadores de CA.
 - Consisten en dos solenoides acoplados magnéticamente.
 - La $V_{ef}^{(2)}$ en el solenoide secundario se relaciona con $V_{ef}^{(1)}$ del solenoide primario, conectado a la fuente según

$$V_{ef}^{(2)} = V_{ef}^{(1)} \frac{M_{12}}{L_1} = V_{ef}^{(2)} \frac{N_2}{N_1}$$

donde M_{12} es el **coeficiente de inducción mutua** entre los solenoides, L_1 es la **autoinductancia** del primario y N_1, N_2 son el número de espiras en los solenoides primario y secundario respectivamente.