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Introduction to fiber optics

Recent advances in the development of low-loss optical fibers have revolutionized the
field of telecommunications, and fiber-based networks form a key part of international
communication systems. This comprehensive book provides an introduction to the phys-
ical principles of optical fibers and discusses in detail their use in modern optical com-
munication systems and sensor technology.

The authers begin by setting out the basic propagation characteristics of single-
mode and multimode optical fibers. In later chapters they cover optical sources (such as
laser diodes), optical detectors, and fiber optic communication system design. They also
treat a wide variety of related topics such as doped fiber amplifiers, soliton propagation,
dispersion compensation, fiber Bragg gratings and fiber sensors, as well as measurement
techniques for the characterization of optical fibers.

Throughout the book, physical and engineering aspects of the subject are interwoven,
and many worked examples and exercises are included. It will be an ideal textbook for
undergraduate or graduate students taking courses in optical fiber communications,
photonics, or optoelectronics.

Ajoy Ghatak is a professor of physics at the Indian Institute of Technology, New
Delhi. He obtained his M.Sc. from Delhi University and Ph.D. from Comell University.
An accomplished author and physicist, he has been a Fellow of the Optical Society of
America since 1995,

K. Thyagarajan is a professor of physics at the Indian Institute of Technology, New
Delhi. He received his B.Sc. and M.Sc. from Delhi University and his Ph.D. from the
Indian Institute of Technology, Delhi. He is a member of the Executive Committee
of the Optical Society of India. Introduction to fiber oprics is Professors Ghatak and
Thyagarajan’s fourth book together,
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Preface

The dramatic reduction in transmission loss of optical fibers coupled with
equally important developments in the arca of light sources and detectors
have brought about a phenomenal growth of the fiber optic industry during the
past two decades. Indeed, the birth of optical fiber communications coincided
with the fabrication of low-loss optical fibers and operation of room tempera-
ture semiconductor lasers in 1970. Since then, the scientific and technological
progress in the field has been so phenomenal that optical fiber communication
systems find themselves already in the fifth generation within a span of about
25 years. Broadband optical fiber amplifiers coupled with wavelength division
multiplexing techniques and soliton communication systems are some of the
very important developments that have taken place in the past few vears, which
are already revolutionizing the field of fiber optics. Although the major appli-
cation of optical fibers has been in the area of telecommunications, many new
related areas such as fiber optic sensors, fiber optic devices and components,
and integrated optics have witnessed considerable growth. In addition, optical
fibers allow us to perform many interesting and simple experiments permitting
us to understand basic physical principles.

With the all-pervading applications of optical fibers, many educational in-
stitutions have started courses on fiber optics. At our Institute, we have a three-
semester M.Tech. program on Optoelectronics and Optical Communications
(jointly run by the Physics and Electrical Engineering Departments) in which
we have an extensive coverage of the theory of optical fibers and optical fiber
communications and also many experiments and projects associated with it.
We also have an elective paper on fiber optics for our M.Sc. (Physics) students.
The present book is an outgrowth of the lectures that have been delivered both
to our M.Sc. as well as to our M. Tech. students during the past fifteen years.
Many of the experiments described in the book have also evolved as simple and
elegant demonstration of optics principles to our undergraduate engineering
students taking a course on Optics. The material presented here and also the
associated experiments have been very successfully used in various summer
and winter schools in the area of fiber optics conducted by our Institate. It was
felt that there is a need today of a textbook at the undergraduate level covering
the field trom the basic concepts to the very recent advances, including various
applications of this exciting field. .

The book aims to cover the field of fiber optics and its many applications
at an undergraduate level. The book also contains many solved and unsolved
problems, some of which will give the reader a greater feel for numbers while the
others are expected to help in a greater understanding of the concepts developed
in the book. We would greatly appreciate receiving suggestions for further
improvement of the book. We would also be very grateful if any errors in the
book are pointed out to us.

New Delhi Ajoy Ghatak
March 1997 K. Thyagarajan
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Introduction: The fiber optics revolution

There has always been a demand for increased capacity of transmission of infor-
mation, and scientists and engineers continuously pursue technological routes
for achieving this goal. The technological advances ever since the invention
of the laser in 1960 have indeed revolutionized the area of telecommunication
and networking. The availability of the laser, which is a coherent source of
light waves, presented communication engineers with a suitable carrier wave
capable of carrying enormously large amounts of information compared with
radiowaves and microwaves. Although the dream of carrying millions of tele-
phone (audio) or video channels through a single light beam is vet to be realized,
the technology is slowly edging toward making this dream a reality.

A typical lightwave communication system consists of a lightwave trans-
mitter, which is usually a semiconductor laser diode (emitting in the invisible
infrared region of the optical spectrum) with associated electronics for mod-
ulating it with the signals; a transmission channel — namely, the optical fiber
to carry the modulated light beam; and finally, a receiver, which consists of an
optical detector and associated electronics for retrieving the signal (see Fig-
ure 1.1). The information — that is, the signal to be transmitted — is usually
coded into a digital stream of light pulses by modulating the laser diode. These
optical pulses then travel through the optical fiber in the form of guided waves
and are received by the optical detector from which the signal is then decoded
and retrieved.

At the heart of a lightwave communication system is the optical fiber, which
acts as the transmission channel carrying the light beam loaded with informa-
tion. It consists of a dielectric core (usually doped silica) of high refractive index
surrounded by a lower refractive index cladding (see Figure 1.2). Incidentally,
silica is the primary constituent of sand, which is found in so much abundance
on our earth. Guidance of light through the optical fiber takes place by the
phenomenon of total internal reflection. Sending the information-loaded light
beams through optical fibers instead of through the open atmosphere protects
the light beam from atmospheric uncertainties such as rain, fog, pollution, and
so forth.

One of the key elements in the fiber optics revelution has been the dramatic
improvement in the transmission characteristics of optical fibers. These include
the attenuation of the light beam as well as the distortion in the optical signals
as they race through the optical fiber. Figure 1.3 shows the dramatic reduc-
tion in the propagation loss of optical radiation through glass from ancient
times to present. The steep fall in loss beginning in 1970 as the technology
advanced rapidly is very apparent. [t was indeed the development of low-loss
optical fibers (20 dB/km at the He—Ne laser wavelength of 633 nm) in 1970
by Corning Glass Works in the United States that made practical the use of
optical fibers as a viable transmission medium in lightwave communication
systems. Figure 1.4 shows the wavelength variation of loss of a typical silica
optical fiber showing the low-loss operating wavelength windows of 1300 nm
and 1550 nm.
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Transmitter
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Although a variety of optical fibers are available, the fibers in most use today
are the so-called single-mode fibers with a core diameter of about 10 pm and an
overall diameter of 125 pm. Optical fibers with typical losses in the range of 0.2
dB/km at 1550 nm and capable of transmission at 2—10 Gbit/s (Gb/s) are now
commercially available. (A loss figure of 0.2 dB/km would imply a 50% power
loss after propagating through a distance of about 15 km; the corresponding
power loss for the best glass available in 1966 was about 1000 dB/km, which
implies a 50% power loss in a distance of about 3 m!) Most currently installed
systems are based on communication at a 1300-nm optical window of trans-
mission. The choice of this wavelength was dictated by the fact that around an
operating wavelength of 1300 nm the optical pulses propagate through a con-
ventional single-mode fiber with almost no pulse broadening. Because silica
has the lowest loss in the 1550-nm wavelength band, special fibers known as
dispersion-shifted fibers have been developed to have negligible dispersion in
the 1550-nm band, thus providing us with fibers having lowest loss and almost
negligible dispersion.

In the lightwave communication systems in operation today, the signals have
to be regenerated every 30-60 km to ensure that information is intelligibly re-
trieved at the receiving end. This is necessary either because the light pulses have
become attenuated, and hence the signal levels have fallen below the detectable
level, or because the spreading of the pulses has resulted in an overlapping of
adjacent pulses leading to a loss of information. Until now this regeneration
had to be achieved by first converting the optical signals into electrical signals,
regenerating the signals electrically, and then once again converting the elec-
trical signals into optical signals by modulating another semiconductor laser;
such devices are called regenerators. Recent developments in optical amplifiers
based on erbium- (a rare earth element) doped silica optical fibers have opened
up possibilities of amplifying optical signals directly in the optical domain
without the need of conversion to electrical signals. Because of amplification
in the optical domain itself, such systems are not limited by the speed of the
electronic circuitry and indeed can amplify multiple signals transmitted via
different wavelengths simultaneously. For example, Figure 1.5 shows a typical
gain spectrum of an erbium-doped fiber amplifier where one can note the flat
gain over a wavelength band as large as 30 nm. Fortuitously, the gain band of

AL AD— A AL

Fig. 1.1: A typical fiber
optic communication
system consisting of an
optical transmitter (laser
diode or LED), the
transmission medium
(optical fiber), and the
optical receiver
{phaotodetector).
Information is sent in the
form of optical pulses
through the link.
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Fig. 1.2:  {(a) A typical
opiical fiber consisting of a
doped silica core
surrounded by a pure silica
cladding of slightly lower
refractive index. Light
guidance takes place
through the phenomenon of
total internal reflection.

(b) A scanning electron
micrograph of an etched
fiber showing clearly the
core and the cladding.
[After Miva et al. (1979).]
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5-10 um: SINGLE-MODE
50 wm : MULTIMODE

T

T s

125um
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Deposited
cladding

Marker

\
Core

(b)

such optical amplifiers falls exactly on the low-loss transmission window of
silica-based fibers. Indeed, the wavelength band of 100 nm around 1550 nm
of the low-loss window of silica-based optical fibers (from 1500 to 1600 nm)
corresponds to 12,500 GHz of bandwidth. This may be compared with the to-
tal radio bandwidth of only 25 GHz. Although these give the total accessible
bandwidth figures, utilizing even a fraction of this available bandwidth gives
us an enormous potential.

The coincidence of the low-loss window and the wide-bandwidth erbium-
doped optical amplifiers has opened up possibilities of having wavelength
division multiplexed communication systems (i.e., systems in which multi-
ple wavelengths are used to carry independent signals, thus multiplying the
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capacity of an individual fiber) capable of carrying enormous rates of infor-
mation. Indeed, recent reports have shown successful transmission at the rate
of 1.1 trillion bits per second (1.1 Tb/s) over 150 km and 2.6 Th/s over 120
km using 132 different wavelengths in the interval 1529.03-1563.86 nm (Eu-
ropean Conference on Optical Communication, 1996). Figure 1.6 shows the
setup and results of the 1.1-Th/s experiment that were accomplished with 55
different optical wavelengths carrying independent signals. This corresponds to
sending almost the entire contents of 1000 copies of a 30-volume encyclopedia
in | s!

There is also a lot of research activity on special kinds of fibers — namely,
dispersion-compensating fibers (DCFs). This has arisen because the existing
underground network already contains more than 70 million km of fibers op-
timized for operation at 1300 nm. Because today’s optical amplifiers operate
only in the 1550-nm region, the question that arises is whether it is possi-
ble to use the existing network of fibers to send signals at 1550 nm. Since
they are not optimized for 1550-nm operation, such fibers exhibit a significant
amount of dispersion at 1550 nm, leading to distortion of signals. The newly
developed DCFs have very large dispersions but have a sign that is opposite
those of the 1300-nm fibers. Hence, by appropriately choosing the lengths of
these fibers, one can indeed compensate for the distortion and thus use the

1983

Fig. 1.3:  Figure shows the
dramatic reduction in
transmission loss in optical
glass from ancient times 10
present. [ After Nagel
{1989).]
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Fig. 1.4
a typical low-loss optical
fiber. [After Miva et al.
(1979).]

Loss spectrum of

Fig. 1.5: A typical gain
spectrum of a fat gain
erbium-doped optical fiber
amplifier. [After Yoshida,
Kuwano, and [washita
(1995).]

100 T Y T T T T T T T !
50 ]
10 7
5 Experimental infrared E
abse?ption\y'
Attenuation 1 -
-1
(dBkm™) . Rayleigh / e
05k . /
§ scattering .
- S Ultraviolet T~ / ]
01k \{ibsorption m;::g:gz . -~ —
0.05F / E
___.___-}--c-——-*----— - —
i \..- =
0.01 L . 1 . i i P A )
: 0.8 1.0 1.2 14 16 18
Wavelength (um)
50
40F==
AN r,,&\
IR R 72 Sad Faay 3o Tas 1 T
msop—-—._‘ ,____._.--.r.__-----::'}-.
@ S i R T ﬁu.k -10 dBm
- o e | —— — Y e g — =15 dBm
£ . — \ _____ 20 dBm
(CY1] S — S ~25dBm
---------- -30 dBm
—— =35 dBm
—e—— — 40 dBm
10
flat gain region
oL, R 3N - i P — R
1530 1540 1550 1560 1570
Wavelength, nm B

existing network, resulting in significant cost savings. Indeed, the experiment
shown in Figure 1.6 used the 1300-nm optimized fibers and used DCFs in the
link.

Another very significant development imvolves use of optical nonlinear ef-
fects in optical fibers to compensate for any distortion of signal due to dis-
persion in the fiber. Such light pulses, in which nonlinear effects cancel dis-
persion effects completely, are termed solitons. The nonlinear effects become
very predominant because even low powers can lead to very large intensi-
ties (Hght power per unit area) of light beams since the cross-sectional ar-
eas of the beams that are guided by the fiber can be as small as 50 um?,
Figure 1.7 shows a dramatic experiment demonstrating soliton propagation
through 180 million km of fibers at a data rate of 10 billion pulses per second.
Although such extremely large capacities have been demonstrated in experi-
ments using soliton propagation, their implementation in real systems is still to
come.
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Optical fibers have indeed revolutionized the field of telecommunication
and are the backbone of today’s global communication networks. Indeed, the
growth rate has been so phenomenal that the performance of lightwave systems
has been doubling every 1.34 years [Midwinter (1994)]. This may be compared
with the growth rate of silicon chips, which has a doubling time of 2.2 years.

Lightwave communication systems employing rare earth-doped fibers and
solitons are expected to lead to near “zero loss” and near “infinite band-
width” systems, thereby providing us with a network capable of handling
almost all our information needs and resulting in a true information-based
society.

Fig. 1.6:  (a) Experiment:
setup for 55 wavelength
WDM {wavelength divisio
multiplexing) transmissior
(b) The corresponding
dispersion map of the fibei
link. {(¢) Spectra of the 55
wavelengths used in the
experiment (H: 3.6 nm/dp
V1 5 Db/div, Res: 0.1 nm)
[After Onaka et al. (1996)
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Fig. 1.7:  Transmitted data
pattern of (1100110011) as
recetved after 180 million
km of propagation in a
recirculating fiber loop
experiment. [After
Nakazawa (1994).]
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In the following chapters of the book we aim to develop the field of fiber
optics from the basic principles to the present-day technology involving erbium-
doped fiber amplifiers, DCFs, and solitons. In Chapter 2 we briefly discuss some
basic optical effects such as interference, diffraction, and polarization. This is
followed by a general discussion on the simplest optical fiber — namely, the
step index optical fiber in Chapter 3. Chapters 4 and 5 discuss the analysis of
optical waveguides in terms of a ray picture that is valid for multimode fibers.
Chapter 6 discusses the important concept of material dispersion; it was the
observation of zero material dispersion around 1300 nm in silica-based fibers
that shifted operation into the 1300-nm wavelength window. Chapters 7-10
discuss the characteristics of optical waveguides in terms of the more rigorous
modal picture and show the enormous information-carrying capacities of single-
mode fiber. Design issues of single-mode fibers are discussed in Chapter 10.

Chapters 11 and 12 give brief discussions on sources and detectors used
in fiber optic communication systems with special emphasis on the specific
characteristics relevant to communication systems only. Chapter 13 gives a
brief exposure to the issues involved in the design of a simple optical fiber
commmunication system.

Chapters 1416 deal with the very recent developments in optical fiber sys-
tems — namely, optical fiber amplifiers, dispersion compensation principles,
and soliton propagation through optical fibers. The chapters discuss the basic
concepts and aim to illustrate the tremendous impact that these have in the area
of fiber optics.

Chapters 17 and 18 discuss an important area of fiber optics — namely,
fiber optic components and fiber optic sensors, which are finding widespread
applications in many diverse areas. The discussion is restricted to components
and sensors based only on single-mode fibers since these are expected to find
greater application in view of their greater sensitivities and better performance
characteristics.

Chapters 19 and 20 discuss some of the important methods for characterizing
multimode and single-mode fibers.
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Chapter 21 discusses the interesting area of periodic interactions in wave-
guides. Fiber Bragg gratings that use periodic interaction seem to be one of the
most active areas of research and development in the fiber optics field today in
view of both demonstrated and proposed applications.

Chapters 22-24 discuss some advanced topics in fiber optics. These chapters
are expected to further illustrate the beautiful physics that fiber optics offers
us.




2

Basic optics

2.1 Introduction 9
2.2 Plane polarized waves 9
3 Circularly and elliptically polarized waves 12
2.4  Propagation of a light wave through a quarter-wave plate 14
2.5 Reflection at a plane interface 16
2.6 Two-beam interference 19
2.7 Concept of coherence 24
2.8 Diffraction of a Gaussian beam 25
Problems 27

2.1 Introduction

This chapter gives an elementary introduction to polarization, interference, and
diffraction characteristics of a light wave. The principles developed in this
chapter are used in understanding the basic concepts in fiber optics.

2.2 Plane polarized waves

A linearly polarized plane wave is the simplest electromagnetic wave, and if we
assume the plane wave to be propagating in the +z-direction, the corresponding
electric field can be written in the form

E = XFycoslwr —kz +8) (2.1)
where the electric field vector is assumed to oscillate in the v direction. In

equation (2.1), w(=2mv) is the angular frequency and £ 1s the propagation
constant, For propagation in free space

where ¢ represents the velocity of light in free space; when propagating in a
medium characterized by refractive index n, we have

(4]
k= —
»
where
c
U= —
R

represents the velocity of the electromagnetic wave in that medium. Equation
(2.1)describes an x-polarized wave. ltis alsoknown as a linearly polarized wave
because the electric vector is oscillating along a specific axis (see Figure 2.1).
A linearly polarized wave is also known as a plane polarized wave because the
electric field is always confined to a particular plane; for the x-polarized wave
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k 2

propagating along the z-direction, the electric field is confined to the x—z plane
(see Figure 2.1).
In the complex representation we may write

E = REge/ @ —k+6) (2.2)

where the actual field is the real part of the above equation. In general, a plane
wave propagating in the direction of k is described by the equation

E — éEoei(u)lrk-l’-%H) {2-3)

where @ represents the unit vector along the direction of polarization, and for
the wave to be transverse we must have

k-é=0
The corresponding magnetic field is given by

1

anm

H= [k x E] (2.4)

The Poynting vector S is defined by
S=ExH (2.5)

and points along the direction of propagation of the wave in an isotropic medium.
We may interpret S - da as the electromagnetic energy crossing the area da per
unit time. For an x-polarized plane wave propagating along the z-direction, the
electric field is given by equation (2.1). Using equation (2.4), the corresponding
magnetic field is given by

k
H=— yEpcos(wt — kz +6) (2.6)
WLy
Thus
kK, 5 .
S= —Ejcos(wt —kz +6) (2.7)

Wil

Fig. 2.1:  An x-polarized
plane electromagnetic wave
propagating along the z
direction. The arrow
represents the direction and
magnitude of the electric
field vector at a particalar
instant of time.
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For light waves @ ~ 107 s™! and the cos® term in equation (2.7) oscillates very

rapidly so any detector would record only a time average. Since

2 Lot
(cos“(ewt —kz +0)) = ; Lt T cos?(wt — kz + 6)dt
oo oy
1
T2
we obtain
k n
8§y = Ef = E; 28
S 2ewitg 0 2¢ g v (2.8)

The time-averaged quantity (§) is also referred to as the intensity of the elec-
tromagnetic wave and represents the average energy crossing a unit area (per-
pendicular to the direction of propagation) per unit time.

Example 2.1: Consider a laser beam at 0.633 um with a power of
1 mW and a cross-sectional area of 3mm?, Assuming a beam of uni-
form intensity

10-3 1 3 5 n
=== x 10} W/m? =
Ix 10 3 2¢g

[ E}

Forairn >~ | and using ¢ = 3 % 108 m/s, oy = 47 % 1077 S1 units,
we have the corresponding electric field as
Ey 22 501 V/m

Example 2.2: Consider a bulb emitting 10 W of optical power. Since
the emission is uniform along all directions, the corresponding inten-
sity at a distance of 10 m is

10

= ~ 796 x 10 Wm*
dm x 10*

{

The corresponding electric field is given by

Depn I\
EO=( CHo ) ~ 2.4 V/m

I

Example 2.3: Since a laser beam is almost perfectly parallel, it can
be focused to a spot of a radius of a few wavelengths. If we consider
a beam of 1 mW at 0.633 focused by a lens to a spot of radius 6 pom,
then the resulting intensity is

I mW , 6 ,
[ = i = 8 8 % 1) W/m~
T X (6 pm)*

The corresponding electric field is

Eg~81x 10* V/m
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Polarized
light

Polarizer

Unpolarized
light

2.2.1 Production of plane polarized waves

The ordinary light wave, like the one coming from a sodium lamp or from
the sun, is unpolarized — that is, the electric vector {on a plane fransverse (o
the direction of propagation) keeps changing its direction in a random man-
ner as shown in Figure 2.2. If we allow the unpolarized wave to fall on a
polarizer (such as a polaroid), then the wave emerging from the polaroid will
be linearly polarized. In Figure 2.2 the lines shown on the polaroid represent
what is usually referred to as the “pass axis™ of the polaroid — that is, the
electric field perpendicular to the pass axis gets absorbed. Polaroid sheets are
extensively used for producing linearly polarized light waves. As an interest-
ing corollary, we note that if a second polaroid (whose pass axis is at right
angles to the pass axis of the first polaroid) is put immediately after the first
polaroid, then no light will come through; the polaroids are said to be in a
“crossed-position.”

2.3 Circularly and elliptically polarized waves

Let us consider the superposition of two plane waves, one polarized in the v-
direction and the other polarized in the y-direction, with a phase difference of
/2 between them.

E, = Egkcos{wt — kz)
(2.9)
E, = Egy cos{wt — kz —m/2}

where we have assumed the amplitude of the two waves to be the same (=Fg).
The resultant electric field is given by

E = Ep[kcos(wr — kz) + ¥ sin(wt — k)] (2.10)
which describes a right circularly polarized (RCP) wave. At any particular

value of =, the tip of the E-vector, with increasing time 7, can easily be shown
10 rotate on the circumference of a circle. For example, at z = 0, the x and y

Fig. 2.2:  Production of
plane polarized light fror
an unpolarized light sour
using a polarizer. The
horizontal lines in the
polarizer represent

the pass axis.
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Fig. 2.3:  Representation
of a RCP beam propagating
along the z-direction,

Fig. 2.4:  Two different
elliptical states of
polarization represented by
equation (2.12) with

(a) £y = 4 Eq and

¢ = —7?/2? and (b)

E; = E(; and d} == 7{'/3

{

@y / |
4

(a) (b}

components of the electric vector are given by
E. = Eycoswt, E, = Eysinwi; 210

thus the tip of the electric vector rotates on a circle in the clockwise direction
(see Figure 2.3). For advancing a right-handed corkscrew along the z-direction,
we would have to rotate it along the clockwise direction, and therefore it is said
to represent an RCP wave. When propagating in air or in any isotropic medium,
the state of polarization (SOP) is maintamed — that is, a linearly polarized wave
will remain linearly polarized; similarly, an RCP wave will remain RCP.

In general, the superposition of two waves with

E. = Eycos(wt —kz) and E, = E,cos(wt —kz —¢) (2.12)

will represent an elliptically polarized wave. Figure 2.4 shows two different
elliptically polarized waves. Figure 2.4(a) corresponds (o

]
E;:;Eo and ¢ = —n/2, (2.13)

representing a left efliptically polarized wave, and Figure 2.4(b) corresponds to
Ei=FE, and ¢ =m/3. (2.14

representing a right elliptically polarized wave.
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i

a) b)

2.4 Propagation of a light wave through
a quarter-wave plate

A quarter-wave plate (QWP) is a device that is used in many experiments
involving fiber and integrated optics and is basically used to change the SOP of
a propagating optical wave. For example, using this device we may transform a
circularly polarized wave to a linearly polarized wave and vice versa. A QWP
is made of an anisotropic medium like calcite or quartz. We will not go into
the details of an anisotropic mediuny; it suffices here to say that inside a crystal
like that of calcite, quartz, LINbOs, there is a preferred direction known as the
optic axis. In a QWP the crystal is cut in such a way that the optic axis is at
right angles to the thickness of the plate. Figure 2.5 shows a QWP with its optic
along the x-direction. The modes of the QWP are x- and y-polarized; the x-
polarized mode, which is polarized along the optic axis, is usually referred to as
the extraordinary wave, and the y-polarized mode is referred to as the ordinary
wave. By modes we imply that if the incident wave is x-polarized, then it will
propagate as an x-polarized wave; similarly, if the incident wave is y-polarized,
then it will propagate as a y-polarized wave without any change in the SOP
but with a velocity slightly different from the velocity of the x-polarized wave.
On the other hand, if a circularly polarized wave is incident, we must express
this as a linear combination of x- and y-polarized waves and then consider the
independent propagation of the two waves.

As an example, we consider the incidence of a wave polarized at an angle
of 457 to the x-axis (see Figure 2.5). At z = 0, it can be expressed as

E, = EgcosBcoswt, E, = Egsint coswrt (2.1%

where # = 45°. The refractive indices “seen” by the x- and y-polarized waves
are different and are usually denoted by #, and n,,, respectively. These are known
as the extraordinary and ordinary refractive indices and are known constants of
the crystal (see Table 2.1). Thus, the x- and y-polarized waves propagate with
velocities ¢/n, and ¢/n,,, respectively, and therefore inside the crystal we will
have

Eg ‘
E, = cos(wt — k.2) (2.16)

Fig. 2.5: A plane
polarized wave is incident
normally on a quarter-wave
plate with the plane of
polarization making an
angle 8 with the optic axis
(x-axis in the figure).

(a) Side view,

(b) front view.
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Table 2.1. Ordinary and extraordinary
indices for calcite, quartz, and rutile

Crystal ng Hp A (pm)
Calcite 1.658 1.486 0.589
Quartz 1.544 1.553 0.589
Rutile 2621 2.919 0.579
and
Eq .
E, = -\/—§~ cos(wt — k,z) (2.17)
where
w w
k,= —n,, and k.= —n, (2.18)
C c

Thus, as the wave propagates, a phase difference is set up between the two
components, We assume n,, > n, (which is true for negative crystals like calcite).
Let the thickness d of the crystal be such that

(ko —k)d =m/2

or

A

d = —i— 2.19
4n, —n,) ( )

where Ag (= w/2m¢) represents the free space wavelength. Then at z = d, the
x and y components of the polarization are given by

E, = % cos(w! — @) (2.20)
and
E, = £o cosfwi — [(¢ + /D))
V2
= £ Giner — ¢) 221)
75 2.

where ¢ = k.d, equations (2.20) and (2.21) describe an RCP wave,

Similarly, a half-wave plate (HWP) is a device that introduces a phase differ-
ence of 7 between the two electric field components; thus, its thickness will be
twice the thickness of a QWP. A linearly polarized lightwave remains linearly
polarized after passing through an HWP; however, the orientation of the plane
of polarization can be changed by a desired amount using an HWP.

As asimple example, starting with an unpolarized lightwave, we can produce
acircularly polarized wave by passing it first through a polaroid and then through
an appropriately oriented QWP (see Figure 2.6).
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RCP Fig. 2.6: Production of

RCP light from unpolarized

X light using a combination of
a polarizer and a QWP

Pass axis
¥
A/4 plate
Unpolarized Polarizer

light

Fig. 2.7: Reflection and
transmission of a plane
wave incident at an
interface between media of
refractive indices ny and ns.
(a) p polarization, (b} s
polarization.

(a)

5]

(b

2.5 Reflection at a plane interface

Consider a plane interface formed between two media of refractive indices 7
and #n, (see Figure 2.7). When an electromagnetic wave is incident on such
an interface, it will, in general, give rise to a reflected wave and a transmitted
wave. The amplitudes of the reflected and transmitted waves can be obtained by
using the electromagnetic boundary conditions at the interface. The amplitude
reflection and transmission coefficients defined as the ratio of the electric field
of the reflected and transmitted waves to the electric field of the incident wave




2.5 Reflection at a plane interface 17

are given by [see, e.g., Ghatak and Thyagarajan (1989}, Chapter 2|

11, 080, — nycost
r, = — ERE it (2.22)
1y Ccos By + 1y cos dy

2ny cos o,

1o cos by + ny cos b

nj cosf] — nycosbh

1y cos 6y + 1o cos b

2n, cos &,
f, = . (2.25)
nicost + nocosth

where the subscripts p and s correspond to the incident wave polarized in
the plane of incidence and perpendicular to it, respectively; ¢/; and ¢, are the
angles of incidence and refraction, respectively (see Figure 2.7), and are related
through Snell’s law:

iy 8indy = nosinth (2.26)

Example 2.4: Let us consider normal incidence on an air-silica in-
terface with the refractive index of silica of 1.45. The corresponding
energy reflection coefficient is

R
- 1 - )
Rmvﬁz(ﬂ~iﬂ ~ 0.03
Ty oy

For incidence on a GaAs—air interface, using the refractive index of
GaAs as 3.6, we have

R =10.32

thus showing a strong reflection. This large reflection coefficient at
a semiconductor-air interface is used for feedback in a semiconduc-
tor laser in which the end facets are just cleaved semiconductor sub-
strates.

2.5.1 Brewster angle

We note from equation (2.22) that r, = O when
1 CO8Hy = 1 COSH, (2.27}

Using equation (2.26), we have

2
5 5 , s
~=cos ) = (1 —sin” )
ny
n?
-2
=1~ —+sin" 6
n
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or
2 2 2
n 7 . n «
-%mseczeg—n%tan29;_ﬂi+ i———; tan® 6,
n; n; n;
Thus
Hi) .
tanf) = — (2.28)
i

This angle is referred to as the Brewster angle and is such that at this angle
of incidence the reflection coefficient is zero for the polarization parallel to
the plane of incidence. No such angle exists for the s polarization. Thus, if an
unpolarized beam is incident at the Brewster angle, the reflected light will be
linearly polarized — in fact, s-polarized.

2.5.2 Total internal reflection

When a wave is incident from a denser medium on an interface separating two
media, then, since n; > ns, we have from equation (2.26), 6; > 6;. For an angle
of incidence 8, = #. such that

nysinf, = n» (2.29)

the refracted wave just grazes the interface. This angle is referred to as the
critical angle, and for angles of incidence greater than the critical angle there 18
no refracted wave and the wave is said to suffer total internal reflection.

When n, sin# > ny, then siné, > 1 and cos 8, becomes a pure imaginary
quantity

, i ) 172
costh = (1 — sin 0)'/% = ——w(n% sin” @, — n%) /
n‘

Thus, the reflection coefficients become complex. For example, we have

o 53 1/2
ny cos 8 +i(n?sin® 6 — n3) /

s = - 2 .2 2 1/2
nycosd — z(n“l' sin” 6y — n*z')

T
N sin® By — n%

1 COS 9]

=exp | i2tan”! (2.30)

Thus, the corresponding energy reflection coefficient is Ry = |rs |* = 1 showing
that the reflection is total.

One can similarly show that for 8, > 6., R, = 1rpl2 = 1.

The fact that even under total internal condition, 7, and ¢, are nonzero [see
equations (2.23) and (2.25)] is interpreted from the fact that, even under condi-
tions of total internal reflection, there is a finite value of electric field even in the
rarer medium. This is called an evanescent wave. One can show that the field
in the rarer medium decays exponentially away from the interface and there is
no net energy flow into the rarer medium. The presence of such an evanescent
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wave is very important from the point of view of many fiber optic components
such as directional couplers (see Chapter 17).

Example 2.5: For an interface between silica (n) = 1.45) and air
{ny = 1.0), the critical angle 1s ¢, = sin“i(nz/nl) = 43.6°,

Example 2.6: For an interface between doped silica (n;=1.46) and
pure silica (n, = 1.45), the critical angle is 6, = 83.3°.

2.6 Two-beam interference

Whenever two waves superpose, one obtains an infensity distribution that is
known as the interference pattern. We will consider here the interference pat-
tern produced by waves emanating from two point sources. As is well known,
a stationary interference pattern is observed when the two interfering waves
maintain a constant phase difference. For light waves, because of the very pro-
cess of emission, one cannot observe a stationary interference pattern between
the waves emanating from two independent sources, although interference does
take place. Thus, one tries to derive the interfering waves from a single wave
so that a definite phase relationship is maintained.

Let ) and 5, represent two coherent point sources emitting waves of wave-
length A (see Figure 2.8(a)). We wish to determine the interference pattern on
photographic plates Py and P,. The intensity distribution is given by

] = 41,cos* 5,2 (2.31)
where, 1 is the intensity produced by either of the waves independently and

X T

§=—4 (2.32)
where

A=50~50 (2.33)
represents the path difference between the two interfering waves. Thus, when

= 2

= A=50~50=mk; m=0,12, .. (bright fringe)

(2.34)
we will have a bright fringe and when
S=02m-+ )ym
= A=50~50= (m - i—)k; m=20.1,2, ... (dark fringe)
| (2.35)

we will have a dark fringe. Using simple geometry one can show that the locus
of the points (on the plane P;) so that $;Q ~ $:Q = A is a hyperbola given
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by [see e.g., Ghatak (1992), Chapter 11]
3 . > 5 > 1 .
(d* — A)x° — A*y" = A° [Dz +3 (d’* - Az)} (2.36)

Now,
A=0=x=10

which represents the central bright fringe and coincides with the y-axis. Equa-
tion (2.36) can be written in the form

2

A2 5 3 | 5 3. Ve
x = =+ W E‘J" + D7 E (d~ — A“)} (237)

For values of v such that

Vv D7

Fig. 2.8: (a) Schematic of
the arrangement o observe
two-beamn interference,

{b) fringe pattern on plane
Py, and (¢) fringe pattern on
plane P2,
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(i.e., close to the x-axis) the loci are almost straight lines parallel to the v-axis
and one obtains almost straight line fringes as shown in Figure 2.8(b).
For A < d and vy <« D, we may write equation {2.37) as

B
d

The positions of maxima and minima are determined by the values of A [see
equations (2.34) and (2.35)]. The corresponding fringe width would be

Thus, for D = 50 cm, d = 0.05 cm, and A = 6000 A , B = 0.06 cm.

We next consider the interterence pattern produced on the plane . As an
example, let us assume for simplicity A = 6 x 107 cmand d = 6 x 107 cm.
so that 4 is an integral multiple of A. Thus

S$10, — 50, =d = 1000 = pi
and the point @; will be a bright spot. Obviously, the fringe pattern on the
plane P; will be circular (see Figure 2.8(c)) because the locus of point O so
that S; 0 — 5> 1s a constant will be a circle on the v—z plane whose center is

at (. The point  will be bright if

10— 50 =(5/0; — S50 —ma = {(p — n)r

where m = 0,1,2, ..., Elementary algebra shows that the radius 7 of the
fringes is given by
Dd I S take |
7= —— — —(p—m)h} — | D—=d (2.39)
(p—myr 2 ‘ 2

and it will correspond to the (p — m)th bright fringe. For example, ford = 0.6
mm, & =6 x 107 ¢cm, D = 50cm, we have p = 1000, and the fringes corre-
sponding to m = 1, 2, and 3 (which will correspond to the 999th, 998th, and
997th fringe) will have radit 2.24 cm, 3.17 cm, and 3.88 cm, respectively.

It can easily be seen that if the distance d is increased, the central fringe will
become a higher order fringe and thus the fringes will emerge from the center.
On the other hand, if the distance d is decreased, the central fringe will become
a lower order fringe and thus the fringes will collapse to the center.

2.6.1 Fiber optic Mach—Zehnder interferometer

One of the important applications of optical fibers is in the sensing of var-
break ious external parameters such as pressure, temperature, magnetic field,
etc. (see Chapter 18). A fiber optic Mach-Zehnder interferometer is one of
the basic configurations used in high-sensitivity measurements. In such an



22 Basic optics

B51 M1
SOURCE ) »> >
- -
T 9 ¥y ¥
Yy v
L L 4
M2 BS2

arrangement, changes in the phase of light propagating through a single-mode
fiber caused by an external parameter are very sensitively measured by an inter-
ference effect. Fiber optic Mach—Zehnder interferometers are one of the most
sensitive sensors with predicted capabilities exceeding those of many conven-
tional sensors. In this chapter, we discuss the basic configuration of a fiber optic
Mach~Zehnder interferometer.

Figure 2.9 shows a conventional Mach—Zehnder interferometer using bulk
optical elements in which light from a source is first split into two arms with a
beam splitter and then recombined by another beam splitter after propagating
through two different arms. Depending on the phase difference between the
two arms, at the output of the interferometer one obtains an interference pattern
much like in any other interferometer.

The corresponding fiber optic version of the Mach—Zehnder interferometer!
is shown in Figure 2.10, in which the two arms of the interferometer are replaced
by two single-mode fibers; the beams emerging from the two fibers will almost
be diverging spherical waves and are superposed with a beam splitter. If the
output ends of the two fibers are adjusted as shown in Figure 2.10, then the two
diverging spherical waves will have their centers of curvature collinear with the
fiber axis. In such a case, circular fringes will be formed on a screen placed as
shown in Figure 2.8(¢c).

This arrangement is very similar to the interference pattern formed by two
point sources on a screen placed perpendicular to the line joining the sources
(see Section 2.6). In contrast to a point source that emits uniformly along all
directions, in the present case, the interfering beams have almost a Gaussian
amplitude distribution. Thus, the circular fringe pattern will have an overall
intensity pattern as in a Gaussian beam. As discussed in Section 2.6, when the
output ends of the fiber are brought closer to each other, the circular fringes
expand, and when they are moved away from each other, they contract (where
is the zero-order fringe in this system?).

VIT the two beam splitters were replaced by fiber optic directional couplers, we would then have
an all-fiber Mach—Zehnder interferometer.

Fig. 2.9: Configuration of
a conventional
Mach-Zehnder
interferometer.



2.6 Two-beam interference 23
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Fig. 2.10:  Schematic of a
fiber optic Mach—Zehnder
interferometer.

The total phase difference between the interfering beams at any point {J on
the screen, which is labelled as P> in Figure 2.8(a), is given by

2T ,
6 = %(SzQ — $10)+ (¢ — 1)
M)

= %(\/ngzm \/Rf“+r2> + (P2 — P1) (2.40)

where r(=0, Q) is the distance of the observation point from the center of the
screen, R, and R, are the distances of the fiber ends from the screen, and ¢,
and ¢, are the phase shifts suffered by the beam in propagating through the two
fiber arms; these include any constant phase difference between the two arms
due to differences in fiber lengths, and so forth as well as any difference due to
external perturbation. In Figure 2.8(a), Ry = D +d/2and R, = D — d/2.

If each of the beam splitters is a 50:50 beam splitter, then the time-averaged
intensity detected by an optical detector is

I = Iycos’ (%) (241)

where I is the input intensity. It is seen from equation (2.41) that the inten-
sity at any point depends on the phase difference between the two arms. Thus,
if the phase difference ¢ is an integral multiple of 27, then the intensity is
maximum, whereas if it is an odd integral multiple of 7, then the intensity zero
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(what happened to energy conservation?). Thus, the intensity at any point on the
screen depends on the phase difference between the two arms of the interfer-
ometer. Any external perturbation differentially affecting the light propagating
through the two arms will change (¢, — ¢1) and thus the interference pattern
itself.

A fiber optic Mach-Zehnder interferometer as shown in Figure 2.10 can be
used as a sensor for detecting and measuring various external parameters such
as temperature, pressure, strain, magnetic field, and so forth. This is discussed
in greater detail in Chapter I8.

2.7 Concept of coherence

In Section 2.6 we discussed the interference of two waves that are generated
from one wave by the method of division of wavefront (see Figure 2.8). If the
source emits only one wavelength X, then the fringes are formed everywhere
on the screen. The positions of maxima and minima are given by

D .
X = maxima
[#
' INA D .
={m-4 - minima {(2.42)
2 d

where we have used equations (2.37), (2.34), and (2.35). If the source emits
another wavelength X, along with Ay, then the positions of maxima and minima
of %, are given by

D .
X =i maxima
d
{1\ WD L (2.43)
= {n-+ 5, minima 2.47

At the center of the screen Py in Fig. 2.8(a), x = 0 and the maxima of both
wavelengths coincide exactly. As we move away from the center, since the
fringe spacings of A; (which is equal to &; D /d) and of X, (equal to raD/d)
are unequal, at some value of x, the maxima of A7 and minima of A, will start
to overlap. In such a region, there would be no fringes observable. For this to
happen at a value of x, the optical path difference (OPD) of A, must be ma;,
whereas that of A, should be (m + %‘)}Q. Thus

' |
OPD = mh,| = (m + ;) A (2.44)

Hence

OPD OPD |

nm o=

A A2 2
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giving

OPD = 5= (2.45)

where A = 1 — », and we have assumed A3, = 17, where A is the average
wavelength.

The quantity 4?/2AX represents the maximum OPD so as to obtain an ob-
servable interference pattern in the presence of two wavelengths spaced by AA.
If the source emits a continuous spectrum of width A4, then one can show that
for good contrast the path difference should be less than

)2
AL

/. (2.46)

The above quantity is referred to as the coherence length. Equation (2.46) can
also be written in terms of frequency as

o

l, = — 2.47)
Ay ( ,
The coherence time 7. 1s defined as
L. 1 i
¢ Av

Thus, the more monochromatic a wave is, the larger is the coherence length or
coherence time.

Example 2.7: An LED at 850 nm has a typical Ax of 30nm. The
corresponding coherence length is

{, = 24 um

On the other hand, a laser diode at the same wavelength has a spectral
width of 2nm, giving a coherence length of

{. ~ 0.36mm

Example 2.8: A He—Ne laser has a Av = 1.5 GHz. The corresponding
coherence length 1s

{.=20cm

2.8 Diffraction of a Gaussian beam

An infinitely entended uniform plane wave such as the one described by equa-
tion (2.1) propagates as a plane wave, and the transverse amplitude and phase
distribution do not change as the wave propagates. On the other hand, if the
beam is characterized by any transverse amplitude/phase distribution, then as
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the beam propagates, the transverse amplitude and phase distributions change.
This 1s due 1o the phenomenon of diffraction.

The diffraction phenomenon can be easily understood by considering the
diffraction of a Gaussian beam. Indeed, when a laser oscillates in its fundamental
mode, the transverse amplitude distribution of the output beam is Gaussian;
similarly, the transverse amplitude distribution of the fundamental mode of an
optical fiber is very nearly Gaussian. Therefore, the study of the diffraction of
a Gaussian beam 1s of considerable importance in fiber optics.

We consider the propagation along the z-direction of a Gaussian beam whose
amplitude distribution on the plane z = 0 is given by

(2.49)

22
wlx, y,0) = A Cxp[_“‘_i_};.]

2
Wy

where wy is usually referred to as the “spot size” of the beam; it represents
the radial distance at which the intensity falls off by a factor of 1/¢. The
above equation implies that the phase front is plane at z = 0. As the beam
propagates along the z-axis, diffraction occurs and one obtains [see, e.g., Ghatak
and Thyagarajan (1989), Chapter 2]

[AT 211,;(2) ) x2 4 y? _uted)
u(x,y, z) = — ————=exp| —ik| 7+ - e

A2z +ikwg 2R(z)
(2.50)
where
7T2'U,)é ,
Riz)=z|1+ e (2.51)
represents the radius of curvature of the wavefront and
A2-2 N\ /2
w(z) = w{)(l + 7A‘ 4) (2.52)
Thwy,
represents the z-dependent spot size of the beam. For large values of z,
; AZ
w(z) (2.53)
Ty
implying
w(z) A
tand ~ o~ (2.54)
< Wy

where 6 is the semiangle of the cone defining the diffraction divergence of the
beam. Thus, for & 2~ 0.6 pem [using equations (2.54) and (2.52)]

B2 0011" forwy = lmm = w = 2.16mmatz = [Om
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Fig. 2.11: Diffractionof a  and
(Gaussian beam. Note that
the diffraction divergence
{#) increases when the waist
of the beam is reduced.

2 mm

- s i e e e ] - ——— ———
)

f>~1.09 forwy=10um=w=395umatz =2mm

(see Figure 2.11). Notice that € increases with a decrease in wyq (the smaller
the size of the aperture, the greater the diffraction). Further, for a given wy, ¢
decreases with a decrease in A; indeed, as A — 0 there is no diffraction that is
the geometrical optics limit.

Example 2.9: The output from a single-mode fiber operating at 1300
nm is approximately a Gaussian beam with wy = 5 pum. Thus, the
corresponding divergence is

ra ]
¢~ tan ! (»—U—) ~ 473"

T Wy

Thus, if a screen is placed a distance of 10 cm in front of the fiber, the
radius of the beam is approximately 8.3 mm.

Problems

2.1

1 1
e

2.5

Obtain the electric field produced on the retina when a person standing at a
distance of 10 m from a bulb emitting 20 W of optical energy looks at it. You may
assume A = (0.5 pm, pupil radius = 2 mm, and the eye lens to retina distance is
25 mm.

For the example 2.1, obtain the corresponding magnetic field.

{a) The energy density of the Sun on the Earth’s surface 1s approximately 1.35
kW/m?. Assume that if one looks directly into the sun, the radius of the image of

the image assuming the pupil radius to be | mm.

(b) A diffraction limited laser beam (of diameter 2 mm) 1s incident on the pupil
of the eye. Assume that the wavelength of the laser is 633 nm and that the focal
length of eye lens is 25 mm. Calculate the power density on the retina.

[ANSWER: (a) 30 kW/mZ, (b) 10 MW/m? ]

Write down a complete expression for a plane wave traveling with its k in the
vz plane making an angle of 30° with the z-axis.

The Fraunhofer diffraction pattern of a Gaussian beam coming out of a laser
operating at 1 wm is measured and it is found that the intensity drops by 50%
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2.10

from the maximum value when the diffraction angle is 0.1°. Calculate the waist
size of the beam. You may use

wi) = w%(l + /\222/7!211)3)

The Fraunhofer diffraction pattern of a Gaussian beam at 0.5 zem is measured
and it is found that the intensity drops to 10% of the maximum value when the
diffraction angle is 17, Calculate the waist size of the beam.

A Gaussian laser beam with a beam width of 10 cm and a wavelength of 1.06 m
i$ pointed toward the moon, which is at a distance of 3.76 x 10° km. What will
be the size of the spot on the surface of the moon? You may neglect any effects
due to atmospheric turbulence.

Obtain the reflection coetfficients from an air—glass (n = 1.5) interface when the
angle of incidence is 07, 307, 607, and 85° for s and p polarizations,

Two coherent laser beams at a wavelength of 0.6328 um making angles of ++45°
and —45° with the normal to a screen are incident on it. What is the spacing
between the fringes that will be observed on the screen?

A single-frequency laser at 1300 nm has a spectral width of 100 MHz. What is
the corresponding coherence length?
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3.1 Introduction

An optical waveguide is a structure that can guide a light beam from one place to
another. The most extensively used optical waveguide is the step index optical
fiber that consists of a cylindrical central dielectric core, clad by a dielectric ma-
terial of a slightly lower refractive index (see Figure 3.1(a)). The corresponding
refractive index distribution (in the transverse direction) is given by

n(ry=mny, 0 <r<a core

=n;, r >a cladding (3.1
where r represents the cylindrical radial coordinate and a represents the radius
of the core. Actually, the core extends only to a finite distance b (see Figure

3.1(b)); however, for all practical purposes, we will assume the cladding to
extend to infinity. Typically, for a step index (multimode) silica fiber,

ny =~ 148, npy >~ 146, a>25um, b=625um {

"
[
I

In this chapter, we discuss the various characteristics of the optical fiber -
namely, its light-gathering power and its loss- and pulse-broadening charac-
teristics. Throughout the chapter we use ray optics, which is valid for highly
multimoded waveguides.

To understand light guidance in an optical fiber, we consider a ray entering
the fiber as shown in Figure 3.1(a). If the angle of incidence (at the core—cladding
interface) ¢ is greater than the critical angle

¢, = sin”" (ff-’t) (3.3)
143

then the ray will undergo total internal reflection at that interface. Further,
because of the cylindrical symmetry in the fiber structure, this ray will suffer
total internal reflection at the lower interface also and therefore will get guided
through the core by repeated total internal reflections. Even for a bent fiber,
light guidance can take place through multiple total internal reflections (see
Figure 3.2). Figure 3.3 shows the actual guidance of alight beam as 1t propagates
through a long optical fiber.
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AlR Fig. 3.1:  (a) A glass fiber

that consists of a cylindrical
/ / ClﬁD/E)I{G/n/A// / central core, clad by a
L LA /////}/ /2 B / material of slightly lower
S o

refractive index. Light rays
CORE,n:n, .'“ ) N g Y

impinging on the

_____ e e 2 core~cladding interface at
) - an angle greater than the

critical angle are trapped

7, S . inside the core of the
CLADDING waveguide. Rays making
//// / larger angles with the axis

AlR take a longer to traverse the
length of the fiber. (b)

{a) Refractive index
distribution of a cladded
optical fiber that consists of
a cylindrical glass structure

CORE surrounded by a material of
slightly lower refractive
CLADDING index. In a typical
(multimode) fiber, we may
have the core refractive
index n; > 1.5, A = 0.01,
core radius @ = 25 pm,
2b = 125 um.
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Fig. 3.2:  Rays
propagating through a bent
fiber. Notice that whereas
the angle of incidence (at
the core~cladding interface)
remains constant in a
straight fiber [see Figure
3.1(a)), it changes in a bent
fiber. Thus, a ray may
eventually hit the
core~cladding interface at
an angle less than the
critical angle and be
refracted away,
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Fig. 3.3: A long optical
fiber carrying a light beam.

Fig. 3.4:  (a) Refractive n 4
ndex distribution of an
unclad fiber that consists of
a cylindrical glass structure 1.5|—0lass
made of homogeneous
matertal. (b) Light rays

. . i . Air

impinging on the glass—air
interface at an angle greater
than the critical angle are
trapped inside the core of
the waveguide through total
internal reflections.

{a)

(b}

The phenomenon of guidance by multiple total internal reflections was in
fact demonstrated by John Tyndall as early as 1854, In this demonstration,
Tyndall showed that light travels along the curved path of water emanating
from an illuminated vessel. However, fiber optics really developed in the 1950s
with the works of Hopkins and Kapany in the United Kingdom and of Van Heel
in Holland; these works led to use of the optical fiber in many optical devices.

The necessity of a cladded fiber (Figure 3.1} rather than a bare fiber (Fig-
ure 3.4) was felt because of the fact that, for transmission of light from one
place to another, the fiber must be supported, and supporting structures may
considerably distort the fiber, thereby affecting the guidance of the lightwave
(see also Problems 3.1-3.3). This can be avoided by choosing a sufficiently
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thick cladding. Further, in a fiber bundle, in the absence of the cladding, light
can leak through from one fiber to another.’

It is of interest to mention that the retina of the human eye consists of a
large number of rods and cones that have the same kind of structure as the
optical fiber — that is, they consist of dielectric cylindrical rods surrounded by
another dielectric of slightly lower refractive index and the core diameters are
in the range of a few microns. The light absorbed in these light guides generates
electrical signals, which are then transmitted to the brain through various nerves.

3.2 The numerical aperture

We return to Figure 3.1(a) and consider a ray that is incident on the entrance
aperture of the fiber making an angle / with the axis. Let the refracted ray make
an angle 0 with the fiber axis. Assuming the outside medium to have a refractive
index ng (which for most practical cases is unity), we get

sin¢ ny

sind Mo

Obviously, if this ray has to suffer total internal reflection at the core—cladding
interface,

sing(=cosf) > na/n, {(3.4)

o 2=1)2
. 12
sinf < lil — (—) }
i

and we must have

29172 2 2172
Lo 12 ny — n;
sini < _[] — (—-) = | i (3.5)
iy mny fig

If (r{ — n3) = nZ, then for all values of i total internal reflection will occur at
the core—cladding interface. Assuming ng = 1, the maximum value of sin/ for
aray to be guided is given by

Thus

i 2y 1/2

s . 3 2
sini,, = (ny — n3) when ny < nj + 1

=1 when n% > rz% + 1 (3.6)
Thus, if a cone of light is incident on one end of the fiber, it will be guided

through the fiber provided the semiangle of the cone is less than i,,. This angle
is a measure of the light-gathering power of the fiber and, as such, one defines

UPhis leakage is due to the fact that when a wave undergoes total internal reflection, it actually
penetrates a small region of the rarer medium [see, e.g., Ghatak and Thyagarajan (1978} Chapter
U1}, The wave in the rarer medium is known as the evanescent wave, which can couple light from
one fiber to another. Thus. in the absence of the cladding, the light may leak away to an adjacent
fiber (see Chapter 17).
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Fig. 3.5: A bundle of
aligned fibers. A bright {or
dark) spot at the input end

of the fiber produces a
bright (or dark) spot at the
output end. Thus, an image

will be transmitted (in the
form of bright and dark
spots) through a bundle of
aligned fibers,

the numerical aperture (NA) of the fiber by the following equation
NA = (n% — ”%)1/2 (3.7)

where we have assumed that n% < rz% + 1, which 1s true for all practical fibers.
To get a numerical appreciation we note that for a typical fiber n; = 1.48,
ny = 1.46 giving

NA = 0.242

which implies i, > 14°. The NA of a fiber is a very important property and
essentially determines the efficiency of coupling from a source to the fiber as
well as losses across a misaligned joint in a splice. In Chapter 19 we discuss
briefly an experimental procedure to measure NA of a fiber.

3.3 The coherent bundle

If a large number of fibers are put together, this forms what is known as a bundle.
If the fibers are not aligned — that is, they are all jumbled up — the bundle is said
to form an incoherent bundle. However, if the fibers are aligned properly — that
18, if the relative positions of the fibers in the input and output ends are the same
— the bundle is said to form a coherent bundle. Now, if a fiber is illuminated
at one of its ends, then there will be a bright spot at the other end of the fiber;
thus, a coherent bundle can transmit an image from one end to another (see
Figure 3.5). On the other hand, in an incoherent bundle the output image will
be scrambled. Because of this property, an incoherent bundle can be used as a
coder; the transmitted image can be decoded by using a similar bundle in the
reverse direction at the output end. In a bundle, because there can be hundreds of
thousands of fibers, decoding without the original bundle configuration would
be extremely difficult.

Perhaps the most important application of a coherent bundle is in a fiber
optic endoscope, which can be put inside a human body and the interior of
the body can be viewed from outside; for illuminating the portion that is to be
seen, the bundle is enclosed in a sheath of fibers that carry light from outside
to the interior of the body (see Figure 3.6). Each fiber transmits light from a
small portion of the object and therefore the resolution is directly related to the
packing density. A state-of-art fiberscope can have about 10,000 fibers, which
would form a bundle of about | mm in diameter capable of resolving objects
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() {(b)

70 pm across. Fiber optic bundles can also be used for viewing otherwise
inaccessible parts of a machine.

3.4 Attenuation in optical fibers

Attenuation and dispersion represent the two most important characteristics of
an optical fiber that determine repeater spacings in a fiber optic communication
system (see Chapter 13). Obviously, the lower the attenuation (and similarly
lower the dispersion) the greater will be the required repeater spacings and
therefore the lower will be the cost of the communication system. Pulse disper-
sion will be discussed in the next section; in this section we briefly discuss the
various attenuation mechanisms in an optical fiber.

The attenuation of an optical beam is usually measured in decibels (dB). If
an input power P; results in an output power P, then the loss in decibels is
given by

Pr
= 101 — 3.8
o 0Ly P, (3.3)

Thus, if the output power is only half the input power, then the loss is 10 log
2 2= 3 dB. Similarly, a loss of 30 dB corresponds to

P 1
log~—l—=3=>Pa

= —— P
P 1000

Figure 3.7 shows the evolution of losses in glasses from ancient times. As can be
seen until about mid-1960s, the losses in “pure” glass had been about over 1000
dB/km. These were primarily due to traces of impurities present in it. In 1966,
Kao and Hockam suggested the use of optical fibers in communication systems
and mentioned that for optical fiber communication to be a viable proposition,
the losses should be less than 20 dB/km. Around 1966, the loss of the best
available glass, which was about 1000 dB/km, implied a 50% loss in power
after propagating through a 3-m length. Kao and Hockam’s suggestion led to

Fig. 3.6: (a) An optical
fiber medical probe called
an endoscope enables
doctors to examine the
inmer paris of the human
body; (b} a stomach ulcer as
seen through an endoscope.
[Photographs courtesy
United States Information
Service, New Delhi ]
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immense activity on the purification of fused silica, and in 1970 Corning Glass
Works in the United States announced the fabrication of silica fibers having
a loss of about 17 dB/km (at Ay = 0.6328 um). Since then the technology
has been continuously improving and the current state-of-art fabricated fibers
have losses < 0.2 dB/km at 1.55 pm (see Figure 3.8); a loss of 0.2 dB/km
implies 95.5% transmission after propagating through a [-km length of the
fiber. In Figure 3.9, a comparison is made of typical atienuation curves for
various guiding media along with the frequency range at which they operate.
The loss curve for the optical fiber appears very sharp because of the logarithmic
frequency scale.

3.5 Pulse dispersion in step index optical fibers

Pulse dispersion represents one of the most important characteristics of an
optical fiber that determines the information-carrying capacity of a fiber optic
comumunication system,

As shown in Figure 3.1, the simplest type of optical fiber consists of a thin
cylindrical structure of transparent glassy material of uniform refractive index
ny surrounded by a cladding of another material of uniform but slightly lower
refractive index 77. These fibers are referred to as step index fibers because of
the step discontinuity of the index profile at the core—cladding interface.
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In digital communication systems, information to be sent is first coded in the
form of pulses and then these pulses of light are transmitted from the transmitter
to the receiver where the information is decoded (see Chapter 13). The larger
the number of pulses that can be sent per unit time and still be resolvable at the
receiver end, the larger will be the transmission capacity of the system. A pulse
of light sent into a fiber broadens in time as it propagates through the fiber;

this phenomenon is known as pulse dispersion and happens primarily for two
reasons:

(1) Different rays take different times to propagate through a given length
of the fiber (this is also known as intermodal dispersion) and

(2)  Any given source emits over arange of wavelengths and, because of the
intrinsic property of the material, different wavelengths take different

amounts of time to propagate along the same path (also referred to as
material dispersion)?.

“There is also a third mechanism called waveguide dispersion that is important only in single-
mode fibers (see Chapter 10). Both waveguide dispersion and material dispersion form part of what
is known as intramodal dispersion.

Fig. 3.8:  The decrease in
loss over the years of silica
fibers [Adapted from
Schwartz (1984).]

Fig. 3.9:  Typical
attenuation of various
guiding media. The loss
curve for the optical fiber
appears very sharp because
of the logarithmic
frequency scale. [Adapted
from Henry (1984).]
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Fig. 3.10: A series of
pulses, each of width 7y (at
the input end of the fiber),
after transmission through
the fiber emerges as a series
of pulses of width 2 (> 11).
If the broadening of the
pulses is large, then
adjacent pulses will overlap
at the output end and may
not be resolvable. Thus,
pulse broadening
determines the minimum
separation between adjacent
pulses, which in turn
determines the maximum
information-carrying
capacity of the optical fiber.
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To understand the first mechanism causing pulse dispersion, we note that in
the fiber shown in Figure 3.1, the rays making larger angles with the axis have
to traverse a longer optical path length and they take a longer time to reach
the output end. Consequently, the pulse broadens as it propagates through the
fiber (see Figure 3.10). Hence, even though two pulses may be well resolved
at the input end, because of broadening of the pulses they may not be so at the
output end. When the output pulses are not resolvable, no information can be
retrieved. Thus, the smaller the pulse dispersion, the greater the information-
carrying capacity of the system.

We next calculate the amount of dispersion in a step index fiber. Referring
to Figure 3.1 for a ray making an angle 6 with the axis, the distance AB is
traversed in time

_AC+CB

c/ny

_ ni(AB)

39
ccosd (3:9)

where ¢/n) represents the speed of light in a medium of refractive index n,,
with ¢ being the speed of light in free space. Because the ray path will repeat
itself, the time taken by a ray to traverse length L of the fiber will be

LI 3.10)
" ccos .

The above expression shows that the time taken by a ray is a function of the
angle & made by the ray with the z-axis, which leads to pulse dispersion. If we
assume that all rays lying between 0 and 6, are present, then the time taken by
rays corresponding, respectively, to § = 0 and 8 = 6, = cos ' (ns/ny) will be
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Fig. 3.11: Pulses
separated by 100 ns, at the

@ M input end would be quite

resolvable at the end of

i km of the fiber. The same

e 1 KM
100 ns Resolvable pulses would not be
resolvable at the end of
2 km of the fiber.
m YN
100 ns 2 km Not resolvable
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Hence, if all the input rays were excited simultaneously, at the output end the
rays would occupy a time interval of duration

mlL (n «
T = Imax — fmin = = (“i‘ - 1) (3.13)
c \n

For a typical fiber, if we assume

=15 27" 001, L =1km
[
one obtains
T = 50 ns/km (3.14)

that is, an impulse after traversing through the fiber of length 1 km broadens to
a pulse of about 50 ns duration. Thus, two pulses separated by say 100 ns at the
input end would be quite resolvable at the end of 1 km of the fiber; however,
they would be unresolvable at the end of 2 km (see Figure 3.11). Hence, in a
1-megabit-per-second (1 Mby/s) fiber optic system, where we have one pulse
every 107% s, 50-ns/km dispersion would require repeaters to be placed every
3—4 km. On the other hand, in a 1000-Mby/s fiber optic communication system,
where we require transmitting one pulse every 1077 s, a dispersion of 50 ns/km
would result in intolerable broadening even within S0 m or so, which would be
highly inefficient and uneconomical from a system point of view.

As mentioned earlier, material dispersion that is due to the dependence of
the refractive index of the fiber material on wavelength also leads to pulse dis-
persion that is due to the different traversal times taken by different wavelength
components of the source (see Chapter 6). For optical fibers based on silica,
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material dispersion causes a pulse dispersion of around 90 ps/km for a source
of spectral width 1 nm and operating at a wavelength of 0.85 ym. Thus, for
an LED operating at a wavelength of 0.85 pm and having a spectral width of
30 nm, the contribution from material dispersion would be around 2.7 ns/km.
Thus, for step index multimode fibers, the contribution from material disper-
sion is rather small and can be neglected. To achieve systems with very high
information-carrying capacity, it is necessary to reduce pulse dispersion; two
alternative solutions exist: one involving the use of graded index fibers and
the other involving single-mode fibers. In Chapter 4 we discuss ray paths and
pulse dispersion in graded index optical waveguides and in Chapter 10 we con-
sider dispersion in single-mode fibers. We will see later that in graded index
fibers, where the pulse dispersion that is due to different times taken by differ-
ent rays can be minimized, material dispersion can play an important role. In
single-mode fibers, where the first form of dispersion is absent, material dis-
persion plays a dominant role along with waveguide dispersion. These aspects
are discussed in detail in later chapters.

We should mention here that a rigorous analysis of the propagation in fiber
would involve the solution of Maxwell’s equations, which are discussed in
Chapter 8. Ray optics is valid when the waveguide parameter

2
V=—a (n% - n%)]/2 (3.15)
Ao

is greater than about 10; in the above equation A represents the wavelength of
light in free space. For the parameters given in equation (3.2) and operating at
)L(_) =03 M

V =~ 48

and the ray analysis should be very accurate. However, with the same values of
ny and ny if the core radius was 2 pem, the value of V would have been 3.8 and
the ray analysis would not be applicable at all. For such fibers the wave theory
has to be used (see Chapter 8).

3.6 Loss mechanisms

The principal sources of attenuation in an optical fiber can be broadly classified
into two groups: absorptive and radiative.

3.6.1 Absorptive losses

Absorptive losses can be further subdivided into intrinsic and extrinsic losses.
Intrinsic absorption is caused by interaction of the propagating lightwave with
one or more major components of glass that constitute the fiber’s material com-
position. An example of such an interaction is the infrared absorption band of
Si0,. However, in the wavelength regions of interest to optical communica-
tion (0.8-0.9 um and 1.2-1.5 pm), infrared absorption tails make negligible
contributions (see Figure 3.12).
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Table 3.1. Absorption loss in silica glass
due to presence of 1 ppm of different
metals and OH™ ions as impurities

Loss due to | ppm Absorption

Impurities  of impurity (dB/km) peak (zm)
Fe’™ 0.68 1.1
Fe’™ 0.15 0.4
Cu’* 1.1 0.85
Cri 1.6 0.625
Vit 27 0.725
OH™ 1.0 0.95
OH™ 2.0 1.24
OH™ 4.0 1.38
100
50 &
:;:? 10 Infrared
& s absorption
=z L tail
g - =,/
= Lor 7
05 | I SR e
[ Rayleigh scattering . y
0.1 L £ L : ! L i e A s
0.8 1.0 1.2 1.4 1.6

Wavelength (um)

On the other hand, extrinsic absorption is caused by the presence of minute
quantities of materials like transition metal ions (e.g., Fe?*, Cu**, Cr’*, and
so forth) and is also due to OH™ ions dissolved in glass (see Table 3.1). For
example, the presence of 1 part per million (ppm) of Fe** would lead to a loss of
0.68 dB/km at 1.1 pm — thus the necessity of ultrapure fibers. The presence of
OH™ ions leads to absorption peaks at 0.72,0.88,0.95,1.13, 1.24, and 1.38 um.
The broad peaks at 1.24 and 1.38 pm in Figure 3.12 are due to the presence of
OH™ ions. Fortunately, the absorption bands are narrow enough that ultrapure
fibers exhibit losses < 0.2 dB/km at 4y >~ 1.55 pem. Various technologies have
been developed for fabrication of extremely low-loss optical fibers [see, e.g.,
Croft et al. (1985), French et al. (1979), Pal (1979)]. Using the vapor-phase
axial deposition (VAD) technique, it has been possible to reduce the residual
OH™ content to less than | part per billion (ppb); the corresponding loss curve
is shown in Figure 3.13. Such fibers provide a wider low-loss window in silica-
based fibers, permitting the use of wavelength division multiplexing in fiber
optic systems,

3.6.2 Radiative losses

Radiative losses occur when a guided light beam gets coupled to radiation
propagating in the cladding. Rayleigh scattering is predominantly responsible

Fig. 3.12:  The solid curve
represents a typical loss
spectrum of a silica fiber
fabricated around 1979 and
has been adapted from
Miya et al. (1979). The
detted curve represents the
Rayleigh scattering loss,

4, and
the dashed curve represents
the infrared absorption tail.

which varies as A



3.6 Loss mechanisms 41

Fig. 3.13:  Loss spectrum
of an ultimately low OH"
content VAD optical fiber.
[ Adapted from Morivama
etal. (19800.] Such fibers
provide a wide low-loss
window.
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for such coupling and is a fundamental mechanism that is cansed by small-scale
(small compared with the wavelength of the lightwave) inhomogeneities that are
frozen into the fiber. These inhomogeneities are produced during the fabrication
of the fiber and result in composition and density fluctuations. The loss due
to Rayleigh scattering is proportional to )\5“4 and obviously decreases rapidly
with increase in wavelength (see the dotted curve in Figure 3.12). At 1.55-um
wavelength, theory predicts a Rayleigh scattering loss of ~0.15 dB/km in fused
silica, which represents the ultimate loss limit of the optical fiber (at 1.55 pm).
Indeed, the attenuation coefficient due to Rayleigh scattering in (pure) fused
silica is given by the following approximate formula

3\
O{(}\.):Q’()(-f> (3.16)

where
oo = 1.7dB/&km athg — 0.85 um (3.17)

The above equation predicts the Rayleigh scattering loss to be 0.31 dB/km and
0.15 dB/km at 1.3-p4m and 1.55-4m wavelengths, respectively.

Dopants like GeO», P,0s, etc. (which are used so that the fiber has a specific
refractive index profile), also lead to an increase in the Rayleigh scattering loss.
Thus, larger NA fibers that are produced by larger levels of doping generally
have higher Rayleigh scattering loss.

Radiative losses may also be caused by fiber bending or by imperfections in
the fiber such as core—cladding interface irregularities, diameter fluctuations.
and so forth.

A possible futuristic system is based on infrared fibers (A > 2 um) where,
because of the larger wavelength, the Rayleigh scattering loss is extremely
small. Obviously, silica-based fibers cannot be used because of the occurrence
of the infrared absorption band (see Figures 3.12 and 3.13). On the other hand,
for fluoride glasses, the absorption peak lies in the far infrared (~50 pm), the tail
of which has negligible value at 2 yum. Thus, infrared fibers (A > 2 um) would
have extremely low loss (<0.01 dB/km), implying repeater spacings > 1000 km,
which would indeed be a fantastic technological achievement. However, at
present there are problems not only in the fabrication of fibers with such low
losses but also in the fabrication of reliable sources and detectors at these
wavelengths.
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Problems

3.1

33

34

3.5

3.8

(a) Consider a step index fiber for whichny = 1.475, 02 = 1.460,anda = 25 pum.
What is the maximum value of 0 (see Figure 3.1) for which the rays will be guided
through the fiber? (b) Corresponding to the maximum value of 0, calculate the
number of reflections that would take place in traversing a kilometer length of the
fiber.

Solution: (a)

O = cos ™! U 8.2¢
ny
(b) As can be readily seen from Figure 3.1, there will be one reflection for a ray
traversing a distance 2a/ tan 8 along the length of the fiber. Thus, the number of
reflections (for a ray propagating with 6 == 6,,) that would take place in traversing
a distance L along the length of the fiber would be given by

tan 6,
2a

L

implying there will be approximately 2.88 million reflections in traversing a kilo-
meter length of the fiber.

In the above problem assume a loss of only 0.01% of power at each reflection at
the core—cladding interface. Calculate the corresponding loss in dB/km.

Solution: Loss in dB/reflection = 10log ﬁ—;@; ~ 4.3 5 104, Thus, there will be
a loss of about 1234 dB after traversing a kilometer length of the fiber. Thus, the
core—cladding interface should be extremely smooth.

Repeat the calculations in the above two problems for a bare silica fiber for which
np = 1.46, np = 1.0, and a = 25 pum.

[ANSWER: 6, = 46.8°;~21 million reflections per kilometer; ~9150
dB/km.]

Consider a bare fiber consisting of a core of refractive index 1.48 and having air
(n2 = 1) as cladding. What is its NA? What is the maximum incident angle up to
which light can be guided by the fiber?

[ANSWER: NA =1.09, i, = m/2.]

Consider a fiber with n; = 1.48, ny = 1.46, and with its end placed in water
(ng = 1.33). What is the maximum angle of incidence for guidance?

[ANSWER: iy, = 10.5°]

Polymer optical fibers with high-purity polymethyl methacrylate core and fluori-
nated polymer cladding are commercially available with a NA of 0.50. What is the
corresponding maximum angle of acceptance?

[ANSWER: iy, = 60°.]

Consider a fiber from which the cladding is removed over a short length as shown
in Figure 3.14. Assume that the core and cladding refractive indices are 1.5 and
1.4, respectively. What will happen to the output power if the bare portion of the
fiber is covered by a liquid whose refractive index is varied from 1.4 to 1.57

Consider an optical fiber consisting of a core and a cladding made of different
materials with widely differing dispersion characteristics. Figure 3.15 shows a
typical wavelength variation of the refractive index of three glasses: ADF10, Bal7,
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and BaCD1 from Hoya Optical Glass technical data [Morishita (19893]. Consider
two fibers formed with

{a)y BaCD!I core and ADF10 cladding
(by ADFI0 core and BaF7 cladding

In what wavelength regions would the two fibers act as guiding structures?
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4.1 Introduction

In the previous chapter we discussed the phenomenon of pulse broadening in
step index fibers and mentioned that one of the techniques of reducing pulse
broadening is to use graded index fibers. To study the effect of refractive index
gradient on pulse dispersion, in this chapter we obtain the ray paths and calculate
the pulse dispersion in slab waveguides characterized by a refractive index
variation that depends only on the x coordinate:

1= n(x) 4.1

Using Snell’s law, we first derive the one-dimensional ray equation, the so-
lution of which would give the ray paths. From the ray paths, we calculate the
ray transit times — that is, the time taken by a specific ray to propagate through a
certain distance of the waveguide. We consider a special class of graded index
waveguides — namely, the power law profile — and obtain an expression for the
ray transit time. In Chapter 5 we obtain the optimum profile shape that cor-
responds to minimum pulse dispersion. Although the transit time calculations
correspond to slab waveguides, the final results obtained for pulse dispersion are
rigorously valid for the corresponding situation in optical fibers characterized
by a power law profile.

4.2 The one-dimensional ray equation

We consider a medium in which the refractive index depends only on the
+ coordinate as given by equation (4.1). A medium with continuously vary-
ing refractive index given by equation (4.1) can be thought of as a limiting case
of a medium consisting of a set of thin layers, each characterized by a specific
value of the refractive index (see Figure 4.1(a)). To trace out the rays through
such a stack of thin layers we can use Snell’s law according to which

Ay sing = oy sing, = nasingy = ... constant

where ¢, ¢, ... are the angles of incidence at various interfaces as shown in
Figure 4.1(a). If 0, 65, . . . are the corresponding angles that the rays make with
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Fig. 4.1: (A  the z-axis, then
continuously varying
refractive index distribution nycosfly = nycosty = nycosfy = ... constant, say 5 (4.2)

can be approximated by a
layered stracture, and ray
paths in such a layered
structure can be obtained by
using Snell’s law. (b) As the
number of layers increases
and the thickness of each
layer reduces to zero, the
ray path becomes a
continuous curve,

(we have chosen the z-axis in such a way that the ray lies in the x—z plane).

When the refractive index variation is continuous, the thickness of each layer
becomes infinitesimally small and the piecewise straight lines shown in Figure
4.1(a) form a continuous curve as shown in Figure 4.1(b). From equation (4.2)
we can infer that the rays bend in such a way that the product 72(x) cos#(x)
remains constant, which we denote by £. Thus

n(x)cos0(x) = B (invariant of the ray path) (4.3

Now if ds represents the infinitesimal arc length along the ray path, then from
Figure 4.1(b) we have

(ds)? = (dx)* + (dz)*

or
By (4 (4.4)
dz)  \dz '
Since
dz
cosl =
ds
we obtain
ds | n(x)

d= cosB(x) B

Substituting in equation (4.4) we get
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2 2
(ﬁ) = f;t) — 1 ray equation (4.5)
dz <
which represents the rigorously correct ray equation for n* depending only on
the x-coordinate. Notice from equation (4.5) that ray paths are possible only in
regions having # < n(x) and, hence, the ray will move in such a fashion as to
always have B < n(x).

For a given refractive index profile, a ray will become parallel to the z-axis
and turn back toward the axis when dx/dz = 0 - that is, at the value x = x;
satisfying

nix)=p (4.6)

The point x = x, 1s known as the turning point of the ray.
Equation (4.5) can be put in a more convenient form by differentiating it
with respect to z

f)dx d*x | dn?dx

dz dz? 32 dx d:

or

dx 1 dn® ay equati 4.7
= e—— T ation )
dz? 2[53 dx Y ed

which is another form of the ray equation. We consider some simple examples.

4.2.1 Ray paths in a homogeneous medium

In a homogeneous medium, »? is a constant and equation (4.7) simplifies to
dlx
—= =0
dz*

the solution of which 1s
x(z)=A+4+ Bz

which represents a straight line. Thus, we get the obvious result that the ray
paths in a homogeneous medium are straight lines.

4.2.2 Ray paths in square law media

A square law medium is characterized by the following refractive index distri-
bution (see Figure 4.2(a)).

2. 2 X\’ .
n*(x) =nj| 1 —=2A( - . Jxl < a core
a

=n?[1 —2A1=n3, |x|>a cladding (4.8)
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Fig. 4.2: (a) Parabolic
variation of refractive
index; ny = 1.5, A =0.01,
andd a = 50 pm. (b) Exact
ray paths in a parabolic
index slab waveguide for
different launch angles. The
ray that propagates along
the axis has § = n| and the
ray that turns back at x = a
has B = ny. All guided rays
have g < B < ny. Aray
launched with # < n, will
be refracted away and
corresponds to a refracting
ray.
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Ray paths in square law media are of great importance as they readily lead to
very important results for parabolic index fibers, which are extensively used in
fiber optic communication systems.

We consider ray paths in the core of the waveguide. Substituting for n°(x)
from equation (4.8) in equation (4.7) we obtain

d*x 5
72 +Ix(z) =0 (4.9)
where
~2A
= f"lw— (4.10)
Pa
The general solution of equation (4.9) is given by
x(z) = AsinTz + BeosI'z rigorously correct ray paths @11

in square law media
which represents the general ray path. In a parabolic index fiber the meridional
ray paths are rigorously given by equation (4.11} and, without any loss of gene-
rality, we may assume

x(O) =90
which implies B = (. Thus

x(z)=Asinl'z

If the ray makes an angle 6, with the z-axis at z — 0, then
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or

B atané, asiné)

A= =
niv/2A N2A

-2 AVY 1.12)
= m[ “(” -

where we have used the fact that

B =n, cosb
We therefore obtain

asinty | {mv2A

x(z) = sin (4.13)
V2A ap
The periodic length of the sinusoidal ray path is given by
2 2rap
. 2w 2map (4.14)

7 ro v 2A

Typical ray paths are shown in Figure 4.2; each ray corresponds to a specific
value of £ and bends in such a way that the product n(x)cosé(x) remains
constant. The figure corresponds to n; = 1.5, A = 0.01, and ¢ = 50 um
(see Problem 4.1). For the axial ray, = n,(=1.5). The ray with § = n, =
1.4849(0; = 8.13°) is tangential at the core—cladding interface. The NA of the
waveguide is discussed in Problem 4.2.

The ray paths shown in Figure 4.2 correspond to x = O at z = 0. In general,
the ray path is completely determined if the values of B and the x coordinate
of the ray at z = 0 are known (see Problem 4.4).

The ray paths given by equation (4.13) are valid only for [x| < «a since the
refractive index profile is parabolic only in the region [x| < a. Now if B is such
that the turning point x = x, lies between x = 4« and x = —a«, then the ray
will propagate by periodically oscillating around the z-axis as shown in Figure
4.2. Such rays will form guided rays. For this to happen, A must be > n» since
the turning point is determined by n(x;) = B and the refractive index reduces
monotonically from the axis. Also from equation (4.3) and the fact that the
maximum value of n is 71;, we must have f < n,. Hence, for guided rays we
must have

ns < B <, guided rays 4.15)

If B < no, then the ray will intersect the core—cladding interface at a finite
angle and will be transmitted into the cladding (see Figure 4.23. Further, since
the cladding has uniform refractive index, the ray will travel in a straight line.
Hence, such rays are not guided and are called refracting rays.
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Fig. 4.3:  Ray paths in the
paraxial approximation in a
parabolic index waveguide.
Under this approximation,
all rays have the same
period. The figure
corresponds to 11y = 1.50,
A =001, anda =50 um
(see Problem 4.1).
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0 < B < n> refracting rays (4.16)

The rays shown in Figure 4.2(b) have slightly different periods (see Problem
4.1). However, if 8 is restricted to small values so that cos 6y == | {as is indeed
the case for usual launch conditions), E = ny and all rays have the same periodic
length given by

N 2mwa
" V2A

which is independent of the launch angle £, (see Figure 4.3). Figure 4.3 corre-
sponds to n; = 1.5, A=0.01, and @ = 50 um (see Problem 4.1}, the paraxial
period being 2.22 mm. Thus, connecting the two points A and B, there are an
infinite number of nearby paths, implying that the optical path length [ nds
must be stationary and all rays would take the same amount of time.

Physically, although the ray AXB traverses a larger path in comparison to
AYB, it does so in a medium of lower “average” refractive index — thus, the
greater path length is compensated by a greater “average speed” and. hence, all
rays take the same amount of time (in the language of wave optics, all modes
have the same group velocity; see Chapter 7).

We may pause here for a moment and discuss some elementary paraxial
optics. Let APB denote a curved surface separating two media of refractive
indices 7y and n, (see Figure 4.4). Let { be the paraxial image point of the
object point O. Let us consider a point Q on the left of /. If we ask what rays
connect the points O and (), the answer is the straight line path OPQ [see Figure
4.4(a)]. Only this will be the allowed ray path connecting O and (. This path
corresponds to L, (=optical path length) being a minimum — that is, the time
taken by the ray OPQ is a minimum — and all nearby paths like OAQ take a
longer time

s
s

4.17)

n - OA+n-AQ >n - OP 4+n, PO

Similarly, for a point R on the right of the point I (see Figure 4.4(b)), the only
allowed ray path (connecting O and R) is the straight line path OPR, which
corresponds to L, being maximum and all nearby paths like OAR take less
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Finally, for the paraxial image point I, all nearby ray paths are allowed and L,
will be stationary so that (see Figure 4.4(c))

nOA+nmAl =nOP +ny Pl =n0B + nyBl (4.18)
and all such paraxial rays take the same amount of time.
Returning to Figure 4.3, rays connecting A and B correspond to
f nds = stationary (4.19)

and all paraxial rays take the same amount of time. This would lead to ex-
tremely small pulse dispersion. We give below an exact analysis of transit time
calculations leading to the calculation of pulse dispersion.

4.3 'Transit time calculations

One of the important characteristics of an optical waveguide is pulse dispersion,
which is the temporal spreading of a pulse of light launched into the wave-
guide. One of the mechanisms that leads to pulse dispersion is the difference

Fig.44: APB repr
refracting surface
separating media of
refractive indices n;
and / is the paraxial
point of O. (a) OPQ
allowed ray path and
that its optical path b
4 minimum - that is,
less than the optical
lengths of all nearby
such as OAQ. {b) Ag
OPR is an allowed 1
and its optical path b
corresponds to a ma
— that is, all nearby [
such as OAR have al
optical path length k
OPR. (c} All nearby
paths such as OPL, C
OBI, have equal opti
path lengths and thu
present case the opti
length assumes a sta
value. [Adapted fron
Ghatak and Sauter (
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in time taken by different rays. Thus, if all rays are launched simultaneously
in a waveguide, at the output the rays will arrive at different times and, hence,
will correspond to a temporal dispersion of the pulse. To calculate the pulse
dispersion, we calculate the time taken by a ray to traverse a given length of the
waveguide.

Let 7, represent the time taken for the ray to traverse the length z, (see
Figure 4.2(b)). Now the time taken to travel an arc length ds along the ray
18

. ds 1 _ ,
dt = — = —n{x)ds (4.20)
v(x) c

where v(x) = ¢/n(x) is the velocity of the ray along the ray path. Hence, the
time taken for one period is

(x) d:
7 :/”(x) - (4.21)

C

where the integral is over one period. Now

, dz 24172
ds = [(dx)* + (d2)*)'? = [1 + (dx) ] dx

which, using the ray equation (equation (4.5)), can be written as

ds = — " 4y (4.22)
[n?(x) — BT/

Hence, the time taken to travel over a quarter of a period (1.e., from the axis to
the turning point) is 7, /4, which is given by

| 1/ n3(x)
—"Cp = — 3 dx (423)
47 clo [n2w) - B

where x, is the x coordinate at the turning point. The above equation is valid
for an arbitrary profile. Some specific profiles are considered below.

4.3.1 Pulse dispersion in a parabolic index medium

We evaluate equation (4.23) for a parabolic index medium characterized by
equation (4.8). Since the turning point is defined by n(x,) = f. using equation
(4.8) we have

{r-2(5)]-#
ni| 1 —2A1 — = g
a

[n — 2" (4.24)

or
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Thus
4 X, ”'1_’[1 _QA(:—J)z]
i :f )2 . t/z‘b"
c Jo {11][1 WQA(:;) ] mﬁ‘.}
[ 2 3) - B4 B
e —dx
C Jo [H%_z&”?(i) _Bz I/2
or

N 2A [ dx
Tp = JxP—xtdx + S —
! ]: nlx/”’A P —x2

xX;p—x*

(4.25)
where x, is defined through equation (4.24). Carrying out the elementary inte-
gration, we get

T

2 527 :
T, = — iy + B (4.26)
! ¢y m[ 1 J

Now, from equation (4.13) it readily follows that the turning point (see Figure
4.2(b)) corresponds to z = z,,/4 and

I il
)

implying (see equation (4.14))

_2m 2rap (4.27)
o I Hy\/ﬂ o

Thus, if 7(z) represents the time taken by the ray to traverse the distance z
{which covers many periods) then

LACH N [3 + _i} (4.28)
z Iy B
Since
o < nlx) < n (4.29)
we have for guided rays
R A (4.30)

A ray with # = n; takes the minimum time given by

. I ’71 "y
Tminl2) = ;;C- iyt i=—1= (4.31)
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For guided rays, o) = — |mo+ =L | 2 (4.32)
ny < f < ny, and for 2¢ %)

refracting rays, B < no.

Obviously, Tmin corresponds to the axial ray for which ¢ = 0 and 1, to a ray
so that it becomes parallel to the z-axis at x = « (see the curve corresponding
1o B = n, in Figure 4.2}, Thus, the pulse dispersion is given by

AT

Tmax — Tmin

i
(ny —my)z

2¢r

(4.33)

where in the last step we have assumed iy = n». Thus, forn; = 1.46, A = 0.01
we have

AT 22 250 ps/km

Note that At is proportional to A”; thus, for reducing pulse dispersion, one
must have waveguides with small NA.

4.3.2 Pulse dispersion in a planar step index waveguide

To appreciate the small pulse disperston given by equation (4.33) in a square law
medium, we now obtain the pulse dispersion in a step index planar waveguide
characterized by (see Figure 4.5)

n(x) = x| <a (core)

2
1

n% = n%(l —2A) x| > a (cladding) (4.34)

Because the core and cladding are homogeneous media, ray paths in both media
are straight lines (see Figure 4.5). For a ray to be guided in the core, it must
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suffer total internal reflection at the core—cladding interfaces at x = £a. Hence,
if the angle made by the ray with the z-axis is 6, then for a guided ray

0«60 < cos! (?—) (4.35)

Iy
or
ny > 1 cosé > o
Since B = n(x) cos 6(x), for the present case E = p; cos & and again we obtain

ny < B <ny  guided rays
~ (4.36)
B < ny refracted rays

To obtain the transit time we must obtain the ray period z, and the time taken
7, to cover one period. Now, from Figure 4.5 we have

4a
2p = AC = 2AN = —— (4.37)
tané
Also
AB+ BC  2my dan,
T, =——=—AB = — {4.38)
c/n c csinf

Thus, the time taken to cover one period is

H1Zp n
G- M (439
ccosd  cf

where we have used B = n, cos#. Thus, the time taken to cover distance z
18

T, 7]

T =~y =—=7 {4.40)
Z,p L'ﬁ
Thus

Tin — _’_7_]_2_ (441)
C
nz |

Tmax ™ (4.42)
o

The pulse dispersion is given by

AT = Tyax = Tiin

y
= —(n, —n)z
CHo
HIA
~ 212 (4.43)
¢
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where we have used ny — ny = nyA and ny = n-. Forn, = 1.46, A = 0.01,
we have

AT 22 50ns/km

Comparing equation (4.43) withequation (4.33), we see that the pulse dispersion
in a square law medium is reduced by a factor A /2 compared with a step index
waveguide. For A = 0.01, this corresponds to a reduction by a factor ot 200.

Although the above results are derived for a slab waveguide, it so happens
that equations (4.33) and (4.43) are rigorously valid for parabolic index and
step index optical fibers, respectively. Because of this small pulse dispersion,
the first- and second-generation optical communication systems used near-
parabolic index (multimode) optical fibers.

4.4 ‘Transit time calculations in a medivem characterized
by a power law profile

In this section we calculate the pulse dispersion for rays propagating through
a graded index medium characterized by the following refractive index profile
(see Figure 4.6)

|4
n’(x) = n?lii —2A g -J = n% —yxl?: x|l <a
=n2(l —28)=n3: x| >a (4.44)
where
n%ZA
Y= (4.45)
a4

The profile described by the above equation is usually referred to as the “power
law profile.”! Obviously, g = 2 represents the parabolic index profile (see
Section 4.3.1) and ¢ = oo represents the step index profile (see Section 4.3.2).

In Section 4.2.2 we showed that ray paths for ¢ = 2 media are sinusoidal
and in Problem 4.6 we will obtain the ray paths for ¢ = 1. In general, it 1s
not possible to determine the ray path analytically for an arbitrary value of ¢:
however, we can still make some general observations:

(1)  For a ray launched in the core if E < ny, the ray will hit the core—
cladding interface and will be refracted away.

(2) Rays for which n; < [3 < n; will be guided through the waveguide.

(3) Guided rays will be periodic — somewhat similar to those shown in
Figure 4.2.

(4)  The guided rays will become parallel to the z-axis at x = x, where

ﬁ =n(x = x;) (4.46)

At x = x;, dx/dz = 0 (see equation (4.5)).

"The reader may note that for a graded index fiber characterized by a power law profile {see
¥ g yap T

Chapter 5), x is 10 be replaced by the cylindrical radial coordinate r and the modulus sign is not

required. For a planar waveguide, the modulus sign is necessary except when ¢ is an even inleger.
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n2

i i i n A x m
-40 =20 0 20 40 (nm)

Thus, if 7, represents the time taken for the ray to traverse the length 2,
then (see equation (4.23))

] [ n%{(x)
—Tp = — -"""“;mmm*-‘-:-,;‘——?(!.k (447)
4 o Jo [nP(x) — p2]e

Now, the periodic length of the ray path is given by (using equation 4.5)
o f“ dy B/"‘" dx (4.48)
470 o dxjdz U o ) — B2 ‘

Substituting equation (4.44) in equation (4.47) we get

1 1 { 5 / dx [ x4 ; }
—T, = — |1y s — el X
PRl L N P TR I STV ER A A T es Sy E e

e, (4.49)
Tl ! ‘

fom—y

=

where we have used equation (4.48) and

R xq
=y / —— ([ x
o A/ fx)

with
flo)y =nx)— f* = (n? - Bz) — px?
We may rewrite
Vo et 5t
I =y f —mci/\ = )/L md.{ (4.50)

Fig. 4.6: Refractive index
variation corresponding 1o &
power law profile given by
equation (4.44). Parabolic
profile corresponds to

g = 2 and step index profile
corresponds to g = oo,
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where
gx) = x*f(x) = (n] — B7)x? — px?t?
Thus
: i dg
S K e 451
Y y(q +—2)[(n‘ A)2 dx} (4.51)

Substituting in equation {(4.50) we get

; 1 [2( ) Bv)/“’“ dx de/dx ) ]
e Hy — b° — X
g2 o VIl Ve

But g'/? = x/n2(x) — B2 vanishes at x = 0 and at x = x,. Thus

5 (11— )
[ =L~ "~ 7 (4.52)
26 g+

™

3]

Substituting in equation (4.49) and simplifying we get

Tp 5 Bi
— =Ap+ = (4.53)
p B
where
2 2
A= Bl=—al (4.54)
c(2+q) c4+q)

If the ray covers many periods, then we may write for the time taken to propagate
through a distance z,

B
r:[mﬁ+ﬁﬁz (4.55)

Although the above result has been dertved for a slab waveguide, it 1s rigorously
valid even for fibers. The above equation is used in Chapter 5 to obtain the
optimum refractive index profile for minimum pulse dispersion in graded index
optical fibers.

Problems

4.1 Consider a square law medium with ry = 1.5, A = 0.01, and ¢ = 50 um.
Assuming that the ray is launched as shown in Figure 4.2, calculate the amplitude
A and the period z, of the ray paths for 6y = 17,4, and c;os"(ﬁ%) = §.13".
Show that for ) > 8.13%, the ray will be refracted away.
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Solution: For ] = 1
B =ncos# = 1.49977
Similarly for 65 = 4% and 8.13%, £ = 1.49635 and 1.48492, respectively. Thus,
7p > 2.221,2.216 and 2.199 mm
for 8, = 17, 4%, and 8,137, respectively. For the ray not to hit the core—cladding
interface, we must have B > n3. On the other hand, for the ray to be refracted
away, we must have f < n2 or
nz
coséy < —= = 0.98995
ni
= # > 8.13°
Thus, for #; > 8.13°, the ray will be refracted away.
42 (a)Consider rays launched at an axial point of a parabolic index waveguide. Show

that all rays launched in such a way that (see Figure 4.2)

[ <y = sin”! \/;% — n% (4.56)

will be guided through the waveguide. Show also that for i > i, the rays will
be refracted away at the core~cladding interface.

(b) Similarly show that for off-axis launching at point x, guidance will take place
if the launching is such that

i <ip= sin”™! \/Tz(xl) — n% (4.57)

The above results are valid for an arbifrary variation of n?(x). Note that the
acceptance angle of graded index waveguide depends on the point of incidence
of the rays on the front face of the waveguide. This is the basic principle behind
the refracted near-field technique for index profiling of optical fibers (see Section
19.4).

Solution: (a) Applying Snell’s law at the incident point we have {see Figure 4.2)
sini = ny sinf

—

=% f = njcost = \/n% — sin?i (4.58)

. 5 - - L
For suidance to take place we must have p > a7, implying a2 —sin?i >
g ying 1

o
N . . ) 2
I < iy == SIn ! \HI% — H5 (4.59)

The quantity sin,, is known as the axial NA of the waveguide.
(b) Similarly for the off-axis point,

sini = n(x1)sin 6,

Il

= f = n(x))cosf = \/n?(x;) —sin?i (4.00)
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4.3

4.4

4.5

4.6

For guidance we must have

B > ny = Jnl(x) —sin’i > ny

or

. TR 5
i < fp=sin ! n2(xy) — ns

For a ray launched parallel to the z-axis at x = xg, show that the ray path in a
square law medium is given by

x =xgcosl'z (4.6

where I" is given by equation (4.10) with

€

. XoN2 1/2
ﬂ=ﬂ(%)=m{l —2A(—~)]

Consider a ray launched on a square law medium at x = x¢ making an angle &)
(inside the square law medium) with the z-axis. Show that the ray path is given
by

tan 6y - )
— sin['z + xpcos 'z (4.62)

x(z) =

where I is given by equation (4.10) with

N xg\2 172
ﬂ:rlg [1-——2[& (—-") ] cos b
a

Hence, show that the ray paths are identical to the ones obtained in Problem 4.1
provided the latter are displaced along the z-axis.

In a parabolic index medium given by equation (4.8) withny = 1.5, A = 0.01.
and ¢ = 50 jum, a ray is launched parallel to the z-axis atx = xg = 15 jam, What
is the angle that the ray would make with the z-axis when it crosses it?

[HINT: Use the fact that n(x) cos8(x) remains invariant.]
[ANSWER: 2.43°.]

Consider a medium with a triangular refractive index profile (see ¢ = | profile
in Figure 4.6)

LIRY x| < a
; .

n?(x) = n? (1 —2A
a
2 2 ,
=n(1 -2A)=n5 |[x]>a (4.63)
Obtain the ray paths in the medium.

Solution: Guided rays will again correspond to n; < B < n) and such rays
will be confined to the region |x| < a. Fora > x > 0, the ray equation {equation
(4.7)) gives us

d%x n%A

dz2 "~ ap

(4.64)
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0.05
0.04 +
p=1.4849(=n,)
0.03
B - 1.4899
0.02
Xt f-1.4949
0.01
£
£ 0
o
-0.01
-0.02
-0.03
-0.04
-0.05 1 | 1
0 3 4
whose general solution is Fig.4.7: Ray pathsina
triangular refactive index
2 profile waveguide,
‘ nia 5
X)=—~—5 +tAz+ B, x>0 (4.65)
2ap-
where A and B are constants. Similarly for x < 0, the ray path is
2
o WA , ,
)= =57+ Az+ B, x>0 (4.66)
2ap-

where the constants A" and B’ have to be chosen in such a way that x(z) and
d.x /dz are continuous at x = 0. (If d.x /dz was not continuous at x = 0, d*x/dz?
would become infinite, which would contradict equation (4.64); similarly x(z)
should also be continueus at x = 0.) Thus, the ray paths in a linearly varying
refractive index profile are parabolas. If the ray is launched at x = 0, z = 0, and
making an angle 8y with the z-axis, then we have

Ix
B=0 and A= ‘El = tan fy (4.67)

I=p

Thus, the ray path would be (see Figure 4.7).

3 “ =y 1/2
YA ny — f° |
x(z2) = ——= z.z%-(I fg) o x>00=<z< g,

2af? B 2
_qu 7_-1w m(n%fﬂz) -“}7
C2ap? 0 277 B AL

1
x =0, iz,; <z<Zp (4.68)
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where

1/2

[ 2ap (n% - ﬁz) !

~ip =
n?A

4.69
3 ( )

Bevond z = z,,, the ray path will repeat itself.

4.7 Consider a parabolic index waveguide (see equation (4.8)) with

ny =175, my=1.677, a=25pm

Calculate the NA at the axis and at a point 20 m from the axis.

[ANSWER: sinay, =~ 0.5 sineg = 0.3, implying o = 307 and oy =
17.5%]
4.8 Consider a square law medium with n; = 1.5, A = 001, and ¢ = 30 um.
Assuming x(0) = 0, plot the ray paths x(z) for f§ = 1.5, 1.49, 1.4849, and 1.47.
4.9 Cualculate the maximum angle of acceptance of rays for an axial point for a
waveguide of Problem 4.7 when the medium in front of the waveguide s air and
when it is water (n = 1.33).

[ANSWER: 30° and 22.1°.]

4.10 Give the range of f values for guided rays for refractive index profiles shown in
Figure 4.8 with n| > 12 > nj.

4.11 A ray of light is incident on a core—cladding interface of a waveguide as shown
in Figure 4.9. Can this ray excite a guided ray in the waveguide? Give reasons.

4.12  Consider a square law medium described by a refractive index profile given by
equation (4.8) with ny = 1.5, A = 0.01, and ¢ = 30m and of length L. A
point source is placed 10 um from the axis at the entrance face.

(a) Under paraxial approximation, what should be the minimum length L so
that the rays emerging from the medium are parallel?

(by At what angle will the rays be emerging from the exit face?

You may neglect refraction effects at the input and output faces.

[ANSWER: (a) L = 333 um, (b) & = 2.7°.]

4.13  Consider a slab waveguide characterized by the following refractive index distri-
bution

nQ(x) = n% sechzgx (4.70)

Obtain the ray paths in such a medium. Obtain the time taken by a ray to propagate
through a length £ of the medium and show that all rays take the same amount of
time.

Solution: Substituting from equation (4.70) in equation (4.5) we obtain

dx \* n3sech’gx — B2
=t

T et

(n]z - 52) — B? sinh? gx
B2 cosh? gx
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n(x) Fig. 4.8: Figure for
Problem 4.10.

]
3
X
n{x)
1y
3
—i— §
X
n{x}
EE
5]
3
X
ny,=1.48 Fig. 4.9: Figure for

Problem 4.11.

Hy = 1.5

Fty = 1.48

or

I I
Iz = “[““_‘ i (471
[ 4=+ — )

where

\/n% — B2
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Fig. 4.10:  Exactray paths
in a medium characterized
by equation (4.70). All rays
have exactly the same
period and thus they take
the same amount of time to
propagate over a given
length of the medium.

n? X
A
0.15
0.1
0.05
a z

005} B
0.1
X -0.15

04 -02 02 04 .

Thus
Lo
z = —sIn - & + constant
g
or
§ =sin(gz+¢)
implying that
o ‘/,1212_52 ‘
x(z) = —sinh = SN g7 (4.73)
4 B

where in the last step we have assumed that at z = 0, x = 0 - that is, on-axis
launching. Typical ray paths are shown in Figure 4.10 and the period

5]

71— E

z'[) - — (474)
8

is independent of the launching angle. Thus a// rays originating from point O pass

through point B, and therefore from Fermat’s principle it readily follows that alf

rays must take the same amount of time. This can also be seen by calculating the

time that it takes the ray to go from O to A. Now the time taken by a ray to go

from O 10 A ls

1 / ds
1. =
47 ¢/n(x)

24172
1 o[a/4 dx / ‘
= - Al 1+ | — dz (4.75)
c Jo dz

Using equations (4.5) and (4.70} we obtain

4ni f‘””/q h?[gx(z)]d
Ty == — SeC FXLZ) AL
B b §

Now

t

sechz[ ' x(7)] = ——————s—
* 1 + sinh? gx(z)

1
1+ y2sin® gz
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where we have used equation (4.73) and

- 1‘1% - 52
Yo =
ﬁz

If we put \ = gz we obtain

T, =

4r1% /‘7/2 s
cBg o 14Hy2sinty

/2 27y

0 8

4:1% 1 1 Wj
e =R i1} 1 4+ p-tanys
chg J1+y?

(4.76)

which is indeed independent of B — that is, the launching angle of the ray. Thus,
for a refractive index variation given by equation (4.70), all rays lying in the x-2

plane and emanating from a point will again meet at one point.
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Pulse dispersion in graded index
optical fibers

5.1 Introduction 65
5.2 Pulse dispersion 66
5.3 Derivation of the expression for 7(f) 73

Problems 17

5.1 Introduction

As mentioned in Chapter 3, dispersion along with attenuation determines the
information-carrying capacity of the fiber optic system. As such, a study of
the dispersion characteristics of an optical fiber is a subject of considerable
importance. In this chapter we discuss dispersion characteristics of graded index
fibers characterized by the following refractive index distribution

2. 2 r\? :
no(r)=ny |1 —2A1 - . O<r<a
o

:I@:ﬂ%(IWZA); ro>a (5.1)

where rcorresponds to a cylindrical radial coordinate, 17, represents the value of
the refractive index on the axis {(i.e., at r = (), and n, represents the refractive
index of the ¢ladding; ¢ = 1, ¢ = 2, and g = o0 correspond to the linear,
parabolic, and step index profiles, respectively (see Figure 5.1). Equation (5.1)
describes what is usually referred to as a power law profile, which gives an
accurate description of the refractive index variation in most multimode fibers.
One of the main advantages of the power law profile is that by choosing different
values of ¢ one can describe a variety of profiles and in addition we can get
rigorously correct expressions for the time taken by different rays to propagate
through a certain distance of the fiber; our objective is to determine the optimum
value of ¢ that would lead to mimimum pulse dispersion.

We use ray optics to study the dispersion characteristics. We should mention
that ray optics is applicable to highly multimoded fibers — that is, when

V= 10

where

2
V = il a\/n% —n? (5.2)
Ao -

Ao being the free space wavelength of the propagating light beam; the quantity V
is known as the waveguide parameter of the fiber. Modes in optical waveguides
are discussed in Chapters 7-9. In Section 9.4 we show that the total number
of modes in a highly multimoded graded index optical fiber {characterized by
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Fig. 5.1: The power law
profile as given by
equation (5.1).

n*(r)

I3

equation (5.1)) are approximately given by (see Section 9.4)

q 2

[ =

22+ ¢)

Thus, a parabolic index (g = 2) fiber with V = 10 will support approximately
25 modes. Similarly, a step index (¢ = oo) fiber with V=10 will support ap-
proximately 50 modes. When the fiber supports such a large number of modes,
then the continuum (ray) description should give very accurate results.

5.2 Pulse dispersion

In Chapter 4 we carried out a detailed analysis of ray paths in planar optical
waveguides. In a cylindrically symmetric structure (where n = n(r) — as in an
optical fiber), the ray equations and their solutions are much more involved,;
we discuss these in Chapter 23, where we show that because of the rotational
and translational invariance of the optical fiber, a ray is characterized by two
invariants B and I. The invariant B is defined by the following equation (see
equation (23.7))

B = n(rycosd(r) (5.3)

where 6(r) is the angle that the ray makes with the z-axis. The invariant B is
the same as that discussed in the previous chapter and is a consequence of the
fact that the refractive index does not depend on the z-coordinate (translational
invariance). The cylindrical symmetry (¢ independence) leads to the invariant /,
which is usually referred to as the skewness parameter. Meridional rays (which
are confined to a particular plane) are characterized by I = 0; thus, all rays in
a planar waveguide have zero skewness parameter.

Using the ray equations derived in Section 23.2, we have, in Section 5.3,
derived the tollowing expression for the time taken by a ray to traverse a certain
distance z though the optical fiber (characterized by equation (5.1))

. B
(z) = [A,B + ?}w] z (5.4)
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Fig.5.2: Variation of t(8)
with B for g = 0.25.

where

4.520000 T T T T i T T

4.897500

7(ps/km)

4.875809 t

Il I i
46 1.464 1.468 1.472

2 _ gni

A=——— B=—"-+ (5.5)
c(2+g) c(2+q)

¢ being the velocity of light in free space. We may note the following points:

(1

(i)

(iii)

(1v)

The time taken is independent of the skewness parameter [; this is a
characteristic of the power law profile.
The time taken depends only on the invariant 4 and for guided rays

oy < B < My (5.6)

Since 1(z) is independent of /, equation (5.4) is identical to the corre-
sponding result derived for a planar waveguide (see equation (4.55)).
We have neglected material dispersion — that is, we have neglected
the dependence of the refractive index on the wavelength; a detailed
discussion (on material dispersion) is given in Chapter 6. Thus, the
temporal broadening of a pulse (as given by equation (5.4)) repre-
sents the broadening due to the fact that different rays take different
amounts of time to propagate through the fiber. This is also referred
to as intermodal dispersion (see also Chapter 9).

In Figures 5.2-5.5 we have plotted 7(f) as a function of B for

ny = 1.46, A =001(=n = 1.4748) (5.7

corresponding to

g =0.25,1.98,2.00, and co

respectively, with ny < B < n,. The vertical axis gives the time taken by the
ray to traverse a kilometer length of the fiber. We consider some specific cases:

Case 1: g = o0 (step index fibers). For g = 00, A = 0, and B = n%/c.

Thus,

2
1

=

==z (5.8)

TRt

e
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. . T T Fig. 5.3: Variation of 7(p
with 3 for g = 1.98.
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represents a monotonically decreasing function of B (see Figure 5.5). Since
ny < B < nj, we get

- ¥
Tmax = T(ﬁ = ”’2) -

CH?

&
which corresponds to the ray that is incident at the core—cladding interface at
the critical angle. Further

2

c/ng

Tmin = [<ﬁ =ny) =

which corresponds to the ray propagating parallel to the z-axis. Thus, the pulse
dispersion is given by
ny (ny —ng)

(= ny. L

At = Tmax — Tmin = —
{3

L ma (5.9)
[

consistent with the result obtained in Chapter 3. Thus, forn; =~ 1.46, A =~ 0.01
we obtain

AT 22 50 ns/km

Case 2: g = 2 (parabolic index fibers). Forg = 2, A = 1/2¢, and B =
i
ni/2c¢. Thus

(B) = : { ’-lq (5.10
fﬁ—-“i“: ﬁ+}§ Z 3. )

which is again a monotonically decreasing function of § for n, < B < n; (see
Figure 5.4). Indeed

N ] .
1
T = 7B =12 = o [ma + 1|2
2¢ no
and
b Z
Tmin = (P =n)) = :
c/n

giving the following expression for pulse dispersion

naA?

At = Tmax — Tmin =
2c

z (5.1h

Forn, =~ 1.46, A = 0.01 we obtain

1
AT =~ — ns/k
T 4ns m
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Cuse 3: The optimum profile. From analysis of a parabolic index fiber, we
find that there is a tremendous decrease in the pulse dispersion as we go from
a step index fiber to a parabolic index fiber. Typical variations of T with B (for
g values in the vicinity of 2) are shown in Figure 5.6. To obtain the optimum
value of ¢ corresponding to minimum pulse dispersion, we first note that for
ny < B < ny, r(B)is a monotonically increasing or decreasing function except
for the values of g given by

2—4A < g <2

This can be easily shown by finding the value of f for which dr/dB = 0. The
condition immediately gives

B } B
Amwmf:():>ﬂm:,/z~:m\/% (5.12)

m

Since tor guided rays n, < B < nyand ny = ny4/1 — 2A, the value ofB given
by equation (5.12) lies in the range n, < B < njonlyfor2 —4A < g < 2.
For ¢ > 2, T(p) decreases monotonically as B increases from n5 to 7y and the
pulse dispersion is given by

At(g >2) =t(B =ny) —t(B =ny)

S ), 513
clg+2) \ n2

Forg < 2 —4A, r(B) increases monotonically as ,B increases from 1, to 1,
and the corresponding pulse dispersion is given by

AT(g <2 —4A) = 1(B = n1) — (B = no)

L o) (z . ""1)5 (5.14)
clg +2) na
Finally
AT(2 —4A < g < 2) = Max(ATy, A1) (5.15)

Fig. 5.6: Variation of the
ray transit time 7 given by
equation (5.4) with B for
different power law
profiles. Note that for ¢ >
and g < 2 — 4A, v varies
monotonically with £ and
for2 —4A < g < 2, 7 ha
a minimum in the range
ny < B < n), the range fo
guided rays. Calculations
correspond to A = 0.01.
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Fig. 5.7:  Variation of A1
and Aty {given by
equations (5.16) and (5.17)]
with ¢ in the range

2—4A < g < 2. Optimum
value of ¢ corresponds to
the case when At = A1,

0.000300 T T T T T T T

0.000200

0.000100

0'00000?,96 1.97 1.98 1.99 2.00
q
where
Aty =1(B=n2) — (B = Bn) (5.16)
Aty =1(B =n)—1(B = Bn) (5.17)

Figure 5.7 shows the plots of A7, and A1, as a function of ¢ in the domain
2 —4A < g < 2. Obviously, the point of intersection of the two curves corre-
sponds to minimum pulse dispersion. This point of intersection corresponds to
AT, = Aty —thatis, (B = ny) = (B = n,) — which implies

2
4 = ke 21 =2A =2 —2A optimum profile (5.18)

iy

The corresponding pulse dispersion is given by

At ~ ZLAZ, (5.19)
8¢

Thus, for ny >~ 1.46 and A = 0.01 we get

At 2= 50 ns/km forg = o0
-~ % ns/km forg =12 (5.20)
o T]"(S ns/km  forg = 1.98

We mention here the following points:

(i) Equation (5.20) tells us that for a parabolic index fiber, the pulse dis-
persion is reduced by a factor of about 200 in comparison to the step
index optical fiber. This is because the first- and second-generation
optical communication system used near-parabolic index fibers. Since
graded index multimode fibers have large core diameters (in compar-
ison to the single-mode fibers), they are much easier to splice and are
still used in optical communication systems. We have a more detailed
discussion on design issues in Chapter 13,
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0.006 Fig. 5.8: Variation of the
pulse dispersion At with g
0.005 The optimum corresponds
tog =2 —2A.
~ 0.004
£
£ 0.003
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0.001
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O ] i ] H .
1.85 1.90 1.95 2.00 2.05 2.10 2.15
4q

(1) In Section 9.4 we show that if one carries out the modal analysis
of graded index fibers, then in the WKB approximation one obtains
the same expression for the pulse dispersion and for the optimum
profile.

(iii)  In the analysis given above we have neglected material dispersion (see
Chapter 6), which must be included in calculating the total dispersion
and the information-carrying capacity (see Chapter 13).

(iv)  From equation (5.20) we find that the pulse dispersion is very sensi-
tive to the value of g. Thus, as ¢ increases from 1.98 to 2.00, the pulse
dispersion increases by a factor of 4. Figure 5.8 shows the variation of
At as afunction of ¢ for fiber parameters given by equation (5.7). For
an actual fiber, the ¢ parameter usually depends on the wavelength, im-
plying that a finite spectral width of the source may result in significant
pulse dispersion.

5.2.1 Effect of material dispersion on the optimum profile

In Chapter 6 we show that the group velocity of a pulse is given by

i d [«
— = ___[@ n(’w)} (3.21)
v, dw| ¢
Thus
D — (5.22)
n+ w(i!?%

In Section 5.4 we used the fact that the velocity of the ray is given by ¢/n;
since a light pulse contains a spectrum of frequencies, we must replace n by
the group refractive index [see equation (6.6)]:

n dn N dn
n— n+w—=n—Ayg—
dw d }\.()
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The expression for 7(z) will be the same as given by equation (5.4) except that
A and B are now given by [Ankiewicz and Pask (1977)]

oN, (1+ 4y
Ao 2N (43 (5.23)
np colg +2)
B = : ZA : Ninyy (5.24)
- 2([/'11 de AR .
where
2 1A
y = e (5.25)
Ny Ado
and
dn;y
Ny =n,+w— (5.26)
dew

One can again carry out an analysis similar to the one given above to obtain the
following expression for the optimum value of g.

y :
Gopt = 2+ y — A(?, + —2~) (5.27)
The corresponding temporal dispersion is given by

; Niz  A? ,
(Ar)npt d (528)

12
e 42— A)

Notice from equation (5.27) that g depends on Ay due to the wavelength
dependence of A and y. Thus, a fiber with an optimum profile at 1300 nm will
not correspond to an optimum profile at another operating wavelength.

5.3 Derivation of the expression for T(B)

In Section 23.2 we show that for a cylindrically symmetric profile — that is,
for

n = n(r} (5.29)
the ray path r(z) is obtained by solving the equation

—(-I-I: ::}:\/.y(’") (5.30)
dz b

- dr
fdz = iﬁf G (3.313

or
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y Fig. 5.9: Typical
variations of r(z) with z for
[ # 0 (skew rays) (a) and
] = 0 (meridional rays) (b)
r=rs for the power law profile.
/\/ Note that these are not the
actual ray paths; the curves
represent the variation of
N the magnitude of the
distance from the axis. (For
I 5 0, the rays are not
) confined to a plane.) Insets
e show projections of the ray
paths in the transverse
plane.
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where

72
(r/a)*

fry=n*(r)— B* - (5.32)

We also show there that for bound rays in a fiber characterized by a power
law profile, the variation of r(z} is of the form shown in Figure 5.9(a) with the
periodic distance z,, given by

- " dr
. —4 (5.33)
p =8 f V)

where r — ry and r = r are the inner and outer caustics where f(r) vanishes —
that 1s

fry=0atr =ryandatr =r; (5.34)

It may be mentioned that for { = 0, r; = 0; however, f(0) # 0 — see Figure
5.9(b).

We now calculate the time taken by a ray to traverse a certain distance of
the fiber; we follow the analysis given by Ankiewicz and Pask (1977). Now the

time taken to traverse the distance iu, » 18 given by

1 ds
~Tp =/ : (5.35)
4 A—B C/f’l(f‘)

where the integration is carried on the ray path. Since

W (5.36)
ds

we can write

i | Zot+gip ,
- T, -—:] n-(rydz
4 B Jzy
2 zo+1z Zo+11p g
1 0T iip U g~y
=4 f dz—2A/ (f) dz
Lﬂ { 24 a
r.l% } n%QA[ (5.37)
praey 4{3 Lp gB 1 ..
where
ot i p 2 ¢
5 :/ (rjaYldz = (r/a) dr
p r dr/d:

Y (r/a) B 2 gl |
B ar=a d 5.3
ﬂ/n VI T o e g (5.38)
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where
== e li—aa(D) V-
gry=r"f(ry=r-|n —2A1 - - _ —
54 . y i a (,./a)l
R a2
= ( B- )r - Zn A - | (5.39)
Thus
L IR - (5.40)
dr ! a4 a4 o
or
ratl 1 5 e dg
= 2Unmy, — poyr — — (5.41
at 2A g w}~2)n% [ (”E P )’ dr:l ' )

Substituting in equation (5.38) we get

rdr

I =

2A(g + Z)rz%

p

2A(q + 2n3

2(;1% — Bz)

ry

[

1

2 (rz

) )

V8 - "

e dg/drd ]
Ve

:l (5.42)

dr

— 2!
NG

— 2r2 f(r)

where we have used equation (5.33). Since dr/dz (and therefore f(r)) vanishes
at r = ry and r = 13, the second term is zero. We therefore obtain

=)
40 (g + Z)fz%

substituting in equation (5.37), we get

ﬁ B 2(72% — B%) 1
B cBlg+2) | 477

(5.43)

Propagating over a distance that contains many periods, we may write

(2) (AB + B)
T{Z) = . - 2
B
where
B 2 qn“:
2+ ) 24 ¢)
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Problems

5.1  Evaluate the integral in equation (5.33) for ¢ = 2 and show that
. map
e V20

Notice the independence on [.
5.2 Evaluate the integral in equation (5.33) for arbitrary ¢ but / = 0 and show that

(5.44)

4. /map M'il/g) [,z ‘z}zzf (5.45)

ip — = #
T gln VIR L+ )

1
g

For g = 2, the above equation simplifies to equation (5.44).
7 q p q
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6.1 Introduction

Until now we have considered the broadening of an optical pulse due to different
rays taking different amounts of time to propagate through a certain length of a
fiber. However, because any source of light would have a certain spectral width
Ahy and each spectral component would, in general, travel with a different
group velocity, we would always have dispersion. This is referred to as material
dispersion and is a characteristic of the material only; material dispersion plays
a very important role in design of a fiber optic communication system.

6.2 Calculation of material dispersion

In Section 6.3 we show that when a temporal pulse propagates through a homo-
geneous medium, it propagates with a group velocity v, given by the following
equation

!

= (dk/dw) b

Vg

where

ki) = E:;n(a)) (6.2)

represents the propagation constant and n(w) represents the frequency-dependent
refractive index. Thus

1 B dk
v, T dw
d |:a) }
= — | —n(w)
dw| ¢
or
I i dn
— = — | n{w) + w— (6.3)
Uy c dw
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Usually one expresses the group velocity in terms of the free space wavelength
Ag, which is related to the frequency through the following relation

27c
Ay = —
w

Thus

dan B 2we | dn 2xc
wdcu - )\.() d),() Cr)2

= —hg—
g

Equation (6.3) can therefore be written as

I_l o) Adn 6.4
vg_cn() Oa’)xo 4)

Thus, the time taken by a pulse to traverse length L of fiber is given by

L L ‘ dn ‘
T=1() = — = — |n(ho) — ko—— (6.5)
Up [ d)\g

which is dependent on the wavelength &¢. The quantity

Ny = (}k)——k——dn (6.6
1 -
0 0 Odkg )

is also referred to as the group refractive index since ¢/N (X&) gives the group
velocity.

If the source is characterized by spectral width AAy, then each wavelength
component will traverse with a different group velocity, resulting in temporal
broadening of the pulse. This broadening is given by

ar= 9T as LoEna,
T = T e — R
da 0 - Odk% 0
or
L d? A
At ==L (——3) 6.7)
C d}ta AD

The quantity (A3d*n/d23) is a dimensionless quantity. The above broadening is
referred to as material dispersion and occurs when a pulse propagates through
any dispersive medium. Since material dispersion as given by equation (6.7) is
proportional to the spectral width AXq and also to the length L traversed in the
medium, it is usually specified in units of picoseconds per kilometer (length of
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1.456 ¢
1.454 ¢

1.462¢

1.448F
1.446F

1.444F

G.8 1 1.2 1.4 1.6

hg (um)-—

the fiber) per nanometer (spectral width of the source).

(6.8)

- LAA_U - _)k()C

n

At 1 /. ,d’n 9
Ar—= | x 107 (ps/km-nm
( Od/\f,) (p )

where Ag 1s measured in micrometers and ¢ = 3 x 10° km/s.

6.2.1 Material dispersion in pure and doped silica

As an example, we first consider fused silica, which forms the basic component
of optical fibers. An accurate (empirical) expression for the refractive index
variation for fused silica is given by [Paek et al. 1981]

C 3 C4 Cﬁ

np) = Co+ CAi+ Corj+ 75—+ ——— + — (6.9)
=0 2= -1
where
Cy = 14508554,  C; = —0.0031268
C, = —0.0000381, C; = 0.0030270 6.10)

Cy = —0.0000779,
[ =0.035

Cs = 0.0000018

and Ay is measured in micrometers. Table 6.1 shows the values of nn(4g), dn /d i,
and dln/dka for pure silica as obtained from equation (6.9) for some wave-
lengths and Figures 6.1-6.3 show the corresponding wavelength variations.

To have some numerical appreciation, we see from Table 6.1 that at 1y =
0.8 pem

,
d-n
3

~ (.04 um™?
dA;

Fig. 6.1:  Variation of »
with iq for pure silica.
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fable 6.1. Variation of n, dr/dig, and dzn/d)x;j with Ao
Jor pure silica

Jolum)  n(ky) Humy P

0.65 1.45685128 —0.02714381 0.10309425
0.70 1.45560969 —0.02276059 0.07410101
0.75 1.45455521 —0.01958463 0.05412515
0.80 1.45363725 —0.01725159 (0.03997833
0.85 1.45282003 —0.01552236 0.02972035
0.90 1.45207767 —0.01423535 0.02212732
0.95 145139101 —0.01327862 0.01640339
1.00 1.45074564 —0.01257282 0.01201730
1.05 1.45013051 —0.01206070 0.00860611
1.10 1.44953705 —0.01170022 0.00591684
115 1.44895849 —{.01146001 0.00376986
1.20 1.44838944 —-0.01131637 0.00203553
1.25 1.44782555 —0.01125123 0.00061889
1.30 1.44726325 -~(.01125037 —0.00055057
1.35 1.44669962 —0.01130300 —0.00152585
1.40 1.44613221 —0.01140040 ~(L00234725
1.45 1.44555895 —0.01153568 —0.00304575
1.50 1.44497810 —0.01170333 —0.00364537
1.55 1.44438815 —(.01 189888 —(.00416491
1.60 1.44378781 —0.01211873 —0.00461922
1.65 1.44317592 —0.01235992 —(.00502012

Fig. 6.2:  Variation of

dnjdiy with Ay for pure
silica as obtained from -0.012
equation (6.9).
1 -0.014
£
2 -0.016¢
o
~<
3
v -0.018}
-0.02 7+
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0.04F
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0.02}
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Fig. 6.3: Variation of
implying a dispersion of 110 ps/km-nm. Thus, for an LED source at 0.8 jum with ~ d°n/dAj with g for pure

Axg = 25nm (which represents a typical value for a GaAs LED), we obtain silica as obtained from
equation (6.9). Note that at

Ag = 1.27 Hm,
At = 2.7 ns/km d2n/dA2 ~ 0 this
wavelength is referred to as
Similarly at Ag =~ 1.55 pem, the ZMDW.
d’n
— =~ 0.004 um™
drg

implying a dispersion of 20 ps/km-nm. Thus, for a laser diode at 1.55 um with
Alg = 2 nm we obtain

At = 40 ps/km

Now, from Figure 6.3 we see that for fused silica d?n/d} ~ 0 around iy =
1.27 um. This wavelength is hence referred to as zero material dispersion wave-
length (ZMDW). A pulse of light centered around the ZMDW and passing
through fused silica would suffer negligible dispersion.! This wavelength is
of great importance in optical fiber communication, and the second- and third-
generation optical fiber communication systems operate around this wavelength
region (see Chapter 13). The refractive index of doped silica can be represented
by the following empirical formula

biAs bo)l b3t
nig) — 1 = —0 4 200 370

6.11)
Ay — dy kg — (s Af} — a3 (

where g is expressed in micrometers. Table 6.2 lists the values of the co-
efficients ay, a2, . .., by for pure and some doped silica. The corresponding

'For operation around ZMDW, the dispersion is determined by the next higher order term —
namely, z:{‘xk/dm" (see Problem 6.5).
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Table 6.2. Values of coefficients in Sellemeier’s formula [equation (6.11)] for pure and doped silica

Dopani
Sample {mole %)

ai az as b by b

Pure 510
Ge(, (6.3)
Ge(, (19.3)
B,03 (5.2)
P05 (10.5)

m g 0w

0.004679148 0.01351206 97.93400 0.6961663 0.4079426 0.89747%4
0.007290464 0.01050294 97.93428 (.7083952 04203993 0.8663412
0.005847345 0.01552717 97.93484 0.7347008 0.4461191 0.8081698
0.004981838 0.01375664 9793353 0.6910021 0.4022430 0.9439644
0.005202431 0.01287730 97.93401 0.7058489 04176021 0.8952753

Note: Adapted from Kimura (1986).

Fig. 6.4: Vanation of
d*n /dk(z} for pure and
doped silica. The labels
A-E correspond to various
samples given in Table 6.2,
Observe that doping
changes the ZMDW
slightly.

d*nidig (um-2) S ZLLZ o

C = G0, (19.3)

\ Do B0, {5.2)
0015 L E —————— PROs (10.5)

variation 0‘1’d211/d}xg73 with ¢ is shown in Figure 6.4, As can be seen, material
dispersion changes with doping.

6.2.2 Material dispersion in fluoride glasses

Present day optical fiber systems are based on silica glasses. In the last few
years, fluoride-based fibers have been investigated in detail for operation in the
mid-infrared (2-5 pm) wavelength region because of their predicted ultralow
loss of 107* dB/km. Such fibers may find applications in longwave repeaterless
telecommunication links and intercontinental submarine links. Table 6.3 gives
the composition of various fluoride-based glasses, and Table 6.4 lists the values
of the Sellemeier coefficients A to E that determine the refractive index through
the relation

n(ro) = Ary* 4 Big? + C + DA+ EX} (6.12)
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Table 6.3. Various fluoride glasses for applications in infrared
Jiber optic communications

Concentration (mole %)

Material ZrF; BaF, LaF; NaF  HfF, AlFy  CaF»  GdFy  YF3

ABCY 22 40 22 16
HBL 33 5 62

ZBG 63 33 4

ZBLAN 53 20 4 20 3

Note: Adapted from Mendez and Sunak (1986),

Table 6.4. Sellemeier coefficients of various fluoride glasses
given in Table 6.3

Material A = 100 B x 108 C D x 103 E x 100
ABCY 7.67742 216195 1.42969 —1.28304 —5.35487
HBLY —28.61020 3.11470 150294 —1.17821 —2.64123
7RG 93.67070 294320 151236 —1.25045 —4.01026

ZBLAY  —300.80370 403214 1.51272 —1.21921 —6.77630
ZBLAN 93.67070 294329 149136 —1.25045 —4.010206

“Fitted data.
Note: Adapted from Mendez and Sunak (1986).

where )y 1s in micrometers. From equation (6.12) we have

dn B S5 apa-3 , 5

= —4A4)," = 2By +2Dhy +4ER, (6.13)

dho

d*n 6 cpy—4 40 2 \

FTE = 20AA," +6BL," +2D + 12EX; (6.14)
0

Figure 6.5 shows the variation of n with Ay for the various glasses. and Figure
6.6 shows the variation of ¢*n /dAj with L.

6.3 Derivation of group velocity
A plane monochromatic wave propagating along the z-axis through an infinitely
extended homogeneous medium is described by

w. — Agi(mlﬂlx’:) (615)

where &{w) represents the propagation constant. This monochromatic wave
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Fig. 6.5: Variation of n
with Ag for some fluoride
glasses. The composition of
the various glasses is given
in Table 6.3. [Adapted from
Mendez and Sunak (1986).]

Fig. 6.6:  Variation of
d*n/d2} with &g for typical
fluoride glasses histed in
Table 6.3.

— - —— - ABCY
------------ HBL
————— ZBG
n
(o) ZBLA
kbl ¢ @ o P R
S . ZBLAN
15f==mcmaa e i
1.48 ‘ 
1.46}
1.44
1.42} - - —
. s T e
2 25 3 35
Ao (um) —

d®n s 33 (m?)

30.001

-0.001 |
-0.002

~0.003

travels with a velocity given by
“ (6.16)
UV, = .
Pk

which is referred to as the phase velocity and represents the velocity at which
a surface of constant phase advances in the medium. A monochromatic wave
described by equation (6.15) extends in the entire time domain, —00 < 1 < 0,
which is a practical impossibility.

We next consider a temporal pulse described by the function W(z = 0, r) at
z = 0 (see Figure 6.7). To study its evolution we represent it as a superposition
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of harmonic waves

400
W(z=01)= / Alw)e' ™ dw (6.17)
—-00
Taking the inverse Fourier transform we get
. 1 : il -
Alw) = Py Wz =0,1)e "dt (6.18)
2n

Each frequency component would propagate according to equation (6.15); thus,
the total field at z would be given by

\P(z,z‘):/f\A(m}c’“‘”*"‘)dw (6.19)
We write

Alw) = [A(w)]e'™ (6.20)
to obtain

Wiz, 1) = f | Alw)]e! MR g (6.21)

In most cases, an optical pulse propagating through a fiber can be approximated
by a Gaussian temporal distribution.
—t- /fo mw

Y(iz=0,1)=Ce (6.22)

100

Fig. 6.7: A Gaussian
pulse represented by
equation (6.22). For clarity,
wot has been assumed to be
small so that only a few
oscillations occur within the
pulse; in actual practice,
there would be a large
number of oscillations
within the pulse.
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08 r .

A(w) 06 i

02 4
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Fig. 6.8: The Fourier  which represents a Gaussian pulse of temporal width 27y. Substituting in equa-

spectrum corresponding 10 4n (6.18), we have
the pulse shown in Fig. 6.7. ’

The width of the Fourier

spectrum is inversely — £ =12 T it —ut
: Al(w) = e e dt
proportional o 1g. 2r J o
C’L'g) Tz )
= ——— EXp | — -ﬂ(a) — w(})z (6.23)
27 4

Typically for a 1-ns pulse at Ay >~ 0.8 um
10 =10""s and w236 x 10" s

The function A(w) has a spectral width given by

Aw N —
To

giving

Aw 2 6
—_—r >~ 10 x 10
wy oo

The quantity Aw/wyg is usually referred to as the spectral purity of the pulse and
for such a small value of Aw/wy, the frequency spectrum A{w) is an extremely
sharply peaked function around @ = wyq. Thus, A(w) is very sharply peaked at
w = wy (see Figure 6.8). The longer the pulse, the greater will be the sharpness
of the frequency spectrum A(w). In general, in almost all cases of practical
interest, |A(w)| is very sharply peaked when o lies in a small interval Aw
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around w = wy and negligible everywhere else so that equation (6.21) may be
written in the form

Wiz, 1) = f | A(w)| e/l —F+ot g4 (6.24)
AE)I

where the integration now extends only over the domain

|
wy — 5 Aw <w <wy + ~;)wAw (6.25)

Outside this domain, |A(w)] s assumed to be negligible. In this domain, we
assume n{w), and hence k(w), to be smoothly varying so that we can make a
Taylor series expansion of k{w) around «w = wy:

, dk
klw) = klwo) + o (w — wp)

2 \dw?

| [/ d*k
+ = ( - ) (0 — o) + - - (6.26)
=y

Similarly, we may write

) o do i
Plw) = Play) + | (@ — wyp)
d(l) RS2 By
1 ([2(1) .
+ E’: (61'(02 )u;—wo (w - a)()) + - (627)

We substitute the above expansions in equation (6.24) and assume that in the
domain of integration Aw, k(w) and ¢(w) do not vary appreciably so that we
may neglect terms that are proportional to (@ — ag)® and higher powers? of
(ew — wy); under this approximation we get

s i S () (6.28)

where

. _ dk de
Sz ) = / |A(a)] explilw—wo)|t —| — 4+ — dw
Aew dw/ 0 dew /0.

represents the envelope ol the wave packet. Thus, we bave

flz, t) = / |A(w) exp[——iw(z — 7y — Ugt):ldw (6.29)
Ao

Vg

2 The effect of the term proportional to (w - wy)” is discussed in Section 6.4,
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Fig. 6.9:  Distortionless
propagation of a wave
packet with group velocity
vy, which occurs when & is
strictly linearly related to .

Lfvg

where

dk - do
Vg = do , o 0= Uy do (6.30)

We may note that

fz,0)= f [A(w)] exp [*igi)—g—@(z - z,o)i]dw
Ao

It is immediately seen that at 7 = zg, the integrand is everywhere positive and
the value of the integral is maximum. For |z — z¢| > v,/Aw, the exponential
function (in the integrand) oscillates rapidly in the domain of integration and the
value of the integral is very small. This immediately leads to the (uncertainty)
relation

Az
Aw— > 1]

Yy

where Az represents the spatial extent of the pulse.

Since the function f(z. 1) depends on z and 7 only through the combination
z — v,t, this implies that the pulse propagates without any distortion with
velocity v,; this velocity is known as the group velocity of the pulse (see Figure
6.9). The pulse remains undistorted as long as the neglect of second-order and
higher terms in equations (6.26) and (6.27) is justified. However, if the k —
relation is strictly linear (as is indeed the case for electromagnetic waves in free
space), the pulse will never undergo any distortion.

Thus, at 1 = 0 the pulse is sharply peaked at z = z; and as 1 increases the
center of the pulse, z.(f), moves according to the equation (see Figure 6.9)

ze(1) = 2o + vyt (6.31)

6.4 Broadening of a Gaussian pulse

We now make an explicit calculation taking into account the second-order terms
in equations (6.26) and (6.27) for a Gaussian pulse (see equation 6.22) for which
A(w) is given by equation (6.23).
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Since A(w) is real, ¢(w) = 0. If we now substitute for A(w) and k(w) from
equations (6.23) and (6.26) in equation (6.19), we obtain

\U(Z, [) — Cei(cumwku:)f(z’ 1‘) (632)

where

flz,t) = /A(w)exp{i |i(a) — wp) (z — i) — la(m — a)g)zz} }d(u
v, 2

~ O fepl-o (2 +i% ) via sz’-) a0
2 /% 4 ' Ve

(6.33)
where 2 = w — wp and
1k
a= "1 (6.34)
dw? g
Thus
222
) Daz\7M =)
flz,n = (1 +i— ) exp| ————— (6.35)
) (g + 2iaz)

and W(z, t) can be written as

C (r— )7
W(z, 1) = ————5exp| ————— |expli(P(z, 1) — koz
= (t(z)/10)'/? p T2(2) pli(P(z, 1) — ko2)]
(6.36)
where?
2 \? 1 207
Vg 2 Ty
20z 4 232 -1 |
K:%i(w E ) (6.38)
To Ty
and
4?72
) =15 (; + r“. ) (6.39)
)

*The second term in equation (6,37} leads to the phenomenon of chirping, which is discussed
in Chapter 15.
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Fig. 6.10: The temporal
broadening of a Gaussian
pulse. (a) The electric field
distribution and (b) the
corresponding intensity
variation.

(@)
ﬂ -
Z=L
1 2 3 4
(b) t —»
The corresponding intensity distribution is given by
12
I -2 — )
(z,1) = — - (6.40)

(1(2)/70) P T3(7)

which is plotted in Figure 6.10(b) for different values of z.
Figure 6.10 clearly shows the broadening of the pulse and shows that the
peak of the pulse moves with the group velocity given by equation (6.1). We

note that
+o0
/ I(z, t)Ydr
-0

is independent of z, showing that the total energy contained in the pulse is
conserved. From equation (6.40) we may note the following:
The pulse width at any value of z is given by

4z / d*k N\
T(2) = T{)[l + —( ) :I (6.41)

4 2
T, dew
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Thus, the pulse broadening At is given by

» 2z d%%
At =[P -] =5 6.42
r=[re -] T {dw? (0:32)
Now
d*k d (dk’ d [1 dn
T T - — | = n— )L()——-
dw?  do \dw do | ¢ dXy
Ag d |1 dn
== = | n = Ay
2re d}x() 8 d)\,()
)\3 d’n
= — (6.43)

2l dkg

Also, the spectral width of the Gaussian pulse given by equation (6.22) can be
obtained from equation (6.23) as

2
Aw >~ —

(6.44)

Ty

Since w = 2w/ ig, we have for the corresponding width in wavelength

2

A
Adg ~ (6.45)
Ty
Thus
ar)~ = 2L Ay (6.46)
T e .
e [ 02| T

consistent with equation (6.7).

Problems

6.1  The refractive index for fused silica in the wavelength region 0.5 um < Ay <
|.6 pum is approximately given by the following empirical formula (also referred
to as Sellemeter’s equation)

.2, b
n{Ag) = Co —~ary + -3

0

(6.47)

where

Cop= 1451, a=5b=10.003
and A¢ 1s measured in micrometers, Simple differentiation gives us (see equation
(6.6))

N(y) = Co + arl +3b/35 (6.48)

Al g = 0.8 um, n{hy) =~ 145338, N(Ag) = 1.4670, indicating a difference of
0.9% between phase and group velocities.
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6.3

6.4

Using the less accurate (but more convenient to use) empirical formula given
by equation (6.47}, calculate the zero material dispersion wavelength and also the
pulse dispersion at 0.8 ygm and 1.55 pzm and compare with the results given earlier.

[ANSWER: 1.316 um, 10] ps/fkm-nm at 0.8 um and 14.9 ps/km-nm at 1.55
JATL

Consider a 10-ps pulse at Ao = 0.85 pem propagating through pure silica. Given
that d*k/da? ~ 3.258 x 1072 s?/m at 1y = 0.85 um, obtain the maximum
distance over which the pulse would propagate almost undistorted.

Selution: For a 10-ps pulse, 7p = 107! s and

2 11 —1
Aw~— =2x 10" s
70

Thus, for distortionless propagation (see Problem 6.0)

7&K g = ~ 1.5km

alAw)?
The distance zy4 in this case is large because of the extremely small spectral width
of the source; indeed, for the given source

2
0
Adg = —— Aw = (.08 nm
2rc
In Problem 6.2, the spectral width of the pulse was assumed to be that determined
due to the finite temporal width 1o of the pulse. This is true if the pulse is produced
by a monochromatic source. If the source spectral width is much larger than 1 /1y,
then the dispersion is much higher. Thus, consider an LED source at Ag == 0.85 um
with a spectral width of 30 nm. Calculate the broadening in | km due to material
dispersion.

Solution: At Ag = 0.85 um, dzn/d}\g =~ 3 % 10" m~% and thus from equation
(6.8) we have

At =~ 2.6 ns/km

If in the above problem the source is a laser at 0.85 um with a spectral width of |
nm, obtain the pulse broadening.

Solutien: Since broadening is proportional to Akg, the corresponding broadening

1S

At >~ 90 ps/km

Note the significant reduction in broadening due to the smaller spectral width.

Around ZMDW, pulse distortion would be caused by d*n/ ci)xé. Estimate the dis-
persion that is due to this term.

Solution: We consider two closely spaced wavelengths Ay and g + Ak and let

7{Ay) and T{Xo + Alg) represent the respective time delays. Then we may write

o+ Aho) = Tho) + Ang L 4 (Bla) &’ (6.49)
)} = T St s .
T{ho a) 0 0 D 5 dkg

Now drt/diy = ——L(X(}/(?)(lzn/d/\ﬁ and it would vanish at the ZMDW and we
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would have
(AXxg)? d*r
At = t{hg + Akg) — T(Ap) = - (6.50)
2 dig
Also
d*r _d (dI ) _d Lig d*n
dxd  dio \dio)  dio ¢ drg
L 3
— _ ﬁi\_q d_fé (6.51)
¢ di,
since d?n/dA2 = 0. Thus
Ao dn
AT = —L(A ) [ =~ 6.52
T (Ako) (20 dkg) (6.52)

6.6

6.7

which is the broadening due to material dispersion. Note that the broadening is
proportional to (AXg)? and to L.

For the wave packet given by equation (6.24) show that the packet remains undis-

torted for z <« z4 where

2

(B (6.53)

Ld =

Assume ¢p{(w) = 0.

Solution: 1f we substitute for k(w) from equation (6.26) in equation (6.24) we will
obtain

Wiz, 1) ~ ei(wof“ku:)f |A(w)]|
Aw

= wh o
X eXp 1}—1 " (z — z_;gr)~z§(w—w())2z]dw
g

(6.54)

where « is given by equation (6.34). Since |A(w)| is assumed to have a negligible
value for | — wp| > Aw, the term involving o will make a negligible contribution
for

7€ g (6.55)

where

2

- alAw)?
Indeed, the pulse will appreciably broaden for z > z4.

Consider a source at frequency wq (and corresponding wavelength Ag) being si-
nusoidally modulated at frequency €2 <« wyp — that is, with a field

Ytz = 0) = (A + Bcos Qe ™ (6.56)
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6.8

If such a beam passes through a medium, calculate the time variation of the field
at distance L.

Solution: The field variatton of the source at z = 0 can be written as

wu,ZZO):AeW“+-geWW“”-+§eWm*m’ (6.57)

that 1s, the input consists of frequencies wg, wg + §2, and wg — 2. If kg, k., and
k_ represent the propagation constant of the medium at frequencies wy, wy + §2,
and wy — €2, respectively, then we have

W(t 7) e Aei(ﬂﬁ)l"k(ﬂ:} + Eej[{é')(lJrQ}I—k.-ZE __}_ _l_g__f)f[((.uo~§2)l—~/\'.“.£]
o 2 2

(6.58)
Since £ <« wy, we have

dk’
kg = ko + (—) Q
dw w=wo

Q
= ko + = (6.59)
Vg

where v, = (dk/dw)™" is the group velocity at wp. Similarly

Q
ko kg — — (6.60)

Vg

Substituting for k4. and k_ in equation (6.58) we have, after some simplifications

wu,Ly:{A‘+Bcosﬁl(zh—£)]lémw'““ (6.61)

Vg

Thus, modulation of the beam propagates at the group velocity v,. From equation
(6.61) we can see that if we measure the phase of the modulation as a function of
the wavelength Ag of the source, we essentially obtain the varation of v, with 4.
Such a technique is indeed used in measurement of dispersion characteristics of a
single-mode fiber.

In Problem 6.7 we assumed the source to be a monochromatic source at Aq. If the
source contains two wavelengths, A1 and A7, the modulation at the two wavelengths
propagates with different velocities. For what minimum value of €2 (the modulation
frequency) will one obtain zero modulation at z = L7

Solution: If vy and v,y represent the group velocities at 2 and Ay, respectively.
then it follows that when the delay between the two modulated beams becomes
equal to one-half period of modulation, the output will essentially have no modu-
lation. Thus, for a modulation frequency €2y such that

L L

Vgt Ug2

aa
2

(6.62)
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there is no modulation at the output. If Ay and A» are close, then we have

1 L ((,[k dk )
v v \dw Ao dw/;,

Ae d*n

— (6.63)
C drg

where Ak = A2 — A; and A, = (A + A2)/2. In deriving equation (6.63) we have
used equation (6.43). Thus

| AL d? ,
Q() ¢ a’)k() |
or in terms of frequency fo = Qo/27,

fo = !
o 7(MAA dn )

“A e d}x;‘)

1 ,
_ {6.65)

2AT

where A7 is given by equation (6.46). The frequency fp corresponds approximately
to the 3-dB bandwidth of the medium. Equation (6.65) gives an approximate
relationship between pulse dispersion At and the 3-dB bandwidth fo.

6.9  Assume

I : .
e ﬁ(]‘+lﬁ)gri<)()[

V(=01 =Ce

(Such a pulse is known as a chirped pulse — see Chapter 15.) Show that

Ale) Epr (w— wy)’t?
2T +ig)l/? P 41 +ig)

Substitute for A(w) in equation (6.19) and show using equation (6.26) that W(z. r)
is given by equation (6.32) with

fiz.t) ={1—og +ig)”1/2

x| /v ilg — o (e £ D))
P 201 — 206 + 0 2(1 + g2

where

Obviously for ag > 0, the pulse will first undergo compression and attain its
minimum temporal width at

R
_ 18
T 20l +g?)
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7.1 Introduction

In this chapter we carry out a detailed modal analysis of planar waveguides
characterized by refractive index distribution depending only on the x coordi-
nate - that is

n? = nz(x)

For such waveguides, Maxwell’s equations reduce to two independent sets of
equations: the first set corresponding to what are known as TE (transverse elec-
tric) modes, where the electric field does not have a longitudinal component,
and the second set corresponding to what are known as TM (transverse mag-
netic) modes, where the magnetic field does not have a longitudinal component.
While carrying out the modal analysis, we try to illustrate almost all the salient
points associated with the modes of a waveguide, therefore making it easier to
understand the physical principles of more complicated guiding structures.

In Section 7.2 we discuss Maxwell’s equations in inhomogeneous media
and study the classification of TE and TM modes in planar waveguides. In
Sections 7.3 and 7.4 we have detailed discussions on TE modes of a symmetric
step index and parabolic index waveguides, respectively. We try to illustrate the
relationship between the ray and modal analyses.

7.2 Maxwell’s equations in inhomogeneous media: TE
and TM modes in planar waveguides

In this section we derive the equations that are the starting points for modal
analysis. We start with Maxwell’s equations, which for an isotropic, linear,
nonconducting, and nonmagnetic medium take the form

V x &= —3B/d1t = —pgdH/dt (7.1)

V x H = dD/dt = egn’dE /ot (7.2)
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V- D=0 (7.3)
V-B=0 (7.4)
where we have used the constitutive relations
B =uH (7.5)
D =e€ = ¢’ (7.6)

inwhich &, D, B, and H represent the electric field, electric displacement, mag-
netic induction, and magnetic intensity, respectively, po(=47 x 1077 Ns*/C?)
represents the free space magnetic permeability, €(=¢pK = €on?) represents
the dielectric permittivity of the medium, K and n are, respectively, the di-
electric constant and the refractive index, and €;(=8.854 x 1072 C*/ N m’) is
the permittivity of free space. Now taking the curl of equation (7.1) and using
equation (7.2) we get

« d ‘ , °E
x (V x &) Mea[( x H) Hocon” —3
or
y ) E
V(V.E)—VE = —¢€yign a2 (7.7)
Further
0=V .D=¢eV-nE =elVn* E+n’V. £
Thus
V.E&=—(1/n)Vn*-E (7.8)
Substituting in equation (7.7) we obtain
2 } ) 5 828
VE+VI| —=Vn - £ —eppon® 0 =0 (7.9)
’,zb “

The above equation shows that for an inhomogeneous medium the equations
for £, £y, and &, are coupled. For a homogeneous medium, the second term on
the left hand side (LHS) vanishes and each Cartesian component of the electric
vector satisfies the scalar wave equation.

In a similar manner, taking the curl of equation (7.2) and using equations
(7.1y and (7.4) we get

| PH «
ViH + }-ﬁvnz x (V x H) — eouon’ o7 =0 (7.10)

If the refractive index varies only in the transverse direction — that is

n? =n(x,y) (7.11)
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then writing each Cartesian component of equations (7.9) and (7.10) one can
easily see that the time and z part can be separated out. Thus, if the refractive
index is independent of the z coordinate, then the solutions of equations (7.9)
and (7.10) can be written in the form

£ =E(x, y)' @52 (7.12)
H = H(x, y)e' @2 (7.13)

where B is known as the propagation constant. Equations (7.12) and (7.13)
define the modes of the system. We note from equations (7.12) and (7.13) that
modes represent special field distributions that suffer a phase change only as
they propagate through the waveguide along z; the transverse field distributions
described by E (x, y) and H (x, ¥) do not change as the field propagates through
the waveguide. The quantity B represents the propagation constant of the mode.

We next assume that the refractive index depends only on the x coordinate —
that 1s

n® = n*(x) (7.14)

Then even the y part can be separated out, implying that the y and z dependences
of the fields will be of the form ¢ #¥+82) However, we can always choose the
z-axis along the direction of propagation of the wave and we may, without any
loss of generality, put y = 0. Thus we may write

Ej=E;j(x)e!™ P j=xy.z (7.15)
H,; = H(x)e'" ™, j=x,y,z2 (7.16)

Substituting the above expressions for the electric and magnetic fields in equa-
tions (7.1) and (7.2) and taking their x, ¥, and z components we obtain

iBE, = —lwuoH, (7.17
OE,/0x = —lwugH, (7.18)
—ifH, — 0H./dx = iwegn*(x)E, (7.19)
iBH, = iwegn™(x)E, (7.20)
JH,/dx = iwegn®(x)E, (7.21)
~iBE, — 0E./0x = —iwugH, (7.22)

As can be seen, the first three equations involve only E, H,, and H. and the
last three equations involve only E, E., and H,. Thus, for such a waveguide
configuration, Maxwell’s equations reduce to two independent sets of equations.
The first set corresponds to nonvanishing values of E,, H,, and H, with E,,
E., and H, vanishing, giving rise to what are known as TE modes because the
electric field has only a transverse component. The second set corresponds to
nonvanishing values of E,, E,, and H, with E,, H,, and H, vanishing, giving
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e
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rise to what are known as TM modes because the magnetic field now has only
a transverse component. The propagation of waves in such planar waveguides
may thus be described in terms of TE and TM modes. In the next two sections
we discuss the TE and TM modes of a symmetric step index planar waveguide.

7.3 TE modes of a symmetric step index planar waveguide

In this and the following section we carry out a detailed modal analysis of
a symmetric step index planar waveguide. We first consider TE modes: we
substitute for H, and H, from equations (7.17) and (7.18) in equation (7.19) to
obtain

d°E,/dx* + [kgn*(x) = B*] Ey =0 (7.23)

where

ko = w(eopo)'* = w/c (7.24)

is the free space wave number and ¢ (=1/(eyj10)'/?) is the speed of light in free
space.
Until now our analysis has been valid for an arbitrary x-dependent profile.
We now assume a specific profile given by (see Figure 7.1)
m; x| <d/2

nx) = x| > d/2

(7.25)
TN

with 7 > n. Using the above equations we will solve equation (7.23) subject
to the appropriate boundary conditions at the discontinuities. Since E, and
H. represent tangential components on the planes x = £d/2, they must be
continuous at x = *+d /2 and since H, is proportional to d £, /dx [see equation

Fig. 7.1:  (a) The simplest
planar optical waveguide
consists of a planar film (of
refractive index ny)
sandwiched between two
materials of lower refractive
indices. Light guidance
takes place by the
phenomenon of total
internal reflection. (b) The
refractive index dist *bgai_gm
for a symmetric plana
waveguide.
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(7.18)], we must have

E, and d E, /dx continuous at x = +d /2 (7.26)

The above represents the boundary conditions that have to be satisfied.! Sub-
stituting for n(x) in equation (7.23) we obtain

d°E,/dx* + (kin} — B*) E, =0, |x| <d/2 film (7.27)

d*E,jdx* + (kind — B)E, = 0; |x| > d/2 cover (7.28)

Guided modes are those modes that are mainly confined to the film and hence
their field should decay in the cover (i.e., in the region |x| > d/2) so that most
of the energy associated with the mode lies inside the film. Thus, we must have

B* > kyn3 (7.29)

When % < k%n%, the solutions are oscillatory in the region x| > d/2 and
they correspond to what are known as radiation modes of the waveguide. These
modes correspond to rays that undergo refraction (rather than total internal
reflection) at the film—cover interface and when these are excited, they quickly
leak away from the core of the waveguide. Some aspects of radiation modes
are discussed in Chapter 24,

Furthermore, we must also have 8% < k2n?, otherwise the boundary condi-
tions cannot be satisfied” at x = 44 /2. Thus, for guided modes we must have

2
P " (7.30)
k5

ns <

At this point it may be worthwhile to recall our discussion in Chapter 4 where
we said that (for slab waveguides) guided rays correspond to

n3<f3<n; {(7.31)

and refracting rays correspond to B < n5: further, there cannot be any ray with

B > n,. Thus, B (in ray optics) corresponds to £/ k in wave optics:
B L (7.32)
ko
We write equations (7.27) and (7.28) in the form

d*E,Jdx* + P Ey = 0; x| <d/2 film (7.33)

d’E,/dx* —y*E, =0, x| >d/2 cover (7.34)

"The very fact that £, satisfies equation (7.23) also implies that £, and d £, /d x are continuous
unless nz(x) has an infinite discontinuity. This follows from the fact that if Ei. is discontinuous,
then E;” will be a delta function and equation (7.23) will lead to an inconsistent equation. Thus, the
continuity conditions are imbedded in Maxwell’s equations. Here primes represent differentiation
with respect to x.

21t is left as an exercise for the reader to show that if we assume f7 > k(_z}nf and also assume
decaying fields in theregion [x| > d/2, then the boundary conditions atx = +d/2andatx = —d/2
can never be satistied simultanecusly.
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where

K =kind — p* (7.33)
and

y? = B> —kinj (7.36)
The solution of equation (7.33) can be written in the form

Ey(x) = Acoskx + Bsinkx; |x| < d/2 (7.37)
where A and B are constants. In the regions x > d/2 and x < —d/2, the
solutions are e=¥* and, if we neglect the exponentially amplifying solution, we
obtain

Ce?™, x < —dJ2 ,
E (x) = (7.38)
. De 75 x > d/2

If we now apply the boundary conditions (namely, continuity of £y andd £ /dx
at x = +d/2), we get four equations from which we can get the transcenden-
tal equation, which will determine the allowed values of 8. This is indeed the
general procedure for determining the propagation constants in asymmetric
waveguides [see, e.g., Ghatak and Thyagarajan (1989), Section 14.2]; how-
ever, when the refractive index distribution is symmetric about x = 0 — that is,
when

R (—x) = n(x) (7.39)

the solutions are either symmetric or antisymmetric functions of x; thus, we
must have

E,(—x) = E,(x) symmetric modes (7.40)
Ey(—x)=—E,(x) antisymmetric modes (7.41)

(The proof of this theorem is discussed in Problem 7.5.) For the symmetric
mode, we must have

Acoskx; |x| <—d/2

E.x)= 7.42

A0 Ce 7Vl x| > dj2 (742
Continuity of E,(x) and dE, /dx at x = £d /2 gives us

Acos(d/2) = Ce V42 (7.43)

and

—kAsin(kd/2) = —yCe V42 (7.44)
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respectively. Dividing equation (7.44) by equation (7.43) we get

yd e
Etané = 3 {7.45)
where
kd 5 iz d
§ =5 = (koni - )" 5 (7.46)
Now
yd | . 5 2
e = | =V — 7.47
> (4 § ( )
where
V = kod(n? — n2)"? (7.48)

is known as the dimensionless waveguide parameter. Thus, equation (7.45) can
be put in the form

1 ’ 1/2
Etank = (sz — 52) (7.49)

Similarly, for the antisymmetric mode we have

P Bsinkx; x| = —d/2 750
)= ﬁl)e”ym; x| = d/2 (7.50)
and foilowing an exactly similar procedure we get
1 172
Cfcoté =[Syt _ g2
S
Thus, we have
V2 12
Etané = [(3) o 52} for symmetric modes (7.51)

and

V2 12
—Ecotlé = lt(;) - 52} for antisymmetric modes (7.52)

Since the equation

vV 2
1=(3) -¢

(for positive values of &) represents a circle (of radius V /2) in the first quadrant
of the £ — n plane, the numerical evaluation of the allowed values of £ (and
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6

Fig. 7.2:  The variation of
£ tank (solid curves) and
—& cot £ (dashed curves) as
a function of &. The points
of intersection of the solid
angl dashed curves with the
quadrant of a circle of
radius V' /2 determine the
propagation constants of the
optical waveguide
corresponding to symmetric
and antisymmetric modes,

Etank —Ecoté

respectively.

[e22]
S

-4 L

hence of the propagation constants) is quite simple. In Figure 7.2 we have plotted
the functions & tan& (solid curve) and —¢& cot& (dashed curve) as a function
of £. Their points of intersection with the quadrant of the circle determine
the allowed values of & and if we use equation (7.46) we can determine the
corresponding values of 8. Note that for guided modes the propagation constant
A can assume only a discrete set of values (as determined by the transcendental

equation).

The two circles in Figure 7.2 correspond to V/2 = 2 and V/2 = 5. Obvi-
ously, as can be seen from the figure, for V = 4 we will have one symmetric
and one antisymmetric mode and for V = 10 we will have two symmetric and

two antisymmeltric modes.
It is often very convenient to define the dimensionless propagation con-

stant
(7.53)

_ B &

b= —"—"+ % =1]— —
n?—n% VZ/4
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Obviously, because of equation (7.30), we will have for guided modes

0=<b <l (7.54)

Example 7.1: As an example, we consider a step index symmetric
waveguide with

ny=1503 n,=1500 d=4um (7.55)
For
ro =1 um

we will have
V = 2.385

and the waveguide will support only one symmetric TE mode with

& >~ 0.81664 = b >~ 0.531223, kﬁ >~ 1.50159 (7.56)

9]

For the same waveguide, if the operating wavelength were 0.5 pum, we
would have

V=477

and the waveguide would support one symmetric TE mode and one
antisymmetric TE mode with

& == 1.09426 and 2.08132

implying
b == ().789584 and 0.238762

The corresponding values of 8/ kg are

—lfi =~ 1.502369 and 1.500717 (7.57)
0

respectively. As the V value becomes larger, the waveguide supports
more modes.

7.3.1 Physical understanding of modes

To have a physical understanding of modes, we consider the electric field pattern
inside the film (—d/2 < x < d/2). For example, for a symmetric TE mode,
this is given by (see equation (7.42))

E.(x) = Acoskx
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Thus, the complete field inside the film is given by

£, = Acoskxe' @ F
] i{wt—~Bz—kx) 1 i(wt—pBz+Kx)
= EA(:’ R §A€ D (758)

Now

er’(wz —kex—kyy—k.2)

represents a wave propagating along the direction of K whose x, y, and z
components are ky, k,, and k., respectively. Thus, for the two terms on the
right-hand side (RHS) of equation (7.58) we have

ky =%k, k, =0, and k, =8 (7.59)

which represent plane waves with propagation vectors parallel to the x—z plane
making angles 46 with the z-axis where

tant =k, /k, = «/p
or
cos® = B/(B* +«H'* = B/kon; (7.60)

Thus, a guided mode can be considered to be a superposition of a pair of
plane waves that are propagating at angles £8(= =+ cos~'(8/kon;)) with the
z-axis (see Figure 7.3). Since only discrete values of g are allowed (which we
designate as S,,), only discrete angles of propagation of waves (or of the rays)
are allowed. Each mode 1s characterized by a discrete angle of propagation 6,,;
this 1s the basic principle of the prism film-coupling technique for determining
the (discrete) propagation constants of an optical waveguide (see Chapter 19).

Referring to the waveguide discussed in Example 7.1, at A¢ = 1 um we will
have

g == 2.48"

for the mode whose propagation constant is given by equation (7.56). For the
same waveguide, at Ao = 0.5 um we will have

6 > 1.66° and 3.16°

corresponding to the symmetric and the antisymmetric modes, respectively (see
equation (7.57)).

Fig. 7.3: A guided mode
in a step index waveguide
corresponds to the
superposition of two plane
waves (inside the film)
propagating at discrete
angles +6

[=cos™ B/ kon )] with the
z-axis. Different modes will
correspond to different
{discrete} values of 4.
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The concept of the cutoff of a mode can also be easily understood from the
above discussion. Since guided waves correspond to

It < — <T H)
0
we have
[1%) .
— < cosb < |1 (7.61)
ny

The condition that A cannot be less than kqrn, implies that cos 6 should be greater
than 75 /n,, which is nothing but the condition for total internal refiection at the
core—cladding interface (see equation (4.35)). Thus, beyond cutoff - that is, for
V < V. - the component waves no longer undergo total internal reflections at
the boundaries.

From Figure 7.2 we can derive the following conclusions about TE modes
(similar discussion can be made for TM modes, which are discussed in the next
section):

(a) W0 < V/2 < /2 —thatis, when
O0<V<nm (7.62)

we have only one discrete (TE) mode of the waveguide and this mode
is symmetric in x. When this happens, we refer to the waveguide as a
single-moded waveguide. For example, for

n; =150, n,=148, and d=3pum (7.63)

the waveguide will support only one TE mode for g > 1.46 pm;
actually the waveguide will support one TE and one TM mode — see
discussion at the end of Section 7.4. For &y < 1.46 um the same
waveguide will support more than one mode.

(b) From Figure 7.2 it is easy to see that if 7/2 < V/2 < 7 (or, 7w <
V < 2m) we will have one symmetric and one antisymmetric mode.
In general, if

2mm <V < 2m+ ) {(7.64)

we will have (m + 1) symmetric modes and m antisymmetric modes,
and if

Qm+ 1 <V < 2m+2)m (7.6%

we will have (m + 1) symmetric modes and (m + 1) antisymmetric
modes where m = 0, 1, 2, .. .. Thus, the total number of modes will be
the integer closest to (and greater than) V /z . Thus, for the waveguide
considered above, if the operating wavelength is made 0.6 pum, then
V = 2.447 and therefore we will have three modes (two symmetric
and one antisymmetric).
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(d)

When the waveguide supports many modes (i.e., when V > 1), the
points of intersection (in Figure 7.2) will be very close to § = 7 /2, 7,
37 /2, and so forth; thus, the propagation constants corresponding to
the first few modes will be approximately given by the following equa-
tion:

=ty =(Knl—p2) " d2~m+ /2 Vo

(7.66)
where
m=0,2,4,... correspond to symmetric modes
and
m = 1.3,5,... correspond to antisymmetric modes

It is obvious from Figure 7.2 that for the fundamental mode (which
we will refer to as the zero-order mode), &(=«d/2) will always lie
between 0 and 7 /2 and the corresponding field variation E(x) will
have no zeroes. For the next mode (which will be antisymmetric in
x) &(=«d/2) will always lie between 7/2 and 7 and therefore the
corresponding £,(x) will have only one zero (at x = 0). It is easy to
extend the analysis and prove that

the mth mode will have m zeroes in the

corresponding field distribution (7.67)

The above statement is valid for an arbitrary waveguiding structure.
The actual plot of the modal pattern for the first few modes is shown
in Figure 7.4. It may be noted that the field spreads out more as the
wavelength increases or as V number decreases.

The variations of the normalized propagation constant 5 (defined in
equation (7.53)) with V are plotted in Figure 7.5 for the first few
modes. The solid curves (corresponding to TE modes) are universal
— that is, for a given waveguide and a given operating wavelength we
first have to determine V and then “read off” from the curves the exact
values of b from which we can determine the values of g by using the
following equation.

B =ky[n3+b(n] —n3)] (7.68)
Since for guided modes § cannot be less than kgna, when (for a par-
ticular mode) B reaches the value equal to kyns (i.e., when b becomes
equal to zero), the mode is said to have reached “cutoff.” Thus, at

cutoff

B=kona, v =0, and b=0 {(7.69)
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m
Film-cover—"___,

interface

—

E,(x)

V,=22n

m=1

Fig. 74:  The sohd curves
represent the modal fields
for the symmetric step
index planar waveguide
with V = 4.47: even and
odd values of m correspond
10 symmetric and
antisymmetric modes,
respectively. The dashed
curve represents the
fundamental mode for

V = 0.87. All modes have
been normalized to carry
the same power.

For the symmetric waveguide that we have been discussing, at cutoff
£ = V /2 and hence the cutoff of TE modes is determined by

v 1% : «
S tan| -} = 0 symmetric modes (7.70)
14 4 ) A

= cot 5= 0 antisymmetric modes (7.71)

The above equation implies that the cutoff V values for vartous modes
are given by

m=20,1.2,3 ...

V. =mm; (7.72)
where even and odd values of m correspond to symmetric and an-
tisymmetric modes, respectively. Note that the fundamental mode
has no cutoff and therefore there will always be at least one guided
mode.

7.4 TM modes of a symmetric step index planar waveguide

In the above discussion we considered the TE modes of the waveguide. An
exactly similar analysis can also be performed for the TM modes, which are
characterized by field components £, E.,and H, (see equations (7.20)—(7.22).
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If we substitute for £, and £, from equations (7.20)and (7.21) inequation (7.22)
we will get

2 P
" (x)d X

[ I dH,

n(x) W} + (kgnz(x) - ﬁz) Hy(x)=0 (7.73)

which can be rewritten as

d?‘HV 1 dnz dHy 22 2
‘ _[ ] 4 (0 = B) Hyo =0 (774)

dx? n(x) dx | dx

The above equation is of a form that is somewhat different from the equation
satisfied by E for TE modes (see equation (7.23)); however, for the step index
waveguide shown in Figure 7.1, the refractive index is constant in each region
and therefore we have

d*H,/dx? + (kini — %) Hy(x) = 0;  |x| <d/2 (7.75)
and
d*Hyjdx® — (B2 ~ kgnd) Hy(x) = 0;  |x| > d/2 (7.76)

We must be careful about the boundary conditions. Since H, and £, are tangen-
tial components on the planes x = +d/2, we must have (see equation (7.21))

1 dH, . d .
H, and — —— continuous at x = *+— (7.77)
: n® dx 2

This is also obvious from equation (7.73).® The solutions of equations (7.75)
and (7.76) can be written immediately. Considering first the symmetric modes,

*Once again the condition that Hy and (1/n3)dliy/dx should be continuous at x = +d/2
follows from equation (7.73) because if (1/n2)d Hy /dx were discontinuous d /d x[(1 /nty Hwould
be a delta function and equation (7.73) would lead to an inconsistent equation. Thus, the continuity
of H, and (l/nl)Hi are contained in equation (7.73).

Fig. 7.5: The variation
the normalized propagati
constant b as a function ¢
V for a symmetric step
index planar waveguide.
The solid and the dashed
curves correspond to TE
and TM modes,
respectively. The value o
at which b = 0 correspor
to what is known as the
cutoff frequency.
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we have

H.(5) Acoskx, x| <d/2 (7.78)
(x) = :
iy Be VW x| > d/2

where the symbols « and y are the same as given by equations (7.35) and (7.36).
The boundary conditions given by equation (7.77) give us

Acos(kd/2) = Be vd?

1 rd 1
| —Axsin— ) = —(—=Bye 7/?
" ( 5 ) n%( ¥y )

Dividing we get
k tan(kd /2) = (n}/n3) y

which can be rewritten 1n the form

2 2 172

iy Vv ) .

Etanf = (—-) [ (—2—) — £ ] symmetric TM modes
1y

(7.79)

A similar derivation gives us

5\ 2 2 1/2
nl v 2 . .
—Ecoté = (—) [ (5) —& } antisymmetric TM modes

%)
(7.80)

where & and V have been defined earlier [see equations (7.46) and (7.48)].

The numerical solutions of equations (7.79) and (7.80) can be discussed in a
manner exactly similar to the TE case with the difference that the RHS of equa-
tions (7.79) and (7.80) now represents an ellipse whose semimajor axis (along
the n direction) is of magnitude (n% / n%)( V /2) and whose semiminor axis (along
the & direction) is of magnitude V /2. All qualitative conclusions discussed in
Section 7.3 for TE modes (namely, the cutoff frequencies and number of zeroes
of various modes, the physical interpretation of modal fields etc.) will remain
valid. We should also mention the following three points:

(a) Since n; > n», the point of intersection of the ellipse [of semimajor
axis (nf/n%)V/2 and semiminor axis (V/2)] with the curves & tan&
and —& cot £ will have values of £ greater than those corresponding to
the TE mode. Thus from equation (7.46) we note that for a given V, the
B values of TM,, modes are smaller than those of the corresponding
TE,, modes.

(b)  Although a waveguide for which 0 < V < 7 is referred to as a single
moded waveguide, we actually have two modes (one TE and one TM)
characterized by slightly different propagation constants. However,
the incident field is usually linearly polarized and if E 1s along the
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y-axis, the TE mode is excited and if E is along the x-axis, the ™
mode is excited. This result is quite general and is valid for all planar
waveguides. On the other hand, if the incident field has a polarization
that makes an angle with the x-axis (or, if the field is elliptically po-
larized), then both TE and TM modes will be excited and. because
they have slightly difterent propagafion constants, they will superpose
with different phases at different values of 7, changing the state of the
resultant polarization. As an example, we consider the incidence of
a linearly polarized wave with the electric vector making an angle of
45 with the x- and y-axes. Thus, at z = 0 we have

atz =0 (1.81)

|

Ec = Egcosm /4 coswt field distribution
£, = Egcosm/4 coswr

where E, represents the transverse variation of the modal field that we
have assumed to be the same for the TE and TM modes (see equations
(7.42) and (7.78)) the values of § are assumed to be nearly equal. If the
propagation constants for the TE and TM modes are denoted by g and
(By — APo), respectively, then the field distributions for z > 0 will be

e o Eo ) . .
TE: €, = 4 coslot — ozl field distribution
T™:E, = % cos{wt — Boz + APuz] atz >0

(7.82)

It can be readily seen thatat z = 7 /(2A8) the beam will be circularly
polarized and at z = 7 /(ABy) the beam will be linearly polarized (with
the electric vector now at right angles to the original direction) — for
intermediate values of z, the beam will be elliptically polarized. At
s = L, = 2/ APy, the original polarization state is restored and this
characteristic length is referred to as the beat length.

Similarly, form < V < 27, although the waveguide is referred to as
a “two-moded waveguide,” there are actually four modes (two TE and
two TM), and so forth.

For most practical waveguides, 11} = 12 and the propagation constants
(and the field patterns) for the TE and TM modes are very nearly equal.

Example 7.2: We consider a planar waveguide with ny = 1.5, n2 =
1.0, and d = 0.555 um. At kg = 1.3 pm, V ~ 3 and one obtains

b(TE) ~ 0.6280 and b(TM) = 0.4491

The corresponding values of B/k are given by

; ,
(£~> ~1.336 and (P—) ~ 1.2495
ko TE ko ™

with Ly, == 15 pm.
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7.5 The relative magnitude of the longitudinal components
of the E and H fields

We first consider the TE modes. Using equations (7.17) and (7.18) we get

H;
Hy

Now from equation (7.42) we have (inside the film)

i

B

JE,/0x
E,

E,
OE,/ox

1

~ —

K

which represents the characteristic distance for the spatial variation in the x
direction. Thus

H./H | ~«/B (7.83)

Since

we readily have

k/B = (kin2/p? —1)"*

Now, guided modes correspond to

2

ny < pr/kE < ni

therefore

Thus
H. (nf —n? i (
X n;

For ny ~ 1.50 and n> =~ 1.49, the RHS of the above equation is about 0.1,
which shows that the longitudinal component is very weak in comparison to the
transverse component. Thus, as long as iy & ny, the mode can be approximately
assumed to be a transverse electromagnetic mode. The same 1s also true for the
TM modes.

The above discussion is valid, in general, as long as ny =~ ny. In Chapters 8
and 9 we discuss round optical waveguides with cylindrical symmetry — even
there, as long as the core and cladding refractive indices are nearly equal (which
is true for all practical fibers), the longitudinal components of the electric and
magnetic fields are usually negligible in comparison to the corresponding trans-
verse components. When this is the case, the waveguide is referred to as weakly

guiding.
Georg-Siman . Chm -
Fachbenteonule
Mambog
Bibliothek
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7.6 Power associated with a mode

In this section we calculate the power associated with the TE mode. The power
flow is given by

(8y = (E x M) (7.85)

where S(= & x H) represents the Poynting vector and {...) represents the
time average of the quantity inside the angular brackets.

l T
(f@)) = T / f()dt (7.86)
0

where T(= 2 /w) represents the time period. Obviously, while calculating the
Poynting vector we must take the real parts of £ and H. Therefore, for a TE
mode, we write the electric field as

Ey = Ey(x)cos(wt — B2) (7.87)

which is essentially the real part of equation (7.15). Now

aH Xy
—p—— =V x €= TR (7.88)
0& 0O
Thus
oH, &, _
— L Pl 82 = —pBE,(x)sin(wt — Bz)
or
H, = P E . (x)cos z
x = ——E(x)cos(wt — B2) (7.89)
Wity
Similarly
1 dE, .
H., = ——— —=sin{wt — Bz) {7.90)
wiy dx
Now
and
(‘57> - “(5\7_{%)
= P g (7.92)

2w
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Although the above expression is rigorously valid only for the TE mode in a slab
waveguide, it is approximately valid for all waveguides in the weakly guiding
approximation.

The power associated with the mode (per unit length in the y direction} is
given by

1 g [

P=-
2Zwpy Jeno

Eidx (7.93)

We consider the symmetric mode (see equation (7.42)) for which

1 ﬁ d/2 ,, ) o0 »
P=--2 (Az f cos kxdx +C~ / e”z)"‘dx) (7.94)
0 d/2

or

L (d 1 c?1
P = p AP = 4+ —sinkd + ——¢77¢
2(U[L() 2 2K A< |4

If we now use equation (7.43) for C/A we get

3A* sin(ed/2) cos(kd/2) 2 5
p_ B {d+2€m(f<d/ Jcos(kd/ )+—[l~—sin“(;(d/2)l}
4wty K 4
A? 2 2sin(ed/2)cos(kd /2
_ B {d+ 2, sin(kd /2) cos(xd / )[y . tan(/cd/Z)_]}
4wy 14 v
BA? 2
P = d+ — (7.95)
dewpiy 14

where we have used equation (7.45). It may be mentioned that even for the
antisymmetric TE mode, the power associated (per unit length in the y direction)
is given by equation (7.95). Further, if we carry out a similar analysis for TM
modes we obtain the following expression for the power flow

po A [

2 % (i’lélx’z -+ n?}/z)

- 7.96
2(1)6()?1:12 ( }

d (nny)? ké(n%~n§) :I

tor symmetric as well as antisymmetric modes.
7.7 Radiation modes
Until now we have considered the guided modes of the waveguide for which
, ,
n; < f}z/k(‘-?; < nf
There exists another class of modes for which?

B ks < n3 (7.97)

41t is impossible to have #/kn > n; (see Problem 7.3).
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These are referred to as the radiation modes of the waveguide. It can be imme-
diately seen that for (8%/43) < n3 the wave equation (say for the TE modes) in
the region |x| > d/2 takes the form

dPE Jdx* + 8 E, =0 (7.98)
where
8% =kgns — B° (7.99)

which is now a positive quantity; thus the solutions in the region |x| > /2 will
be wavelike of the form

Pl (7.100)

We may recall that in the region |x| > d/2, the field associated with guided
modes decayed exponentially in the x direction (see equation (7.42)). On the
other hand, equation (7.100) tells us that the radiation modes correspond to
oscillatory solutions in the cover.

7.8 [Excitation of guided modes

We start with the wave equation satisfied by TE modes (see equation (7.23))
d* W, fdx? + [k3n*(x) = Bo ] Ym(x) =0, m=0,1,2....  (7.101)

where 1, (x) represents the field pattern corresponding to the propagation con-
stant 8,,; we have used the symbol i,,(x) instead of the more complicated
symbol £ (x). Using the condition that for guided modes ,,(x) will go to
zero as x — +00, we can readily show that (see Problem 7.2)

[ V(o (x)ydx =0 form #k (7.102)

X3

which is known as the orthogonality condition. Since equation (7.101) is a linear
equation, a constant multiple of v, (x) is also a solution and we can always
choose the constant so that

+ 0
j W (O dy = 1 (7.103)

which is known as the normalization condition. Combining equations (7.102)
and (7.103) we get the orthonormality condition

+ o0
[ Yo (O dx = 8, (7.104)

e

where 8, 1s the Kronecker delta function defined by the following equation.

0 form<=k
L —— 7 (7.105)

1 form =k
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Equation (7.104) represents the orthonormality condition satisfied by the dis-
crete (guided) modes. The radiation modes (which form a continuum) also form
an orthogonal set in the sense that

"0
/ i//;,(x)g[/ﬁ(.x)dx =0, forg+#£p (7.106)

However, the integral for 8 = ' is not defined and the orthonormality condition
is in terms of the Dirac delta function.

The important point is that the finite number of guided modes along with the
continuum of radiation modes form a complete set of functions in the sense that
any “well-behaved” function of x can be expanded in terms of these functions
- that is

OO =Dt () + f By dp (7.107)

m

where the first term on the RHS represents a sum over discrete (guided) modes
and the second termrepresents an integral over the continuum (radiation) modes.
If we multiply equation (7.107) by v (x) and integrate we will readily obtain

o = / Uy (Op(x) dx (7.108)

where we have used equation (7.104). Now, let E,{x,z = 0) represent the
actual incident field (polarized in the y-direction) at the entrance aperture of
the waveguide (z = 0). The power launched in the mth mode will be (see
equation (7.93))

+ 0O

Pm = ( 1 /2<4)M(})/gm ](-'m I2 [ hﬂm (X )}l dx

o =X

>

- (J/QCUM())ﬁm (7109)

/ b (OE (¥, 2 = 0)dx

As the beam propagates through the waveguide, the field in the region (z > 0)
will be given by

E}‘(’-’C» z) = Z Cimn wm (x)e"‘ﬂm: + _/\C‘(ﬂ)zj”ﬂ(x)()iﬁ: d/—; (7.110)

m

One can easily see that at an arbitrary value of z, the power in the m™ mode
will be proportional to

[eme P2 = Je, |2 (7.111)

which remains constant with z. Different modes superpose with different phases
at different values of z as a consequence of which ~ considering guided modes
only ~ the transverse intensity distribution will vary with z (see Example 7.3
and Figure 21.2).
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7.9 The parabolic index waveguide

In this section we discuss the TE modes of a parabolic index profile characterized
by the following refractive index distribution (see also Section 4.2.2)°

n(x) = n%[l - m(f)h] (7.112)
a

where n;, A, and a are constants. For such an infinitely extended profile, we have
only discrete guided modes and we will be able to obtain an analytical expression
for the propagation constants. We will also be able to study the propagation of a
beam through such a waveguide. Finally, the analysis enables us to understand
the modal characteristics of a parabolic index fiber (see Chapter 9).

If we substitute equation (7.112) in equation (7.23) we obtain

2 2
avy {kéﬁ[l —m(g) } —ﬁz}tlf(x) =0 (7.113)

dx?

where we have used the symbol v instead of E,. The above equation can be
written in the form

d*y 5 , .

3%—34“(/\—:‘3")1”(5):0 (7.114)
where

kov/3A ]
E=yx, Yy = i———m—ll oV (7.115)
a
and
kin? — sz a
A= = kit — ] ——= (7.116)
Y- [ o ’8 ]il]k() 2A

Equation (7.114) is of the same form as the one-dimensional Schrodinger equa-
tion corresponding to the linear harmonic oscillator problem {see, e.g., Ghatak
(1996), Chapter 7]. f we apply the boundary condition that

Yr(x) — 0 as x — £
then we will find that A can take discrete values given by

A=0C2m+1D;, m=012,... (7117

the corresponding eigen functions being the Hermite-Gauss functions (see
Appendix A). Thus, the normalized modal patterns (satisfying the condition

TWe may mention here that equation (7.112) is rather hypothetical in the sense that for large
values of |x|, equation (7.112) predicts negative values of n? —a realistic profile is truncated — that
is, equation (7.112) 15 valid for |x| < a beyond which the refractive index is constant. However, for
a highly multimoded waveguide, when a large number of low-order modes are excited, the analysis
of the infinitely extended profile gives results that are close to the results oblained by using the
truncated profile.
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given by equation (7.103)) and the corresponding propagation constants are
given by

Yn(x) = Ny Hyy (8) €3¢ (7.118)
1/2
I VZA

Brm =n1ka[1—(2m+i)— } (7.119)

mky a

where m =0,1,2, ... and
” 1/2

Nm il P — 7]20
[2’”!}1 T J ( )

represents the normalization constant so that

+00
f wm(‘x)l//n{‘x) dx = S (7121)
—

Note that the integration is over x and not over £. Further, the functions H,,(§)
are the well-known Hermite polynomials given by

Ho§)=1, Hi{)=2%

7.122
Ho(6) — 462 =2, Hy(5) = 863 — 126, (7.122)

and
Hyp (§) = 28H, (5) —2mH, . (§)

A few interesting points may be noted:

(a) Equations (7.117) and (7.118) represent exact solutions of equation
(7.113), which can be verified by direct substitution.

(b)  Since the profile is symmetric in x (i.e., n2(—x) = n*(x)), the modal
fields are either symmetric in x(m = 0, 2,4, .. .) or antisymmetric in
x(m =135 ...

(¢) Thefunction Hy(&) (and hence v¥rg(£)) has no zeroes; the function H,(£)
(and hence v;(&)) has only one zero (at§ = 0}; the function H»(£) (and
hence ¥,(£)) has two zeroes (at & = + %); the function Hx(&) (and
hence y3(£)) has three zeroes (at & = 0, i@) etc. In general, H,,(§)
(and hence ¥, (£)) will have m zeroes — consistent with the remarks
miade in Section 7.3,

(d) Equation (7.119) tells us that for large values of m, f,, becomes imag-
inary. Thus, if we write 8,, = —iy,,, then the 7 dependence is e "7,
which represents the attenuating modes.

Example 7.3: Asan example, we consider the launching of an off-axis
y-polarized Gaussian beam whose spot size is the same as that of the
fundamental mode:

E .
S z=0.1) = ;—]‘/la— e~ 165 cos (7.123)
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where & = yxg with xy being the x-coordinate of the center of the
incident Gaussian beam at z = 0,
Expanding the Gaussian into waveguide modes,

Eo vewr - ND o 7.124
m € - = Z Cme(x) ( i )
m=0....
we get

E() o . b gt

C = wm(x) e 26 dx
P
Eo | 1 /2 e

= SmlE) e (7.125)

where (in evaluating the integral) we have used the generating function
for Hermite polynomials® [see, e.g., Ghatak et al. (1995), Chapter 6]

2.0 E .
G n=e = Y —H,EN" (7.126)
m=01.... m!
Thus
Er.z.t)= D Cp¥m(x)cos (@t — B2) (7.127)
m=0,1....

The fractional power in the mth mode is given by

= ] 1 2 " 7%55 5

Pm = ’_”7 ES() e (7.128)
Obviously

Y pu=1 (7.129)
m=0.1,...

In Figures 7.6 and 7.7, we have plotted p,, (as a function of m) for
¢ = 20 and &; = 200, respectively. The figures show the excitation
efficiencies of various modes; a large value of &, implies launching at
a point far from the axis.

Carrying out an analysis similar to that given in Section 7.6, we
obtain

1
2wty

dir, .
Sih = - mCn WX )= 8 n z BE
(S, D0 e tnl(x) o sinl(By — Bzl (7.130)

i 7

*1f we multiply equation (7.126) by exp[_w%(%" — &) — % 2. carry out the integration. and

compare the coetficients of 7" on both sides, we get equation (7.125).
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(7.131)

Figure 7.8 shows the (magnitude and direction) of the Poynting vector
for the following values of various parameters

a=>50num, kg=10 (pm)” (= Ay = 0.6328 um)
n =15 A=001, & =20(= xy==21.7pum)

The double sum has been carried out for m, n going from 0 to 25. The
solid line in the figure shows the paraxial ray path,

Example 7.4: In most practical waveguides

1 V2A

1 k() 43

1 (7.132)
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107 Fig. 7.8 The evolution of
the Poynting vector as an
off-axis Gaussian beam
propagates through a
parabolic index medium
(58 = 20) [Afier Freude,
Ghatak, and Grau (1997).]

104

and we may make a binomial expansion in equation (7.119) to obtain

w (m l)m

2

(7.133)

ﬁm iy | o

C a

where we have neglected the second and higher order terms. Under
this approximation

L P M (7.134)
v, dw ¢ o

which is independent of the mode number. Thus, all modes have (ap-
proximately) the same group velocity because of which the pulse dis-
persion in a parabolic index medium is extremely small. We write
equation (7.127) as

Ex.z,0) = Re[ > lﬂ,»n(X)e”"”_ﬂ’””} (7.135)

m

Substituting for ¢,,, ¥,,(x} and 8, from equations (7.125), (7.118),
and (7.133), respectively, we obtain

; E() 1 | P m/2 L2
A N it g2 35
Eux,z,1)=Re !:e _\/7 Em [— — (2 ,U) €

v A\ :
Hm )7%5_
* [(2’”171!\/5) e :|

] I . ,
X Xp [—i(”‘—” . —5)3}[5’“}"’ (7.136)
c 2
where
V2ZA
§ = (7.137)
a
Thus

. E() _lg2 1g2 1 } ;
Ex,z.1) =Re| &P ——¢25 7180 Y —_H (E)g" 7.138
v(x, 2. 1) e[e —ia® Zm! (&g (7.138)

mt
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where

w 1 vV2A

P =wr—|n——- (7.139)
¢ 2 a
and
Vo s :
g = 5508 z (7.140)
If we use equation (7.126) and carry out elementary manipulations we
obtain
Eo —4[E—Egcos 5]
Ey(x,z,1) =Re —7€ Kg2lsTauros0c (7.141)
i

where x = @ + £&gsindz — &7 sin28z. Thus

Ej 5527
(6,0 2, DF) = 5= e TR (7.142)

27

showing that the peak of the intensity distribution follows the (paraxial)
ray trajectory (see equation (4.17))

X == X4 CO8 87 (7.143%)

Thus, the center of the Gaussian beam executes a sinusoidal path,
which is nothing but the paraxial’ ray path. From the above analysis
we may note the following:

(i)  As the Gaussian beam propagates, the power in each mode
remains constant {there is no mode coupling). However, since
B depends on the mode number, they, at different values
of z, superpose in different phases to produce the intensity
distribution shown in Figure 7.8.

(if)  The transverse width of the beam remains the same; this is
because the spot size of the incident Gaussian beam was the
same as the spot size of the fundamental mode.

(iii)  The above analysis will be accurate as long as the launching
point (x = xg) is far away from the core—cladding interface.

Example 7.5: We next briefly consider the on-axis launching of a
(Gaussian beam; thus we assume

Wix,z=0)=Ege "M (7.144)

"Neglecting higher order terms in equation (7.133) is equivalent o the paraxial approximation.
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Using equation (7.108) and properties of the Hermite polynomials®
we obtain

2 mf2
y 2 S ]
E(,}Nmu}()‘\/;"m—‘! (% + ]) i’; 5
(m/2)! \ w; I+ E%
Uy = wi
m=102,4,...
0, m=1,735 ...
(7.145
where
wo = Y2_ 5 mmfimm] (7.146)
2A (niky)”

If we substitute for ¢,, in equation (7.135) and sum the series (a more
direct approach is discussed in Problem 7.13) we get

Wx, )P = B2 e [ 20 } (7.147)
X, 2T = Ly Xpl——— .
Yw(z) P w?(z)
where
4
2, 21 { Wo .2 2
w(z) = w; [<m) sin“ dz + cos SZJ (7.148)
w;

showing the modulating spot size of the propagating Gaussian beam.
The following points may be noted

(i)  When w; = wy, w(z) = w; (independent of z) and the beam
propagates as the fundamental mode.
(1)  As A — 0, § also tends to zero and we get

4

Wy
w(z) = —2(82) + w}
wy
oo, ,
n,n’*wlf

which represents the spreading of a Gaussian beam as it prop-
agates through a homogeneous medium of refractive index
iy {see Section 2.8).

(ii1y  For given values of w;, A and @ as Ay — 0

wi(z) — w,2 cos? 8z

which represents the geometrical optics limit.

8f+: cfgz/“2 Hom(E)dE = \/f?a!&:'zmi(ci2 — Yt =0,1,2,...

m!
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Problems

7.1

Consider a symmetric planar waveguide with the following parameters:

np =150, m =148 d=3912pum

Atip = 1 um, (a) show that there will be only two TE modes, the corresponding
propagation constants being Sy = 9.4058 um™! and B = 9.3525 pu m
calculate the discrete angles that the component waves make with the z-axis. (b)
At z = 0, assume that the field in the core is given by

Ey(x)= 1375 x 10% cos koxe'® + 1.309 x 10% sinkxe’™ Vim

Show that equal power of | W is carried by the two modes. Calculate the transverse
intensity distribution at

=0, n/AB, 2r/AP

where Af = By — f. Interpret the results physically.
We rewrite the wave equation determining the TE modes equation (7.101)] as
an cigenvalue equation

2 2 220 : :

d Y [dx” + kg (X W = dn Y (x) (7.150)
where A, = ;8,% represents the eigenvalues of the operator [(dz/dx2 4 kf)nz(x))]A
Prove that all values of %, are real and that if 1, £ A, the corresponding modal
fields are orthogonal.

Solution: We rewrite the complex conjugate of the eigenvalue equation corre-
sponding to the eigenvalue Ay

A2yl 1A + kP Oy = MAgro (7.151)

We multiply equation (7.150) by v and equation (7.151) by ¥, and subtract to
obtain

YL d* m dx? = Ymd Y dx = G — AV (X ()

The LHS 1s simply

d dyr dyr)}
('»ﬁ;zk e Y —*
dx

Ej\j dx

therefore if we integrate trom —oc to o0 we obtain

N 1y dy it
(A = )\Z)/ E//f(me(X)dX - [W?j’k( — Wmlﬁ\“:l
o

~ dx dx |_
(7.152)
The RHS vanishes because for guided modes the fields vanish at x = =00, Thus,

we get

.i,.m
G — m[ WO (x)dx =0 (7.153)
—00
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For k = m, the integral f |wm(x)| dx is positive definite and therefore we
must have

P (7.154)

proving that all eigenvalues B2, must be real. Further, for A,, # A, we must have

+0C
f Uf’/:(x)lﬁ’m(x)dx =0; (A # A) (7.155)

which represents the orthogonality condition.”

7.3 In the eigenvalue equation for TE modes (equation (7.23)) prove that A2 cannot
be greater than the maximum value of k%nz(x'),

Solation: We rewrite equation (7.23) in the form

dzEy/dxz e QI(X)E},(X)

where

a(x) = B2 — kin’(x)

Now, if 2 is greai@r than the maximum value of kznz(x) then a(x) is positive
everywhere and d°E, /dx has the same sign as Ey(x) everywhere. Thus, if E,
18 positive at some value of x, then d“F /dx Wlll also be positive. Hence, if
E' >0, then E, — 00asx — o0 becau%e E/ will keep on increasing. On the
uther hand, if E < 0, then £y —» —oC as x —> —o0. Therefore, there must be

some region where B < kzno(x).

7.4 In the specific profile shown in Figure 7.1 show explicitly that for g2 > k()nl,
the boundary conditions cannot be satisfied.

7.5  Show that if n°(—x) = n*(x), then the modal field patterns are either symmetric
or antisymmetric functions of x.

Solution: We write the wave equation determining the TE modes (equation
(7.23)) in the form

AP E (x)/dx* + kgn* () Ey(x) = B2 Ey(x) (7.156)
Making the transformation x — —x we get

dZ

T Ey(=2) + Kgn O Ey(—x) = fREy (—x) (7.157)
ax+

where we have used the fact that n%(—x) = n2(x). Comparing equations (7.156)
and (7.157) we see that £, (x) and £, (—x) satisfy the same equation and therefore

U hpy = Ag, Y and Yy are then two independent modal fields belonging to the same value
of the propagation constant; the sets of modes are said to be degenerate and 7, and v are not
necessarily orthogonal. It can easily be seen that any linear combination Cyvr,, + Caty is also a
possible mode belonging to the same propagation constant and it is always possible to construct
modes that are mutually orthogonal to each other; the details are given in most texthooks on quanium
mechanics [see, e.g., Ghatak (1996].
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Fig. 7.9: A dielectric slab
sandwiched between two
perfectly conducting
surfaces.

7.6

7.7

Metal

x = +d2
Hy

x=~d/2
Metal

they are eigenfunctions belonging to the same value of B2. Thus, if the mode is
nondegenerate,'” then Ey(—x) must be a multiple of x — that is
Ey(~x) = hEy(x)
Making the transformation x — —x again, we get
Ey(x) = 2Ey(—x) = 22 Ey(x)
so that A% = 1 or » = +1I. Hence
Ey(—x) = £E,(x) (7.158)

proving the theorem. Modal fields belonging to the class & = +1 and & = —1
are symmetric and antisymmetric functions of x, respectively.

Show by direct substitution that with n? given by equation (7.112)

e Ee2® and (@2 — 23t

satisfy equation (7.113); the corresponding value of B? being given by equation
(7.119) with m = 0, 1, and 2, respectively.

In general, show that H,, (§)e™ 3¢ satisfies equation (7.113), the corresponding
value of 82 being given by equation (7.119).

[HINTS: Hermite functions are polynomial solutions of d 2yfdEr = 2Edy/dE
+2ny(§) = 0.1

Consider a waveguide whose bounding surfaces are made of perfect conductors
(see Figure 7.9) so that £, may be assumed to vanish at x = 4=d /2. Consider the
TE modes and show that

BL = kin® — (mr/d)? (7.159)

wherem = 1,3, 5, ... correspond to the symmetric TEmodesandm = 2, 4.6, ...
correspond o the antisymmetric TE modes (two points should be noted: first,
dir/dx is discontinuous at x = +d/2 -~ this 1s because n?(x) has an infinite
discontinuity at x = £d/2; second, form > kgnid/n, B, becomes imaginary —
these are the attenuating modes; there is, however, no absorption of energy}.

19This theorem is therefore strictly true for nondegenerate modes only (see footnote in the solu-
tion to Problem 7.2). For degenerate modes the field patterns need not be symmetric or antisymmetric
functions of x. However, even for degenerate modes, one can always construct appropriate linear
combinations that are either symmetric or antisymmetric functions of x.
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7.8

7.9

7.10

{a) Consider TE modes in a planar waveguide one of whose bounding surface (at
x = 0} 1s a perfect conductor; further

nxy=mn, for0<x <nh

=ny forx > h (7.160)

Thus, one of the boundary conditions would be that E(x)would vanish at x = 0.
Solve equation (7.23) to obtain the following transcendental equation determining
the propagation constants.

—EcotE = \/ﬁ (7.161)

where

A

12 N Vi .
£ = (k%iz% — ﬂ") h and o = koh (nT — n%) (7.162)

Indeed, equation (7.161) gives the antisymmetric TE modes of the structure shown
in Figure 7.1(a).

(b) For ¢ = 37, determine the discrete values of £.

{¢) For ny = 1.5 and kgh = 10 calculate ny and the corresponding values of
B/ ko.

[ANSWER: (b) 2.8360, 5.6415, and 8.3388.]

{(a) We next consider the structure for which the refractive index is n for x| < a
and ny fora < [x| < a + h with a metal boundary at |x| = a + & (see Fig-
ure 7.10a). For TE modes the field distribution is given by

Agcoshyx; symmetric
E, = x| < a
A, sinhyx;  antisymmetric
(7.163)
Bsin{k{a+h — |xD]: symmetric
= a <|x|<a-+h
E—% Bsinjk(a+h — |x])]: antisymmetric
where we have assumed no < B/ky < ny, ¥ and « are the same as in Sec-
tion 7.3. Show that the propagation constants are determined from the following
transcendental equation

2 241/2

~£‘-C?¥——~§i tan £ = (coth )/aﬁ)j’l (7.164)
where & and « have been defined in equation (7.162); the + and — signs cor-
resspond to symmetric and antisymmetric modes, respectively. Thus, for ya 5 |
(i.e., when the two waveguides are well separated) the symmetric and antisym-
metric modes are almost degenerate and are given by equation (7.161).
(byFore = 3 and i /a = 0.2, obtain the discrete values of £ [see Figure 7.10b];
the corresponding modal fields are shown in Figures 7.11 and 7.12.

[ANSWER: 2.82154 (s), 2.84990 (a), 5.60021 {s), 5.68284 (a), 8.23678 (s),
8.47649 (a). s: symmetric modes; a: antisymmetric modes.]

Figure 7.10 can be assumed approximately to represent two identical waveguides
separated by a certain distance. This is essentially a directional coupler and the
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Fig. 7.10:  The refractive
index distribution
corresponding to

Problem 7.9 and the
corrsponding discrete
eigenvalues (;fi/k())l {(shown
as horizontal lines) for

¢ =3mand h/e =02 The
short horizontal lines on the
extreme right represent the
(degenerate) value of

(8 /r’m)2 corresponding to
two solated structures.
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7.11

previous problem describes the “supermodes”™ of the composite structure. Con-
sidering the two lowest order modes we may write as a solution of the wave
equation

Yo |:¢A\'(X’)€i(w!“ﬁs8) +¢’u(-’f)€f(wi7ﬁ“:’:l

= [W.\-{‘XJ + wa(x)e?i(ﬁ"ﬁ):]()f(")f_ﬁ‘C) (7.165)
where ¢ (x) and v, (x) represent the modal pattern for the symmetric and an-
tisymmetric modes, respectively (see Figure 7.11), and Af = (8, — B4). Show
that at z = 0, 2/ AB, 4m/AB, ... most of the energy 1s in the first waveguide
and at z = w/AB, 3w /AB, .. there is almost complete transfer of power to the
second wavegnide.

Consider an interface of a dielectric and a metal, — that is

n%; x>0
T (7.166)
7
nhr x <0

where n%n is complex having a large negative part. Show that such a structure can
support a TM mode whose propagation constant is given by

2 /.2 2.2 2 2
ﬁ /k() - "Inm/(”l +nm)

(7.167)
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Fig. 7.11:  The solid and
the dashed curves
correspond to the first
symmetric and the first
antisymimetric mode for th
structure discussed in

Problem 7.9.
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This mode is known as the surface plasmon mode and is of considerable interest  Fig. 7.12:  The solid and

7.12

in integrated optics. Show that the corresponding field decays exponentially in
the x > 0 and x < 0 regions. Show also that for such a structure, TE modes can
never exist.

Starting from the equation

Wix,2) =) cmmlxre Pt (7.168)
t
determine ¢,; and then show that
+00
Ey(x,2) = [ K, x', W', z =0)dx’ (7.169)
o =00

the dashed curves
correspond to the second
symunetric and the second
antisymmetric mode for tl
structure discussed in
Problem 7.9.
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where

Koox' 2= Ym (X Wm(x)e P (7.170)
nr
7.13  Fortheinfinitely extended parabolic profile (equation (7.112)), evaluate K (x, x', 2)
with f3,, given by equation (7.133).

[HINTS: Use Mehler’s formula [see, e.g., Ghatak, Goyal, and Chua (1995),
Section 6.7.]

i Hy(x)Hy(y) ( ) | ox 2xyz = (xz + )’2)22
— n! 2 (1 — 512 b 2

(7.171)

[ANSWER;

K(x,x',2) = ( J/2emimiboz expl KX Y02 ) o g

sindz

’77t e,m rSz
7.14  Using the results of the previous two problems, evaluate W{x, z) when
(a) Yix,z=0)= % o126 -5
{see Example 7.4]

(b) "'p(,x,, 7 = 0) — E(} g-—/\-z/u)lz
(see Example 7.5).
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8.1 Introduction

The propagation characteristics, splice loss, etc. of the optical fiber, play an
extremely important role in the design of a fiber optic communication system.
In this chapter we carry out a detailed modal analysis of the step index fiber.
This is followed by the extensively used Gaussian approximation for the fun-
damental mode of a step index fiber; in the Gaussian approximation the splice
loss calculations, which are very straightforward, are discussed in Section 8.5.
The Petermann-2 spot size and the far-field spot size are also discussed.

8.2 Scalar modes in the weakly guiding approximation

The step index fiber is characterized by the following refractive index distribu-
tion

niry=n; O0<r<a core

=n, r>u cladding (8D
In actual fibers
ny = Ay (8.2)

and this allows use of the so-called scalar wave approximation (also known
as the weakly guiding approximation). In this approximation, the modes are
assumed to be nearly transverse and can have an arbitrary state of polarization.
Thus, the two independent sets of modes can be assumed to be x-polarized
and y-polarized, and in the scalar approximation they have the same propa-
gation constants. These linearly polarized modes are usually referred to as LP
modes. We may compare this with the discussion in Section 7.5 where we men-
tioned that when n; 2 n, the modes are nearly transverse and the propagation
constants of the TE and TM modes are almost equal.

In the weakly guiding approximation, the transverse component of the elec-
tric field (E, or E) satisfies the scalar wave equation

VW =€ 7~—~2\p (8.3)
— eniinhi® 0 .
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For n? depending only on the transverse coordinates (r, ¢b), we may write
W(r, ¢z, 1) = Y (r, )’ (8.4)
where w is the angular frequency and § is known as the propagation constant.

The above equation represents the modes of the systemn. Substituting in equa-
tion (8.3), we readily obtain

2 82 C[)Z ] . bl
(VL - )@l’ + [;5 ner @) - ﬁ'] Y =0 (8.5)

dz2

In most practical fibers n? depends only on the cylindrical coordinate r and
therefore it is convenient to use the cylindrical system of coordinates to obtain'

Ay Loy 1 %y 5 5 ,

—_—t - — = — kin“(ry— B =0 i

ar? + v Or r a¢l +[ on(r) = p hb (8.6)
where

k() = w/c = 27{/}\.0 (87)

is the free space wave number. Because the medium has cylindrical symmetry,
we can solve equation (8.6) by the method of separation of variables:

U(r, @) = R(r)®(@) (8.8)
On substituting and dividing by y(r, ¢)/r?, we obtain

, | d°d
) + rz[nz(r)k(z, - ,82] = ‘ =

r*(d’R 1dR
d do?

R\ dr? 7 dr

(8.9

where / is a constant. The ¢ dependence will be of the form cos /¢ or sinl¢ and
for the function to be single valued (i.e., @(¢p + 27) = P(¢)) we must have

[=0,1,2,..., et (8.1

(Negative values of / correspond to the same field distribution.) Since for each
value of [ there can be two independent states of polarization, modes with{ > 1
are four-fold degenerate (corresponding to two orthogonal polarization states
and to the ¢ dependence being cos /¢ or sinl/¢), modes with / = 0 are ¢ inde-
pendent and have two-fold degeneracy. The radial part of the equation gives us

,d’R  dR 5 5 P, ‘
re— At —— kepn“(ry—p7r =1} R =10 8.11
T Gt - 7] } (8.11)
The solution of the above equation for a step index profile is given in the next
section. However, we can make some general comments about the solutions
of equation (8.11) for an arbitrary cylindrically symmetric profile having a

'We should mention here that for an infinitely extended parabolic profile n%(r) = n? —arlx by
it is equally convenient to use Cartesian coordinates (see Chapter 9).
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refractive index that decreases monotonically from a value n; on the axis to a
constant value n, beyond the core—ladding interface r = a (see Figure 5.1).
The solutions of equation (8.11) can be divided into two distinct classes (cf.
Section 7.3):

(a) kgn% > B > kin} (8.12)

For B2 lying in the above range, the fields R(r) are oscillatory in the
core and decay in the cladding and 8? assumes only discrete values;
these are known as the guided modes of the system. For a given value
of [, there will be several guided modes, which are designated LP,,
modes (m = 1,2,3,...); LP stands for linearly polarized.* Further,
since the modes are solutions of the scalar wave equation, they can be
assumed to satisty the orthonormality condition

o0
)

/ f Vi (Fs @)W (r, @)r dr dp = 810 Sy (8.13)
o Ji

)

(b) B < kins (8.14)

For such 8 values, the fields are oscillatory even in the cladding and £
can assume a continuum of values. These are known as the radiation
modes.

The guided and radiation modes form a complete set of modes in the sense
that an arbitrary field distribution can be expanded in terms of these modes —
that is

000,91 = X eutintr e+ [ eyt e

Iom

(8.15)

where the first term represents a sum over discrete modes and the second term
an integral over the continuum of modes.? The quantity |c;,|* is proportional
to the power carried by the (/, m)th mode; the constants ¢;,, can be determined
by knowing the incident field at z = 0 and using the orthonormality condition.
Similarly |c(8)|* dB is proportional to the power carried by radiation modes
with f values lying between B and 8 4+ df.

The calculation of the modal field distributions and the corresponding prop-
agation constants are of extreme importance in the study of waveguides. For ex-
ample, knowing the frequency dependence of the propagation constant one can
calculate the temporal broadening of a pulse (see Chapter 10), which determines

2if one solves the vector wave equation, the modes are classified as HE;,, EHin. TEom,
and TMy,,, modes, the correspondence is LPy,, = HE,,,; LPy,, = HEa,, TMu,, and LPy,, =
HE; ., EHy 0 (f > 2) [see, e.g., Ghatak and Thyagarajan {1989), Section 13.14].

*The radiation modes can be further classified into propagating radiation modes 0 < g2 <
kZn? and decaying radiation modes —o0 < B2 < 0 the latter correspond to modes that decay
exponentially along the z-axis.
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the information-carrying capacity. Knowledge of the modal field distribution is
essential for the calculation of excitation efficiencies and splice lossess at joints
and the development of new fiber optic devices like directional couplers, etc.
We now present a detailed modal analysis for step index optical fibers.

8.3 Modal analysis for a step index fiber

In this section, we obtain the modal fields and the corresponding propagation
constants for a step index fiber for which the refractive index variation is given
by equation (8.1). For such a fiber it is possible to obtain rigorous solutions
of the vector equations [see, e.g., Snyder and Love (1988), Sodha and Ghatak
(1977), Chapter 4]. However, most practical fibers used in communication are
weakly guiding — that is, relative refractive index difference (n; —ny)/n; <1
and in such a case the radial part of the transverse component of the electric
field satisfies the following equation (see equation (8.11)):

d°R  dR R )
I‘2m +r—d-r—+{[k(2)n2(r)—,8 ]r —lz}Rm() (8.16)

and the complete transverse field is given by

W, ¢, 2.1) = R(r)e 1o {:f; jg } (8.17)

If we use equation (8.1) for n°(r) in equation (8.16), we obtain

d*R  dR 2
2SI (02l 2 R=0, 0<r<a (8.18)
dr? dr a?
and
d*R  dR o
r2ﬁ+r—cj—;—(W2;+i“)R:0; r>a (8.19)
where
2.2 w172
U = alkgny — B7) (8.20)
w :a(;ﬁz~k%n§)u2 (8.21)
and the normalized waveguide parameter V is defined by
V =(U*+wH'? = k()a(n% — n%)l/2 (822)

Guided modes correspond to n3k} < B < niki and therefore for guided
modes both U and W are real.

Equations (8.18) and (8.19) are of the standard form of Bessel’s equation
[see, e.g., Irving and Mullineux (1959), Ghatak et al. (1995)]. The solutions of
equation (8.18) are J;(x) and Y;(x) where x = Ur/a. The solution Y;(x) has to
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be rejected since it diverges as x — 0. The solutions of equation (8.19) are the
modified Bessel functions K;(¥) and /,{X) with the asymptotic forms

1

K)(%) —> (1) et (8.23)
- } =
L7 - o (8.24)
Foo (275)

where ¥ = Wr/a. Obviously, the solution /,(¥), which diverges as ¥ — o0,
has to be rejected. Thus, the transverse dependence of the modal field is given
by

o ) intg |F T

A Wr . | coslg
e Ky ([ e . ;
K (W) 'l a [smlcb] red

A Ur [cosiqﬁ] ]
Yir, @) = (8.25)

where we have assumed the continuity of ¥ at the core—cladding interface.
Continuity of 3vy/dr at r = a leads to*

UJii) B WK/(W)

; (8.26)
Ji(U) K (W)
Using the identities
+UJ(UY=1J(U) ~ UJy1(U) (8.27)
EWK/ (W) =K, (W)F WK, (W) (8.28)
J (U) = QLUYU)Y — J - (U) (8.29)
and
K (W) = 2/ W)HKi (W) + K; (W) (8.30)
equation (8.26) can be written in either of the following two forms
1 (U) K 1((W) ‘
=W 8.31)
I K (W) (821
or
Ji (U K (W)
gl K W) (8.32)
S(U) Ki(W)

It should be mentioned that as long as ¥ is assumed to satisfy the scalar wave equation
(equation (8.6)), both ¥ and dv/dr have to be continucus at any refractive index discontinuity.
This follows from the fact that it v /dr does not happen to be continuous, then d2 1 /dr? will be a
Dirac delta function, which would therefore be inconsistent with equation (8.6) unless, of course,
there is an infinite discontinuity in #°, which indeed happens at the interface between a dielectric
and a perfect conductor.
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However, using the proper limiting forms of K;(W) as W — 0, one can show
that®

KWy

i : = 2., (8.33
V]‘L/z]z}” XW) 0: =01, (8.33)

and therefore we use equation (8.32) for studying the modes. For / = 0 we

get

LWy KW

l/ =
Jo(l) Ko(W)

(8.34)

where we have used the relations J_((U) = —Ji(U) and K_ (W) = K;(W).

We should mention here that the boundary conditions used in deriving the
eigenvalue equation (equation (8.32)) are consistent with the approximation
involved in using the scalar wave equation. For example, if ¢ is assumed to
represent E then, rigorously speaking, £, and 0 E,/dr are not continuous at
r = a for all ¢; indeed, one must make £y, £, and n*E, continuous at the
interface r = a. However, if n, & n, the error involved is negligible [see, e.g.,
Sodha and Ghatak (1977].

It is convenient to define the normalized propagation constant

Zj)‘ — Fi% WE ‘
h=-"2—— = (8.35)

H% -— n% M‘ﬁ
Thus
W= Vvb (8.36)
and
U=yVI—Ww2=vJ/T-b (8.37)

Since for guided modes

2
n% < FT < n% (8.3%8)
0
we will have
0<b =<1 (8.3

SThe limiting forms are

Ky(W) — —In(W/2)
W

and

]
KW —s —TN2/WY, 120
w02
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t=0

B20.41616 (LPBy)

{a) {(b)

Thus, equations (8.32) and (8.34) can be written in the form

IV ZDPE) e Kl )

va -y Iz
( ) LIV = b)2) K/ [Vh/2] =
(8.40)
and
S HV =) CK(VBI2
v —py VDT VO o (84D

Sl V(1 — b)/2] - Ko[Vh'12]

The solution of the above transcendental equations will give us universal curves
describing the dependence of # (and therefore of U and W) on V. For a given
value of [, there will be a finite number of solutions and the mth solution
(m =1,2,3,...)is referred to as the LP,, mode.

In Table 8.1 we have tabulated the values of b, U,and W for 1.5 < V < 2.5
for the fundamental mode of a step index fiber. A convenient empirical formula
for b(V) is given by

B 2
b(V)m(A—V); 1.5<V <25 (8.42)

where

A=1.1428 and B =0.996

In Figure 8.1 we have plotted the LHS and RHS of equations (8.41) and
(8.40) corresponding to [ = 0 and [ = 1 for V = 2. It can be seen that there
is only one mode corresponding to [ = 0. The point of intersection gives the
allowed value of b and we obtain

b =0.41616 (for V = 2} = LPy, mode

The simple empirical formula (equation (8.42)) gives b =~ 0.4158. For [ = 1
(and similarly for [ = 2,3,...) (see Figure 8.1(b)), there are no points of
intersection and therefore there are no modes.

Example 8.1: As an example, we consider a step index fiber charac-
terized by

n, =145, A =0.0064, a=30um (8.43)

Fig. 8.1: (a) Variation of
LHS (solid curve) and RHS
(dashed curve) of equation
(8.41) for V = 2. The point
of intersection corresponds
tobh = 041616, (b)
Variations of LHS (solid
curve) and RHS (dashed
curve) of equation (8.40)
for{ = land V = 2, Since
there are no points of
intersection, there are no
guided modes
corresponding to! = 1.
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Table 8.1. Variations of b, U, W, wp/a, and w/a for the
Sfundamental mode of the step index fiber

Vv b U 4 wpla w/a

1.500 0.22925 1.31689 0.71819 1.69342 1.78402
1.525 0.23955 1.32985 0.74639 1.65638 1.73858
1.550 0.24980 1.34252 0.77468 1.62172 1.69659
1.575 0.25997 1.35489 0.80305 1.58923 1.65769
1.600 0.27006 1.36698 (.83148 1.55872 1.62156
1.625 0.28007 1.37880 0.85997 1.53001 1.58793
1.650 0.28997 1.39034 (0.88850 1.50295 1.55654
1.675 0.29977 1.40163 0.91709 1.47741 1.52720
1.700 0.30947 1.41267 0.94570 1.45326 1.49970
1.725 0.31905 1.42347 (0.97435 1.43040 1.47387
1.750 0.32851 1.43403 1.00303 1.40872 1.44958
1.775 0.33785 1.44436 1.03172 1.38814 1.42668
1.800 0.34707 1.45448 1.06043 1.36858 1.40505
1.825 0.35616 1.46437 1.08914 1.34996 1.38460
1.850 0.36512 1.47406 1.11787 1.33223 1.36523
1.875 0.37396 1.48355 1.14660 1.31531 1.34684
1.900 0.38266 146285 1.17533 1.29915 1.32938
1.925 0.39123 1.50195 1.20406 1.28371 1.31276
1.950 0.39967 1.51087 1.23279 1.26893 1.29692

1.975 0.40798 1.51962 1.26150 1.25478 1.28182
2.000 041616 1.52818 1.29021 1.24122 1.26739
2.025 (0.42421 1.53658 1.31891 1.22820 1.25359
2.050 0.43213 1.54482 1.34760 121571 £.24038
2.075 0.43992 1.55290 1.37627 1.20370 1.22772
2.100 0.44758 1.56082 1.40493 1.19216 1.21558
2.125 0.45512 1.56860 1.43357 1.18105 1.20391
2.150 0.46252 1.57622 1.46220 1.17035 1.19271
2.175 0.46981 1.58371 1.49080 1.16003 1.18192
2.200 0.47697 1.59106 1.51938 1.15009 1.17154
2.225 0.48401 1.59827 1.54795 1.14049 1.16154
2.250 0.49093 1.60536 1.57649 1.13122 1.15189
2.275 0.49773 1.61231 1.60501 1.12227 1.14258
2.300 0.50442 1.61915 1.63351 1.1136] 1.13359
2.325 0.51099 1.62586 1.66199 1.10523 1.12491
2.350 0.51744 1.63246 1.69044 1.09713 [.11651
2.375 0.52379 1.63894 1.71887 1.08928 1.10838
2.400 0.53003 1.64531 1.74727 1.08168 110051
2.425 0.53616 1.65157 1.77565 1.07431 1.09288
2.450 (0.54218 1.65773 1.80400 1.06716 108549
2.475 0.54810 1.66379 1.83233 1.06022 1.07832

2.500 (.55392 1.66974 1.86004 1.05349 1.07137
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ni{r) n{r)
1.46 1.46
1.455¢ o ___ 1.455 poooz2zozzon
1.45% 1.45fF~=-—"=>="—"~—==—~
1.445 1.445 ¢
1 2 3 & 5 & T2 3 4 5 s
r{um) r{pm)
(a) {by

Fig. 8.2 The dashed

sothat V = 2.0 at &y = 1.546 um. Thus horizontal lines correspond
to the discrete values of

, 5 B/ ko of the guided modes
’[i = [ni + b (ng - FZ%)ZI Mz corresponding 1o a step
ko index fiber whose
parameters are given by
= 1.4539 equation (8.43); (a) and (b)
correspond t©
(see Figure 8.2(a)). Another hber with Ao = 1.546 pm(V = 23
and 0.4757 pum (V = 6.9),
nm =145 A =0010, a=20um (8.44)  respectively.

will have V = 2.0 at A9 = 1.288 pum. The corresponding value of
B/ kg will be given by

A = 1.4560

ko
(see Figure 8.3(a)).

Example 8.2: We next consider a higher value of V., say V = 6.5. In
Figure 8.4 we have plotted the LHS and RHS of equation (8.41) [ = 0]
and of equation (8.40) tor/ = 1, 2, 3,4, and 5. One finds that there are
two modes corresponding to [ = 0 (which are referred to as LPy; and
LPy» modes), two modes corresponding to ! = | (which are referred
to as L.P¢; and P> modes), and one mode each corresponding to
| = 2.1 =3, and [ = 4 (which are referred to as the LPy, LPs;, and
LP4; modes, respectively). The corresponding values of b are given by

b = 0.897699 (LP(); ), 0.4751 SQ(LP():;_);
0.742163 (LPyy), 0.179216(LPy2);
0.541097 (LPy ); (8.45)
0.027816(LP4;);

The last value of b is very close to cutoff. Now, the fibers characterized
by equations (8.43) and (8.44) have V = 6.5 for Ay == 0.4757 pzm and
0.3963 pm, respectively. The corresponding values of 8/ k are shown
as dashed lines in Figures 8.2(b) and 8.3(b).
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Table 8.2. Cutoff frequencies of various LP;,, modes in a step
index fiber

I =0modes (J1(V.)=0) [ =1 modes (Jo(V.y=0)
Mode Ve Maode Ve

LPy \; LPy, 2.4048
LPg2 3.8317 LPys 5.5201
LPy3 7.0156 LP3 8.6537
L.Po4 10,1735 LPyy 11.7915

[ =2modes (JI(V,)=0;V, #0) [ =3modes (Jy(V,) =0V, #0)

Mode Ve Mode V.
P, 3.8317 LPy, 5.1356
LP2y 7.0156 LP3y 8.4172
LPy; 10.1735 LPy3 11.6198
LPyy 13.3237 LPy 14.7960
i nirs
1.47 1.47
1.465 1.465 b———
Lasy aspTT
1.455F 777777 1.455F____CCC
1.45 1.45F~—=-=--
1.445¢ 1.445
12 3 4 5 6 12 3 s 5 6
7 {pem) r{pm)
(a) (b)
Fig. 8.3:  The dashed By studying the zeros of Bessel functions (see Table 8.2) one can immediately

horizontal lines correspond
to the values of 8/ ky of the
guided modes
corresponding to a step 7 .
index fiber whose o 1/2J1[V(§ — 2] B

parameters are given by by = Vil - b) Jo[ V(1 — b)l/'z] (8.46)
equation (8.44); (a) and (b) R
correspond 10

see that, since 0 < b < 1, there will be only a finite number of guided modes.
For example, consider the LHS of equation (8.41).

B = 1288 um (V = 2) Now
and 0.3963 um (V = 0.5). "
respectively. f(b)y=0, when V(I —5»'"?=0,38317,7.0156....
and
F(b) =00, when V(I —5b)"? =24048,55201,...
For V. = 6.5

fihy=0, when b=1.0.6525
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V=6.5
¢ =0 f=1
15 15
10 10
5 5
L~
0.5 1 b
T N ) S 4 e
~-10
LP,
-15
£=2
15 15 fF=73
10 10
5 5

-5
-10

-15

15
10

-10 -10

-15 ~-15

{a) (b)
and
f(b)y =00, when b =0.38631, 02788

(see Figure 8.4). By knowing the positions of zeros and infinities and the fact
that f(b) is positive in the vicinity of b = 1, one can easily make a qualitative
plot and determine the number of modes and also the approximate values of b.
One can make a similar analysis for/ > 1.

The guided modes that are given by the points of intersection in Figure 8.4
are designated in decreasing values of b as LP;;, LP;3, LPs3, etc. The varia-
tion of b with V forms a set of universal curves, which are plotted in Fig-

ure 8.5. As can be seen, at a particular V value there are only a finite number of

modes.

The condition » = 0 (i.e., B2 = kjn3) corresponds to what is known as the
cutoff of the mode. For b < 0, B2 < kjn3 and the fields are oscillatory even
in the cladding and we have what are known as radiation modes. Obviously, at
cutoff f = kgny implying

b=0 W=0 U=V=YV (8.47)

Fig. 8.4: Variations of
LHS ¢solid curves) and
RHS (dashed curves) of
equations (8.40) and (8 41
for V = 6.5 correspondiny
ol =0,1.2,3 4and 5.
Points of intersection
correspond to guided mod
of the step index fiber.
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Fig. 8.5 Variation of the
normalized propagation
constant b with normalized
tfrequency V for a step
index fiber corresponding to
some low-order modes. The
cutoff frequencies of LPyy,
and LPy .41 modes are the
same. [Adapted

from Gloge {1971).]

The cutoffs of various modes are determined from the following equations

[ =0modes : J(V.)=20
[ =Imodes: Jy(V.)=0 (8.48)
[ >2modes: J_((V.)=0, V.0
Note that for / > 2, the root V. = 0 must not be included since
Ji—1 (V)
>
lim V) #0 forl =2 (8.49)

Thus, the cutoff V values (also known as normalized cutoft frequencies) occur
at the zeroes of Bessel functions and are tabulated in Table 8.2.
As is obvious from the above analysis and also from Figure 8.5 for a step
index fiber with
0<V <24048 (8.50)
we will have only one guided mode — namely, the LPy; mode. Such a fiber is
referred to as a single-mode fiber and is of tremendous importance in optical
communication systems. As discussed in Chapter 10, the dispersion curves can

be used to calculate the group velocity and the intramodal dispersion of various
modes of a step index fiber. Similarly

for 2.4048 < V < 3.8317, only LPy; and LP;; modes;

for 3.8317 < V < 5.1356, only LPy;, LPy, LPy;, and LPy; modes;

for 5.1356 < V < 5.5201, only LPy, LPyy, LPyy, LPy, and LP3,
modes, and so forth

will exist as guided modes. The numbers limiting the V value correspond to
the zeroes of the Bessel functions. The curves in Figure 8.5 are universal — that
is, for a given step index fiber and a given operating wavelength we have to
first calculate the value of V and then “read off™ the exact values of b from the
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curves: the values of 8 can then be calculated by using the relation
: 2
Bim = ko[n3 + b (n] — n3)]"". (8.51)

The radial field distributions and the schematic intensity patterns of some
lower order modes are shown in Figures 8.6 and 8.7. The computer-generated
field and intensity distributions for some of the modes of a V = 8 step index
fiber are shown in Figures 8.8-8.10. Figures 8.8 and 8.9 correspond to/ = O and
{ = 1, respectively; Figure 8.10 corresponds to / = 2 and [ = 4. The white and
black shadings in the field distribution represent the 7 phase reversal because of
the r-dependence or ¢-dependence of the modal field. Indeed, whenever the field
passes through a zero there will be areversal of phase. Obviously, the same will
not be noticed in the intensity distribution. We may note the following points:

(i)  The ! = 0 modes are two-fold degenerate corresponding to two inde-
pendent states of polarization.

(i1}  The! = 1 modes are four-fold degenerate because, for each polariza-
tion, the ¢ dependence could be either cos ¢ or sinle¢.

Fig. 8.6: Radial intensity
distributions (normalized «
the same power) of some
low-order modes in a step
index fiber for V = 8. Not
that the higher order mode:
have a greater fraction of
power in the cladding.
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Fig. 8.7:  Schematic of the
modal field patterns for
some low-order modes in a
step index fiber. The arrows
represent the direction of
the electric field.

L.

~ 00 68

e, &> <O & <@
0 0
y J, (%) cos 2¢ X J, (%_r) cos 2

Further
number of zeroes in the ¢ direction — 2/ (8.52)
and
number of zeroes in the radial direction (excluding r = 0) = m — 1
(8.53)

In Chapter 9 we show that when V > 1, the total number of modes is given
by

N~ V2 (8.54)

and such a fiber that supports a large number of guided modes is known as a
multimode fiber. For a typical multimode step index fiber

=147 ny =146, «a=25um (8.5

L
L
e”
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LB

and for Ay = 0.8 um, we obtain
V x~34

which would support approximately 580 modes.

8.4 Fractional modal power in the core

One of the important parameters associated with a fiber optic waveguide is the
fractional power carried in the core. Now, the power in the core of the fiber is
given by

a 2
Poore = const. ] / Iw-kzr dr d(i)
0 0

2C v N Ur 2T
= —— J“(—wf-)rdr/ cos g do
JAU) Jo a 0

—~

Fig. 8.8:
Computer-generated field
and intensity distributions
of the LPy; and LPg3 modes
for a step index fiber with
V = 8. The field
distributions are on the left
and the intensity
distributions are on the
right. The white and black
shadings in the field
distribution represent the =
phase reversal because of
the modal field passing
through a zero.
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LP.

Fig. 8.9
Computer-generated field
and intensity distributions

of the LPy and LP 7 modes
for a step index fiber with
V = 8. The field
distributions are on the left
and the intensity
distributions are on the
right. The white and black
shadings in the field
distribution represent the 7
phase reversal because of
the modal field passing
through a zero.

or

Tat 2

1%
C——— Jz(x)x dx
U 2 o

P, core —

(8.56)

_ Cﬂaz[l _ Ji-i(U)JI«H(U)}

JAU)

where C is a constant and use has been made of standard integrals asso-
ciated with Bessel functions. Similarly, the power in the cladding is given

by

oo 2
P = const./ / | 12 dr do
a 0

(8.57)

_ Cﬁag[Ki—l(W)Ki+l(W) B ]j‘

KHW)
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Fig. 8.10:
Computer-generated field
and intensity distributions

of the LP5;, LP2>, and 1Py,
modes for a step index fiber

with V = 8. The field

distributions are on the left

and the intensity
distributions are on the
right. The white and black
shadings in the field

distribution represent the

phase reversal because of
the modal field passing
through a zero.

»

The total power is
P, tot — P, core + Peiag

3_‘{_2_ K i (W)K; (W)

= Cmwa 7 (8.58)
- K (W)
where use has been made of the equation
U2 dp (U (U s K (WK (W ,
T (U ( ):—W‘ (WK (W) (8.59)

JHU) K} (W)

which follows from the eigenvalue equations. The fractional power propagating
in the core is thus given by

Peore w? o U’ KHW o
n = ”‘“:[—fﬁr—2 Riow) } (8.60)
Pro Ve Ve K (WK (W)
Thus, as the mode approaches cutoff
V=V, W-=0 U=V (8.61)

and if we now use the limiting forms of K,;(W) given in footnote (5) on p. 137
of this chapter, we obtain

0 fori =0and 1
(I—-N1/1 forl=2

n—

(8.62)

In Figure 8.11 we have plotted the fractional power contained in the core and
in the cladding as a function of V for various modes of a step index fiber. Note
that the power associated with a particular mode 1s concentrated in the core for
large values of V — that is, far from cutoff.

8.5 Single-mode fibers

Until now our discussion has been on the general modal analysis of a step
index fiber. For highly multimoded fibers (V = 10}, one can use ray optics to
describe their propagation characteristics. However, most fibers used today in
fiber optic communication systems are single moded and for such fibers we have
to use the modal analysis. In this section we study the various characteristics
of single-mode fibers that are important in connection with their application in
communication systems. The dispersion characteristics of single-mode fibers
are discussed in Chapter 10.

8.5.1 The Gaussian approximation

The fundamental mode field distribution for a single-mode fiber is a very im-
portant characteristic that determines various important parameters such as
splice loss at joints, launching efficiencies, bending loss, and so forth. In Fig-
ure 8.12 we have given some typical refractive index profiles of single-mode
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fibers and their corresponding fundamental mode field distributions. Also plot-
ted in the figure are best-fit Gaussian functions and it can be seen that irre-
spective of the refractive index profile, the fundamental mode field distribution
can be well approximated by a Gaussian function® that may be written in the
form

W) = Ae " (8.63)

where w is referred to as the spot size of the mode field pattern. The quantity
d = 2w 1s usually referred to as the mode field diameter (MFD). One of the
criteria widely used to choose the value of w is that which leads to the maxi-
mum launching efficiency of the exact fundamental mode field by an incident
Gaussian field — that is, one maximizes the quantity

[ e 1 ROy dr

[ Jo~ e ™ rdr 7 R2(r)r dr]f‘

n= (8.64)

where R(r) represents the exact modal field. For example, for a step index fiber
R(r) can be expressed in terms of Bessel functions and one has the following
empirical expression for w [Marcuse (1977)].

w 1.619  2.879
— {065+ ——— + ——]; 08<V <25 8.65
p ( + v - Ve ) SV = ( )

where a is the core radius. The above empirical formula gives a value of w
(as obtained by maximizing 1) to within about 1%. For a typical single-mode

®Indeed, for an infinitely extended parabolic index medium, the fundamental modal field is
exactly Gaussian (see Section 9.3).

Fig. 8.11:  Variation of the
fractional power contained
in the cladding with V for
some low-order modes in a
step index fiber. [Adapted
from Gloge (1971).]
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Fig. 8.12: Typical
fundamental modal field
shapes v (r) for fibers with
different profiles. The solid
curves represent exact field
variations and the dashed
curves represent the
best-fited Gaussian
function. [Adapted from
Ghatak and Sharma
€1986).]

ni(r)

1

fiber with 7, = 1.454, n, = 1.45, a = 4.46 um, operating at 1300 nm, the
mode field diameter is 10.0 pm. At 1500 nm the same fiber would have a
mode field diameter of 11.2 pm (assuming the same values of n| and n> at
1500 nm).

Note also from equation (8.65) that two nonidentical single-mode fibers can
have the same spot size at a given wavelength. Thus, a single-mode fiber with
V = 2.2 and ¢ = 4.27 ;um also has the same mode field diameter of 10.0 um
at 1300 nm as the previously considered fiber.

We should mention here that the different refractive index profiles shown in
Figure 8.12 are of considerable technological importance: for example, as we
discuss in Chapter 10, one can tailor the dispersion characteristics by a proper
choice of refractive index variation inside the core.

8.5.2 Splice loss

One of the great advantages of the Gaussian approximation is that it gives
us simple analytical expressions for losses at joints between two single-mode
fibers. Figure 8.13 shows three common misalignments at a joint between two
single-mode fibers. Even if none of the misalignments shown in Figure 8.13
exists, there will still be losses at the joint caused by nonidentical field distribu-
tions for dissimilar single-mode fibers. In this section we will use the Gaussian
approximation to obtain the splice losses and estimate typical tolerances in the
various misalignments for keeping the losses below practical limits.



152 Propagation characreristics of a step index fiber

— [

{a)

{u

(b)

8
(c)

In the following we will derive formulae for the loss at a joint between
two single-mode fibers. These formulae give the loss due to each separate
misalignment in the absence of others. In general, the total loss in the simul-
taneous presence of more than one misalignment is not the sum of individual
misalignment losses. If each individual contribution to loss is less than 1 dB,
then the total loss is approximately the sum of individual losses calculated
separately.

8.5.2.1  Loss due to transverse misali gnment

As aspecific example, we consider transverse misalignment of two single-mode
fibers that are represented by Gaussian fundamental modes with spot sizes w
and w. Let us consider the direction of misalignment to be along the x direction.
With respect to the coordinate axes fixed on the fiber, the normalized Gaussian
modes can be represented by

N2 L
‘ 1
N2 o
Yolx, v) = (;) - ol 2w (8.67)

where u is the transverse misalignment and the multiplying factors are such

that
A +ox0
f / 1/112 sdxdy =1
- J o ‘

The fractional power that is coupled to the fundamental mode of the second
fiber is given by

o +oe
T = J/ f Vs dxdy

2

(8.68)

Fig. 8.13: (a), (b}, and (¢}
correspond to longitudinal,
transverse, and angular,
misalignments at a joint
between two single-mode
fibers.
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Fig. 8.14:  Variation of
loss at a perfectly aligned
joint between two
single-mode fibers with —
spot sizes wy and w; as a %
function of the ratio wy /un. P
W
&}
—
W,/ w,
Thus
2 oo e ,f 1 I 2xut
T = —— exp | —x 7+ = |+ —
TUNUY e Jone W) w5 ws
of 1 I u? B
— =+ =)= |dxdy
‘LUT U)z wz
>
2wiwn \° 2u? (8.69)
=|——=] exp| ———7 .
w? + w3 (wi + w3)

The maximum power coupling appears at # = 0 and the transmitted fractional

power is
2
. 2wiws
Trax = 3 5
wy -+ w;

which is unity for two fibers having identical Gaussian fundamental modes.
Thus, for a perfectly aligned joint between two single-mode fibers with spot
sizes wy and wo, the loss is given by

(8.70)

2wy we
o, (dB) = —201ogf —srrts (8.71)

bl i
wy + wy

Figure 8.14 shows a plot of «, versus w;/wy. This loss will be less than
0.1 dB provided
0.86 < w/u, < 1.16 (8.72)
Hence, even variations of 14% in the spot size result only in a loss of less than
0.1 dB.
For two identical fibers (w; = w, = w), the transverse offset loss varies
as

T =/ (8.73)
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Thus, the loss in decibels is given by

Z
o, (dB) = 4.34(3) (8.74)
w

Note that larger values of w lead to greater tolerance to transverse misalignment.
(A more accurate expression for ¢, is obtained if we replace w by the Petermann-
2 spot size wp; this is discussed in Problem 8.9.)

Example 8.3: For a single-mode fiber operating at 1300 nm, w =
5 um, and if @, is to be below 0.1 dB, then from equation (8.74) we
obtain

u < 0.76 um

Hence, for a low-loss joint, the transverse alignment is very critical
and connections for single-mode fibers require precision matching and
positioning for achieving low loss.

8.5.2.2 Angular misalignment

For an angular misalignment of # (see Figure 8.13(c)) between the axes of two
single-mode fibers with spot sizes w, the loss is given by (see Problem 8.10)

Th wl 2
(8.75)

o, (dB) = 4.34(
0

where n; is the refractive index of the medium between the fiber ends, Ap is the
free space wavelength, and @ is measured in radians. Note that smaller values
of w lead to greater tolerance to angular misalignment.

Example 8.4: For a single-mode fiber with a spot size of 5 um oper-
ating at 1300 nm, assuming n; = n, = 1.45, if the splice loss due to
angular misalignment is to be less than 0.1 dB, then

0<0.5° (8.76)

In the presence of both transverse and angular misalignment, the total loss is
approximately given by

a(dB) = 4.34[(-”’-)- + (””’wg)h] (8.77)
w A

Figure 8.15 shows the variation of normalized transverse misalignment (u/w)
with respect to the normalized angular misalignment n;wé /A with joint loss
as a parameter.

If o and 6, represent the transverse misalignment and angular misalignment
required to introduce the same splice loss «p, then from equations (8.74) and
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Fig. 8.15: Plotof
variation of the normalized
angular misalignment with

respect to normalized
transverse misalignment
leading to different losses
across a joint.
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(8.75) we obtain
24}
= |— 8.78
M=y (8.78)
oy Ao ;
Oy = .| —— 8.79
0 B4 anw ( )
Thus
o ap y
By = — —— 8.80
o = 434 (8.80)

independent of the spot size w. Hence, any attempt to increase tolerance to
transverse misalignment by increasing w will be accompanied by a tighter
tolerance toward angular misalignment and vice versa. Since angular tolerances
usually do not pose problems, it may be tempting to increase the spot size to
large values. This is usually accompanied by an increased bending loss. Thus,
there is an optimum value of spot size for a given operating wavelength. For
1300 nm, the optimum spot size is almost 5 pm.

It is interesting to note that the losses given by equations (8.71), (8.74), and
(8.75) also give the coupling loss when a Gaussian beam from a laser excites a
single-mode fiber. Hence, they can also be used to calculate excitation efficiency.

8.5.2.3 Longitudinal misalignment

For a longitudinal misalignment of D (see Figure 8.13(a)), the splice loss is
given by (see Problem 8.11)

o; = 10 log(1 + D?) (8.81)
where
y Dhg
D=-—""- 8.82
2w nw? ( )

Figure 8.16 shows the variation of ¢ with D.
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Example 8.5: Let us again consider a single-mode fiber with w =
5 pem operating at 1300 nm with & longitudinal misalignment of 20 pem.
Assuming n; = np = 1.45, we obtain D = 0.114 and

o = (.06dB

Thus, longitudinal misalignment is not a major source of loss.

The loss given by equation (8.81) considers only the loss caused due to the
diffraction of light as it propagates from one fiber end to the other (see Figure
8.13(a)). In addition, there would also be Fresnel reflection loss at the ends of
the launching and receiving fibers, This can be minimized by choosing a value
of n; close to that of core or cladding. If the fibers are spaced by an air gap,
then the reflections at the output end of the launching fiber and the input end of
the receiving fiber are larger and, in addition, if the fiber end faces are exactly
parallel, multiple reflection effects (or Fabry—Perot effects) can dominate. In
such a case the transmission through the splice oscillates as a function of the
fiber end separation; the spatial period of oscillation will be approximately A /2.
Under some circumstances this could lead to feedback into a semiconductor
laser source, resulting in laser instabilities.

8.5.2.4 Measuring spot size from splice loss measurements

Using equation (8.74) we can derive a method for the experimental determi-
nation of the fiber spot size w. By measuring the splice loss across a joint as
a function of transverse misalignment and fitting the measured variation to the
formula given by equation (8.74), the spot size w can be determined. One could
in fact obtain w as a function of wavelength by using a white light source com-
bined with wavelength filters or by using a tunable laser source. This measured
dependence of w on Ay can be used to obtain an equivalent step index fiber
model of the given single-mode fiber.

8.5.3 The Petermann-2 spot size

One of the very important characteristics of a single-mode fiber is the Peter-
mann-2 spot size defined by the following equation [Petermann (1983),

Fig. 8.16:  Variation of
loss at a joint with
longitudinal misalignment
with normalized
separation D,
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Pask (1984)]

(8.83)

I:Z/{)% Y(r) r(h}
00 dif\2
Jo () rdr
where ¥ (r) represents the transverse field pattern of the fiber. Loss across a
splice for small transverse offsets is proportional to | /w3, and is more accurately
given by (see Problem 8.9 and equation (8.74))

2
o (dB) = 4.34(«5@) (8.84)
Wwpe

where u represents the transverse offset. Indeed, as we will discuss in Section
10.5, according to CCITT (Comité Consultatif Internationale Télégraphique et
Téléphonique) recommendations, the value of wp should lie between 4.5 and
5 pm. Furthermore, the waveguide dispersion is given by (see Problem 8.12)

AT )»(; z’[ }x() )
D, = =—=——| = (8.85)
LA)&() 2 (%] d)n() UWp

(The waveguide dispersion is discussed in detail in Chapter 10.)
Now, for a step index fiber the integrals in equation (8.83) can be evaluated
to obtain [Hussey and Martinez (1985)]

wp _ 5 i)
a WU

(8.86)

which is a function of the parameter V; the quantity wp/a has been tabulated
in Table 8.1. Variations of wp with core radius and A are discussed in Section
10.5. A convenient empirical formula for wp is given by [Hussey and Martinez
(1985), Neumann (1988, p. 227)]

, 1.567
“—’5:33—(0.01% )

a a V7

where w is the Gaussian spot size given by equation (8.65). The above formula
1s accurate to within about 1% for 1.5 < V < 2.5,

8.5.4 The far-field pattern

In this section we will discuss the far-field technique, which is one of the
commonly used techniques for characterization of a single-mode fiber in terms
of its mode field diameter.

8.5.4.1 Far field of a Gaussian mode field

In Section 8.5.1 we discussed the Gaussian approximation for the fundamental
made of a single-mode fiber and showed that for conventional single-mode
fibers the fundamental modal field can be accurately described by a Gaussian
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7.
)7

(x,y)

N

:

Screen

function of the form given by
Y(r) = A = Agm BTN (8.87)

where A is a constant and w represents the (Gaussian) spot size. We will now
calculate the far-field intensity distribution for a Gaussian modal field. For a
near-field pattern \r(x, y), the far field pattern is given by (see, e.g., Ghatak and
Thyagarajan (1989))

+0 pFoU ) )
u==C / W&, me T g gy (8.88)
where
[=> and m=2> (8.89)
r ¥

represent the x and y direction cosines of the observation direction and
ko(= 2m/kp) is the free space wave number. The quantities x and y repre-
sent the coordinates of the observation point P and r’ is the distance of the
point P from the axial point on the output end of the fiber (see Figure 8.17).
Since the Gaussian near field has cylindrical symmetry, the far-field intensity
distribution will also be cylindrically symmetric and will depend only on the
angle 6 (see Figure 8.17). Thus, we may calculate the field distribution along
the x-axis for which

m=0 and [= ﬁ/ = sin & (8.90)
r

where ¢ is the angle made by the direction of observation with the z-axis.
Substituting from equations (8.87) and (8.90) in equation (8.88) we obtain

o0 fors] 2 2 )
o= AC/ [ exp [—é‘#}e’-k"‘s s J& dn (891

w

Fig. 8.17: The
observation point P is at
distance »’ from the center
of the exit end of the fiber
and the direction of
observation makes angle 6
with the z-axis.
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Fig. 8.18:  The far-field
amplitute distribution of a
Gaussain mode having
Uf()/}\,() =4 and 8.

0.9

u(8)/u(0)
o

Using the standard integral

+00 2 T 2
/ C)_‘p,r‘mévqxdx — /:eq~/41’ (892)
o P

equation (8.91) reduces to

k3 sin® dw?
u(®) = ACmw? exp[m—‘lm;—w] (8.93)
The corresponding intensity distribution is
L, 5. , :
1(8) = I({O)exp —Ek{;w‘ sin~ & (8.94)

Figure 8.18 shows a plot of the far-field distribution given by equation (8.94)
corresponding to w/Ag = 4 and 8. Thus, the far-field pattern is peaked at¢ = 0
(i.e., along the axis), and the angle 6 where the far-field amplitude falls to 1 /e
of the value along the axis is given by

. 2 AQ
sinfl, = — = —— (8.95)
kow TW

Thus, the measurement of §, gives w and hence the Gaussian mode field diam-
eter d(= 2w).

Note from equation (8.94) that the far-field intensity drops monotonically
to zero as € increases — that is, there are no side lobes. We later discuss the far
field of a step index fiber and show the presence of side lobes.

Example 8.6: A conventional single-mode fiber operating at 1300 nm
has a typical MFD of 10 pum — that is, w = 5 m. For such a fiber the
angle 8, is given by

1.3
6, = sin™! (-«) ~ 4.75°
S
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Example 8.7: A single-mode fiber operating at 633 nm has a typical
MFD of 5 pm — that is, w = 2.5 um. For such a fiber

N 0.633 N
g, = sin —— ) =462
2.5m

Example 8.8: On measuring the far-field pattern at Ag = 1.3 umof a
single-mode fiber, it is found that, at an angle of 2.74°, the intensity
drops by 3 dB of its value on axis. Let @, correspond to the 3 dB point;
then

1 a7 L
= exp —;k(;w” sin” 6y,

rI | o

or
kowsinfy, = ~21In2

Hence

v2In2

(2 )sin(2.74%)

=
el

W =

or
d=2w>=51um

Thus, in the Gaussian approximation the mode field diameter is about
5.1 pm

8.5.4.2 Fuar field of a step index fiber

Earlier we obtained the far-field distribution of a Gaussian modal field that 18
an approximation to the actual modal field. Because the actual modal field of a
step index fiber is known precisely, we will now discuss the far-field pattern of
a step index single-mode fiber as wel] as the procedure to obtain the equivalent
step index (ESI) parameters of a graded index fiber.

For a cylindrically symmetric structure (like the optical fiber), the funda-
mental mode distribution ¢r(r) depends only on the radial coordinate r. Conse-
quently, the far-field pattern will also be cylindrically symmetric and is given
by (see Appendix B)

ool
w() =2nC W) Jylkor sinf)r dr (8.96)
0

We can invert the above equation to obtain (see Problem 8.14)
i

k2 /2
Yir) o —— f 1(0)Jo(kor sin @)sin 6 cos 0 d6 (8.97)
2 C 0
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Fig. 8.19:  The far-field
intensity pattern of step
index fibers having V =2
and V = 2.4. These are
universal curves valid for
all step index fibers with
V=2and V =24 the
actual angles will of course
depend on the fiber
parameters g and NA,

[ntensity (dB)
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Thus, for a given ¥ (r) one can use equation (8.96) to determine u(#) for all
values of 8. On the other hand, if we measure u(#) experimentally, one can
determine ¥ (r) by using equation (8.97).

Now, in a step index fiber the fundamental modal field y/(r) is given by (see
equation (8.25))

A—jflff( Z,.)) O<r<a A
Y(r) = , (8.98)
A Ko(%ﬁ)
Kwy =4

where U/ and W have been defined earlier (see equations (8.20) and (8.21)). If
we substitute for ¥ (r) from equation (8.98) in equation (8.96) we obtain the
following expression for the far-field intensity distribution (see Appendix B)

1(0) = u@) 2: {(Tﬁic%[J’o(a)_a‘/l(?{ﬁ%%”z v
u(0) {va“i' 77 Lo (e + Jﬁm]} v U
(8.99)
where
e %“ Siﬂé’ (8.100)

Equation (8.99) is normalized to unity at & = 0. Now, the quantities
U=V/1-bV)y and W =Vyb(V)

are completely determined from the value of V (see also Table 8.1); thus, for a
given value of V, we can readily calculate I/ and W. Hence, for a given value
of V of a step index fiber, if we plot the far-field intensity distribution /(6) as
a function of «, it will be an universal curve.

Figure 8.19 shows a typical plot of the far-field intensity pattern calculated
from equation (8.99) for a step index fiber having V = 2.0 {b = 0.41616] and
V = 2.4 [b = 0.53003]. Since the curves are universal they are valid for all
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step index fibers having V = 2 and V = 2.4. Thus, if we have two different
fibers operating at different wavelengths so that their V values are the same,
then quantities like the angle at which the zeroes in far field appear will change,
but the value of kysin@ at the zeroes remains the same. If 6, represents the
angle at which the far-field intensity falls by 3 dB and 8, is the angle at which
the intensity goes to its first zero (see Figure 8.19), then the quantities

oy = kpasinédy, and o, = kga sin b, {8.101)
depend only on the value of V. Thus, the ratio

o sin &,
O, = — = (8.102)

(oM sin 9,1,

also depends only on the V number of the fiber. In Figure 8.20, we have plot-
ted the universal curves corresponding to the variations of sin#,/sin#;, and
koa sin 8, with V. Indeed, one has the following approximate empirical formu-
lae [Roy et al. (1991)]:

V = 8.039 — 2.3470, + 0.3329¢7 — 0.02180 + 0.000545
(8.103)

and
op = kpa sinf, = —0.7858 +0.994V — (0.1155 v? (8.104)

The error in the V' value from equation (8.103) is less than 0.01 in the range
1.3 < V = 2.4. Similarly, the error in o, is less than 3.6 x 107 for the same
range of V values.

The universal curves in Figure 8.20 and the above empirical formulae suggest
the following experimental technique for obtaining the ES] parameters of a
single-mode fiber:

(i) Using a known laser wavelength Ay, measure the far-field diffraction
pattern and determine the values of 8, and 6,.

Fig. 8.20:  Universal
curves depicting the
variation of sin 6, / sin
and kpa sin By with V for
step index fibers. The above
curves can be used for
characterizing single-mode
fibers from a measurement
of the far-field radiation
pattern.



8.5 Single-mode fibers 163

(i1)

(i)

(iv)

Calculate sinf,/sing;, and determine the V value either from the
universal curve (Figure 8.20) or from the empirical relation (equation
8.103).

Knowing the value of V, calculate the value of kpa sin 6, either from
the universal curve or from equation (8.104). Since the values of kg
and sin 8, are known, the core radius « can be calculated.

Once the core radius and the V number are known, the NA can be
determined.

The above procedure enables us to obtain an equivalent step index fiber that
will have (for the given wavelength) the same values of ¢, and 6. For this
“equivalent step index fiber” we can calculate the modal field (see equation
(8.98)), which, for most practical fibers, should be close to the actual modal
field of the given fiber.

Example 8.9: In an experiment using a single-mode fiber with a laser
beam at 1.3 pm, the far-field angles #, and 8, are 2.357° and 12.73".
We would like to determine the ESI parameters of the fiber. Now

siné,
Ty = — = 5.358
sin 6y

implying V = 2.111. For V = 2.111, we have o, = 0.798, which
implies @ = 4.01 pem. Since

27
V=—aNA
0
we have
NA = ~{).11
2ma

Hence, the ESI parameters of the given fiber are

a =4.01 pm, NA:,/n%—-n% =0.11

8.5.4.3 Far-field root-mean-square (rms) mode field diameter

If \lf?(q) represents the intensity distribution in the far-field of a single-mode
fiber, then the far field rms mode field diameter is defined as

where

2 OOLIIZ( d 1/2
dr = [ L Vi a q] (8.105)

I wig)g* dg

2
g = kosind = k—” sind (8.106)
0
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and 6 is the far field angle (see Figure 8.17). In this section we will show that
d[.‘ — pr (8107)

Now, in a cylindrical system of coordinates, if ¥ (r) is the near-field pattern, the
far-field pattern is given by (see Appendix B)

o.4)
Wg)=K Y(rydolgryrdr (8.108)
0
where K is a constant. To obtain the inverse transform of W(g), we multiply

equation (8.108) by Jy(gr')gdg and integrate to obtain

[ W(g)Jolgrig dg :/ T/f(")?‘df'[ Jolgr'yJolgrig dg
0 0 0

Now, using the orthogonality relation

& ]
/ Jo(gryd(griyg dg = =8(r — r") (8.109)
] r
we obtain
viry = / Wig)dalgrig dg (8.110)
0

We now have

wrrdr :/ I3 d/'/ W(g)Jolgrig dg Yig ) Jolg'rig' dg'
0 0 0 0

= f qdq[ g dq Wig)vig") Jolgrydo(q'r)r dr
0 0 0

= / q dqf g dq" Wg)V(g)-8g —g)
0 0 q

= / Wi(g)q dq (8.111)

0

where we have used the orthogonality of Bessel functions (equation (8.109)).
We also have from equation (8.110)

d])[/ > ;o feoon 2
— = Wi(g)Jolgrig” dg
dr i

_ -mf Wig)i(grg’ dg

0
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where prime denotes differentiation with respect to argument and we have used
the relation Jj(§) = —J,(&). Thus

oo Ciw 2 o¢ o N N = I ’ I #
— ) rdr = rdr Wig)Ji(grig-dyg Wig)ig'ryg - dy
0 dr 0 0 0

= / q*dg f g dq W(g)V(q') f Ji(gr)di(q'rrdr
4] 4 o (3

= f W(g)q dg
{

where we have again used equation (8.109) with v = 1. Thus

Y L1 g2 /2
. :[w] :2[% v “”‘“ﬂ S

f(}x (d—w)zr dr foau W2(g)q’dg

dr

proving that the far-field rms mode field diameter is exactly twice the Petermann-
2 spot size.

Problems

8.1 Consider a step index fiber with

ny =145 A =0003, and a«=3um

For Ag = 0.9 pm, 1.3 pm, and 1.55 pm, calculate the value of V and calculate
(in each case) the values of b and S/ kg. Compare with the approximate values
that you would have obtained using the empirical formula (equation (8.42))

[ANSWER: b = 0.518, 0.282, 0.174.]

8.2 In this and the following two problems, fiber | and fiber 2 are described by the
following parameters (see ecquations (8.43) and (8.44))

Fiber 1: ny = 1.45, A =00064, o =3pum

Fiber 2: no = 145, A =0.010, a=2um

(a) Calculate the wavelengths at which the fibers will have V = 1.8.
(by For V = 2, find the value of b and calculate the corresponding values of
B/ ko.

{¢) What would be the cutoff wavelengths for the two fibers.
8.3  Consider a step index fiber with V = 8.

(a) Using the values of the zeroes of J,(x), find the positions of zeroes and in-
finities of the LHS of the eigenvalue equations (equations (8.40) and (8.41)).
Make qualitative plots of the LHS and RHS of the eigenvalue equations and
determine the number of guided L.P modes,

{by Calculate the total number of modes and compare with the result of the
formula V?2/2.

(¢) Solve the eigenvalue equations to determine the normalized propagation
constants of the guided modes.
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8.4

8.5

8.6

8.7

8.8

8.9

(d) Consider two fibers described in Problem 8.2. In each case determine the
value of Ay for which V = 8 and determine the corresponding values of
B/kgand B.

{e) Using the values of the zeroes of J,(x), find the zeroes of the radial and
angular intensity distributions and make qualitative plots.

[ANSWER:

(¢) b= 092881(LPy;), 0.63006(LPgy), 0.1321 1{LPg3);
0.81998(LPy1), 0.41046(LP12 )
0.67818(L.P21), 0.16870(LPo2), 0.50621(LP3 ):
0.306618(LP4), 0.082388(1.Psy).
(Note that the last mode is very near to cutoff)
Total number of modes: 34

(dy Ap = 0.3865um (fiber 1);0.322] um (fiber 2)

B/ky = 1.453156 (fiber 1); 1.45595 (fiber 2), and so forth.]

(for LP}» mode)

Repeat the entire previous excercise for V = 6.5.
[ANSWER:
{c) see equation (8.45) for the values of b. Total number of
modes : 24
(d) o =0.4757 pm (Aber 1);0.3963 m (fiber 2)
B/ky = 1.45166 (fiber 1); 1.45260 (fiber 2), and so forth.]

(for LP{; mode)

Consider 3 (step index fibers) with (i) A = 0.002, (i) A = 0.003, and (iii)
A = 0.004. Assume n7 = 1.45. In each case calculate the core radius so that the
cutoff wavelength is 1150 nm.

For a typical step index fiber operating at 1330 nm we have

ny = 1.450840, n, = 1.446918, and e =4.1um

Calculate w and wp at Ag = 1100, 1300, and 560 nm.
[ANSWER: wp = 4.9 um{1300), 5.7 um(1560).]

Repeat the above calculations for a typical step index fiber operating at 1560 nm

n; = 1.457893, ny = 1446918, and a=2.3 um

Measurement of the far-field pattern of a single-mode fiber at Ay = 0.6328 um
gives O = 1.942° and 8, = 9.933°. Obtain the characteristics of the fiber using
equations (8.103) and (8.104).

[ANSWER: a = 2.505 pom, NA = 0.089.}

For a transverse misalignment (say along the x-axis), between two identical
single-mode fibers, the coupling efficiency is given by the overlap integral

(8.113)

T(u) = f./lfi’(x’ yWWr(x —u, vidxdy ?
o T[4, vydx dy

where u represents the magnitude of the transverse misalignment and w(x, y)
represents the field associated with the fundamental mode. Show that, in general,
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the transverse misalignment splice loss is given by

2
w (dB) ~ 4.343 (—“—) (8.114)
wp

where wp is the Petermann-2 spot size defined through equation (8.83).

Solution: The transverse misalignment coupling efficiency (see equation (8.113))
is directly related to the Petermann-2 spot size. To show this, we first note that
for small displacements 1, we may write

51// u? 8%y
—u,y)= 8.115
Y(r —u,y) = o (8.115)
Using
x =rcosf, y=rsind
and
r? = x* +y2, tan @ = i
X
We may write
sl dyr or iy
— = — — = 086 —
dx dr dx dr
a2y L dx sin?6 dy
—— = Ccos"#H —
Hx2 ¢ dr? + rodr

where we have used the fact that for a cylindrically symmetric structure the
fundamental mode field pattern ¥ depends only on the r coordinate. Substituting
the above in equation (8.115) and using dxdy = rdrdf, equation (8.113)
becomes

VT =1-—

f() Tl/(l)j, rdr zncox(id(}
27 j( w2(ryrdr

_}..

|

u foo“ w‘i;‘é' rdr fz cos2ado + j() 7,// v gy ()2’7 sin? 6do
2w ﬂ) wi(ryrdr

a" ¢/ dt/;dr
—+ L o~ 5 Var (8.116)
4 f“ P2(r) fdl

where we have used

5

2 2 2 ‘
f cos fdl =0, / cos’8dh =7 = / sin 6 do
O 0 4]

<y dw
= rdr —
/9 v ar v dr |

Now,

fl

Ay d
fd— s

0

:—-[OC( ) / I//'——df (8.117)
0
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where we have used the fact that in the limit r - oo, rv — 0. Using equation
(8.117), equation (8.116) becomes

2
oo (dy)?
2 .f()% ("27}"") rdr

VIuy=1]1—- —

4 [0 rdr

or,

T(uy =~ I~--2- (8.118)
wp

where wp 18 the Petermann-2 spot size as defined by equation (8.83). From the
above equation we readily obtain equation (8.114) for u < wp. From equation
{8.118) we find that if we measure T (1) and fit it to a polynomial in «, then the
coetficient of the u? term will give wp. Note that we have only assumed the
cylindrical symmetry of the single-mode fiber and, of course, the validity of the
scalar wave equation.

Consider two single-mode fibers and assume that the fundamental modes of
the two fibers can be represented by Gaussian distribution. Calculate the power
transmission loss as a function of angular misalignment between the two fibers.
Assume that the fiber ends are placed in a liquid of refractive index n;.

Solution: We describe the fundamental modes of the two fibers by equations
(8.66) and (8.67) with ¥ = 0. Let us assume that there is a small angular mis-
alignment of & between the two fibers (see Figure 8.13(c)). To calculate the power
transmission loss, we must transform the Gaussian beam of the first fiber into
the coordinate system of the second fiber. If (x, v, z) and (x’, ¥," 7’) represent the
coordinate systems of the first and second fibers, respectively, then we have (see
Figure 8.21)

x=ux"cosf + 7 sinfd
y =y (8.119)
2= —x'sin® +z cosd

where we assume an angular misalignment in the x-z plane. Since the medium

between the two fibers is of refractive index n;, the Gaussian mode of the first
fiber, as 1t emerges, will propagate approximately as

2312 LI R
i/f] (x. v, 7) A~ (;T_) " ef(.x +y ) wy €~1/\(;N1: (8;20)
71

for small values of z so that we can neglect diffraction effects. We transform
equation (8.120) into the (x”, v, z) coordinate system and obtain for the incident
beam at the input plane 77 = 0 of the second fiber

N2

T/)‘!(_Y/. V/ E’,/ =) = :) (?_(X "}-)“)/:t,v;ezkg;;'i/x’ [ (8.121)
o ' T wy

where we have assumed sinf 22 6 and cos# =~ 1. Calculation of the overlap of

this field with the field of the second fiber and taking modulus squared gives us

the power transmission coefficient as

2 -
2wy wo ‘ kﬁnfﬁzwf w%

T) = —5 AT
wy + w; 2(%1)12 -+ wg)
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Fig. 8.21:  Coordinate
system for calculating loss
at an angular misalignment

of 6 in the x—z plane.

2

Thus, the coupled power decreases to e ! of its maximum value (corresponding
to @ = 0) in an angle

1/2
6, = \/i(w% + w%) Jwiuwnkony (8.123)

For two identical fibers, w) = wy = w and we readily get equation (8.75)

Obtain the splice loss between two identical single-mode fibers due to a longitu-
dinal misalignment of D (see Figure §.13(a)).

Solution: Let w represent the Gaussian spot size of the two fibers. The field at
the exit of the first fiber is given by

2 1

X+ }‘2
w P w?

C— ex (8.124)

This output field will diffract over distance D before being incident on the re-
ceiving fiber. We may write for the field that is incident on the second fiber as
(see Ghatak and Thyagarajan (1989), Section 5.4)

_ 2 1 ikw? ik(xz -+ yz) x4 yz kD
Vb= T w2D + iku? P 2R exp 2 ¢
(8.125)
where
oo iw?
R= 1)(1 + mz)
212y 12
D= w (.1 + 2:{34) (8.126)
ko= kon, A= 2Ay/n

with n being the refractive index of the medium filling the region between the
two fiber ends. The field of the second fiber is again given by equation (8.124),
Thus, the transmission coethicient across the longitudinal misalignment is

2

T = lj Yovpdxdy (8.127)
-0

Substituting for g and ¥p from equations (8.124) and (8.125) in equations
(8.127) and carrying out straightforward integration we obtain

(8.128)

Obtain the relationship between waveguide dispersion and Petermann-2 spot size.

Solution: For [ = 0, equation (8.16) can be written in the form

I d dy 27 2 N
v () (e =) v =0
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where ¥ (r) 1s the field associated with the fundamental mode. We multiply the
above equation by ¥ (r)r dr and integrate to obtain
. 2
. k35S nt ey rdr — [37 (%) rdr
B Sy rdr

In obtaining the above equation we have used the fact that v (r) and d/dr — 0
as r — o0o. Thus’

(8.129)

d o2 2 dr
op BB oy Lo VI (8.130)
dko Jo o wiryrdr
or
2 p0 2 oo (dy\?
dB k(;ﬁ Jo winrdr+ [y (7;> rdr
dko B ki Jo My r dr
ko | B° 2
zﬁ[ﬁfr_.._z 7} (8.131)
Blk  kuwp
The group velocity v, is therefore given by
I dp 1dp
v, do  cdkg
B 2
=+ — (8.132)

cko  cBkowp

Thus, the time taken for a pulse to traverse the length L of the fiber is given by

L L 2 Ap ,
I = =—|po+=| (8.133)
Vg 2nc¢ Bilw >
The waveguide dispersion 1s therefore given by
dt
AT = — Adky
d?»()
L dap 2 dp { Ay 2 d [ A .
= ——|B+th—— — =5 |+t~ ] |d%
2me dinp  B=dig wy, B dly W
(8.134)

"Equation (8.130) is rigorously correct — of course, we have neglected material dispersion.
At first it may appear that ¥ {r) itself depends on the wavelength and we should take this into
account. That equation (8.130) is rigorously correct can be seen from the fact that if 2 contains
N variational parameters «;, then

dpr gt N Noap? da;
(ffx’(; Hk() o1 ((}(X, (jk()

since, by definition, the stationarity expression implies

apt

dovy

£
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8.13

Now using equation (8.132) we get
dp _dp do _[pro 2 20]( 2ne
dhg  dw dio | 2mc  2mcf wh e

a__B__2

or

—_r _ 8.135
dho Ao Brow a5
Substituting in equation (8.134) and simplifying we get
N O SO N PP (8.136)
T = - | 7 *
2ncpw? | BRw? Pdio w 0

For typical step index fibers, since 8 = konz and (wp /Ag) > 1, the first term will
always make a negligible contribution. Thus, we may write for the wavelength
dispersion parameter

At A0 d Ao
Dy = = i f 8.137
YT LAM  272ceny dig (w;) ( )

For power law profiles — such as step index, parabolic index, and triangular core
index — B has been found to be accurately described by an empirical relation; this
is discussed in Chapter 20.

Obtain the relationship between the near-field spot size and the angular misalign-
ment splice loss.

Solution: Let ¥ (x, y) represent the modal field of both fibers and let us assume
an angular misalignment 6 in the x—z plane as shown in Figure 8.21. To find the
coupling efficiency we must obtain the modal field of fiber 1 in the coordinate
system fixed in fiber 2. Now from equation (8.119) we have for z’ = 0

x=x"cosf ~ x’ (8.138)
z=—x"sin® ~ —x'6 (8.139)
for small 8. Thus, the field of fiber 1 at 7/ = 0 is
Y,y 2 = 0) = Y, y)e o
= Y(x, ) eikonx'e
~ Y(x', y')[l + ikom6x' — kénfezx’z] (8.140)
where n; is the refractive index of the medium between the two fibers and we

have neglected any diffraction effects from the end of fiber 1 to the input of fiber
2. The coupling efficiency is given by

TO) =

[ [[v(, y) v, y)dx' dy
j’f.¢.2(xr’ y’)dx’ dy’

= |1 —kn?

(8.141)

g2 [fo*' y)r?cos? ¢ dx dy
[ x!, y)rdrde



172 Propagation characteristics of a step index fiber
where we have used the relation x’ = r cos ¢. Changing from (x’, y’) to (r, ¢)
we have

2
— kgnt6* [yi(ryridr
B 2 [y2r)rdr
or
k2n26>

T@)~1--2 é s (8.142)

where
1/2
2 [ y2(r)ridr
dy =2 M— (8.143)
Jo wA(r)rdr
Equation (8.142) describes the relationship between the near-field spot size dy
and the angular misalignment splice loss 7T (6).
8.14 Obtain equation (8.97) from equation (8.96).

Solution: To invert equation (8.96) we make use of the following orthonormality
relation satisfied by Bessel functions.

o0
f hWMh@%MMp=$Ma—M) (8.144)
0

Multiplying both sides of equation (8.96) by Jo (gr’) and integrating over ¢, we get

o0

fo atg) Tylg¥iqidy = Bt fo Sl fo Tolgr) gy Ve dy
(8.145)

which, using equation (8.144), becomes

o0
fo u(q) Jolgr'ygdq = 2nCyr(r') (8.146)

from which equation (8.97) directly follows.
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9.1 Introduction

Graded index multimode fibers find important applications in local area net-
works and short-haul communication systems. In Chapter 5 we used ray optics
to study pulse dispersion in such fibers. In this chapter we carry out a modal anal-
ysis and study their propagation characteristics. We first discuss the propagation
characteristics of an infinitely extended parabolic index fiber characterized by
the following refractive index variation

2
nzzn%[1-2A(£) } ©.1)

or, in Cartesian coordinates,

2 2
n2:n3[1—2Ax ;y } 9.2)

where A and a are constants and n; represents the axial refractive index. Al-
though a profile given by equation (9.1) is unrealistic since n> — —oo as
r — oo, we will see that we can obtain analytic solutions for such a refractive
index profile. Further, for well-guided modes in a realistic parabolic index core
profile fiber, the analysis is quite accurate.

In Section 9.2 we solve the wave equation in Cartesian coordinates and
obtain what are usually referred to as TEM,,,, modes. In Section 9.3 we solve
the same equation in cylindrical coordinates and obtain what are usually referred
to as the LP;,, modes. Obviously, the LP;,, modes can be expressed as a linear
combination of TEM,,,,, modes and conversely. In Section 9.4 we discuss (in the
WKB approximation) the propagation characteristics of a fiber characterized
by the power law profile. We show that the final result is almost identical to the
one obtained by using ray analysis in Chapter 5.

9.2 Modal analysis of a parabolic index fiber

If we substitute equation (9.1) in the scalar wave equation we obtain

n? x2 y*\] o*w
ViV =Ll -2A(S5+5 ) | — 9.3
cz|: (a2 v az):l at? ©-3)
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We assume a modal solution of the form
W(x,y, z,1) = Y(x, y)e'@ 9.4)

Then equation (9.3) becomes

2 2 2 2
/ l/f-l-%—l"{kgn%[l-—ZA(Z—z-i—z—z)]—ﬂz]l/f:O 9.5)

ax2
We use the method of separation of variables and write
Yx, y) =X@x) Y(y) (9.6)

If we substitute the above solution in equation (9.5) and divide by X ¥ we obtain

1 X 2A 1 &*¥ 2A
(55 —Hriaret) + (5 - K22 ) + (- #) =0

X dx? Y dy?
9.7)

The variables have indeed separated out and we may write

(% ‘57)2( - kén%i—? xz) = —K| (9.8)
and

(358 -2 )=k, ©9)
where K| and K, are constants and

B: =kint — K, — K, (9.10)
We now use the variables

E=yx, n=yy (.11
with

1/2

Yy = [nlkoJ(f_A] / = ? (9.12)
where

V = konja(2A)"? (9.13)
represents the waveguide parameter. Thus

d*X/dE* + (A — EHX(E) =0 (9.14)

d’Y/dn* + (A — )Y () =0 (9.15)
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where
K
A== (9.16)
%
and
K
Ay=— 9.17)
%

For bounded solutions — thatis, for X(£)and Y(n)totendtozeroas &, n — o0
(i.e., x, y = £o00) — we must have

A=2m+1; m=0,1,2,... (9.18)
and

Ar=2n+1;, n=0,12,... (9.19)
The corresponding modal distributions X (x) and Y (y) are the Hermite—Gauss
functions (see Appendix A). Thus, we obtain the following expressions for

mode profiles and corresponding propagation constants (cf. equations (7.118)—
(7.122)).

Ymn(X, ¥) = [Ny Hp () €2 | [Ny Ha() €727 ] (9.20)
2 ) 2472
Bmn = k0n1|:1 _ Al Ra —2] (9.21)
kony a
where m,n =0,1,2,...and
1/2 Vv 1/2
o= [—2 |7 o[V 9.22)
2nm!\/7 Wm) .

represents the normalization constant. Different values of m and n correspond to
different modes of the fiber. Equation (9.21) is an analytic solution of the prop-
agation constant of the (m, n)th mode in such a fiber. For a typical multimode
parabolic index fiber,

n =146, A =001, a=25um
we have for Ay ~ 0.8 um
22A)Y2 /konia =~ 1073

Thus, for m + n < 10°, one is justified in making a binomial expansion in
equation (9.21) and if we retain only the first-order term we will obtain

Bnn % (@/c)ny — (m +n + 1)2A)'/a (9.23)
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If we neglect the wavelength dependence of n; and A — that is, if we neglect
material dispersion, we get the following expression for the group velocity

L _dBun M 9.24)

Vg dw c

implying that different modes in a parabolic index fiber travel with almost the
same group velocity. In the language of ray optics, this corresponds to the fact
that all rays take approximately the same amount of time to propagate through
the fiber.

We should mention here that in an actual parabolic index core fiber the
refractive index is given by equation (9.1) only for » < a beyond which it has
a constant value equal to

n=n(1-2A)"*(=ny) for(x®>+ y*) > a?

and the solutions given by equations (9.20) and (9.21) are then not exact so-
lutions for such a profile. However, even for the realistic profile, the solutions
given by equations (9.20) and (9.21) are reasonably accurate for lower order
modes in a multimoded waveguide. The guided modes will correspond to only
those values of m and n for which

k()nz < ﬁmn < konl (925)

The lowest order mode that corresponds to m = 0, n = 0 is given by

1,2 1 /V
Yoo = %e—w 7= etV (9.26)

a

which has a Gaussian distribution. The spot size of the Gaussian is given by
(see Section 8.5)

w 2
- - ‘/; (9.27)

The next mode is two-fold degenerate (m = 0,n = 1 and m = 1, n = 0) with
the field distribution given by

2 2 S (R
Vo1 = —yiye 2 (9.28)

2 1,,2,2
Vio = \/;}/2”_5? ' (9.29)

Similarly, one can consider other higher order modes.

and
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9.3 The LP;,, modes

In Section 8.2 we showed that the scalar modes of an optical fiber character-
ized by cylindrically symmetric refractive index distribution [n = n(r)] are
described by the transverse field profile (see equation (8.17))

W(r, ¢, 2,1) = @ BIR() {‘S:?rf;(f} . 1=0,1,2,... (9.30)

where R(r) is the solution of the radial part of the wave equation

d’R 1dR 12
PR s [k(z,nz(r) - B - ’—E:IR(r) =1 (9.31)

If we substitute equation (9.1) for n*(r), then the well-behaved solution of the
above equation is given by (see, e.g., Ghatak et al. (1995), Example 7.2).

1
Rim(r) = Nynr' exp [—Eyzrz]Lfn_l(er% (9.32)
where
2(m — 1)17"?
Ny =yt 22 9.33
=¥ [F(l+m)] e

represents the normalization constant so that
oo
f | Rim(r)[* rdr =1 (9.34)
0

The functions LX(x) are the associated Laguerre polynomials given by

! r k+1
Lﬁ(x) = Z(—l)” itk x? (9.35)
— (n—p!C(p+k+1)p!
Thus
Li(x)=1, LKx)=k+1-x
2( ) oo ) L (9.36)
Ly(x) =5k + 2)(k + 1) — (k 4+ 2)x + 2
and so forth. The corresponding propagation constants are given by
22m+1-1) (2872
Bim = koni |1 — ﬂ_ﬁ) e (9.37)
k()ll] a2

The LPy; mode is given by equation (9.26). Note that for LP;,, modes | =
0,1,2,...andm =1, 2, 3, .... Further,

2 2 1,,2,2
A RN bed 939)
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where the subscripts now refer to the values of / and m. In writing the total
field we assume normalization in both r and ¢ coordinates. Equation (9.38)
describes the same field pattern given by equations (9.28) and (9.29). The next
higher mode is given by

g 2
it 9) = Sy et {0 939
2 20 _1y2r2
xlfoz(r,qb):,/;y(y r-—1)e: (9.40)

Obviously, the above modal fields can be expressed as a linear combination of
the(m =0,n=2),(m =1,n=1),and (m = 2, n = 0) modes.

Example 9.1: The elliptic profile: One of the advantages of the solution
in Cartesian coordinates is that it can readily be extended to elliptic
fibers characterized by the following refractive index distribution.

2 2
n%x,y):n%[l —m{(f) + (3) ” (9.41)
a b

Once again, we may use the method of separation of variables to ob-
tain the modal profiles that would be given by equation (9.20) except
that £ and n would now be given by

AAT2
E =% = |:n1ko ] (9.42)
and
A T2
n=1y, Y= [n:ko 5 ] (9.43)
Thus, the fundamental mode would be given by
1
Voo =,/ l’;ﬁ eXP[— 5 (i + szyz)}
V12 1 x|y
= . /—— exp| —-hnikoV2A[ — + — (9.44)
T 2 a b

showing that the constant intensity profiles will have less ellipticity;
the ratio of the major to minor axes will be v/a /b.

9.4 Multimode fibers with optimum profiles

In Section 9.2 we have shown that for an infinitely extended square law pro-
file the group velocity is almost independent of the mode number (see equa-
tion (9.24)). In this section we consider a more general class of refractive index
profiles characterized by the following refractive index variation.

nf[l —2A(r/a)]; O<r<a

n*(r) =
nj(l—=2A)=n% r>a

(9.45)
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where a represents the radius of the core, A is the grading parameter, n; and n;
represent the axial and cladding refractive indices, respectively, and g represents
the exponent of the power law profile. In Figure 5.1 we plotted the refractive
index variation as given by equation (9.45) for different values of ¢; g = 2
corresponds to a parabolic profile and ¢ = oo corresponds to a step index
profile. In Appendix C we have given a WKB analysis corresponding to the
profile given by equation (9.45) and, if we label the propagation constants of
the various modes as f;, B2, ... (B1 corresponds to the maximum value of ),
we obtain (see Appendix F)

B2~ k2ni[l —2A(/N)PE4*2), vy =1,2,...,N (9.46)
v 01
where
1
V=37 :’L V2= - izkgaznf,a (9.47)

represents the total number of guided modes and
V = koa(n? —n2)'? = koan,28)"? (9.48)

represents the normalized waveguide parameter. The WKB analysis is valid for
highly multimode fibers with V' > 1.
For a typical graded index fiber with g = 2

n=147, A =001, a=25um
so thatat Ag = 0.8 um,
V41, N =420

The same fiber will support about 160 modes at 1.3 um. In either case the fiber
is highly multimoded and the WKB analysis is valid.

Example 9.2: For g = 2, equation (9.46) becomes

k0n12(2A)”2 v]/2

By =hkoni — —— (9.49)
We write equation (9.21) as

B = koni — M (m+n+1) (9.50)
which may be rewritten in the form

s=m+n+l=—0 (KBnd-p2) 9.51)

k0n12(2A)1/2
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Thus

v = total number of modes above the propagation
constant 8, = B
= 2 x total number of sets of integers (m, n)
sothatm +n+1 < s
=2x[s+ (5 = 1) oe1]
~(m+n+ 1) (9.52)

where the factor 2 is due to the two independent states of polarization
and we have used the fact that when m = 0, 1, 2, ... and so forth, n
can take s — 1,5 — 2, ... values. Thus, for ¢ = 2, equation (9.46) is
almost identical to the result obtained by using equation (9.21).

In Appendix C the group velocity for different modes has been calculated
and using this the time taken for the vth mode to propagate through distance L
of the fiber can be expressed by

L d
L L,
vy dw

NNIL[I q—2—c¢ 3g —2—2¢

82+ 0(8° 9.53
e +(>] 9.53)

(&

where N, is the group index and

2k dA 2n; [ AoA’
w AUE _Eh| 50 (9.54)
A dk N[ A
leads to what is known as profile dispersion and
§ = A(v/N)Va+? (9.55)

Obviously, 0 < § < A. In equation (9.54) primes denote differentiation with
respect to Ag.

We first neglect material dispersion — that is, we put nj = A’ = 0. We then
obtain

nL qg—2 3g — 28 )
t,=—(1+4 3 -+ 9.56
o ( qg+2 +q+22+ ( )

which was first derived by Gloge and Marcatili (1973). Since 0 < § < A and
A is usually of the order of 0.01, unless g is very close to 2, we may neglect
terms that are proportional to 8, §°, and so forth. Thus, for ¢ not very close to
2 we retain only the term linear in § and immediately find that the time taken
increases monotonically as § increases from O to A — that is, higher order modes
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Fig.9.1: Variation of
(cty/myz — 1) versus 6 for
various values of ¢. The
optimum profile
corresponds to g = 2 — 2A
when the modes
corresponding to 6 = 0 and
8 = A take the same
amount of time.

50 -

20 A =0.01

10 |

o N
< g- 5/A

q=198

—40 r =195

—-50 -
take a longer time to reach the output end of the fiber. Consequently, #,,,x and
I'min correspond to § = A and 6 = 0, respectively, giving

mLqg—2
fmax — fmin & — ——A; exceptforg = 2 (9.57)
c g+2

For a step index fiber, ¢ = oo and
AT = tyax — Imin = (n1L/c)A (9.58)

which is the same as equation (3.13) when n; = n;. For g = 2, equation (9.56)
gives

L
’ — an ~ (n,L/2¢)8? (9.59)

and ¢, again increases monotonically with § (see Figure 9.1). Thus, since 0 <
§ < A, we obtain

AT = tmax — tmin = (n1L/2¢)A? (9.60)

Notice from equations (9.58) and (9.60) that for A = 0.01, At forag = 2
fiber is 200 times smaller than the corresponding At for a g = oo fiber.
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1000 -

100 -

At (step)/At (graded)

10 [ 1
1.9 2.0 2.1

For g <2 the delay time first decreases and then increases with § (see Fig-
ure 9.1). The minimum value of ¢, occurs for

8§ =08 =02-9)/3q—-2) 9.61)

which corresponds to dt,/d§ = 0. Minimum pulse dispersion occurs when the
modes corresponding to § = 0 and § = A take the same amount of time and
this happens when

g=qo~2-2A (9.62)

which represents the optimum profile for minimum intermodal dispersion.The
corresponding pulse dispersion is given by

n L A?
AT = thax — tmin ® — — (9.63)
c 8
We may summarize that
ny (N ni A
At(g =o0)= — (— — 1) L~ ——L step profile (9.64)
C n» C
At(g =2) = ;—IAZL parabolic profile (9.65)
C
At(g=2-2A)~ ?AZL optimum profile (9.66)
c

For ny = 1.47, A = 0.01, we readily obtain

50 ns/km; g = oo, step profile
Pulse dispersion ~ § 0.25 ns/km; ¢ = 2, parabolic profile (9.67)
0.06 ns/km; ¢ = 1.98, optimum profile

Thus, we obtain the same result as we obtained in Chapter 5 using ray analysis.

Fig. 9.2: Variation of the
improvement of maximum
time delay difference of a
graded core fiber over a ste
index fiber as a function of
q. Observe the very sharp
variation of the
improvement factor with g
near the optimum value.
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If we also take € into account, one can show that minimum pulse dispersion
occurs when

1
q=q0%2—2A+e(l—§A) (9.68)

which shows the effect of material dispersion on the optimum profile. It should
be noted that, in general, € and A are functions of wavelength and therefore the
optimum profile is also a function of wavelength. Indeed, g is very sensitive
to A¢ for the most common germanium dioxide-doped silica glass [Olshansky
and Keck (1976)].

Problems

9.1 Using the procedure given in Example 7.2, discuss the propagation of a Gaussian
beam given by the following equation

1
Y(x,y, z=0)=exp I:—Eyz{(x — )co)2 + yz}]

[Assume B,,, to be given by equation (9.23).]

9.2 Show that field profiles given by equations (9.38)—(9.40) are normalized.

9.3 Express the modes given by equations (9.39) and (9.40) as a linear combination
ofthe((m=0,n=2),(m=1,n=1),and (m = 2, n = 0) modes.

94 Considerthe(m =0,n=3),(m=1,n=2),(m=2,n=1),and(m =3,n=0)
modes — all of them have the same propagation constants. Express them as a linear
combination of the approximate LP;,, modes.

9.5 Consider an elliptic profile with a/b = 9/4. Plot the constant refractive index
profiles and also the constant intensity profiles. Show that the intensity profiles
have less ellipticity.

9.6 For any incident field distribution that is symmetric about the z-axis, the modes
described by equation (9.32) with / = 0 can be used to study the propagation of a
beam. Consider an incident Gaussian beam of the form

—0 =X )2z
w(x,y,z—O)—ﬁepr: 2ar:|

Show that

o0
Y 2.2 1 2. —iBmz
.Y, _—zA LA s
Yix,y,2) 2 m[ﬁ m n(yr)CXP( zyr)]e

where

2 2 1 m

w [ w? - o

P  m= 9.69
" 1+w2(w2+1) v Y .8
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10.1 Introduction

In Chapters 4 and 5 we discussed the dispersion mechanisms responsible for
the broadening of a pulse when it propagates through a multimode optical fiber.
The pulse broadening was mainly due to different group velocities of different
modes in the waveguide; this is usually referred to as the intermodal dispersion.
In addition, we have material dispersion (discussed in Chapter 6), which is due
to the explicit dependence of the refractive index of the core and cladding on
the wavelength Ag.
Now, as shown in Section 8.3, for a step index fiber with

0 < V < 24048 (10.1)

there is only one guided mode that can propagate through the fiber. Such single-
mode fibers play a very important role in high-bandwidth optical fiber commu-
nication systems. Due to the presence of only a single mode, such fibers are
free from intermodal dispersion. Pulse dispersion in such fibers is due to two
mechanisms: (i) material dispersion, and (ii) waveguide dispersion. Even if the
refractive indices of the core and cladding are independent of &g, we will still
have waveguide dispersion, which is the subject matter of this chapter.

10.2  Expressions for group delay and waveguide dispersion

The normalized propagation constant 7 of a mode is defined by the following
equation (see Section 8.3).

f—; - J?%
P (10.2)
II‘]“ _ ”5

Since, for guided modes B/ ko lies between ny and no. b lies between O and 1.
Further, as discussed in Section 8.3, for step index fibers, b depends only on
the V value of the fiber. We rewrite equation (10.2) as

; ,
£ _ 1> {v’ + H>
{

i\'\}

b =
Hy— Hy By -+ A2
B
— = H
k"2

&

(10.3)

ny - -



10.2 Expressions for group delav and waveguide dispersion 185

where in the last step we have assumed i, to be very close to np, which is true
for all practical fibers. Thus

B = —[ny+ (ny — ) b(V)] (10.4)

From the above equation we can see that even if n; and n, are independent of
wavelength (i.e., if there is no material dispersion), df /d w will depend on w due
to the explicit dependence of b on V and hence on w. Since df/do represents
the inverse of group velocity, this implies that the group velocity depends on
o even in the absence of material dispersion. This dispersion mechanism is
referred to as waveguide dispersion.

We will now obtain explicit expressions for the group delay and waveguide
dispersion. Using equation (10.4), the group velocity is given by

] dp 1 w db 4V

S — )bV — ) — -
i i R R R CTR L

(10.5)

where we have assumed that n| and ny are independent of Ay. Since

2
V = il a nf —n3 = @ a n% —n? (10.6)
0 - c -
we have
A% 1% ;
= — (10.7)
dew w
implying
| 1 db
— = =iy +(n) —ny)B(V)] + - (m —m)V—
v, ¢ dVv
or,
| ny ny—nol| d
—— ~| —(bV 10.8
v, ¢ + ¢ l:dV( )J ( )

Thus, the time taken by a pulse to traverse length L of the fiber is given by

L_L o iea Loy (10.9)
T = — = —V} -\ )
o, o dv
where
A= ni —jng T (10.10)
2ny nz

Now for a source having a spectral width A) the corresponding waveguide
dispersion is given by
dt L d?

dVv
ATy, = — Ax —n A——(DV JAVS
w = g Mo =T de( )dkg 0
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or

L Adg d*(bV)
Aty ~ —ZnoA v 10.11
¢ c = ( Ao )( dV? ) ( )

where we have used the fact that [see equation (10.6)]

dVv v
dho Ao

We can rewrite equation (10.11) in the following form

1] A 7
Aty ™ ——— x 10'{ V
P

dz(_iJV)
dv?

) ps/km-nm (10.12)

where A is measured in nanometers.
For the LP modes in a step index fiber we have [see, e.g., Adams (1981)
Chapter 7}

d [Vb(V)H] =1 Uz[l 21 {(10.13)
— (Vb =1 —[1 =2 )
dv v & “
and
d* 22Uk 5 S 3
¢ = 3W<e — 2 (We — U
Vs LVeV)] vzwz{[ i )
- , K ((W)+ K (W)
WIWw?4 U2 — 1
+ WIW - Uskllx, J[ K (W) :”
(10.14)
where
KHW)
K[:/\"[(W)E (]()]5)

Ko/ (W) Ky (W)

In Figure 10.1 we have plotted the variations of b, (bV), and V(bV)" for the
fundamental mode as a function of V for a step index fiber; these are universal
curves. It can be seen that the waveguide dispersion is negative in the single-
mode region. Since the material dispersion is positive for Ay greater than the
zero material dispersion wavelength (see equation 6.8 and Figure 6.3), there
Is a wavelength at which the negative waveguide dispersion will compensate
the positive material dispersion. At this wavelength the net dispersion of the
single-mode fiber is zero and this wavelength is referred to as the zero dispersion
wavelength. Single-mode fibers with zero (total) dispersion around 1300 nm
are referred to as conventional single-mode fibers (CSFs) or nondispersion-
shifted fibers (NDSFs). Most installed fiber optic systems today operate with
such fibers. On the other hand, single-mode fibers with zero (total) dispersion
around 1550 nm are referred to as dispersion-shifted fibers (usually abbreviated
as DSFs) - see Section 10.4.
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Fig. 10.1: The variations
of (Vb)Y and V(HV)" with
V for the fundamental mode
of a step index fiber. The
dashed curve represents the
corresponding variations as
given by the empirical
formulae equations (10.17)
and (10.19). Also shown in
the figure is the variation of
b with V.

08
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0.4 +

0.2 r

10.3 Empirical formula for step index fibers

For design purposes, it is often very convenient to use empirical formulae, which
have, of course, restricted domains of applicability. A very simple empirical
formula is given by (see Section 8.3)

\ 2
b:(A——‘B/—) (10.16)

with
A=1.1428 and B =0.996
Using the above equation one readily obtains

BZ

~ 3 (10.17)

d (bV)= A"
dV o

which has also been plotted (as a dashed curve) in Figure [0.1. Further,

2 2

bV 2B
) =
X V2

V
dv?

(10.18)

the last relation being accurate around V =~ 1.9, A more accurate empirical
formula is given by [Marcuse (1979)]
d2
VW(bV) ~ 0.080 + 0.549(2.834 — V)* (10.19)
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Table 10.1. Variation of (bV ) and V(bV )" with V for step
index fibers

A bv) Vbvy'

Vv Exact Eq. (10.17) Exact  Eq. (10.19) Eq. (10.18)

0.5 0 —2.662 0.001  3.071 7.936
0.6 0.002  —1.450 0.034  2.820 5.510
0.7 0.019 —-0.719 0.231  2.580 4.049
0.8 0.074 —0.244 0.634  2.351 3.100
0.9 0.174 0.081 106G  2.133 2.449
1.0 0.302 0.314 1.346 1927 1.984
1 0.437 0.486 1.458  1.731 1.640
1.2 0.504 0.617 1.440  1.546 1.378
1.3 0.676 0.719 1.343  1.372 1.174
1.4 0.771 0.800 1209 1.209 1.012
1.5 0.849 .865 1.063  1.057 0.882
1.6 0.913 0.918 0919 0916 0.775
1.7 .965 0.963 0.785  0.786 0.687
1.8 1.006 £.000 0.664  0.667 0.612
1.9 1.039 1.031 0.556  0.559 0.550
2.0 1.065 1.058 0.462  0.462 0.496
2.1 1.086 1.081 0.380  0.376 (.450
2.2 1102 1.101 0.309  0.30] 0.410
2.3 L.114 1.118 0.248  0.237 0.375
2.4 1.124 1.134 0.195  0.183 0.344

which has also been plotted (as a dashed curve) in Figure 10.1. In Table 10.1
we have given the exact variation of b, (V) and V(bV)” [as obtained from
equations (10.13) and (10.14)] along with the approximate values obtained by
using the above empirical formulae.

Example 10.1: We consider a step index fiber with
ny = 1.450840, n, =1.446918, « =4.1um (10.20)

These values correspond to a typical step index fiber operating at
1300 nm. The corresponding value of A is 0.0027. Assuming that the
refractive indices 7y and n> are independent of wavelength, we can
obtain the values of waveguide dispersion at different wavelengths by
using Table 10.1 and equation (10.11).

Using the numerical values given in equation (10.20), we readily
obtain

2 5 S 2746.3
V=——ua,/ny—n5=
Ao : Ay

where Aq is measured in nanometers. The cutoff wavelength of this
fiberis [ 142 nm. The results for waveguide dispersion are summarized!

"The values given in Tables 10.3 and 10.4 and in Figures 10.2-10.4 have been generated using
a software developed by A.K. Ghatak, 1.C. Goyal. and R.K. Varshney (unpublished work).
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Fig. 10.2:  Variaton of
material, waveguide, and
total dispersion for a step

index silica fiber
characterized by equation
(10.20). The zero dispersion
wavelength 1s 1323 nm.

Dispersion (ps/km-nm)

Table 10.2. Dispersion characteristics of
a step index fiber as characterized
by equation (10.20)

Ao (nm) 1100 1300 1560

1% 2.497 2,113 1.761
VibVY)’ 0.150 0.370 0.710
Dy, (psfkm-nm) —1.78 —~3.72 —5.94
Dy (ps/kmonm)  —23.18 +1.58 +21.93
D, (ps/km-nmy 2496 —2.14 +15.99

40 ¥ T H H l

_30 I H i H i
1.1 1.2 1.3 1.4 1.5 1.6 17
Wavelength (Lm})

in Table 10.2. The values of V{bV)" are exact; however, if we make
linear interpolation of values given in Table 10.1, we would get quite
accurate values of D,,.

The corresponding variation of material, waveguide, and total dis-
persion with wavelength is shown in Figure 10.2. The zero dispersion
wavelength and the slope at the zero dispersion wavelength are 1325
nm and 0.083 ps/km-nm?, respectively.

Example 10.2: In this example we will consider the effect on wave-
guide dispersion because of the refractive index variation with wave-
length. We assume the core to be doped with GeO» and the cladding
to be pure silica; then for a typical step index fiber (witha = 4.1 um)
ny = 145315, n; =1.44920 at iy = 1100 nm
np = 1.45084; 15, = 144692 at iy = 1300 nm

;= 1.44781; ny, = 1.44390 at g = 1560 nm

It may be seen that the corresponding values of A are 0.002714,
0.002698, and 0.002696, respectively; this is what is known as profile
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Dispersion (ps/km-nm)

40 T T T T T

30 +
20 - .

10 + -

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Wavelength (um)

dispersion. The corresponding exact results are

Dy = —1.75 ps/km-nm  at Ag = 1100 nm
= —3.72 ps/km-nm at Ay = 1300 nm
= —5.97 ps/km-nm  at Ay = 1560 nm

The above results are very close to those presented in Table 10.2. This
shows that the effect of the wavelength dependence of refractive index
on waveguide dispersion is very small.

Example 10.3: In this example, we consider a step index fiber char-
acterized with a large value of A and a small core radius.

ny = 1.457893; n, = 1.446918; a =23 um (10.21H)

Thus
2580.3

)

A=00075 and V=

with Ay in nanometers. The cutoff wavelength is 1073 nm. The dis-
persion characteristics of such a fiber are given in Figure 10.3 and
Table 10.3. The germanium doping of the core is more than in Exam-
ple 10.1 and, hence, the material dispersion is slightly different. The
zero dispersion wavelength is now 1523 nm, because of which these
are known as DSFs — see Section 10.4. The corresponding dispersion
slope is 0.048 ps/km-nm?.

Example 10.4: In this example, we consider a step index fiber with an
extremely large value of A so that the fiber has a very large negative
dispersion at Ay =~ 1550 nm. Such fibers are usually referred to as

Fig. 10.3:  Variation of
material, waveguide, and
total dispersion for a step
index silica fiber
characterized by equation
(10.21). The zero dispersion
wavelength is 1523 nm.
Such a fiber is usually
referred to as a DSF.
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Table 10.3. Dispersion characteristics of a step
index fiber as characterized by

equation (10.21)

Ao (nm) 1100 1300 1560

1% 2.346 1.985 1.654

V{bV)’ 0.223 0.476 0.845

Dy (ps/km-nm) —7.33 —13.24 —19.59

Dy, (ps/kmnm)  —25.04 +0.59 +21.5

Dy (ps/km-nim) -32.37 —12.65 +1.91
Fig. 10.4:  Variation of J T T T T

total dispersion with

wavelength for step index 20 + CSF S

fibers discussed in
Examples 10.1. 10.3, and DSFW__ e

10.4, which correspond to £ 0+ e .
CSFs, DSFs, and DCFs, g T -
respectively. % e
5 -
& e
fod -20 (,»" -
o e
@ -
g
(o N
0
© a0t -
DCF Pt
/

11 1.2 1.3 1.4 1.5 1.8 1.7
Wavelength {ptm)

dispersion-compensating fibers (DCFs) (see Chapter 15). We assume

ny = 1.476754; n, = 1.446918; a=15um (10.22)

Thus

2783.6
Ao

A=002 and V =

where Ag is in nanometers. The cutoff wavelength is 1158 nm. For
such a large value of A, the germanium doping of the core would be
much larger than in previous examples. Assuming the validity of the
Sellemeier formula given in Chapter 6, we have carried out numerical
calculations to obtain

Total dispersion >~ —97, —67, and — 50 ps/km-nm
for Ag = 1100, 1300, and 1560 nm, respectively. Thus, the fiber is

now characterized by a large negative dispersion at Ay ~ 1560 nm
(see Figure 10.4).
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10.4 Dispersion-shifted fibers

In Figure 3.12 we showed the loss spectrum corresponding to an extremely
low-loss fiber, and as can be seen the loss attains a minimum value of about
0.2 dB/km at 1550 nm. Thus, operating at Ay = 1300 nm, the system would be
limited by the loss in the fiber. Since the lowest loss lies at Ay =~ 1550 nm, if the
zero dispersion wavelength could be shifted to the &g & 1550-nm region, one
could have both minimum loss and very low dispersion. This would lead to very
high bandwidth systems with very long (~ 100 km) repeaterless transmission.
The shift of the zero total dispersion wavelength to a region around 1550 nm
can indeed be accomplished by changing the fiber parameters.

To illustrate this we first calculate the material dispersion at A 22 1550 nm.
Now (for pure silica)

dzi’l;

=~ = —42x 107 um ™ at Ay &~ 1550 nm
di

50 that
[)m = ATH]/LA}\E) a2 22 p%/kmnm

(see also Tables 10.2 and 10.3). To cancel this large material dispersion, we must
increase the magnitude of waveguide dispersion that (as can be seen from equa-
tion (10.11)) can be achieved by increasing A while keeping V approximately
constant; this would imply that the value of the core radius a has to decrease.
For example, Figure 10.3 corresponds to A 22 0.0075 and a = 2.3 yum. For
such a fiber, at 1 2= 1523 nm the material dispersion is ~19 ps/km-nm, which
is almost exactly offset by the waveguide dispersion of —19 ps/km-nm. Thus,
ho = 1523 nm is referred to as the zero dispersion wavelengih.

For a typical single-mode fiber fabricated by Corning Glass Works in the
United States [quoted by Blank, Bickers, and Walker (1985)]

Attenuation: 0.215 dB/km at &y = 1550 nm
(.230 dB/km at Ay = 1520 nm
Dispersion: Zero dispersion wavelength: 1550 nm
Dispersion slope = 0.075 ps/nm*-km (maximum)
= dispersion < 0.75 ps/nm-km for 1540 nm < Ay < 1560 nm

Using multimode lasers, Blank et al. (1985) could achieve a 140-Mbit/s system
for a repeaterless link of 222.8 km; the 222.8-km span consists of 37 spliced
fiber lengths with a total span loss of 50.6 dB. We should mention here that
repeater spacings > 250 km are of tremendous interest because about 40% of
undersea systems are less than 250 km in length and, hence, use of such fiber
optic communication systems would not require any repeaters.

Figure 10.4 shows the variation of total dispersion of the single-mode step
index fibers discussed in Examples 10.1, 10.3, and 10.4. Example 10.1 cor-
responds to the CSF having zero dispersion around Ay = 1300 nm; Exam-
ple 10.3 corresponds to DSFs having zero dispersion around Ay = 1550 nm,
and Example 10.4 corresponds to DCFs having large negative dispersion around
Ao A2 1550 nm.
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We should mention here that for step index DSFs, a high value of A would
imply a higher dopant (GeO») concentration in the core, because of which the
attenuation would also increase. One of the methods to avoid this additional loss
is to reduce the concentration of GeQO, in the core by making a triangular grading
of the refractive index. This results in a higher waveguide dispersion with lower
attenuation. Such triangular core fibers were among the first dispersion-shifted
designs that were demonstrated [Saifi et al. (1982)]. The attenuation in such
fibers can be reduced to as low as 0.21 dB/km at A ~ 1550 nm [Pearson et al.
(1984)]. The main disadvantage of these fibers is their short cutoff wavelength,
which was around 0.85 pm in the initial designs. This leads to higher sensitiv-
ity to bending. Attempts have been made to increase the cutoff wavelength by
making a trapezoidal profile or by making a depressed index cladding around
the core. With the latter design, it has been possible to increase the cutoff wave-
length to 1.1 gom while the losses at A¢ % 1.55 um were 0.24 dB/km [Shang et
al. (1985)]. Another approach to design bend optimized DSFs is based on dual-
shape core (DSC) index fibers {Ohasi, Kuwaki, and Tanaka (1986); Tewari, Pal,
and Das (1992)], in which the core consists of two sections of different index
variations.

Another type of fiber design is based on fluorine doping, in which the core
is of pure silica and the cladding is doped with fluorine to reduce the index.
Obviously, the main advantage of these fibers is their lowest loss since core
is made of pure silica. A loss of 0.15 dB/km at 1550 nm has been attained
[Csencsits et al. (1984)]. However, the zero dispersion wavelength in such
fibers cannot be shifted to 1.55 um. For more details on single-mode fiber
characteristics, readers may look up Sharma (1995), Pal (1995), and references
therein.

10.5 Design considerations

We next consider several issues in connection with design considerations of a
single-mode fiber. We restrict our analysis to step index fibers.

10.5.1 Single-mode operation

For a (step index) fiber to be single moded we must have

2 T |
V= ""ayfn] —nj < 24048 (10.23)

0

Thus
a~2A < 0.26 K() (10.24)

where we have assumed n, > 1.45.

The corresponding domains of single-mode operation for Ay = 1.3 um and
1.55 um are shown in Figure 10.5. Obviously, for the fiber to be single moded
at 1.3 pom as well as at 1.55 pem, we must consider the curve corresponding to
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0.008 |

0.007 -

0.006 +

0.005

A

0.004 |
o= 1550 nm

0.003 |
o= 1300 nm

a.002 r

0.001

Ao = 1.3 um. Thus, assuming A¢ = 1.3 um we must, for example, have

a <53 pum for A =0.002
a < 3.8um for A = 0.004 (10.25)
a < 3.1um for A — 0.006
and
a < 2.7 um for A = 0.008

10.5.2 Splice loss

[n any communication system there are usually a large number of splice joints
and often there are small transverse offsets at the splice. Obviously, from the
design point of view, the fiber parameters should be such that the transverse
offset splice loss should be small. In Problem 8.9 we showed that the splice loss
at a transverse offset of u 1s given by

2
o (dB) A= 4.34 (&) (10.26)

we

where wp 1s the Petermann-2 spot size, which was tabulated in Table 8.1. For
example, for the splice loss to be less than 0.1 dB for a 0.5-um offset at the
splice, we must have

wp > 330 um (10.27)

9 10

Fig. 10.5:  The region to
the feft of the curves
represents the domain of
single-mode operation for
step index fiber.
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Fig. 10.6:  Variation of wp Now, according to the CCITT recommendations, a single-mode fiber (to be

with the core radius for step  yged in a communication system) must have?
index fibers with

A =0.001, 0.002, 0.003,

0.004, 0.005, and 0.006; 45 um < wp <5um (10.28)
g = 1300 nm. -

In Figures 10.6 and 10.7 we have plotted wp as a function of the core radius
a for different values of A at iy = 1300 nm and Ay = 1550 nm, respectively.
Obviously, for the fiber to operate both at 1300 nm and at 1550 nm, we need to
consider only the curves corresponding to 4y = 1300 nm.

Now, for each value of A, the curves are plotted for ¢ < « beyond
which the fiber is not single moded (see, e.g., equation (10.25)). Now, if
we use the condition given by equation (10.28), we find (for 4y = 1300
nm) that for A < 0.002, wp is always greater than 5 um and, hence, such
low values of A are not permissible. On the other hand, for higher values
of A, there is an upper limit for the core radius, which is tabulated in Table
10.4.

10.5.3 Bend loss

Bend loss represents an important characteristic in the design of a single-mode
fiber. The bend loss coefficient (in a step index fiber) is given by [Snyder and

“The upper limit on wp is imposed so that there is no significant splice Toss due to nonmatching
of the spot sizes between fibers from different vendors.
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Table 10.4. Upper limit for the core radius

Ag = 1300 nm  Ag = 1550 nm

For5.0 um > wp > 4.5 pm, the
A core radius should lie between

0.003 2.45and4 364 —

0.004 1.83and2.02  2.66and4.51¢
0.005 1.52and 1.63  2.06and 2.35

0.006 1.32and 1.40  1.75and 1.90

0.007 e 1.34and 1.65

0.008 — 1.38and 1.47

“This value is determined from the cutoff con-
dition (see Figure 10.5).

o= 1650 nm

€
E : d
£ . A=0003
Ny . 0.004.
T 0.008
- . -0.008 . i
i R
. T 0.007
— T T T - 0.008
2 r .
i | H | | i i |
1 15 2 2.5 3 3.5 4 4.5 5 55
a{pm)
Love (1983), p. 48 1] Fig. 10.7:  Variation of
with the core radius for ste
5 . index fibers with

N 172 2 3
_ T U 1 2W- A = 0.003, .004, 0.005,
o (dB/m) = 4'343(451 R(.) [VK.(W)} w2 P {‘“ 20 in? R(} 0.006, 0.007, and 0.008;
‘ o Ao = 1550 nm,

(10.29)

where R, is the radius of curvature of the bend and other symbols have their
usual meaning.
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1

Fig. 10.8: Bend loss as a
function of the core radius
a (for Ay = 1300 nm and
different values of A)
corresponding to 100 turns
of the fiber wound with a
radius of 3.75 cm.

4 4.5 5 55

For a given step index fiber if V lies between 1.5 and 2.5, then we can use
Table 8.1 to calculate the bend loss coefficient. In an actual optical transmission
system, the 1300-nm fibers are designed so that at a later date, they may be
used for transmitting signals at 1550-nm wavelength. In view of this, CCITT
has recommended that

the bend induced loss increase at 1550 nm of 100 twrns of fiber wound
with a radius of 3.75 c¢cm should be less than 1 dB.

This requirement is determined by typical dimensions of joint boxes wherein
an extra length of fiber is usually provided to cater to later demands.

In Figures 10.8 and 10.9 we have plotted the bend loss as a function of the
core radius a for R = 3.75 cm with 100 turns corresponding to Ay = 1300 nm
and 1550 nm, respectively. For given values of @ and A, the bending loss is
higher at 1550 nm. The minimum core radius satistying the CCITT condition
has been tabulated in Table 10.5.

Problems

10.1  Consider three step index fibers with

(1) A=0002
(i) A =0.003
(i) A = 0.004

Assume sy = 1.45,

(a) In each case, calculate the core radius so that the cutoff wavelength is
1150 nm.

(b) Inthedomain 1200 < Ay < 1600 nm, calculate material dispersion for pure
silica (see Table 6.1) and waveguide dispersion using Table 10.1 and obtain
the zero dispersion wavelength.

(¢) In each case, calculate the Gaussian spot size w and the Petermann-2 spot
size wp for the corresponding zero dispersion wavelength,
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10.2

10.3

Table 10.5. Minimum core radius
satisfying CCITT recommendations

Ag=13pum  Ap=1.55um

For 100 turns of a fiber wound
with a radius of 3.75 com,
the bend-induced loss increase
would be less than 1 dB for a

A core radius greater than

0.002 479 um 6.30 m
0.003 3.07 pm 3.87 um
0.004 235 um 293 um
0.005 1.95 um 241 um
0.006 1.69 pum 2.08 um
0.007 1.50 pm 1.84 em
0.008 1.35 um 1.66 1em

1000 —
100

10 o

Loss {(dB)

01 ¢

0.01

0.001

alum)

(a) For the step index fibers discussed in Examples 10.1, 10.3, and 10.4, calculate
using Table 8.1 (and linear interpolation) the value of the Petermann-2 spot size
wp for kg = 1150 nm, 1300 nm, 1400 nm, and 1560 nm. In each case, calculate
the splice loss for a 0.5-pm offset.

[ANSWER: wp (in um) & (4.5, 4.9, 5.2, 5.7): (2.6, 2.9, 3.1, 3.4); (1.6, 1.8,
1.9, 2.1).]

Consider the step index fiber discussed in Examples 10.1 and 10.3. For by =
1100 am, 1300 nm, and 1560 nm, use the empirical formula given by equation
(10.16) to calculate waveguide dispersion and use Table 6.1 to calculate material
dispersion. Calculate total dispersion at the above wavelengths and compare with
the results given in Tables 10.2 and 10.3.

2o =1550 nm

Fig. 10.9: Bend loss asa
function of the core radius
a (for Agp = 1550 nm and
different values of A)
corresponding to 100 turn:
of the tiber wound with a
radius of 3.75 cm.
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10.4  Consider a step index silica fiber operating at 1330 nm.

(a) Assuming the cutoff wavelength to be 1150 nm, calculate the value of the
product a+/A (assume n> 2 1.45).

(b} Calculate the value of V at the operating wavelength and use Table 10.]
(with linear interpolation) to calculate V(bV)".

{¢) Use Table 6.1 (with hinear interpolation) to calculate material dispersion
and calculate the value of A (and therefore the value of a) to obtain zero
dispersion at 1330 nm.

(d) Use Table 8.1 and linear interpolation to calculate the Petermann-2 spot size
we.

(e) Use equation (10.29) (along with Table 8.1) to calculate bend loss for 100
turns of the fiber wound with a radius of 3.75 ¢m.

[ANSWER: (a) 0.215 um (b) 2.079, 0.397 (c) 5.39 ps/km-nm A = 0.0037;
a=35pum(d)4.2 um.]

Consider a step index silica fiber operating at 1550 nm.

(a) Assuming the cutoff wavelength to be 1150 nm, calculate the value of the
product a~/A (assume na ~ 1.45).

(b} Calculate the value of V at the operating wavelength and use Table 10.1
(with linear interpolation) to calculate V(bV)'.

{c) Use Table 6.1 (with linear interpolation) to calculate material dispersion
and calculate the value of A (and therefore the value of a) to obtain zero
dispersion at 1550 nm.

(d)  Use Table 8.1 and linear interpolation to calculate the Petermann-2 spot size
we.

(ey  Use equation (10.29) (along with Table 8.1) to calculate bend loss for 100
turns of the fiber wound with a radius of 3.75 cm.

[ANSWER: (a) 0.2053 um (b) 1.707, 0.776 (¢} 21.9 ps/km-nm A 22
0.00905; a =216 um (dy wp = 3.1 um.]
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11.1 Introduction

The most important and widely exploited application of optical fiber is its use as
the transmission medium in an optical communication link. The basic optical
fiber communication system consists of a transmitter, an optical fiber, and a
receiver. The transmitter has a light source, such as a laser diode, which is mod-
ulated by a suitable drive circuit in accordance with the signal to be transmitted.
Similarly, the receiver consists of a photodetector, which generates electrical
signals in accordance with the incident optical energy. The photodetector is
followed by an electronic amplifier and a signal recovery unit.

Among the variety of optical sources, optical fiber communication systems
almost always use semiconductor-based light sources such as light-emitting
diodes (LEDs) and laser diodes because of the several advantages such sources
have over the others. These advantages include compact size, high efficiency,
required wavelength of emission, and, above all, the possibility of direct mod-
ulation at high speeds.

In this chapter, we discuss the mechanism of light generation, basic device
configurations, and relevant output characteristics of the light source. In Section
11.2 we discuss the basic requirements that the source should meet to be suitable
for use in an optical fiber communication system. In Section 11.3 we briefly
present an elementary account of the principle of operation of a laser. In Section
11.4 we discuss basic semiconductor physics relevant to the operation of a
semiconductor laser followed by the device structure and characteristics in
Section 11.5. Finally, in Section 11.6 we briefly discuss the characteristics of
LEDs that are relevant to a fiber optic communication link.

11.2 Communication requirements

The choice of an optical source for a particular application is determined by the
requirements that it should meet. High-speed communication links employing
optical fibers normally deal with high-speed digital signals at bit rates in excess
of 1 Gb/s and repeater spacings of several tens of kilometers. The source should
thus meet the following three most important requirements:

(i)  The source wavelength should correspond to the low-loss windows
of silica - namely, around 1.30-zm and 1.55-p¢m wavelengths. For a

*A major portion of this chapter has been very kindly written by Dr. Ruj Shenoy.
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given power level at the transmitter, lower fiber losses would lead to
larger repeater spacings (i.e., the propagation distance after which the
signal level needs to be boosted to facilitate error-free detection at the
receiver),

(i) The spectral linewidth of the source should be as small as possible,
typically <1 nm. This is very important because the magnitude of tem-
poral dispersion is directly proportional to the length of the fiber and
the hinewidth of the source (see Chapter 10).

(1) Itshould be possible to modulate the source at speeds in excess of sev-
eral Gb/s. To meet this requirement, one can either choose a suitable
source that can be directly modulated at the desired rate or use an exter-
nal modulator in tandem with a source that gives steady power output.

In addition to the above, it is very desirable that the source be efficient, com-
pact, reliable, durable, and inexpensive to meet the other important requirements
of economic viability and acceptability.

Almost all these requirements are ideally met by semiconductor laser diodes
based on the quaternary material InGaAsP. In fact, the intense research and
development activities that led to the development of efficient laser diodes
were greatly motivated by the need for developing suitable sources for optical
communication.

In the following two sections we first outline the principle of operation of a
general laser and apply the founding concepts to a semiconductor p—n junction
laser. The objective is to provide a basic understanding of the device structure
and the output characteristics; essential results are quoted, wherever necessary,
without actually deriving them. Interested readers can find the details in standard
textbooks on lasers and semiconductor lasers [e.g., Agrawal and Dutta (1993).
Yariv (1991), Ghatak and Thyagarajan (1989)].

11.3 Laser fundamentals

LASER is an acronym for lighr amplification by stimulated emission of radia-
tion. Therefore, our first task is to understand what is meant by stimulated emis-
ston and under what conditions one can achieve amplification of light by stimu-
lated emission. Laser—the device — may be defined as a highly monochromatic,
coherent source of optical radiation. In this sense, it is analogous to an electronic
oscillator, which is a source of electromagnetic waves in the lower frequency
range of the electromagnetic spectrum. A laser consists of an active medium
that is capable of providing optical amplification and an optical resonator that
provides the necessary optical feedback (see Figure 11.1). The active medium
may be a collection of atoms, molecules, or ions in the solid, liquid, or gaseous
form, and we may address it as an aromic sysitem. The optical resonator in its
simplest form consists of two plane or spherical mirrors aligned suitably to con-
fine the optical energy as light propagates back and forth between the mirrors.
We first review the basic emission and absorption processes in an atomic system
and then discuss the conditions for light amplification and laser oscillation.

11.3.1 Absorption and emission of radiation

In general, an atomic system is characterized by discrete energy levels, and the
constituent atoms/molecules can exist in one of the allowed levels or states. In
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the energy domain, atoms/molecules can make upward or downward transitions
between any two allowed states by absorbing or releasing, respectively, an
amount of energy equal to the difference between the two energy levels. Thus,
if we consider two levels of an atomic system that participate in an interaction
with optical radiation of photon energy hv = F, — F, then there could be
three different types of interactions (see Figure 11.2):

(a)  Absorption: An atom in level 1 can absorb photons of frequency
(Ex— E))/ h and make an upward transition to the higher energy level.
The rate of absorption depends on the number of atoms present in the
lower level 1 and the energy density of radiation present in the system.

(b}  Spontaneous emission: An atom in an excited level can make a down-
ward transition spontaneously (i.e., on its own) by emitting a photon
corresponding to the energy difference between the two levels. The
rate of such transitions depends only on the number of atoms present
in the excited level.
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(¢) Stimulated emission: An atom in an excited level can also make a
downward transition in the presence of an external radiation of fre-
quency (E; — Ey)/h. As in the case of absorption, the rate of such
stimulated emissions or induced emissions depends on the energy den-
sity of the external radiation and the number of atoms in the excited
level. The most important aspect of this type of transition, however,
is the fact that the emitted radiation is coherent with the stimulating
radiation. Thus, stimulated emission leads to a coherent amplification
of the incident stimulating radiation and is the process responsible for
amplification of optical radiation in a laser.

Transitions involving emission or absorption of photons are known as ra-
diative transitions. Atoms can also make an upward or downward transition
without involving a photon. For example, an excited atom in the gaseous state
can come down to a lower level through an inelastic collision with the walls of
the container. Similarly, an excited atom in a solid can make a downward transi-
tion by giving the excess energy to the lattice. These are known as nonradiative
transitions.

For an atomic system in thermal equilibrium, the occupation probabilities of
various atomic energy levels at any temperature 7 are given by the Maxwell-
Boltzmann statistics.

P(E;) o gie Eilkel (11.1)

where i refers to the level under consideration, kg is the Boltzmann constant,
and g; is the degeneracy of the level. For nondegenerate energy levels, g; = 1,
whereas it is equal to the number of sublevels (that have the same energy value)
for a degenerate level. Thus, for an atomic system with nondegenerate energy
levels, the population density in the various levels under thermal equilibrium is
given by

Ny = Ce Bi/kal (11.2)

Ny = Ce Fa/ksl (11.3)
and so on, where the constant C depends on the total number of atoms in the
system. Using the above equations, we get
N> e
5 g BB kT (11.4)
1

For £, greater than E, N is less than N,. In other words, an atomic system in
thermal equilibrium has its lower energy level more densely populated than a
state with higher energy, and the population has an exponential dependence on
energy.

Example 11.1: Let us consider an atomic system with the ground
level £} and the first excited level E, separated by an energy gap
corresponding to a wavelength of 694 nm. For such a pair of levels,

6626 x 1073 x 3 x 108
Ey—Ey =hv=h- = - L~ 286x10717]
> 694 % 10 °
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For a temperature of 300 K,

kpT =138 x 1072 x 300 2 4.14 x 107 ]
Thus

No/Np = e =107

Note that at 300 K there is hardly any atom in the excited state of
this atomic system when compared with the number of atoms in the
ground state!

11.3.2 Condition for amplification by stimulated emission

In a nondegenerate atomic system, in the presence of an external radiation, the
probability of absorption per atom is the same as the probability of stimulated
emission per atom. Therefore, if the number of atoms in the upper level is more
than the number of atoms in the lower level, the rate of stimulated emission
will exceed the rate of absorption. In other words, there will be a net emission
of radiation, leading to light amplification.

If u(v)dv represents the radiation energy per unit volume between v and
v + dv, then

Rate of absorption = Bu(v)N, (11.5)
and
Rate of emission = AN, + Bu{v)N {11.6)

where A and B are the Einstein coefficients and represent proportionality con-
stants associated with the spontaneous and stimulated emissions, respectively.
At steady state, the rate of absorption must be equal to the rate of emission —
that is,

Bu(v)N, = AN; + Bu(v)N, (11.7)

If we ignore spontaneous emission for the moment, since we are interested in
amplification process due to stimulated emission, then it is clear that for the rate
of emission to exceed the rate of absorption of photons (i.e., for net emission
or light amplification), the number of atoms per unit volume (N,) in the upper
level must be greater than the number of atoms per unit velume (N, ) in the lower
level. Since this does not correspond to the normal population distribution in
the atomic system in thermal equilibrium, the condition in which a higher level
1s more populated than a lower level is known as population inversion. Indeed,
population inversion is the condition for light amplification.

The next step would be to understand how to achieve population inversion
in an atomic system. We have seen above that at thermal equilibrium the popu-
lation of various levels is given by the Boltzmann distribution. However, if we
irradiate an atomic system by an external radiation of appropriate frequency.,
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this population distribution changes, and in some atomic systems, under cer-
tain conditions, it is possible to achieve population inversion between a pair of
levels.

Consider the three levels — the ground state and two excited states — of
an atomic system shown in Figure 11.3(a). If we irradiate this system with a
radiation of frequency v = (E3 — Ej)/ h, atoms can get excited from level | to
level 3. Excitation of an atomic system by an external means is often referred
to as pumping. The excited atoms in level 3 can make a downward transition
to level 1 by spontaneous and stimulated emissions. Also, the transitions either
may be one-step direct transition from level 3 to level | or may involve two steps:
an initial transition from level 3 to level 2, followed by a second transition from
level 2tolevel 1. Inthe latter case, ata given pumping rate, if the rate of transition
Ty, from level 3 to level 2 exceeds that between level 2 and level 1 (ie., To)).
then atoms would start accumulating in level 2, and the population of level 2
would increase with the pumping rate. When the pumping rate exceeds a certain
threshold, the steady-state population in level 2 becomes higher than that in level
1. In this state of population inversion, radiation at frequency v, = (£ — E )/ h
will get amplified by the phenomenon of stimulated emission.

The above scheme of transitions to realize laser action is known as a three-
level pumping scheme, and the atomic system is identified as a three-level
sysfem. Because population inversion is to be achieved between an excited state
(level 2) and the ground state (level 1), considering the fact that the population
of the ground level at thermal equilibrium is very much larger than that in an
excited level, the required threshold pumping power for population inversion
is very large (~kW). A more efficient scheme employed in most lasers is the
four-level scheme illustrated in Figure 11.3(b). Here, the population inversion
and the lasing transitions occur between levels 3 and 2. If the transition rates
T4z and 75y are large compared with the transition rate T3, then population
inversion can be achieved between levels 3 and 2 even with low to moderate
pumping powers.
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The small signal gain coefficient of a laser amplifier at frequency v is given
by [see, e.g., Ghatak and Thyagarajan (1989), Section 8.3]

2
(;{[:) ig%lAN (11.8)
sp

y(v) =

where T, is the spontaneous emission lifetime (i.e., the average time spent by
an atom in the excited state before making a downward transition); AN is the
population inversion density between the two levels taking part in the laser
transition — thatis, AN = N, — N in a three-level system and AN = N3 — N,
in a four-level system. The function g(v) is known as the normalized lineshape
function and is defined so that g(v) dv represents the probability that an atom
interacts with radiation between frequencies v and v + dv. Since the atomic
system will interact with radiation at one frequency or the other, we must have

f gvydy =1 (11.9)
0

The function g(v) also gives the absorption or emission spectrum of the atomic
system. In general, this function is sharply peaked in the form of a Lorentzian
or Gaussian around a central resonant frequency. The gain coefficient at any
frequency and the bandwidth of the laser amplifier are essentially determined
by g(v).

Example 11.2: If N; > N, AN is negative, and y(v) given by equa-
tion (11.8) gives the absorption coefficient of the medium. As an ex-
ample, let us consider ruby (which is Al; O3 doped with Cr't ions),
in which the Cr** ions take part in absorption and emission around
694.3 nm. At thermal equilibrium at 300 K, ¥} =~ 1.6 x 10" em™,
Ny >=0,n=176,15 =3 x 1073 s, g(vy) =~ 6.9 x 107" 5, and
the absorption coefficient at 694.3 nm can be evaluated from equation
(11.8yas ~23 em .

For achieving a gain coefficient of 1072 cm™', the required popu-
lation inversion density is 7 x 10'® cm™?.

11.3.3 Laser oscillation

In the above section we saw how optical amplification can be achieved by hav-
ing population inversion. If such an optical amplifier is provided with an optical
feedback, one would realize an optical oscillator or a source of optical radia-
tion. This is nothing but the laser. The necessary optical feedback is provided
by placing the active medium in an optical resonator composed of two high-
reflectivity mirrors, separated by a suitable distance / {(see Figure 11.1). The
mirrors may be planar or spherical and may either be in the form of discrete
components located outside the gain medium or be attached to the ends of the
gain medium. Usually, one of the mirrors (say M) is almost 100% reflecting
(i.e, Ry = 1.0) and the other mirror (M;) is partially reflecting (i.e., Ry < 1.0),
so that a small fraction of optical energy comes out of the resonator; obviously,
from the resonator’s point of view, this output is a loss but forms the useful
output of the laser for the users.
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Consider the optical resonator as shown in Figure [1.1. In the absence of
the gain medium. there is no gain in the resonator, and the resonator is referred
to as a passive resonator; 1L 13 a lossy device because of the finite reflectivities
(R), Ry < 1) of the mirrors at the ends of the resonator and the propagation
loss associated with the light bouncing back and forth between the mirrors.
The propagation loss consists of loss mechanisms such as scattering toss in the
medium and diffraction loss due to finite size of the mirrors. In the presence of
pumping, there would be both amplification and attenuation of radiation at the
lasing transition within the resonator. Let /gy be the irradiance of the light beam
leaving the mirror M, and propagating toward M>. If « represents the average
loss coetticient per unit length of the resonator due to all mechanisms other
than the finite reflectivities of the mirrors, and if y represents the small signal
gain coefficient per unit length of the resonator, then the irradiance of the beam
after one complete round trip is given by

I = Ipe e Rye e R,

The factors multiplying /s on the RHS of the above equation indicate the various
processes occurring in one complete round trip of the light beam. We may
rewrite the above equation as

I = IgR| Rye™y — (11.10)

Therefore, if the radiation has to build up and sustain in the resonator, we must
have

Ry Rye* 7~ > (11.11)

The equality sign in the above equation corresponds to the situation wherein the
round trip loss is exactly compensated by the amplification provided by the gain
medium, so that [y = [I5. This is the threshold condition for laser oscillation
and the corresponding value of the gain coefficient 1s known as the threshold
gain coefficient, yy,. Thus, at threshold we have

——
R]Rge"(ym ol — ]

or

Vth:a—l-lanRg (11.12)
2

When the gain coefficient becomes larger than the threshold value, the “greater
than” sign in equation {11.11) applies, and the radiation builds up after every
round trip. However, as one would expect, it cannot go on building up, and soon
saturation effects take over and the gain drops down to its threshold value. The
saturation effect can be explained qualitatively as follows. At a given pumping
rate, if y > yu, the increasing power density at the laser frequency induces
more and more stimulated emissions, which results in a faster depletion of the
atoms from the excited state, thereby reducing the population inversion AN
and, hence, the gain. Thus, laser oscillations start when the gain coefficient
exceeds its threshold value, and when the laser oscillates in the steady state,
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If n represents the refractive index of the medium (assumed to fill the entire
cavity) and [ is the cavity length, then the oscillation can take place only at
frequencies v, satisfying

27,

n2l = ¢2m; g, aninteger

or

I

. 11.15
2nl ( )

Vy, = ¢

These oscillation frequencies represent the vartous longitudinal modes of the
cavity.

We have seen earlier that the amplifying medium is characterized by a gain
spectrum determined by y(v). The presence of the cavity implies that within
this spectrum only those frequencies that satisfy equation (11.15) can oscillate.
Thus, as the pumping is increased and as one reaches threshold, the longitudinal
mode closest to the gain peak will be the first to start oscillating. If the pumping
is further increased, other adjacent modes may also begin to oscillate, leading
to multilongitudinal mode oscillation (see Figure 11.4). The spectral width of
the laser in such a case would of course be larger than in a single longitudinal
mode oscillation.

11.4 Semiconductor laser: basics

In its simplest form, a semiconductor laser consists of a forward biased p-
n junction, formed in a direct bandgap semiconductor {(see Figure 11.5). The
recombination of injected carriers — namely, electrons and holes — in the junction
region results in the emission of photons. The cleaved ends of the laser structure
act like mirrors, forming a Fabry—Perot resonator along the p-n junction. The
other two ends (in the perpendicular direction) are saw-cut to reduce reflections
from these ends and prevent lasing along the perpendicular direction. Typical
dimensions of a discrete laser-diode chip are shown in Figure 11.5(b). When
the forward current through the diode exceeds a critical value known as the
threshold current, optical gain in the resonator due to stimulated emissions
overcomes the losses in the resonator, leading to net amplification and eventually
to steady-state laser oscillations.
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11.4.1 FEnergy bands and carrier distribution in semiconductors

Matter consists of atoms, and in the solid state of matter atoms are packed very
closely with interatomic spacings of the order of a few angstroms. Since the
electron cloud surrounding the positively charged nucleus of an atom also has a
spatial spread of the same or comparable order, the electron distribution and the
associated energy levels get perturbed in the solid state compared with those
in an 1solated atom. This leads to formation of energy bands in solids unlike in
the case of an isolated atom or an atomic gas, which is characterized by well-
separated discrete energy levels. The highest energy band, in a solid, thatis com-
pletely filled or occupied by electrons at 0 K is known as the valence band, and
the next higher band that is partially occupied or vacant is known as the conduc-
tion band. The forbidden gap or the energy gap between these two energy bands
is indicative of several important electrical and optical properties of the solid.
Semiconductors, as the name indicates, refer to materials that have electrical
conductivity values between those of good conductors and insulators. Most
semiconductors are crystalline solids formed by some of the elements from
group II to group VI of the periodic table of the elements and typically have
energy gaps in the range 0.25-2.5 eV. In an intrinsic semiconductor at 0 K, the
valence band is completely full and the conduction band is completely empty of
electrons. At any other temperature the occupational probabilities of the allowed
states by electrons in a semiconductor are given by the Fermi distribution:

f(E)E 1+€)“(E—KJ/)/k13/ (11]6)

Fig. 11.5: (a)Inits
simplest form a
semiconductor laser
consists of a forward bias
p-n junction formed in a
direct bandgap
semiconductor. (b) Two
ends are cleaved and the
laser output emerges fron
these ends. The other two
surfaces are saw-cut (o
arrest any oscitlation alon
that direction. Typical
dimensions are also show
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Fig. 11.6: Fermi
distribution in (a} an
undoped, (b) a p-type, and
(¢) an n-type
semiconductor.
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where £ is a constant known as the Fermi energy or the Fermi level; it rep-
resents the energy value at which the probability of occupation of electrons is
0.5 (if there existed an allowed state at this energy value). In a pure (undoped)
semiconductor, the number of holes in the valence band is equal to the number
of electrons in the conduction band, and the Fermi level lies approximately
midway between the top of the valence band and the bottom of the conduction
band (see Figure 11.6(a)). In a p-type (doped) semiconductor, there are a greater
number of holes in the valence band than electrons in the conduction band, and
therefore the electron distribution function shifts toward the valence band; in
other words, the Permi level, in this case, is situated nearer to the valence band
edge (see Figure 11.6(b)). Similarly, in an n-type semiconductor, there are a
greater number of electrons in the conduction band than holes in the valence
band, and the Fermi level lies nearer to the conduction band edge (see Figure
11.6(¢)).

The above discussion of carrier distribution pertains to thermal equilib-
riumn in the absence of any external excitation of the semiconductor. How-
ever, if we excite the semiconductor by external means — say by irradiating the
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semiconductor with a radiation of energy greater than the bandgap — more and
more electrons can go to the conduction band, leaving behind a greater number
of vacancies (holes) in the valence band. If we imagine a situation wherein
the excitation is so strong that the number of electrons in the conduction band
becomes comparable to or larger than the number of electrons in the valence
band, it is obvious that the Fermi distribution given by equation (11.16) cannot
describe the carrier distribution in both the bands. However, because the relax-
ation ume of carriers for intraband transitions (1.e., transitions within a band) 18
much smaller than the band-to-band electron-hole recombination time, there
is a quasi-stationary steady-state distribution of carriers within each band. This
carrier distribution within the two bands can be described by defining two dif-
ferent Fermi levels — one for the conduction band, E ., and one for the valence
band, E;, (see Figure 11.7). These are known as the quasi-Fermi levels, and
the semiconductor is then said to be in guasi-equilibrium. Thus, the carrier
probability distribution in the two bands 1s given by

- 1

fAE) = T (11.17)
for the conduction band, and

- |

S ) = ST (11.18)

for the valence band. Quasi-Fermi levels play an important role in determining
the gain coeflicient of a semiconductor laser amplifier.

11.4.2  Absorption and emission in a semiconductor

Consider a crystalline semiconductor in which the constituent atoms are ar-
ranged in a regular pertodic lattice. The motion of an electron in such a crys-
talline solid in any particular direction can be viewed as the motion of a neg-
atively charged particle in a periodically varying electrostatic potential due to
the positively charged atomic nuclei. If we assign a wave function ¥ and a
wave vector k to the electron and solve the equation of motion, the solution

Fig. 11.7: Diagram
showing quasi-Fermt levels
Epoand Eyyina
semiconductor.
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Fig. 11.8:  E-k diagram of
a semiconductor. £,
represents the bandgap. The
figure corresponds to an
indirect bandgap
semiconductor.
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yields a periodic dependence of the electron energy on the wave vector. If we
restrict ourselves to one period, the corresponding variation of energy as a func-
tion of k (see Figure 11.8) is known as the E-k diagram of a semiconductor.
Semiconductors in which the minimum of the conduction band and maximum
of the valence band occur at the same Kk value are known as direct bandgap
semiconductors, whereas semiconductors in which the mintmum of the con-
duction band and the maximum of valence band occur at two different values
of k (as shown in Figure 11.8) are known as indirect bandgap semiconductors.
The reason for the above nomenclature is obvious if we recall the definition of
bandgap — the difference in energy between the conduction band minimum and
the valence band maximum irrespective of their positions in the £-k diagram.

We next consider the phenomenon of absorption and emission of photons in
a semiconductor. We know that there are electrons and holes in the valence band
of asemiconductor, wheareas the conduction band has electrons and unoccupied
vacant states. The holes accumulate near the top of the valence band (which
are low-energy states for the holes) and the electrons in the conduction band
accumulate near the bottom of the band. As in the case of an atomic system,
there can be three different processes involving a photon, an electron, and a
hole in a semiconductor;

(a)  An electron in the valence band can make an upward transition ( in
energy) to the conduction band by absorbing a photon of energy /v so
that £5 — E| = hv, where E| and E; are the energies associated with
the initial and final states of the electron in the valence and conduction
bands, respectively (see Figure 11.9(a)).

(b}  An electron in the conduction band can recombine with a hole in the
valence band by spontaneously emitting a photon corresponding to
the energy difference between its initial and final states. This is the
spontaneous emission process (see Figure 11.9(b)).

(¢} An electron in the conduction band can also undergo a stimulated
transition to the valence band in the presence of a photon of appropriate
energy (see Figure 11.9(c)). The emitted photon in such a transition
is fully coherent with the inducing photons. As described earlier, this
is the process that can lead to coherent amplification of an incident
radiation.
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‘The interaction of photons with electrons and holes in a semiconductor, de-
scribed above, should satisfy the laws of conservation of energy and momentum.
Thus, the conservation of energy requires that

E),—E; = hv (11.19)
If ky and k; represent the wave vectors associated with the electrons in the
valence band and the conduction band, respectively, then the conservation of
momentum requires that

hk, +hk, = ik, (11.20)
for both the absorption and the emission process. Here &k, = 2nv/c = 27 /X is

the wave vector associated with the photon, and i = A /2, h being Planck’s
constant. Equation (11.20) can be written as

2 + 2 B 2 (11.21)
A A A a

where A and A, are the de Broglie wavelengths associated with the electron
states. Since the average de Broglie wavelength of electrons in a semiconductor
is typically ~10 A, and the wavelength of light is 2-3 orders of magnitude
larger, it follows that

This is known as the k-selection rule, and it implies that the allowed transitions
between the conduction band and the valence band are “vertical transitions” in
the E-k diagram. This, however, does not completely rule out the possibility
of occurrence of transitions that are not vertical in the E-k diagram. Indeed,
transitions that do not conserve the momentum of an electron before and after
the transition (i.e., k| # k»). but satisty the law of conservation of momentum,
also occur with the participation of phonons. Phonons are quanta of lattice vi-
brations, with typical energy per phonon in the range 0.01-0.1 eV, however, the
momentum associated with phonons can be quite large and comparable to that

of electrons. The probability of occurrence of phonon-assisted interactions of

photons with electrons and holes in a semiconductor is much smaller compared
with the occurrence of allowed (vertical) transitions. This is primarily because
of the involvement of an additional “entity” — phonons in this case — that should
participate in an appropriate quantity to offset simultaneously the energy mis-
match and the momentum mismatch associated with a Ak # 0 transition.

Fig. 11.9:  The processes
of (a) absorption,

(b) spontaneous emission,
and (¢) stimulated emission
in a direct bandgap
semiconducior.
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If we now recall the fact that the electrons accumulate near the bottom of the
conduction band and the holes near the top of the valence band, it is clear that
the emission process is highly probable in a direct bandgap semiconductor. For
this reason, almost all efficient semiconductor photon sources are fabricated by
using direct bandgap semiconductors such as GaAs and InP, In the rest of this
chapter, therefore, we focus only on direct bandgap semiconductors.

11.4.3 Optical gain in a semiconductor
The gain coefficient for amplification of radiation of frequency v by stimulated

emission in a semiconductor is given by [see, e.g., Saleh and Teich (1991)]

_ (c/n)* p(v)
T 8, V2

y(») AP (11.23)

where 7, 1s the radiative (electron—hole) recombination time, and p(v) is the re-
duced density of states, or the optical joint density of states. AP = P,(v)— P,(v)
is the difference of the probabilities for emission and absorption at the optical
frequency v and is known as the Fermi inversion factor. For amplification,
y{v) > 0, which requires AP > 0 — that is, the probability of emission has
to be greater than the probability of absorption. This is the necessary condition
for light amplification in a semiconductor.

The density of states in a semiconductor refers to the number of allowed elec-
tron states per unit volume per unit energy interval. Thus, for example, it p.(E)
represents the density of states in the conduction band, then p(E)dFE gives
the number of states per unit volume between energy values £ and £ + dE.
A similar definition holds good for the density of states p,(£) in the valence
band. When a photon interacts with an electron and a hole in a semiconductor,
the number of states available for the interaction is limited by the requirement
of energy conservation. For example, if the photon energy is just about equal
to the bandgap, then the electron states well above the conduction band edge
and well below the valence band edge cannot participate in the interaction. The
optical joint density of states takes into account the number of states available
in both the conduction and the valence bands with which a photon of energy
hv can interact and is given by

(2171,‘)3/2 . 1/2 . .
p(u):T(_hu—Eg) L hv = E, (11.24)
4

where E, is the bandgap and m, is the reduced mass of the carriers. Note
that only photons with energy Av > E, can participate in the emission and
absorption process.

Equation (11.23) is very similar to equation (11.8) for the gain coefficient
of general lasers discussed in Section 11.3, with the Fermi inversion factor
A P taking up the place of population inversion AN. We therefore look for the
conditions leading to a positive value of AP.

Let £y and E; be the energies of two allowed electron states in the valence
band and the conduction band, respectively. If hv = E, — E| is the energy
of an incident photon then for absorption of the photon an electron should be
present in the state with energy E; in the valence band, and there should be
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an unoccupied allowed state at energy E» in the conduction band. Thus, the
probability of absorption is given by

P,(v) = fIEDIL — f(E)] (11.25)

Note that since f{F) represents the probability of occupation of a state with
energy £, [I — f(E)] gives the probability that a state with energy £ remains
unoccupied. Similarly, for emission of a photon due to an electron-hole recom-
bination, it requires that an electron exists at energy level £ in the conduction
band and there exists a hole at energy level £, in the valence band. Therefore,
the probability of emission is given by

F(v) = (£ = fIED] (11.26)

Note that for a semiconductor in thermal equilibrium at practical tempera-
tures, the carrier distribution is given by the Fermi function, and therefore both
S(Ey) and [ — f(E;)] are much larger than f(FE;) and [1 — f(E{)]. Thus,
P.(v) < P,(v), which implies that optical amplification is not possible in a
semiconductor at thermal equilibrium.

We next consider a semiconductor in quasi-equilibrium. The probabilities
of absorption and emission are now given by

Po(v) = folED[] — fu(E))] (11.27)
and
P,(v) = f(ED[] — fAE2)] (11.28)

where the functions f. and f, represent the quasi-Fermi distributions in the
conduction band and the valence band, respectively (see Figure 11.7). For net
emission, we must have

JAED = [(ED] > ful EDIT = fulE))] (11.29)
which, using equations (11.17) and (11.18), simplifies to the condition
Epo—Ep = hy (11.30)

Since hv > E, for radiative interactions in a semiconductor, it follows that

E¢e —Ef, > E, (11.31)

that is, when the separation between the quasi-Fermi levels in a semiconductor
exceeds the bandgap, then for all frequencies v that satisfy equation (11.30) it
is possible to have light amplification.

The above condition is equivalent to the requirement of population inversion
in an atomic system. Note that to satisfy equation (11.3 1), the quasi-Fermi levels
should lie close to or into the respective bands. This implies that there is a large
concentration of electrons in the conduction band and holes in the valence band,
which is unlike the normal carrier distribution in a semiconductor at thermal
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Fig. 11.10: (&) Unbiased
p—n junction and

(b) forward biased p-n
junction. When the p—n
junction is forward biased,
one can create a situation
satistying equation (11.31)
in the depletion region and
thus achieve optical
amplification. (¢) A forward
biased highly doped p-n
junction.
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equilibrium. In this sense, itis indeed equivalent to population inversion, though
it does not necessarily have more electrons in the conduction band.

Our next task, as in the case of general lasers discussed in Section 11.3. is
to look for implementation schemes that satisfy the gain condition. One of the
most convenient methods for achieving this is to employ a forward biased p—n

junction.

11.4.4 Gain in a forward biased p—n junction

Consider a p—n junction formed between a p-doped and an n-doped semicon-
ductor, as shown in Figure 11.10(a). Because of different carrier concentrations
of electrons and holes in the p and n regions, electrons from the n region dif-
fuse into the p region, and holes from the p region diffuse into the n region.
The diffusion of these carriers across the junction leads to a built-in potential
difference between the positively charged immobile ions in the n side and the
negatively charged immobile ions in the p side of the junction. This built-in po-
tential V), lowers the potential energy of electrons in the n side with respect to
the potential energy of electrons in the p side, which is represented by “bending
of the energy bands” near the p—n junction, as shown in Figure 11.10(b). Note
that the Fermi levels on both sides of the p—n junction are aligned at the same
energy value. This is necessary because, in the absence of any applied external
energy source, the charge neutrality in the material requires that the probability
of finding an electron should be the same everywhere, and therefore only one
Fermi function should be able to describe the carrier distribution. In this case,
there will be no net current in the medium.
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If we forward bias the p—n junction by means of an external supply voltage
V., then the potential energy of electrons in the n side increases and the band
moves up. The band offset decreases, and the Fermi levels separate out as shown
in Figure 11.10(b). The increased potential energy of the carriers brings them
into the depletion region where they recombine, constituting a forward current
through the junction. Thus, forward biasing leads to injection of electrons and
holes into the junction region, which recombine, generating photons in this
process. This phenomenon is referred to as injection electroluminescence. Note
that even though the separation between the quasi-Fermi levels is less than
the bandgap energy £,, there is light emission because of a forward current
through the device. This is the basis of operation of an LED, and the device
therefore does not have a threshold value for the forward current. However, for
amplification by stimulated emission, leading to laser action, equation (11.31)
has to be satisfied.

It is usually not possible to satisfy equation (11.31) in p—n junctions formed
between moderately doped p- and n-type semiconductors. However, if one starts
with a p—n junction formed by highly doped p- and n-type semiconductors, in
which the Fermi levels are located inside the respective bands, application of a
strong bias can lead to the gain condition (satisfying equation (11.31)), as shown
in Figure 11.10(c). Indeed, this is the basis of operation of an injection laser
diode. As mentioned at the beginning of this section, a laser diode basically
consists of a forward biased p—n junction of a suitably doped direct bandgap
semiconductor material. Two ends of the substrate chip are cleaved to form
mirror-like end faces, while the other two ends are saw-cut, so that the optical
resonator is formed in the direction of the cleaved ends only. The large refractive
index difference at the semiconductor (n ~ 3.5) and air (n = 1.0) interface
provides a reflectance of about 30% (R = 0.3), which is good enough to sustain
laser oscillations in most semiconductor laser diodes. This is primarily due to
the large gain coefficients per unit length achievable in semiconductor p-n
junctions.

Figure 11.11 shows a typical variation of the gain coefficient » with photon
energy for GaAs corresponding to different injected carrier densities. In the
figure 1.424 eV corresponds to 0.87 um and 1.5 eV corresponds to 0.827 pm.
Note that for a given injected carrier density, gain is available over a certain
frequency band. For example, for an injected carrier density of 2.5 x 10'® cm™3,
the peak gain is about 132 cm™" and extends up to a photon energy of ~1.483
eV corresponding to 0.836 pum. The corresponding variation of peak gain with
carrier density is shown in Figure 11.12.

Example 11.5: Let us consider a GaAs laser diode with L = 500 um,
Ry = R, =0.3,and @ = 5 mm™". The threshold gain required is (see
equation (11.12))

y ~ Tdem™!

This value of gain requires (see Figure 11.12) an injected carrier den-
sity of ~2.02 x 10" em™,

Now at steady state, the rate at which excess carriers (An) are injected must
equal the rate of recombination. At threshold this rate is just the spontaneous
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Fig. IL.11: A typical
variation of gain versus
photon energy in a GaAs
semiconductor device with
injected carrier density as a
parameter. [After Yariv
(1989).]

Fig. 11.12:  Variation of
peak gain with the injected
carrier density
corresponding to Figure
11.11. The temperature is
300 K. {After Yariv (1989).]
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recombination rate. If 7 is the spontaneous lifetime then

AnAd ,
R&p - . (11.32)

where R, is the spontaneous recombination rate, A is the area of cross section,
and d 1s the thickness of the gain region. If J represents the current density,
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then the rate of current injection is J - A/e. Thus

Aned
] —
T

(11.33)

Typically, d = 0.1 gm (for a heterostructure) and T = 4 ns. Thus

J = 808 KA/em?

11.4.5 Laser oscillation and threshold current

Let y(v) represent the gain coefficient corresponding to the amplifier response
in the recombination region of a forward biased laser diode — that 1$

T (D) = Iin(0) €™ (11.34)

where { is the length of the active region. As discussed above, the gain varies in
a complex manner with frequency and the magnitade of the mjection current
through the diode. However, the peak gain coefficient y, (corresponding to the
peak of the gain response curve) is found to vary approximately linearly with
the excess carrier concentration (see Figure 11.12).

an oy (11.35)
, = O - .
Vi ’ Any

where ¢, is the absorption coefficient of the material in the absence of current
injection, An is the excess carrier concentration in the active region due to the
injection current, and Any is its value corresponding to “transparency.” (Note
that when An = Any, y, = 0, implying that there is no loss or gain in the
medium: in other words, the medium is transparent for the input frequency.) Us-
ing equation (11.33) we can rewrite equation (11.35) in the following alternative

forms
" J i
Yp = Uy h J'[ -~ 1= Gy "lm;" =1 (] 136)

where, as before, subscript T refers to the transparency values and i is the for-
ward (injection) current through the device. Equation (11.36) clearly indicates
that only when the current through the device exceeds the transparency value iy
is there gain in the active region. However, for laser oscillations to take place,
the gain must be at least equal to the loss in the optical resonator, including the
loss due to the useful output from the device.

If @ represents the intrinsic loss coefficient in the active medium, and if R,
and R, are the reflectivities at the cleaved ends of the device, then the total loss
coefficient is given by (cf. equation (11.12))

l
Oy = U — ,)_l In(RR>) (11.37)

When the current through the diode reaches a value iy, (above ir) so that y, =
loty |, then the losses in the resonator are exactly compensated by the gain
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Fig. 11.13: A double !
heterostructure laser in )
which a lower bandgap !
semiconductor 18
sandwiched between two p-AlGaAs
larger bandgap
semiconductors. This leads >,
to both current and optical n-AlGaAs —d laAs (active region’
confinement, the latter due - GaAs (active region)
to a refractive index
difference between the
lower bandgap (Jarger
refractive index) and the
larger bandgap (lower
refractive index).  1n the active region. Thus, at threshold, we have
i
Yy = el = Ofc:(,l_h - l) (11.38)
T
OorF
i = zﬁ,(1 N Iozm,|) (11.39)
Xy

Any increase in the forward current will result in a net gain in the active region
leading to light amplification, and the feedback from the cleaved ends will
eventually lead to gain saturation and steady-state oscillations of the laser. The
fractional energy transmitted at the cleaved ends forms the useful output from
the device. Equation (11.39) clearly indicates that the threshold current is larger
than the transparency current; however, for most lasers |o,,,| is much smaller
than ¢, and typically the ratio is ~0.1. This implies that the threshold current
1s only slightly more than the transparency current.

From equation (11.35) we see that for a given material the transparency
value of the carrier concentration is inversely proportional to the thickness (d)
of the junction region., Typical values of & for a p—n junction are a micron
or more depending on the dopant concentrations of the p side and the n side.
The corresponding values for the transparency current densities (Jy ) are of the
order of kiloamperes per square centimeter. If we somehow reduce ¢ to a much
smaller value, it would lead to a smaller value for the transparency current
density. Indeed, this can be achieved by employing heterostructures.

11.4.6 Heterostructure lasers

The basic laser structure shown in Figure 11.5 is referred to as a homojunction
laser, invented in 1962. In this device the p—n junction is formed by using the
same semiconductor on both sides of the junction. Lasing in these devices can
be achieved only in a pulsed operation since the threshold current values are in
the range of a few amperes to tens of amperes, which could lead to catastrophic
damage of the device, if operated continuously. The basic configuration in all
present-day laser diodes is a double heterostructure wherein a thin layer of a
suitable semiconductor is sandwiched between two layers of a higher bandgap
material, forming two heterojunctions (see Figure 11.13). This provides for what
are known as “carrier confinement” and “optical confinement” in the junction
region and results in moderate to low values for the threshold current.
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The basic heterostructure employed in the fabrication of laser diodes consists
of a thin layer (approximately 0.1 gm thick) of a direct bandgap material. The
material systemn and the compositions of the layers are suitably chosen to permit
lattice-matched epitaxial growth of the layers. Epitaxy refers to growth-on-top ~
thatis, layer by layer deposition on the surface and lattice-matched growth refers
to the process wherein the spacing between constituent atoms in the lattice of
each layer is the same. This type of growth results in structures with very little
built-in strain and defects in the lattice [see, e.g., Agrawal and Dutta (1993)].

Consider a heterostructure formed by a thin layer of GaAs sandwiched be-
tween two layers of p- and n-doped Al,Ga; ;As as shown in Figure 11.13.
The band gap of GaAs is about 1.42 ¢V at room temperature, whereas that of
Al,Ga,;_As increases (from 1.42 eV when x = 0) with an increasing fraction
of aluminum. Figure 11.14(a) shows the energy band diagram corresponding
to the three regions when they are not in contact. Figures 11.14(b) and (c)
show the energy band diagram of the composite before and after forward bi-
asing, respectively. As can be seen from the figure, the potential barriers at
the two heterojunctions restrict the flow of electrons from the n-AlGaAs to
the p-AlGaAs and holes from the p-AlGaAs to the n-AlGaAs layers, respec-
tively. This results in a large concentration of accumulated carriers in the thin
GaAs layer and leads to a large number of carrier recombinations and pho-
ton emission. Note that the energy of the emitted photons will be around the
bandgap energy of GaAs, and therefore these photons will not be absorbed by
the AlGaAs layers, which have a higher bandgap.

Fig. 11.14. Energy band
diagram corresponding to
(a) the three regions of a
double heterostructure lase
when they are not in
contact, (b) when they are i
contact and under no bias,
and {c¢) under forward bias
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Fig. 11.15: The double
heterostructure results in
optical confinement due to
the formation of a
waveguide, The lower
bandgap GaAs has a higher
refractive index compared
with the higher bandgap
AlGaAs regions. n{x) and
Y{x) represent the
refractive index profile and
the modal field profile.
respectively.
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A fortunate situation leads to yet another advantage of using double het-
erostructures in the realization of laser diodes. For a given material system
(GaAs/AlGaAs in this case), the composition having a larger bandgap is char-
acterized by a lower refractive index. This makes the active region into an optical
waveguide, leading to what is known as optical confinement. Figure 11.15 il-
lustrates the optical waveguiding effect: GaAs has a refractive index of about
3.6 (around 0.8-pm wavelength), whereas AlGaAs is characterized by a lower
refractive index of ~3.4. Thus, the active region forms the guiding film and the
AlGaAs layers form the cladding of the waveguide. Guided light propagates
back and forth within the laser resonator formed by the active layer and the
cleaved ends. ¥ {(x) and n(x) in Figare 11.15 represent, respectively, the mode
profile and the refractive index profile in the transverse direction.

The combined effect of these three major advantages of a heterojunction
laser — namely, carrier confinement, optical confinement, and lower absorption
losses — leads to low threshold current (~ tens of milliamperes) and high overall
efficiency of the device.

As discussed earlier, by using a double heterostructure {DH) design, the op-
tical radiation gets confined in the direction perpendicular to the junction. Thus,
such a DH structure behaves as a planar optical waveguide and the waveguide
will support only a discrete set of modes (see Chapter 7). Typically, the refrac-
tive index difference between the guiding region and the surrounding area is
0.2 and for a typical thickness of 0.2 pum, the corresponding V value is

2 N
V =—d\/nj wng
A

0

~ 1.75

where wehaveused Ap = 0.85 um,n| = 3.6,andny = 3.4, Thus, since V < 7,
the structure will support only a single transverse mode (see Chapter 7).

Due to the planar geometry, the light beam has no confinement parallel to
the junction and, hence, it will diffract and spread over the entire width of
the laser. Because of the spreading, the threshold currents are high and also
the emission pattern is not stable with variation in current. To overcome these
problems, laterally confined semiconductor lasers were developed. In these
lasers, in addition fo guidance in the direction perpendicular to the junction, the
optical beam 1s also guided parallel to the junction plane.

There are two main types of laterally confined lasers depending on the
guiding mechanism employed: gain-guided lasers and index-guided lasers (see
Figure 11.16).
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In the case of gain-guided diodes, one limits the current injection over a
narrow stripe. This can be achieved, for example, by coating an insulating layer
such as Si0» on the uppermost semiconductor layer, leaving an opening for
current injection. Due to this kind of injection, the carrier density is largest
just under the opening and decreases away from it in the direction parallel
to the junction. Because of this, the gain is also a function of lateral position
and this gain variation leads to a confinement of optical energy in the lateral
direction. Such lasers are hence referred to as gain-guided lasers. Since the gain
distribution changes with injection current, the transverse mode profile of the
laser is not very stable with changing current.

In contrast to gain-guided lasers, in the case of the index-guided lasers, a
real index step is provided even in the lateral direction. Figure 11.12(b) shows
a typical buried heterostructure (BH) laser in which a strong lateral guidance
is provided by having a lower index surrounding the gain region. In such BH
lasers, the active region has typical dimensions of 0.1 m x 1 um with typical
refractive index steps of 0.2-0.3. Because of the strong guidance provided by
the large index step, the output is a single transverse mode and is very stable with
respect to current variations. In comparison to gain-guided lasers, BH lasers are
more expensive because of additional processing in their fabrication. Most fiber
optical communication systems today employ BH lasers as transmitter sources.

11.4.7 Choice of materials

Recall that silica-based optical fibers have low-loss windows around 1300-nm
and 1550-nm wavelengths. Therefore, to operate at these wavelengths, one has

Fig. 11.16:  (a) Gain-
guided and (b) buried
heterostructure
index-guided laser
structures.
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to choose a direct bandgap semiconductor whose bandgap energy corresponds
to a wavelength in the low-loss window. Accordingly, the material system that
is widely used in fabrication of the laser diodes for optical communication in
the 1300-nm and 1550-nm window is InGaAsP/InP (InP, indium phosphide).

InP is a HI-V binary compound semiconductor with a direct bandgap of
1.35 eV at 300 K (III-V indicates that the constituent elements belong to group
[T and group V of the periodic table of the elements). The quaternary compound
In,_,Ga,As,Py_, is formed by replacing fraction x of In atoms by Ga, which
is another member of group III, and fraction y of P by As, which is another
member of group V. Thus, the semiconductor In,_,Ga,As,P,_, isalso a llI-V
compound. However, the bandgap can now be tailored by selecting the appro-
priate composition of the constituent elements. Further, In;.,Ga, As, Py, 1Is
lattice matched to InP when the ratio x/y =~ 0.45. Therefore, one can choose
the composition x and y so that the bandgap corresponds to the desired wave-
length of operation. Indeed, InGaAsP lasers can be realized to emit light at any
particular wavelength in the range 1.0-1.65 um (see Example 11.6).

We may mention here that another material system that has been studied
extensively and used in the fabrication of laser diodes is AlGaAs/GaAs. By
choosing an appropriate composition of the ternary compound Al, Ga; . As, itis
possible to fabricate laser diodes emitting at any desired wavelength in the range
0.78-0.88 pm. These lasers are widely employed in consumer applications such
as compact disc (CD) players and CD drives in computers and laser printers
and for communication systems in the 850-nm wavelength region.

Example 11.6: The guaternary compound semiconductor In,_,Ga,
As,P,_, is lattice matched to the binary compound semiconductor
InP whenever x = 0.45y. The corresponding bandgap of InGaAsP is
given by

E,(y)=1.35-0.72y + 0.12y* eV (11.40)

Let us first determine the composition of the active layer for semi-
conductor lasers designed to operate at 1.30-pm and 1.55-pm wave-
lengths.

The InGaAsP active layer of the double heterostructure should have
a composition so that the bandgap corresponds to the operating wave-
length. The bandgap energy and the emission wavelength are related
by

1.24
E,(eV)

hglpm) = (11.41)

Thus, for A, =130 um, £, =0.954 eV and for A, = 1.55 um, £, =
0.800 eV. Using these values of £, in equation (11.40), and keeping
in mind that the value of y cannot be greater than 1, we get

vy =0611 forig=130um

vy =0.898 forig=1{.55um
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The corresponding compositions of InGaAsP are
Ing 726Gag 274Asp.611 Posge  for Ag = 1.30 um
and
Ing s06Gag 404 Asos98Po 102 for Ag = 1.55 um

To determine the shortest and longest wavelengths at which lattice-
matched double-heterostructure InGaAsP lasers can operate, we note
that the longest wavelength corresponds to the smallest bandgap, £, =
0.75 eV, which occurs for y = 1, and x = 0.45; thus

1.24

Similarly, the shortest wavelength corresponds to the largest bandgap,
E, = 1.35 eV, which occurs for y = 0 and x = 0; thus
1.2
L.

piY

2 0.918 um

}\min =

(%]
L

11.5 Laser diode characteristics

There are many operating characteristics of laser diodes that are of primary
importance in its application as a source in a fiber optic communication system.
Some of the major performance characteristics of laser diodes and LEDs are
given in Table 11.1.

11.5.1 Laser threshold

As discussed in Section 11.4.5, a laser is characterized by the presence of a
threshold. Figure 11.17 shows a typical variation of output power from a laser
diode as a function of the current passing through the diode. For comparison,
we have also shown the output power dependence of an LED. We note that,
below the threshold current, the output power is low and, as the current passing
through the diode crosses the threshold value, the output power increases sig-
nificantly. Indeed, the slope of the curve above threshold is much larger than
that below threshold. The emission appearing below threshold is mainly due
to the spontaneous transitions, whereas above threshold it is primarily due to
stimulated emission,

An important parameter specifying a laser diode is the slope efficiency, which
is the slope of the light-current curve above the threshold current (see Figure
11.17). It dI represents the change in the forward current through the diode,
then the increase in the number of electrons injected per unit time into the laser
1s d1 /e, where e is the electronic charge. If d P represents the corresponding
increase in light power output, then the additional number of photons exiting
the laser is d P/ hv, where v is the frequency of the radiation. We define the
differential external quantum efficiency of the laser as

dP/hv e dP
np=-—7""—=—"+— (11.42)
dlje hv di
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Table 11.1. Typical performance characteristics of laser diodes and LEDs
LEDs Lasers
Wavelength Class 800-850 1300 Class 800-850 1300 1500
Material GaAlAs InGaAsP GaAlAs  InGaAsP  InGaAsP
Spectrum width 30-60 50-150 MM 1-2 2-5 2-10
(nm)
Line width SM SM FP 150 150
(MHz) DFB 10-30 10-30
Output power 0.54.0 0.4-0.6 BH 2-8 1.5-8 1.5-8
(mW)
Drive current 50-150 100-150 BH 10-40 25-130
(mA)
Rise time Surface 4-14
(ns) Edge 2-10 2.5-10 BH 0.3-1 0.3-0.7 0.3-0.7
Modulation 0.08-0.15 0.1-03 BH 2-3 2-3 2-3
frequency (GHz)
Beam width
{half)
Parallel Surface  120-180°
Perpendicular Surface  120-180°
Parallel Edge 180° BH 10-25° 10-30° 10-30°
Perpendicular Edge 30-70° BH 20-35¢ 30-40° 30-40°
Lifetime 1-10 50-1000 1-10 0.5-50 0.5-50

{million hours)

Note: MM = multimode, SM = single mode, FP = Fabry-Perot, DFB = distributed feedback, BH = buried

heterostructure. [Table adapted from Hoss and Lacy (1993).]

Fig. 11.17: A typical
variation of output power
with current for a laser
diode (LD) and an LED.
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Typical cw (i.e., continuous wave) laser diodes have np values between 0.25
and 0.6. The quantity d P /d I is the slope efficiency and is specified in mW/mA.
Threshold currents lie typically in the range 25-250 mA and output powers are
typically in the range [-10 mW.

One of the major aspects of laser diodes is a strong dependence of the thresh-
old current and the output power on temperature. Figure 11.18 shows a typical
output power variation with the diode current for different temperatures. We
note that the threshold current depends critically on temperature. This depen-
dence is approximately described by the relation

I(T) = [ye''T (11.43)

where /y is a constant and T is known as the characteristic temperature of the
diode. Typically, the increase in /,;, is 0.6-1% per “C for GaAlAs lasers and
1.2-2% per °C for GalnAsP lasers.

As we discuss in Chapter 13, most optical fiber communication systems use
digital transmission techniques, in which the optical source is modulated to
generate optical pulses. This is achieved by biasing the laser diode to a current
slightly above 1, Thus, in the absence of any signal, the optical power output
is very small. This corresponds to a digital “zero.” The signal in the form of
current pulses adds to the bias current, thus generating a high-output power
corresponding to a digital “1” (see Figure 11.19). The amplitude of the signal
current pulses is adjusted not to exceed the maximum rated current value.

Biasing the diode near threshold helps in turning on the diode faster. In
addition, the required signal current for modulation is also lower if the laser
diode is biased near threshold. Since the threshold current itself depends on
the operating temperature, either the diodes are cooled thermoelectrically to
maintain a constant temperature or the output power (exiting from the other end
of the diode) is monitored by a photodetector and the bias current is adjusted
to give the same output optical power.

Fig. 1118 Effect of
temperature on the ouy
power versus drive cun
Note that the threshold
current increases with
increase in temperature
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Fig. 11.19:  For digital
modulation of laser diodes,
they are biased close to the

threshold value. The current T
pulses lead to optical
pulsing of the diode.

Light
Ourput

Drive current —»
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11.5.2  OQutput spectrum

As discussed earlier, when the input current is below threshold, the laser diode
behaves like an LED and the output is mainly due to spontaneous emissions
and, hence, the spectrum is broad. As the current increases beyond threshold,
the frequencies having a larger gain and smaller cavity loss begin to oscillate
and the spectrum changes significantly. The output power also increases. As
the current is further increased, the output spectrum becomes sharper and the
total output power also increases. Figure 11.20 shows a typical output spectrum
from a laser diode oscillating below threshold and above threshold.

In a multilongitudinal mode laser, the output spectrum consists of a series of
wavelengths (see Figure 11.20(b)). The oscillating wavelengths are determined
by the cavity resonance condition (see equation (11.15))

¢

U o= g, g =1,2.3, ...
oy 1

where n(v) is the refractive index of the semiconductor material at frequency
v. Two adjacent oscillating frequencies corresponding to ¢ = gy and gy + | are
given by

¢

V= . 11.44
2n(v)l o ( )

¢
Ay = ———u . {¢ { 11.45
v+ Av Ste & AV (go+ 1) ( )

For Av < v, we may write

dn .
+ .- (11.46)

nv + Av)y = n(v)y+ Av - —
dv
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Fig. 11.20:  (a) The output
spectrum of a
GaAs/AlGaAs laser below
threshold. The emission 18
mainly due to spontaneous
ransitions. (b) The output
spectrum when the laser
oscillates above threshald.
Note the multilongitudinal
modes of oscillation. [After
Yariv (1991).]

Substituting in equation (11.45) and neglecting higher order terms, we have for
the intermodal spacing

c vdn\ !
A= —1|1+4—— 11.47
Y 2nl ( + n du) ( )

Typically, n = 3.6,/ = 250 pum, ‘;% ~ (3,38 [Kressel and Butler (1977)] and
we have

Av > 125 GHz

For wavelength Ay = 0.85 pum, the corresponding wavelength spacing is

2

A
Al = —Av =03nm
¢

In the above discussion we saw how a laser diode generally oscillates simul-
taneously in a number of frequencies giving a wider spectrum of the output.
A larger frequency spread leads to a greater pulse dispersion in a fiber optic
communication system (see Chapter 13). To reduce dispersion, we must use
lasers that oscillate in only a single longitudinal mode. There are many ways to
achieve single longitudinal mode oscillation.

Since the gain spectrum has a finite spectral width, one of the methods could
be to increase the longitudinal mode spacing to have only one longitudinal mode
within the gain spectrum. For example, for a gain spectral width of 5 nm, the
intermode spacing has to be larger than 5 nm. Thus, at a wavelength of 1300 nm,
this corresponds to an intermode frequency spacing of about 890 GHz. Thus,
using equation (11.47), we must have

c vdn\ '
L ] +—— ~ 34
= 2nAv ( * n dv) pm

Such small devices create problems in handling and also, because the volume
of the gain medium is restricted, the corresponding power outputs are lim-
ited.

A more reliable and efficient method to achieve single longitudinal mode
emission is to introduce components or mechanisms into the laser cavity that
result in a loss for all longitudinal modes except one. In this way, only one
of the longitudinal modes for which the gain exceeds the losses would be
able to oscillate. Some of these techniques include the use of an external cav-
ity, using gratings at the end sections of the optical cavity itself (distributed
Bragg reflector (DBR)), or even integrating the grating over the entire cavity
region; these techniques are referred to as distributed feedback (DFB) struc-
tures.

InChapter 21 we discuss periodic waveguides and we show that, by providing
a periodic perturbation (in thickness or refractive index) along the propagation
direction, one can achieve a highly selective wavelength reflection. Such a
wavelength selective reflection can be used to provide low-loss feedback at
only one oscillation frequency and higher losses at other frequencies.
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If n grepresents the effective index of the propagating mode in the waveguide
forming the laser, then for efficient Bragg reflection we must have (see Chapter
2h

2 2
2o = —
}\1} - A
or
A
A= (11.48)
2nyy

where A is the period of the perturbation and A satisfying the above equation is
known as the Bragg wavelength. If a periodic modulation with a spatial period
given by equation (11.48) is provided, then the reflectivity is strongest for the
wavelength A and the periodic structure acts like a mirror (see also Section
17.9). For a wavelength of 1550 nm, assuming ey = 3.5, we obtain the required
spatial period as 221 nm. Gratings with such short periods are usually fabricated
by using holographic techniques.

For wavelengths away from A, the reflectivity drops very sharply and thus
such gratings act as highly selective wavelength mirrors.

The very strong wavelength dependence of reflectivity of a periodic wave-
guide can be used to fabricate single-frequency lasers. The Bragg gratings could
be placed outside the gain region, in which case they replace the cleaved ends as
wavelength selective mirrors (see Figure 11.21(b)). Such a structure is referred
toas a DBR laser. The Bragg grating can also be integrated along with the gain
region, in which case at every point in the laser cavity one has reflection and
transmission and thus the feedback is distributed throughout the entire length
of the cavity. Such a laser is referred to as a DFB laser (see Figure 11.21(a)). In
DFB lasers, normaily the grating is formed in the waveguide layer just above
the active layer. The end facets are usually antireflection coated to avoid any
reflections. Since the wavelength selective element is integrated along with
the laser, such lasers are reproducible and are also more stable with time and
external conditions.

Fig. 11.21: (a)DFB g
{b) DBR laser structure:
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Fig. 11.22:  Output spectra
of (a) a DFB single
longitudinal mode (SLM)
laser diode and (b) a
Febry-Perot (F-P)
multifongitudinal mode
(MLM) laser diode. [After
Lin €1989).]
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Figure 11.22 shows a comparison between typical output spectra of a single
tongitudinal mode DFB laser and a multilongitudinal mode FP laser.

11.5.3 Radiation pattern

As discussed in Section 11.4.6, in a laser structure, the optical radiation is con-
fined in both the lateral and the transverse directions by an index step. Thus, the
guiding region acts like an optical waveguide. As discussed in Chapters 7 and
8, an optical waveguide is characterized by various transverse modes of prop-
agation. Under certain conditions the waveguide can be made to support only
a single transverse mode. Most laser structures for use in optical fiber commu-
nication operate under a single transverse mode condition. The waveguide in a
laser is similar to a rectangular cross-section waveguide and one can indeed ob-
tain the field distribution of the fundamental mode as well as its effective index.
One may approximate the mode field distribution by a Gaussian function with
two different widths along the transverse (wy ) and lateral (w, ) directions as

x? y2
Yix, y) = A exp -5 = (11.49)

uy Wy

where x and y represent axes parallel and perpendicular to the junction plane.
Typically, for BH lasers wy =~ 0.5-1 pm and w; >~ -2 um.

The corresponding far-field pattern will be elliptical with a larger divergence
in a plane perpendicular to the junction (see Figure 11.23). The divergences par-
allel and perpendicular to the junction plane are typically 5-10° and 30-50",
respectively. Such large divergences pose problems in coupling light into single-
mode fibers. For efficient coupling, one can use lenses to transform the output
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from the laser. This is effective because the mode spot sizes of laser diodes are
much smaller than those of the fiber and, hence, by magnifying the output one
can reduce the divergence of the beam and achieve a good coupling efficiency.
For maximum efficiency, the Gaussian field profile of the laser diode should be
made to match that of the fiber mode. The coupling lenses can be external to the
fiber or can be formed at the tip of the fiber itself by etching. Using such tech-
niques one can achieve about 50% coupling efficiency to single-mode fibers.

11.5.4 Modulation of semiconductor lasers

To encode information into the laser beam, the optical output of the laser must
be modulated. One of the unigue aftractions of a semiconductor laser is the
possibility of directly modulating the output of the laser by modulating the
external current.

When the external current through the laser diode is changed, this results in
a changed electron-hole (e~h) population inside the laser cavity. This changed
e—h population changes the gain, which in turn changes the output power from
the laser. The dynamics of such a modulation is determined by many factors —
important among them, the carrier recombination times and the photon lifetime
of the cavity. The carrier recombination lifetime due to spontaneous recombi-
nation is typically 1 ns in GaAs-based materials, whereas the stimulated carrier
lifetime depends on the density of photons (i.e., the optical energy) within the
cavity and is of the order of 10 ps. The photon lifetime is the average time
that a photon spends inside the cavity before either escaping from the cavity
or being absorbed or scattered. The cavity photon lifetime is [see, e.g., Ghatak
and Thyagarajan (1989), Chapter 9]

1o
¢ (oz — % In RIRZ)

Tph =

g .
= — (11.50)
CVh

Fig. 11.23:  The far-field
pattern from a laterally
confined laser diode has ar
elliptical cross section.
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where yy, (see equation (11.12)) represents the threshold gain coefficient. Typ-
ically, vy =~ 50 cm™! (see Example 11.4) and using np == 3.5, we obtain
Tpp, = 2 ps. The upper limit to the modulation capability is thus set by this
photon lifetime.

For digital modulation, we need to pulse the laser diode. When a current
pulse is applied to the laser, electrons and holes get injected into the laser
cavity. This leads to the spontaneous generation of radiation that then takes
part in stimulating further emissions. The increased radiation density in the
cavity then stimulates a larger number of e—# recombination, which tends to
reduce the e—h population. The net output power is a result of a dynamic
interaction between e~ recombination and photon lifetimes. If the laser diode
is completely turned off after each pulse, then the spontaneous recombination
time will limit the modulation rate. There is a delay between the onset of laser
emission and the current pulse. In view of this, for high-speed modulation lasers,
diodes are biased close to threshold (see Figure 11.19). This, of course, results
in a smaller extinction ratio between bits 1 and 0 in a pulse code modulation
system.

Because of the short stimulated recombination lifetimes, semiconductor
lasers can be modulated to very high speeds of 20 GHz or more.

11.5.5 Frequency chirping

When a laser diode is modulated, the current modulation results in a chang-
ing carrier concentration in the laser cavity. Since the refractive index of the
semiconductor material of the cavity depends on the carrier concentration, this
current modulation leads to a change in the laser mode frequency — that is,
within the pulse the frequency changes with time. This phenomenon is called
chirping. The mode frequency is blue-shifted (increase in frequency) near the
leading edge and red-shifted (decrease in frequency) near the trailing edge of
the optical pulse. Such a chirped pulse has a much broader frequency spectrum
than a corresponding unchirped pulse (see Chapter 15). Chirping can increase
the spectral width from less than about 0.01 nm under c¢w operation to about
0.2 nm under modulation. This increased spectral bandwidth will lead to an
increased pulse broadening when it propagates through an optical fiber and,
hence, will imit the bit rate.

For very high speed communications (~10 Gb/s) the chirping of optical
pulses can be avoided by employing continuous wave (cw) laser diodes and
using an external electrooptic modulator to modulate the output.

11.6 LED characteristics

An LED is a forward biased p-n junction in which e—h recombination leads to
the generation of optical radiation through the process of spontaneous emission.
The structure of an LED is similar to that of a laser diode except that there is no
cavity for feedback. Unlike the emission from a laser diode, which is primarily
due to stimulated emissions, the emission from an LED is due to spontaneous
recombinations and the output from an LED differs significantly from that of a
laser diode.

Figure 11.17 also shows the variation of output power from an LED as a
function of the drive current. Unlike the laser diode, there is no threshold and
the output power increases smoothly as a function of current. At large currents
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the output power saturates. The total power outputs from LEDs can be a few
milliwatts.

Figure 11.24 shows the output spectrum of a typical LED. Again, unlike
a laser, the spectrum is quite broad (typically 30-80 nm wide). Such a large
spectral width leads to a large dispersion when LEDs are used as sources in
optical fiber communication systems.

Because spontaneous emission is random and appears along all directions,
the output from an LED is not directional. Output beam angles may be typically
in the range 30° perpendicular to the junction, to about 120° parallel to the
Jjunction. Such a broad emission pattern implies that coupling into single-mode
fibers will be very inefficient. On the other hand, the coupling efficiency into
multimode fibers can be significant. For example, with an LED emitting | mW
of optical power, one can approximately launch 40 £ W (= — 14 dBm) of power
in multimode fibers and about 10 uW (= —20 dBm) in single-mode fibers.

The modulation capabilities of LEDs are limited by the carrier recombination
time and the capacitance of the device. Unlike laser diodes, in the case of LEDs,
the rise times are in the range of 2-10 ns, giving a 3-dB modulation bandwidth
of 30-180 MHz.

Problems

1T.1  The bandgap energy £, of Gaj_,Al;As depends on x through the following
approximate equation.

E,(x <037) =(1.424 + 1.247x)eV

Calculate the bandgap energy and the corresponding cutoff wavelength for x =
0.2 and 0.3.

11.2 When a laser diode 1s medulated, the refractive index of the cavity also changes
due to carrier injection. If the fractional change in refractive index is 1077, what
is the corresponding fractional change in wavelength?

Solution: From equation (11.44), we have
_ 2nL

Ay = ——; ¢ = integer
4

Fig. 11.24:  Output optical
spectrum of a typical
high-power 1300-nm LED.
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1.4

11.6

1.7

where n is the refractive index. Thus, the change Aig in wavelength of oscillation
for a change An of refractive index is

Alp An
A0 n

For Ag = 1300 nm and An/n = 107, we have

Adg =13 x 10~% nm

The corresponding frequency shift is

Av = = Akg = 23MHz
)&2
0

Consider a semiconductor laser operating at 900 nm. If the spectral width over
which gain is available is 15 nm, what is the maximum cavity length for single
longitudinal mode operation? Assume the refractive index n = 3.6.

The forward current through a GaAsP red LED emitting at 670-nm wavelength
is 30 mA. If the internal quantum efficiency of GaAsP is 0.1, what is the optical
power generated by the LED?

Solution:

Note that this is not the output power of the LED, since only a fraction of this
will exit from the LED.

The threshold current of a particular laser diode doubles when its temperature is
increased by 50°C. Determine the characteristic temperature of the laser.

Solution: If 7,5, and I;;» represent the threshold current at temperatures 7) and
Ty -+ 50 then using equation (11.43) we have

I 1 eTIT
T 2 hEsom
Thus
50
Thy=— =72K
in2

Calculate the threshold gain for a semiconductor laser with a length of 250 om.
o = 5mm~!', and end faces of reflectives 90% and 30%. What is the correspond-
ing photon lifetime?

A He-Ne laser has a gain bandwidth of 1700 MHz. What should be the cavity
length so that the laser oscillates in a single longitudinal mode”
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12.1 Introduction

An optical detector is a device that converts light signals into electrical signals,
which can then be amplified and processed. Such detectors are one of the most
important components of an optical fiber communcation system and dictate the
performance of a fiber optic communication link.

There are many different types of photodetectors such as photomultiplier
tubes, vacuum photodiodes, pyroelectric detectors, and semiconductor photo-
diodes. Semiconductor photodiodes are the most commonly used detectors in
optical fiber systems since they provide good performance, are compatible with
optical fibers (being small in size), and are of relatively low cost. These photo-
diodes are made generally from semiconductors such as silicon or germanium
or from compound semiconductors such as GaAs, InGaAs, etc.

In this chapter we briefly discuss the basic principle of operation of two com-
monly used photodiodes — namely, PIN (p-doped, intrinsic, and n-doped layers)
diode and avalanche photodiodes (APD) — and study their important character-
istics that are of particular relevance to optical fiber communication systems.

12.2 Principle of optical detection

The basic principle behind photodetection using semiconductors is optical ab-
sorption. When light is incident on a semiconductor, the light may or may not
get absorbed depending on its wavelength. If the energy hv of a photon of the
incident light beam is greater than the bandgap of the semiconductor, then it can
be absorbed, leading to generation of e—h pairs (see Section 11.4.2). When an
electric field is applied across the semiconducting material, the photogenerated
e~ pairs are swept away, leading to a photo current in the external circuit,

If £, is the bandgap of the semiconductor, then the maximum wavelength
of absorption (also referred to as the cutoff wavelength) is given by

he
¢ = E

(12.1)

3

Substituting for & (=6.63 x 107 J.s) and ¢, the cutoff wavelength in micro-
meters is given by

1.24
E.(cV)

(12.2)

~
Fr—
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Fig. 12.1: A PIN
phetodiode consisting of an
intrinsic semiconducting
layer sandwiched between
p-doped and n-doped
layers. In the
photoconductive mode the
diode is reverse biased.
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The bandgap energies are 1.11 eV for silicon, 0.67 eV for germanium, 1.43 eV
for GaAs, and 0.75 eV for InGaAs. Thus, the corresponding cutoff wavelengths
are 1.13 pum,1.85 pum, 0.87 pm, and 1.65 pm, respectively, implying that
these semiconductors can be used for detection of light below the above cutoff
wavelengths.

Photodetectors are made out of p—n junctions. There are two different de-
tection modes available — namely, photovoltaic and photoconductive. In the
photovoltaic mode, electrons and holes that are generated by absorption of the
incident light are collected at either end of the junction, leading to a potential
difference. A current flows if the device is loaded. In this mode the photodetec-
tor is an unbiased diode. In contrast, in the photoconductive mode, the diode is
under reverse bias and the e—# pairs generated by light absorption are separated
by the high electric field in the depletion layer. Such a drift of carriers induces a
current in the outer circuit. Photodiodes operating in the photoconductive mode
have a faster response because of the carriers being swept away by the electric
field and are the ones used in fiber optic communication. We shall hence restrict
our attention to this mode of operation.

Photodetectors used in fiber optic communication systems fall under two
categories: PIN and APD. In both the devices, the e—h pairs are generated in
the depletion region and these are swept away by the applied electric field. In
contrast to PIN, APDs have an inbuilt current gain.

In the following sections we discuss the most important characteristics of
PIN and APDs. Noise in photodetection is also an important aspect and is
discussed in Section 13.3.

12.3 PIN photodetector

The most common semiconductor photodetector is the PIN photodiode, which
consists of an intrinsic {very lightly doped) semiconductor sandwiched between
a p-doped and an n-doped region (see Figure 12.1). The PIN photodiode is
normally subjected to a reverse bias, as shown in Figure 12.1. Since the intrinsic
(1) region has no free charges, its resistance is high and hence most of the voltage
across the diode appears across the 1 region. The 1 region is usually wide so
that incoming photons have a greater probability of absorption in the i region
rather than in the p or n regions. Since the electric field is high in the 1 region,
any e—#h pairs generated in this region are immediately swept away by the
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field. e—h pairs generated in the p and n regions have to first diffuse into the
depletion region before being swept away. Also, these e-h pairs may suffer
recombination, resulting in a reduced current.

12.3.1 Responsivity and quantum efficiency

The absorption of optical radiation in the semiconductor material is described
by

P(2) = Py[l — ¢ @41 (12.3)

where Py 1s the optical power at z = 0 (the incident optical power), P(z) is the
optical power absorbed over distance z, and () is the wavelength-dependent
absorption coefficient. Figure 12.2 shows the A dependence of «(i) for some
typical photodiode materials.

We note from Figure 12.2, that near cutoff « rises much more rapidly for
GaAs, InGaAs, and InGaAsP than for silicon and germanium. This is because
Siand Ge have an indirect bandgap, whereas the others have a direct bandgap.
We also note that typical absorption coefficients are in the range of 10°-10°
cm™ !

Let w represent the width of the depletion region. An optical power P inci-
denton the photodetector first suffers a partial reflection at the air-semiconductor
surtace before entering the detector. If R represents the reflection coefficient,

Fig. 12.2:  Wavelength
dependence of the
absorption coefficient for
different important
semiconductor materials
used in fiber optic
communications. | After
Campbell (1989).]
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then the optical power entering the detector is Py(1 — R). The optical power
absorbed in a distance w will then be

P()(l o R)[l _ewcx(k)'u:;

If v is the frequency of the incident light, then the number of photons absorbed
per unit time will be

fﬁ{l — R)(1 —e™)

hv
Since each absorbed photon leads to generation of an ¢~/ pair, the above ex-
pression also gives the number of e~/ pairs generated per unit time. Assuming
that only a fraction ¢ of the e~/ pairs contributes to the photo current (the
remaining having been lost due to recombination), the photo current is

>

hy

[ = —( - Rl —e ™) P (12.4)
where ¢ is the magnitude of the electronic charge.

From equation (12.4) we can define two important quantities — namely,
guantum efficiency n and responsivity p.

The quantum efficiency # is the ratio of the number of ¢—h pairs generated
to the number of incident photons. Thus

/e (=R = ey (12.5)
prewed = — — ¢ .
"= Pl ¢

The responsivity p 1s the photo current generated per unit optical power and is
usually specified in A/W.
/ ne el

= = = ] — RY1 — e ") 12.6
P Py hv hv ( N : 4 ( )

Substituting for e (=1.6 x 107! C) and & (=6.63 x 107" J.s), equation (12.6)
can be rewritten as
Ag
124"

p = (2.7

with Ay measured in micrometers.

Example 12.1: For light of wavelength 0.8 pm, the absorption co-
efficient of silicon @ ~ 10° m~'. Since the refractive index of Si is
approximately 3.5, for an uncoated Si photodiode the reflection coef-
ficient

35-1\"
R=1- ~ (.31
3.5+ 1

For a depletion layer width of 20 pum. we obtain (assuming ¢ = 1)

n=0.6
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The corresponding responsivity is

ne ‘ .
p=-—=039A/W

1%

If the detector surface is antireflection coated, then R = 0 and we have
n >~ 0.87 and p == 0.57 A/W.

As mentioned earlier, the long wavelength cutoff of a photodetector is caused
by the fact that the energy of the incident photons is less than the bandgap. Atthe
lower wavelength side, the response of the photodetector cuts off as aresultof a
very large value of «. This large absorption coefficient results in their absorption
very close to the photodetector surface where the e—h recombination time is
very short. Thus, the photogenerated e—h pairs recombine within the detector
itself before they can contribute to the current in the circuit.

Figure 12.3 shows the responsivity of Si, Ge, and InGaAs photodetectors
as a function of wavelength. As evident, Si is ideal for detection in the re-
gion of 850 nm (the [ window of fiber optic systems) and InGaAs is the pre-
ferred detector in the 1.3-pm and 1.55-pm wavelength regions (II and II1 win-
dows).

The presence of the intrinsic region between the p and n regions of the PIN
photodetector improves the performance of the photodetector compared with
a simple p—n junction detector. Thus, because of the large depletion region,
most photons can get absorbed in this region. Due to the presence of a strong
electric field, the carriers drift rapidly (without suffering many recombinations),
resulting in a good quantum efficiency and, hence, responsivity. The width of
the intrinsic region cannot be made too large since the carriers then would
take longer to drift to the terminals and thus lower the speed of response of the
photodetector (see Section 12.3.2). For silicon and germanium, indirect bandgap
semiconductors, the widths are typically 20-50 pm, whereas for InGaAs, a
direct bandgap semiconductor, the width is typically 3—5 pm.

Fig. 12.3:  Spectral
dependence of responsivity
o and quantum efficiency 7
for the three important
semiconductor photodiode
materials, Si, Ge, and
InGaAs. [After Keiser
(1991).]
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Figure 12.1 shows a simple reversed biased operation of a PIN photodiode
with R; being the load resistance. In the absence of any light falling on the pho-
todetector, the entire bias voltage drops across the photodiode and the voltage
across Rj is zero. When light with power P falls on the photodiode, it leads to
acurrent p P, where p is the responsivity. This current leads to a drop in voltage
across K of

Ve =pPRyL (12.8)
and the bias voltage across the photodiode reduces. We see from equation (12.8)
that the voltage Vg across the load is proportional to the optical power P falling
on the photodetector. Thus, a measurement of Vg gives us the optical power P.
The maximum value of P that is measurable in such a fashion is when Vi = V,

- that 18

Vi

(12.9
PRy

Pmax -

Beyond this value the photodiode gets saturated. Thus, by choosing an appro-
priate value of R; one can operate the photodiode over an optical power range
0 to P Decreasing Ry to increase the detection range of course reduces the
sensitivity given by

Ve/P =pR; (12.10)

Example 12.2: Consider a Si PIN detector with p = 0.5 A/W. We
assume a reverse bias of 20 V and a load resistor of 100 §2. In such a
case

Prax = 400 mW
and
Vg
— = 50 mV/mW
P
On the other hand, increasing the load resistor to 10 k€2 gives
Prax = 4 mW
and

Vi
— = 5V/mW
P

Thus, increasing R, increases the sensitivity while reducing the range
of detection.
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12.3.2  Speed of response

The speed of response and, hence, the bandwidth of a photodetector is dependent
on three primary factors: the transit time of the photo-generated carriers through
the depletion region; the electrical frequency response as deterrmned by the RC
time constant, which depends on the diode capacitance; and the slow diffusion
of carriers generated outside the depletion region.

The transit time of carriers across the depletion region of width w is given
by

w

[, = — (12.11)
Uy

where v, 18 the carrier drift velocity. The smaller is w, the smaller is 7, and the
lesser will be the limitation due to transit time. This requirement of smaller w
is contrary to that required to achieve larger quantum efficiency.

As an example we consider an intrinsic region of width 20 pm in a Si PIN
detector. The drift velocity of electrons is typically 10° m/s. Thus, the time
taken to cross the intrinsic region is 200 ps. In InGaAs PIN detectors, the
typical widths are about 5 um, leading to transit times of 50 ps. These numbers
correspond approximately to the photodiode rise times.

Apart from transit time limitations, photodiode capacitance may also play a
significant role. Thus, if the diode area is A and the depletion layer width is w,
then the junction capacitance 1s

A
c, = (12.12)
w

where € is the permittivity of the semiconductor. In a circuit as shown in Figure
12.1, the speed of response is given by the RC time constant. Indeed, the rise
time (10-90%) is given by (see Example 13.1)

5= 2.19R, C,

€A
= 2 19R; — (12.13)
w

Decreasing w to reduce transit time would increase the capacitive rise time,
which would have to be balanced by a decreased R, . The bandwidth of the
photodiode as determined by R, and Cy is

]
Af = e 12.14
f EIZ’RLC(; ( )

Clearly, to achieve small rise times, photodetectors must have small area, large
w, and small K, .

Example 12.3: As an example, let us consider a Si PIN detector with
a diameter of 500 zzm and w = 20 m. Using € = 10.5 x 1071 F/em,
we have

€A

de = — 4pF
w
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Table 12.1. Typical performance characteristics of derectors®

Silicon Germanium InGaAs
Parameter PIN APD PIN APD PIN APD
Wavelength 400-1100 800-1800 900-1700
range (nm)
Peak (nm) 900 830 1550 1300 1300 1300
(1550) {1550)
Responsivity 0.6 77130 0.65-0.7 3-28 0.63-08
0 (A/W) (0.75-0.97)
Quantum 65-90 77 5055 55-75 60-70 6070
efficiency(%)
Gain (M) ] 150-250 1 5-40 I 10-30
Excess noise - 0.2-0.5 - (.95-1 - (.7
factor? (x)
Bias voltage 45100 220 6-10 20-35 5 <30
(—V)
Dark current” 1-10 0.1-1.0  50-500  10-500  1-20 15
(nA)
Capacitance 1.2-3 1.3-2 2-5 2-5 (.52 0.5
(pF)
Rise time (ng) 0.5~1 0.1-2 0.1-0.5 0.5-0.8 0.06-0.5 0.1-0.5

“Adapted from Hoss and Lacy (1993).
®Discussed in Section 13.3.

Thus, it R; = 1000 £, thent, = 8.8 ns. The corresponding bandwidth
is Af = 40 MHz. Decreasing R; to 100 €2 reduces ¢, to 0.88 ns and
the bandwidth goes up to 400 MHz.

We see from above that for achieving a small rise time and, hence, a large
bandwidth, R should be small. Recalling our discussion in Section 12.3.1, we
note that to increase the quantum efficiency we need to increase the thickness
of the depletion region. This, on the other hand, increases the response time and
lowers its bandwidth. A compromise is usually made by choosing depletion
widths between /o and 2/c.

In Section 11.4.6 we discussed how heterostructures are formed between
semiconductors with different bandgaps. Use of heterostructures in detectors
can also enhance their performance. Thus, for detection in the 1.3- to 1.6-
pm region one uses InGaAs with a cutoff wavelength of about 1.65 um
as the intrinsic sandwiched absorption layer between two InP layers (p-type
and n-type) on either side. Since InP has a cutoff wavelength of 0.92 pum,
light in the wavelength region 1.3-1.6 um is absorbed only in the InGaAs
region. Because of this, one can eliminate any component to the photocur-
rent due to the diffusion of carriers (which is much slower than drift) and
thus enhance the speed of response. Also by choosing the InGaAs layer to
be several micrometers thick, the quantum efficiency can be significantly in-
creased.

Table 12.1 lists some of the characteristics of Si, Ge, and InGaAs PIN
and APDs.
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12.4 Avalanche photodiodes (APDs)

The APD is a photodiode with an internal current gain that is achieved by
having a large reverse bias. In an APD the absorption of an incident photon first
produces an e~h pair just like in a PIN. The large electric field in the depletion
region causes the charges to accelerate rapidly. Such charges propagating at
high velocities can give a part of their energy to an electron in the valence band
and excite it to the conduction band. This results in an additional -4 pair, These
in turn can further accelerate and create more e—# pairs. This process leads to
an avalanche multiplication of the carriers.

For avalanche multiplication to take place, the diode must be subjected to
large electric fields. Thus, in APDs one uses several tens of volts to several
hundred volts of reverse bias.

APDs differ from PIN diode designs in having an additional p-type layer
between the intrinsic and a highly doped » region (see Figure 12.4). The e—h
pairs are still generated in the i region but the avalanche multiplication takes
place in the p-type region. APDs that have avalanche multiplication of just one
type of charge carrier have superior noise characteristics.

If M represents the multiplication factor, then for an APD, we have

mw;MR:M? (12.15)
1V

We should mention here that M in equation (12.15) is an average value and
the gain factor M itself fluctuates around the mean. This leads to an additional
noise (also referred to as excess noise) in APDs (see Section 13.3.3). Thus,
there is an optimum multiplication factor to achieve best operation. Figure 12.5
shows a typical variation of M with the applied reverse bias voltage.

In the 850-nm range, silicon APDs typically require bias voltages of around
250 V to achieve an optimum gain of about 100, whereas PIN devices require
bias of only 10-50 V. At longer wavelengths (1300-1500 nm) the APDs require
typical bias of 20-30 V for typical gains of 10-30, whereas PIN devices require
only 5-15 V.

Fig. 12.4:  An APD that is
reversed biased to a high
voltage. Photons absorbed
in the i region create e~
pairs that on acceleration
and collision produce an
avalanche of ¢—h pairs,
leading to an internal
multiplication primarily in
the p region.
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Fig. 12.5: Typical
variation of current gain
with the applied bias
voltage of a 51 APD for
different wavelengths.

[ After Melchoir et al.
(1978).]
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Problems
12.1 The bandgap energy of Ings3GagayAs 1s 0.73 eV. Obtain the corresponding
cutoff wavelength
[ANSWER: A, = 1.65 um.]
12.2  Consider a St PIN photodiode with a depletion layer width of 20 um and a
diameter of 200 zm. The absorption coefficient at 800 nm is 10> em™'.
{a) Assuming antireflection-coated surface, obtain the quantum efficiency.
(b) If the load resistance is 10 k€2, obtain the RC time constant,
{(¢) Compare this with the drift time for a typical carrier velocity of 10° m/s.
12.3  Consider an InGaAs PIN photodiode with a quantum efficiency of 0.6. Calculate
the responsivity at 1300 and 1550 nm. Why is the responsivity larger at 1550
nm?
12.4  An optical power of —40 dBm is incident on a photodetector with p = 0.65
AW, Calculate the current that is generated.
12.5 Consider a Si PIN photodiode operating in a circuit as shown in Figure 12.1. If
the absorption coefficient at 800 nm is 10° m !, then assuming the photodiode
to be antireflection coated, what should be the depletion layer thickness for a
quantum efficiency of 0.5 and 0.77 (Assume £ = 1.)
Solution: From equation (12.5), we have
(i)
w=—n{ ——
o I—n
Thus, for n = 0.5 and 0.7, we must have w = 6.9 um and 12 gm.
12.6  Consider a PIN photodiode with w = 20 zm and a carrier velocity of 5 x 10%

m/s.
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12.9

12.10

12.13

12.14

(a)  What is the transit time of the carriers?
[ANSWER: 0.4 ns.|

(by If the dielectric constant K = 11.7 and the photodiode diameter is 1 mm,
obtain the junction capacitance.

[ANSWER: 4 pF]

(¢) For what values of the load resistance will the detector rise time be deter-
mined by the transit time?

[ANSWER: R < 0.4 x 1079/2.19C ~ 46 Q2]

The bandgap energies of GaP, InP, and AlAs are 2.25 eV, 1.35¢V, and 2.16 ¢V,
respectively. Calculate their cutoff wavelengths.

[ANSWER: GaP: 550 nm, InP: 920 nm, AlAs: 570 nm.|

Calculate the maximum load resistance that can be used with a photodiode

having a capacitance of 2 pF so that it can be operated up to frequencies of (i)

10 MHz and (1) | GHz.

Sificon has a refractive index of 3.5.

{a)  What is the optimum refractive index and thickness of a thin dielectric film
to be coated for suppressing reflection from the surface?

(b) TItSi07 (n = 1.46)is used, what should be the thickness for least reflection?

A power of —3 dBm at 1300 nm is launched in an optical fiber with an attenua-
tfion of 0.4 dB/km. After transmission through 50 km of the fiber, the output is
coupled to a PIN photodetector with a quantum efficiency of 0.7. What ig the
optical power falling on the photodetector and the corresponding photocurrent?
What is the quantum etficiency of a 51 PIN photodiode at 800 nm under normal
illumination with @ = 10° m~! and d = 10 um? Assume the refractive index
of 5t to be 3.5. Obtain the corresponding responsivity.

A uniform intensity beam of radius 1 mm and power 10 mW falls on the pho-
todetector of Problem 12.11 with a sensitive detection area of 100 wm. Calculate
the current generated in the photodiode.

A photodetector has a responsivity of 0.5 A/W at 1300 nm and at 1500 nm.
Calculate the number of e~k pairs generated if the photodiode is illuminated by
I mW of 1300-nm radiation and 1500-nm radiation.

The bandgap of Ing 14Gap.geAs is 1.15 eV. What is the corresponding cutoff
wavelength?

A Si PIN photodiode with a diameter of 0.5 mm is to be used with a foad
resistor of 100 €. Estimate the thickness of the intrinsic region so that the diode
response is fast. Obtain the corresponding responsivity if the diode is provided
with antireflection coating. Assume ¢ = 10.4 x 10719 F/m and vy = 107 m/s.
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13.1 Imtroduction

In the preceding chapters we discussed the characteristics of optical fibers, op-
tical sources, and optical detectors. These form the three basic units of any
optical fiber communication system. In this chapter we discuss how these ba-
sic elements can be put together to build a simple point-to-point optical fiber
communication link.

Let us assume that we need to transmit information between two points (sce
Figure 13.1). The separation between these points could range anywhere from
less than a kilometer in the case of computer data links to several thousands
of kilometers, for instance, in transoceanic links. In all such links, there would
be a transmitter that could be either an LED or a laser diode, the transmis-
sion path consisting of optical fibers that could be either multimode or single-
mode fibers, and the optical receiver that could be a PIN or APD followed by
the detection electronics. The choice of the components would depend on the
distance as well as on the bit rate. When the separation between the points is
greater than about 50-100 km, then because of attenuation in the link or pulse
dispersion, it becomes necessary to use regenerators that consist of a receiver—
transmitter combination. These regenerators detect the pulse stream before the
power becomes too low or the pulses become unresolvable and retime, reshape,
and regenerate (and, hence, the name 3R repeater) a new set of optical pulses
to be transmitted over the next part of the link. For links that are limited by
loss rather than by dispersion, one can use optical amplifiers in place of re-
generators. These optical amplifiers amplify the optical signals in the optical
domain itself without converting them into an electrical signal and, hence, have
many attractive features (see Chapter 14). Of course, we cannot cascade such
optical amplifiers indefinitely since these do not compensate for dispersion and
also add noise. Thus, at such points in a long-haul link we would have to use
electronic regenerators.

In the design of a fiber optic link, we usually have to carry out two analyses to
ensure that the system performs to our requirements: power budgeting and rise
time budgeting. Power budgeting ensures that enough power is being received
at the receiver so that the error in detector is below a specified limit. Rise
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time budgeting ensures that the overall bandwidth of the system is capable of
handling the bit rates at which the system is supposed to operate.

In Section 13.2 we briefly discuss analog and digital modulation, and in Sec-
tion 13.3 we discuss some of the important noise mechanisms in the detection
process. Section 13.4 discusses the concept of bit error rate and how it fixes
the minimum optical power required to fall on a detector. In Section 13.5 we
discuss power budgeting and rise time budgeting, and finally in Section 13.6 we
look at the limitations to a fiber optic system due to attenuation and dispersion.

13.2 Analog and digital modulation

We begin by considering the example of transmission of audio signals over a
large distance. When we speak, we produce sound waves that mostly vary in
frequency from about 20 Hz to about 4000 Hz. To transmit the sound signals
over a large distance, the audio signal is made to modulate a radio wave — that is,
some parameter of the radio wave like amplitude, frequency, or phase is made to
change in a manner proportional to the audio signal. Thus, the modulated radio
wave has coded into it the audio waves (which is the information to be sent). The
radio wave here carries the information and, hence, is called a carrier wave. The
audio wave modulates the radio wave and, hence, is called the modulating wave.

There are various ways of modulating the radio waves. For example, one may
modulate the amplitude of the radio wave in accordance with the signal. Such
a scheme results in what is known as amplitude modulation and is depicted in
Figure 13.2. Similarly, instead of modulating the amplitude of the radio wave,
one may modulate the frequency of the radio wave in accordance with the audio
wave. This results in frequency modulation and is shown in Figure 13.3.

Let us first consider the amplitude-modulating scheme. It can be shown that
when a carrier wave of frequency v, is modulated with a modulating wave of
frequency v,,, then the modulated wave consists of waves of frequencies v, — v,
and v, -+ v, In addition to waves of frequency v.. The waves at frequencies
V. — by, and v. + v, are said to lie in the lower side band and upper side band,
respectively. In general, the modulating wave may consist of waves of frequen-
cies from O to v,,. Thus, on modulating, one obtains two bands of frequencies
lying from v, — v, to v, (the lower side band) and another lying between v,
and v, -+ v, (the upper side band). Since both the side bands contain the infor-
mation, one may transmit only one of the side bands. Such a system is called
single side-band transmission. One can extract the information out of the signal
by again “mixing” the received wave with the frequency v.. Thus, when the

Fig. 13.1: A simple
point-to-point fiber optic
communication link
consisting of a transmitter,
connectors, splice, optical
fiber, receiver, and
regenerator.
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Fig. 13.2:  When the
carrier wave shown in (a) is
amplitude modulated by the

modulating wave shown in
(b}, one obtains an
amplitude-modulated wave
as shown in (¢).

Fig. 13.3:  When the
carrier wave shown in (a) is
frequency modulated by the

modulating wave shown in
(b}, one obtains a
frequency-modulated wave
as shown in (¢).
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wave with frequency v. — v, is mixed with a wave of frequency v,, one will
obtain waves of frequencies v,,, v., and 2v, — v,,. One of these corresponds to
Vp,, the modulating signal.

Since the frequency of the speech signal may lie anywhere between 0 and
4000 Hz, it becomes clear that, if the carrier wave has a frequency of, say,
100,000 Hz, then, for example, in the upper side band transmission, we must
transmit frequencies between 100,000 and 104,000 Hz. Thus, a band of at least
4000 Hz must be reserved for one speech signal. Hence, between carrier frequen-
cies of 100,000 and 500,000 Hz, we can at most send (500,000-100,000)/4000
= 100 independent speech signals simultaneously. Since the same bandwidth of
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197 Fig. 13.4:  {a) The figure
\ shows a time-varying signal
given by equation (13.1),

whose maximum frequency
component vy, 18 4wq /27,
63+ Hence, by the sampling
theorem, the signal can be
31l completely determined by
sampling the signal at
7t time intervals of

w4 wl2 " 3n/2 1/2vy = 7 /4wq, which is
(a) shown as vertical lines.
r (b} In the pulse amplitude
modulation system, the
amplitude of the signal at
the sampled times is
represented by the
amplitude of the pulses.

15

) ()t et

| i

ot —

(b)

4000 Hz is required irrespective of the value of the carrier frequency, it becomes
clear that, in a higher carrier frequency channel between 10"° and 5 x 10" Hz,
one can send 10’2 speech signals. This is an enormous capacity indeed. The
bandwidth of 4000 Hz that we have considered is enough for intelligibility of
speech. But for music the bandwidth is about 20 kHz. For television, the band-
width is about 6 MHz. Thus, a smaller number of television channels exist in
the same carrier frequency band.

The above method of sending simultaneously more than one signal along
the same channel by assigning different frequency bands for each channel is
referred to as frequency division multiplexing. Notice that all of the signals are
overlapping in the time domain while they are nonoverlapping in the frequency
domain. The different signals are separated at the receiver by making use of fil-
ters that transmit only the frequency band corresponding to the signal of interest.

The modulation system that is most commonly used in optical fiber commu-
nication is the pulse modulation system. This is based on the sampling theorem,
according to which a band-limited signal — that is, a signal that has no frequency
components above a certain frequency (say v,,) — is uniquely determined by

= o = oyt o 1o o w
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In addition to the pulse amplitude modulation technique, there exist other
techniques of coding the signal value into the samples. Thus, one could mod-
ulate the width of the pulses in accordance with the signal value while keeping
the pulse amplitude constant; this leads to pulse width modulation. Similarly,
one could alter the position of the pulse within the time interval, leading 0
pulse position modulation.

Another very important mode of transmission of the sampled values of the
signal is called the pulse code modulation (PCM). In such a scheme, instead
of varying the amplitude of a pulse in proportion to the value of the signal,
the signal is approximated by a new signal that is obtained by the process
of quantization. The quantized value is represented by a code formed by a
pattern of identical pulses. In binary coding. the signal value is first con-
verted to the binary code and then the ones and zeroes in the code are rep-
resented by the presence or absence of a pulse. Thus, in a coding scheme
having seven-bit! coding length, the signal value at a particular time is coded
in the form of seven pulses, all the pulses being of the same height and
width.

As an example, we consider a signal that is of the form

F(t) = 15]4 + sin wpt -+ sin(1.3wgr) + cos{2awpt)

+ cos(3ewqt ) + sin(dewpt )] (13.D
where g 1s a constant. The maximum frequency in the above signal is

dewg

Vn =
2T

(13.2)
Thus, according to sampling theorem, the sampling rate must be (at least)
4(0()
2, = — samples/s (13.3)
i

Hence, the samples must be taken every 1/2v,, s — that is, the time interval
between two samples 1s

I T
= — = 3 (13.4)
va 461)()

In Figure 13.4(a) we have drawn the signal given by equation (13.1) as a function
of wyt, and, as can be seen, the sample values are being taken every /4wy 5.
To consider the PCM system involving seven bits one must first code each of
the sampled signal values into a binary code of seven bits. Figure 13.5(a) gives
the signal value at the sampling times and the corresponding binary code. To
understand this, we note that the signal value of 105 corresponds to the binary

"The word bit is derived from binary digit.
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equivalent 1101001 from the following logic:

Remainder

20105 1
2152 0 The binary equivalent of 105 is formed by
2 LZ__f)__ 0 successively dividing by 2, then listing the
2013 1 final quotient and the remainders from bottom
2 [6_ 0 up. Hence, the binary equivalent of 105
213 1 is 1101001.

11

The maximum signal value that can be coded into a binary equivalent (of
seven bits)is 27 — | = 127. Thus, the signal values can be coded into intervals
of unity in a total amplitude of 127. This therefore corresponds to coding into
equally spaced levels and becomes less accurate at low-amplitude values. To
overcome this, one often uses the logarithm scale coding scheme (companding)
[see, e.g., Cattermole, 1969].

In Figure 13.5(b), the binary-coded sampled values have been depicted in
the form of pulses. It may be noted here that in Figure 13.5(b), at every sample,

Fig. 13.5:  (a) Pulse code
wave form of sample signal
depicted in Figure 13.4(a).
(b) In the PCM using binary
coding involving seven
levels, the sample values
are first converted into the
binary equivalent as shown
in (a). Then the ones and
zeroes in the binary coding
may be represented by the
presence or absence of a
pulse.
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n/4 ™
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01001 1000001 1010100 0110100 1000110 1000100
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Sample 1 2 2 3 3
Signal 1 1 2 1 2

Fig. 13.6:  Curves 1 and 2
correspond to two different
signals to be transmitied
along the same channel
simultaneously. Each signal
is first sampled, then coded
into a binary code, and
finally intermingled so that
the two signals appear at
different times. The
interspaced series of pulses
is then sent along the
channel. Such a scheme in
which the different signals
occupy different time
intervals is called time
division multiplexing
(TDM).

there are eight pulses instead of seven; the eighth pulse is required for signaling
and supervisory information at the receiver. Thus, for the above signal, there
would be 8 x 4wy /7 pulses per second; the first factor of 8 corresponds to the
fact that each sample is being replaced by eight pulses and the second factor
corresponds to the sampling rate.

Now, coming back to the case of speech signal, since the maximum frequency
is 4000 Hz, the sampling rate should be 8000 samples per second. If each sample
is replaced by eight pulses, one would have 8 x 8000 = 64,000 pulses per
second, which is also written as 64,000 bits/s or 64 Kb/s.

Hence, corresponding to each signal, one would have a series of pulses ap-
pearing 64,000 times per second. Simultaneous transmission of many signals is
done by intermingling the sample values of the various signals so that the pulses
of different signals propagate at different times. Figure 13.6 shows how two sig-
nals can be sent through the same channel on a time-sharing basis. Such a scheme
of multiplexing is known as TDM. In such a scheme all the signals occupy the
same frequency band but are separated in time. This is in contrast to frequency
division multiplexing, in which the various signals occupy the same region in
the time domain while they occupy different regions in frequency domain,

The number of independent messages that can be sent simultaneously in a
system employing TDM would be determined by the condition that the pulses
at the output be well resolved in time so that information can be retrieved back.
Thus, pulse broadening would ultimately limit the information capacity of the
system.

If one compares the pulse amplitude modulation (PAM) and PCM systems,
it is apparent that the PCM system requires more bandwidth for the trans-
mission of the same information since, corresponding to each pulse in the
PAM system, one has eight pulses in the PCM system. This disadvantage of
the PCM system is offset by the fact that a system employing PCM is more
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immune to noise and interference effects because in the PCM system the re-
ceiver has only to detect the presence or absence of a pulse regardless of its
amplitude value and width. Thus, all external factors that tend to distort the
amplitude or the shape of the pulses have no effect on a PCM system: of
course, the distortion should not be so much as to make the pulses unresolv-
able.

It can be seen from the above that if the pulses can be made very nar-
row and still are resolvable at the output end of the transmitting channel,
then the information capacity of the system will be much higher. If the pulses
are of infinitesimal width (i.e., the sampling is by impulses), then the band-
width of the sampled signal can be shown to be infinite. On the other hand,
if the pulses are of finite width, the resulting sampled signal has negligi-
ble energy content at higher frequencies. In fact, the bandwidth required for
transmission becomes smaller with an increase in pulse width. It therefore
appears that sampling with finite width pulses is superior to impulse sam-
pling since it requires a smaller bandwidth. But if the pulses have a finite
width, then the pulse requires a longer time interval for transmission and only a
smaller number of signals can be transmitted simultaneously on a time-sharing
basis.

In optical communication systems, the pulse sequence is formed by turn-
ing on and off an optical source such as a laser diode or LED. The pres-
ence of the light pulse would correspond to a binary | and the absence to
a binary 0. The two commonly used techniques for representing the digital
pulse train are the nonreturn to zero (NRZ) and the return to zero (RZ) for-
mats. In the case of NRZ, the duration of each digital pulse is equal to the
period, whereas in the RZ case, the pulse duration is shorter than the pe-
riod (typically the duration is half the period). Figure 13.7 shows the same
digital pattern in the NRZ and RZ formats. The choice of the scheme de-
pends on several factors such as synchronization, drift, and so forth. For ex-
ample, a long sequence of 1 (or 0) bits would generate a constant signal in
the NRZ scheme and would pose problems in terms of extraction of tim-
ing information for electronic processing. Such problems are usually over-
come by using line-coding techniques. As an example, we could represent
Is and Os by pulses of duration T/2 (T being the interpulse separation) as
shown in Figure 13.8. This coding scheme is referred to as Manchester cod-
ing and solves the problem of d.c. wander of baseline for threshold detec-
tion. For other line-coding schemes and their relative merits and demerits,

Fig. 13.7:  The digital
pulse sequence of
00101110110 in NRZ anc
RZ formats.
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Fig. 13.8:  Pulses
corresponding to bit 1 and
bit 0 in Manchester coding,

Fig. 13.9:  An alternating
sequence of 1s and Os
corresponds to the
maximum rate of change in
NRZ. whereas a series of Is
gives the fastest change in
RZ. The sinusoidal curves
correspond to the
fundamental frequency
component in the pulse
sequence.

LYY .

readers are referred to any standard text on digital communication [e.g., Lathi
(1989)].

One of the major differences between NRZ and RZ pulse sequence is in the
bandwidth requirement. To appreciate this, we first note that a sequence of s in
RZ would correspond to the fastest changes, whereas an alternating sequence
of Is and Us in NRZ would correspond to the fastest change.

The fundamental frequency component® in the RZ pulse sequence of 1s
s /T as can be seen from the sinusoidal distribution plotted in Figure 13.9.
Similarly, in the case of NRZ, the fundamental frequency component in the
alternating sequence of Is and Os is 1/27 (see Figure 13.9). Hence, a system
having a bandwidth of at least 1/7 and 1/2T should pass the RZ and NRZ
sequence, respectively, without too much deterioration. Thus, it we represent
the bit rate by B, then B = /T and the bandwidth Af required by RZ and
NRZ schemes are

Af = B; RZ

[0

. NRZ (13.5)

Another familiar method of representing the bandwidth requirement is through
the parameter called rise time 7,, which is the time taken by a system to rise
from 10% to 90% of the maximum value for a step function input. The rise time
and bandwidth are related through (see Example 13.1)

035

I, = — 13.6
Af (13.6)

P . . . . .
“This can be seen easily by expanding the pulse sequence in a Fourier series.
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C Fig. 13.10: A simple R(
[ circuit.

An inverse relationship between rise time and bandwidth is expected for any
linear system. We thus see that

0.35
T, ~ 2. RZ
B

0.70

Thus, the bandwidth or rise time requirements are more severe for the RZ
format, which is expected since in the RZ format the pulses are narrower than
in the NRZ format.

Example 13.1: Consider an RC circuit as shown in Figure 13.10 and
to which a step voltage V;, is applied at t+ = 0. It is well known that
the corresponding voltage across the capacitance increases according
to the following equation

Ve(t) = Vo(1 — 777 (13.8)
Thus, the rise time is

T, =RC(In10 —1n1/0.9) = RC1n9
(13.9)
~ 2.2RC

The corresponding 3-dB bandwidth of the RC circuit is given by

i
Af = ——— 13.10;
/ 2aRC ( )
Hence, from equations (13.9) and (13.10) we have
2.2 35
T, = ~ O— (13.11)
2nAf Af

Example 13.2: For sending a 2.5-Gb/s pulse rate, we would require a
bandwidth of 2.5 GHz in the RZ format and a bandwidth of 1.25 GHz
in the NRZ format, clearly showing reduced bandwidth requirements
of the NRZ format.

Digital communication systems have many advantages over analog systems.
One of the most important is the fact that, using regenerative repeaters, one can
send digital signals over very long distances without much addition of noise.
This is brought about primarily because in digital systems, in contrast to analog
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systems, at the repeaters, one needs to detect only the presence or absence of
a pulse rather than measure the pulse shape. This decision can be made with
reasonable accuracy even if the pulses are distorted and noisy. Thus, at the
receiver, new clean pulses are generated and transmitted to the next repeater
station. Hence, this process prevents any accumulation of distortion and noise
along the path.

13.3 Noise in detection process

We have seen in the previous chapter that when light falls on a photodetector,
e—h pairs are generated, which give rise to an electrical current. This conversion
process from light to electrical current is accompanied by the addition of noise.
The two most important noise mechanisms in a photodetector circuit are the
shot noise and thermal noise.

13.3.1 Shot noise

Shot noise arises from the fact that an electric current is made up of a stream
of discrete charges — namely, electrons — which are randomly generated. Thus,
even when a photodetector is illuminated by constant optical power P, due to
the random generation of e—h pairs, the current will fluctuate randomly around
an average value determined by the average optical power P.

Since shot noise current is random, its average value is zero. We can hence
define a mean square shot noise current that can be shown to be given by [see,
e.g., Yariv (1991)]

i2e = 2eIAf (13.12)

where ¢ is the electron charge, / is the average current generated by the detector,
and Af is the bandwidth over which the noise is being considered. Since the
photo current / itself depends on the incident optical power, the shot noise
increases with an increase in incident optical power,

We need to mention here that even in the absence of any optical power,
all photodetectors generate some current /4, which arises from thermally gen-
erated carriers. This is known as dark current and increases with increase in
temperature. Taking this current into account, we may write the total shot noise
generated by the photodetector as

ilg = 2e(l + I)AS (13.13)
Typical dark current values for different detectors are
Iy 22 110 nA silicon
= 50—-500 nA  germanium
~ 1-20nA InGaAs (13.14)

Example 13.3: As an example, let us consider a silicon PIN photodiode
operating at 850 nm with a typical dark current of 1 nA. For an input
optical power of 1 W, with a responsivity of 0.65 A/W,

I =R -P=065uA
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The typical dark current of such a detector is | nA, which is very
small compared with the signal current of 650 nA and, hence, may be
neglected in the shot noise calculation. Hence, for a detector bandwidth
of 100 MHz

ie=2% 1.6 % 1071% x 0,65 x 1070 x 10¥
~2.08 x 10717 A2

The rms shot noise current is /i, = 4.6 nA.

13.3.2 Thermal noise

Thermal noise (also referred to as Johnson noise or Nyquist noise) arises in
the load resistor of the photodiode circuit due to random thermal motion of
electrons. In fact, electrons in any resistor are never stationary but have random
motions within the resistor. Since motion of electrons constitutes a current, this
random thermal motion leads to the presence of a random current in the resistor.
Since the electron motion is random, the average of this current is zero. This
thermal noise adds to the signal current generated by the photodetector. The
mean square thermal noise current in a load resistor R, is given by [see, e.g.,
Yariv (1991)]

—— dkpTAS
2 = ke / (13.15)
Ry
where ky = 1.38 x 1072 J/K is the Boltzmann constant, T is the absolute

temperature, and Af is the bandwidth of detection.

Note that the thermal noise is independent of the incident optical power,
unlike shot noise. Also, increasing R; reduces the thermal noise. R; cannot be
increased indefinitely since the detector bandwidth is determined by R, (see
Section 12.3.2).

Example 13.4: Typical parameter values are R; = 5008, Af =
100 MHz, T = 300 K, giving

ity =233 x 107 A’

Thus, the rms thermal noise current is 5.75 x 107% A. Comparing
with Example 13.3, we find that, in such a situation, thermal noise

dominates over shot noise.

13.3.3 Signal-to-noise ratio (SNR)

One of the most important parameters in detection i1s the SNR. It is defined
by

average signal power ,
SNR = - (13.16)
total noise power
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If P represents the optical power incident on a photodetector with a responsivity
R. then the signal current is R P and the electrical signal power is proportional
to R? P2

The total noise power is proportional to the total mean square noise current,
which is the sum of shot noise and thermal noise terms, Thus

R*P?
T 2l + I)Af + 4kgT/R; - Af

SNR (13.17)

In the above equation defining SNR, usually one of the noise terms in the denom-
inator (shot noise or thermal noise) dominates depending upon the operating
conditions.

Thus, under shot noise-limited operation, the SNR is given by

R2P2
T 2e(RP + IpAS

SNR (shot noise limited) (13.18)

where we have used [ = RP.
On the other hand, the thermal noise-limited SNR is given by

RP2R,

SNR = — e
dkpTAf

(thermal noise limited) (13.19)

We assume that the minimum detectable optical power corresponds to the
situation when the signal power and noise power are equal. This optical signal
power is referred to as noise equivalent power or NEP and is usually quoted in
units of W/v/Hz. Assuming that the minimum power will be so low that 1; >> I,
we obtain an expression for NEP by putting SNR = I in equation (13.17).

{13.20)

‘ 1 daTN'? W
NEP:E 2el, +

Ry VHz

The above equation shows that for small R, , the thermal noise dominates. Small
values of R, are needed for large detector bandwidths.

Example 13.5: For a typical silicon detector operating at 850 nm
R=065A/W, I;>=1nA

Assuming an R; of 1000 Q, T = 300 K, we find
NEP =~ 6.3 x 107> W/vHz

If in this detector, the dark current is the major noise term, then

NEP ~ Y2¢ld
I

~ 275 x 107" W/VHz
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Example 13.6: We consider a silicon PIN photodiode with R = 0.65
AW, I; >~ 1 nA, Ry = 1000 €2 operating at 850 nm. If the incident
optical power is 500 nW and the bandwidth is 100 MHz, then

Signal current [ = RP
=0.65x5x 107
= 0.325 uA

rms shot noise current due to signal
= (2eRPASYV? =~ 3.2nA

rms shot noise current due to dark current
= (2el;Af)Y? >~ 0.18nA

rms thermal noise current is

kpT ~ \'*
= (4B—Af) ~ 40.7nA
Ry,

Hence, for this detector the thermal noise current is about 12 times
greater than the signal shot noise current and about 225 times greater
than dark current.

The SNR corresponding to this incident power is

SNR =63 =~ 18dB

The above discussion is valid for PIN detectors that do not have any internal
gain. As discussed in Section 12.4, APDs have an internal gain due to the
avalanche process. Hence, if M represents the internal gain then for an input
optical power P the signal current is

[ =MRP (13.21)

and the electrical signal power is proportional to M?*R? P2,

The thermal noise for APDs is the same as for a PIN and is again given by
equation (13.15).

With regard to shot noise, we first note that since the avalanche multiplication
process 1s random, the multiplication factor M is itself random and the M
appearing in equation (13.21) is only an average value. Thus, for an APD, the
shot noise can be written as

E = M>"2e(RP + I;) Af (13.22)

where the excess noise factor by which the shot noise term has increased with
respect (o the signal power is M2 /M? = M*; x = 0 corresponds to no excess
noise. Typically, for silicon APDs x 22 0.3, for InGaAs APDs x =~ (0.7, and for
germanium APDs x ~ 1.0.
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In the case of an APD, we have
MZ R2 PQ
SNR = (13.23)

TipT
2eM>H(RP + 1) Af + —— . Af
L

Example 13.7: Let us consider an APD with M =50 and with x = 0
(i.e., no excess noise). If we again use the same parameters as in Ex-
ample 13.6, then in this case

Signal current = 50 x 0.65 x 5 x 1077
~ 16.25 uA

rms shot noise current due to signal
= (2eM?*RPAS)Y? ~ 161 nA

Similarly, rms dark current noise is
= eM*I;Af)'/? ~8.9nA

The thermal noise remains the same as before and is equal to 40.7
nA.
The SNR in this case is given by

(16.25 x 10°)?

SNR = - S—
[(161)2 + (8.9)2 + (40.7)2)

~ 9548 >~ 39.8dB

a very significant improvement over the 18-dB SNR of PIN (see
Example 13.6).

If thermal noise is dominant over shot noise, then

M?R’P’R, ,
SNR = —= (13.24)
dkyTAf

and we see that the SNR has indeed improved by a factor M? with respect to a
PIN detector (see equation 13.19). On the other hand, if M becomes large, then
the detector gets shot noise limited and if we neglect thermal noise, we obtain

RZPZ
SNR = ‘ - (13.25)
2eM (RP + 1) Af

which is worse than a PIN detector due to the excess noise M* (see equation
13.18). Thus, under thermal noise dominant operation, an APD has better SNR
and, hence, is more attractive than a PIN,

We can rewrite equation {13.23) in the form

RQPE
SNR = (13.26)

A&y T
2eM*(RP + I) Af + RB AfM~?
L
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from which we note that the second term in the denominator (corresponding
to thermal noise) reduces with increasing M and the first term (corresponding
to shot noise) increases with increasing M. Thus, there is an optimum value
of the multiplication factor M to achieve maximum SNR. Maximum SNR will
correspond to a minimum in denominator of equation (13.26) with respect to M.
Ditferentiating the denominator and equating to zero, we obtain the optimum
M value as

MX—%—Q . 4k1§ T
or xeR (RP + L)

(13.27)

Note that the optimum M value depends on the input power if the dark current
noise is small.

Example 13.8: Let us consider a silicon APD operating at 300 K,
with Ry = 1000 € and an input optical power of 100 nW. Typically,
R = 0.65 A/W and x = 0.3. Thus, neglecting dark current, we have
from equation (13.27)

M,, =42
The corresponding SNR for Af = 100 MHz is
SNR = 577
>~ 27.6dB
The corresponding SNR of a PIN (with M = 1) would be
SNR = 2.5 >4 dB

Thus, in the present case, the SNR of the APD is improved by 23.6 dB
in comparison to PIN.

Example 13.9: As another example, let us consider a germanium APD
with a responsivity R = 0.45 A/W at 1300 nm operating at 300 K.
For germanium x = 1 and thus

ey T /3
My =|——7 7"
eR (RP + 1)

If P =500 nW, neglecting /,, we have for R; = 1000,
My 7.7

which is lower than for silicon.

Example 13.10: For a typical InGaAs APD operating at 1550 nm
R~=06A/W, x=07 T=300K, R,=1000%
Neglecting dark current, we have for P = 100 nW

Mop > 18
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Fig. 13.11:  The 0 1 0 1 1 0 1
transmitted pulse sequence
0101101, the received
signal corrupted by noise
and disperston, and the
reformed pulse sequence.
Note that due to the
presence of noise, one bit
has been read incorrectly.

Threshold

Error

13.4 Bit error rate (BER)

The purpose of a regenerator or a receiver 1s to sample the incoming optical
pulses at a rate equal to the bit rate of transmission and at each of the samples
to decide whether it corresponds to a one or a zero. This decision is usually
performed by setting a threshold level, and any signal above the set threshold
1s taken as one and any signal below the set threshold is taken as zero. Once
this is done, the signal stream consisting of ones and zeroes 1s retrieved in a
receiver or is again used to drive an optical source to recreate the optical pulse
stream as in a regenerator.

It is now obvious that if there is insufficient optical power in the received
optical pulses (due to fiber attenuation), if there has been a large dispersion,
or if too much noise is added by the detector, then there could be errors in the
retrieved information or in the reformed optical pulse stream. Thus, although
the optical pulse stream starts as a fresh sequence of clean pulses, at every
regenerator, one would, in principle, add errors to the signal. It is desirable to
keep the error rates below 1072 or 107!? at every regenerator or at the receiver
i any practical communication systen.

In retrieving the information at the receiver or in the regenerator, it is also
necessary that the pulses are sampled at the correct rate. Thus, the decision
points must remain in correct phase with respect to the incoming pulse train;
otherwise, some information may be lost. The clock pulses necessary for the de-
cision operation are usually derived from the incoming pulse train itself. Thus,
it 1s necesssary to ensure that the incoming pulse train has sufficient energy
content at the frequency corresponding to the bit rate; otherwise, other tech-
niques are used to obtain this information from other frequency components in
the input signal.

Figure 13.11 shows the transmitted pulse sequence consisting of 0101101,
the received signal corrupted by noise and dispersion, and the reformed pulse
sequence. As shown, due to the presence of noise, the transmitted bits may be
read incorrectly if the received signal at the position of bit 1 1s below threshold
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or if the received signal at the position of bit 0 is greater than the thresh-
old.

The quality of a digital communication system is specified by its BER, which
is defined as

bits read erroneously in a duration 7 _
BER = - - - (13.28)
Total number of bits received in

The BER essentially specifies the average probability of incorrect bit identifica-
tion. Thus, a BER of 10~ means that 1 bit out of every 10° bits is, on average,
read incorrectly. If the system is operating at 100 Mb/s — that is, 10® pulses per
second — then to receive 107 pulses, the time taken would be

10°
— =~ 105%
108

which is the average time for an error to occur. On the other hand, if the BER is
10-°, then, on average, an error would occur every 0.01 s, which is unacceptable.

It is now obvious that the higher the SNR, the lower would be the corre-
sponding BER. For most PIN receivers, the noise is dominated by thermal noise,
which, as we have seen earlier, is independent of the signal current. Thus, the
noise in bit 1 and bit 0 is the same and in such a case the optimum setting of
threshold value is at the midpoint of the one and zero levels and the BER is
related to SNR through the equation [see, e.g., Palais (1988)]

BER = % [1 — erf( SNR)] (13.29)

22

where erf represents the error function. For x > 3, a very good approximation
to erf(x) is

5

erf(x) =1 — e (13.30)

1
JTx
Thus, for SNR > 72, equation (13.29) can be approximated by

2

) 1/2
BER =~ (m) EMSNR/R (13*31)

For achieving a BER of 1077, equation (13.31) predicts an SNR =~ 144 or 21.6
dB.

Figure 13.12 shows the dependence of BER on SNR as given by equation
(13.29). Note that since the curve decreases sharply beyond an SNR of 15 dB,
one can achieve a large improvement in detection even with small increments
in SNR beyond 15 dB.

Under thermal noise-limited operation, one needs a certain minimum SNR
for achieving a specific BER (see equation (13.29)). Using equation (13.19) for
the SNR for a PIN detector under thermal noise-limited operation, we obtain
the following equation giving us the minimum optical power for achieving a
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Fig. 13.12: Dependence
of BER on SNR as given by
equation (13.29).
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Assuming R; = 160 Q so that, with a detector capacitance of I pF, the corre-
sponding bandwidth Af = 1/(272R;C) =~ 1 GHz, we have for R = 0.5 A/W,
SNR = 144 (for a BER of 1077),

Equation (13.32) can be put in terms of bit rate B by noting that, for NRZ
systems, the bandwidth Af = B/2 (see Section 13.2). Also, if C represents
the photodiode capacitance, then

I B

TR, C 2

Af
or

Ry = —

13.33
mcB ( )
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Substituting the values of R, and Af in equation (13.32), we obtain
B ] 1/2
Poin = = (2rkyTC - SNR) (13.34)

which gives the receiver sensitivity as a function of bit rate and the required
SNR under thermal noise-limited operation.

Example 13.11: As a typical example we have
C=1pF, T =300K, R=05A/W

For a BER of 107?, SNR=144 and we obtain
Ppin (nW) 22 3.87 x B Mb/s

Thus, for 100 Mb/s, Prin == 0.39 uW (=~ —34.1 dBm) and for 1 Gb/s,
Pmin ~ 3.87 ,LLW (l’ —24.1 dBlTl),

Example 13.12: For a BER of 107, from equation (13.31), the re-
quired SNR is 90 (or 19.5 dB) and the required minimum power from
equation (13.34) is

P, (nW) 2= 3.06 x B Mbls

Thus, for 100 Mb/s, Py = 0.306 W (=~ —35.1 dBm). Comparing
with the previous example, we note that the BER can be reduced
from 107° to 107° by increasing the power level by just 1 dB. Thus,
even small reductions of loss in a system can result in significant
improvements in detection.

In the case of APDs, if thermal noise remains dominant, then we see from
equation (13.24) that the SNR is improved by a factor M. Thus, from equation
(13.34) we find that Py, for the case of APDs reduces by a factor M. Since M is
typically in the range 20-50, the improvement could be about 15 dB. In reality,
since the shot noise also increases with increasing M, there is an optimum value
of M for achieving maximum improvement.

In the preceding discussion we assumed a thermal noise-limited detection.
The ultimate in detection sensitivity is provided by a shot noise-limited oper-
ation. For an ideal detector (with no thermal noise, no dark current, and unity
quantum efficiency) one can show that [see, e.g., Agrawal (1993)]

N

BER = (13.35)

where Np is the average number of photons in bit 1. Fora BER of 1077, equation
(13.35) gives us Np = 21. Thus, the corresponding minimum optical power in
the bit 1 (of duration T') is given by

Npl
P o pHY
T
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For an NRZ system, since the bit rate B and the pulse duration T are related by
B = 1/T, we have

P = /’IUNPB (133(‘))
For a bit rate of 1 (Gh/s, at 1550 nm, we have

P >~269nW >~ —557dBm

The limit Np = 21 is referred to as the quantum limit. Most receivers operate
at 20 dB higher levels with Np 22 2000.

In the above discussions P represents the peak power. The relationship is
also sometimes written in terms of average power. Since 1s and Os are equally
likely to occur P,, = P /2. Thus

B NphvB

w =Ty (13.37)

We may note that for an RZ system, the pulse duration is T/2 = 1/2B
and, since the pulse occupies only one-half of the bit period, and 15 and Os are
equally likely F,, = P /4. Thus, even for an RZ system, F,. required under
quantum-limited operation is still given by equation {13.37).

13.5 System design

The simplest fiber optic communication link is the point-to-point link wherein a
transmitter at one end sends information along an optical fiber link to a receiver
at the other end. The design of such a system involves many aspects such as
the type of source to be used (LED or LD), the kind of fiber to be employed
(multimode or single mode), and the photedetector (PIN or APD). The choice
of vartous components depends on the distance between the transmitter and
the receiver station as well as the information rate. Apart from these, issues of
cost, reliability of components, possibility of upgrading, and so forth are also
of importance.

In earlier sections we have seen how the power level falling on a detector
determines the performance of the link in terms of the BER. Also, the rise times
of the source, fiber, and the detector will determine the bandwidth available for
transmission. The design of a fiber optic system is uvsually carried out using
power budgeting and rise time budgeting.

13.5.1 Power budgeting

A typical point-to-point fiber optic link is shown in Figure 13.1. The source
emitting a power P; couples light into the optical fiber. At this point there is
a coupling loss. The light propagates through the fiber, suffering transmission
loss. In the link, one has splices and connectors where there are power losses.
Finally, the light reaches the detector (in the regenerator or receiver), where
again the beam suffers loss. If P; and Py are the powers emitted by the source
and that falling on the detector, then the total loss in decibels is given by

Py .
Loss = 101log o (13.38)

i
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Apart from the actual losses suffered, while designing a link one usually incor-
porates a margin of 6-8 dB to account for losses from splices or components
that may have to be added at a future date and also to allow for any deterioration
of components due to aging.

If all losses are expressed in decibels, then the power received by the receiver
for a source power F; (in dBm) is

P() = P, - Nclc - Nsls - LC\!; (1339)

where /. is the connector loss and N, represents the number of connectors, [,
is the loss at every splice and N, represents the number of splices, «, is the
fiber transmission loss (in dB/km), and L represents the total fiber length in
kilometers.

We have seen earlier that for achieving a certain BER, there is a minimum
value of power ( P,,;,) falling on the detector. Thus, if P, represents the power
margin (typically, 6-8 dB), then we must have

PO - Pm > Prm'n (1340)

Example 13.13: Let us assume that we need to install a link 40 km
long with a fiber having a loss of 0.5 dB/km. Let us assume that the
receiver sensitivity is —39 dBm. There are four splices with the loss at
each splice being 0.5 dB and two connectors with a loss of 1 dB each.
Assuming a margin of 6 dB, the source power must exceed

Prrz£n+Prrz+21€‘+413‘+LD¢'}:(_39‘%6+2X1+4X0,5

+ 40 x 0.5)dBm
—0dBm = 0.13 mW

Example 13.14: Let us consider a pigtailed LED source at 850 nm
emitting 50 W from the pigtail and a silicon PIN detector with
R = 0.65 A/W, C = 5 pF Let us assume that we wish to transmit in-
formation at 20 Mb/s. For this bit rate, assuming thermal noise-limited
operation with an SNR of 144 (giving BER = 10~"), we obtain the
receiver sensitivity as (see equation (13.34))

men 22 1.32 % iom—] W~ —38 8dBm

The power emitted by the source is 50 W = —13 dBm. Thus, the per-
missible loss between the transmitter and receiver (including margin)
is 38.8 — 13 = 25.8 dB. If the system margin is 8 dB and connector
loss is assumed to be 2 dB, the available transmission lossis 15.8 dB. If
a fiber with a loss of 2.5 dB/km (at 850 nm) is used, then the maximum
permissible link length is ~6.3 km.

If in this system a laser emitting a power of 0 dBm (=1 mW} is
used, then the maximum permissible fiber length would be >~11.5 km.
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13.5.2 Rise time budgeting

Rise time budgeting is a convenient analysis to determine whether the proposed
system will be able to operate properly at the required bit rate on account of
dispersion of the link and limited speed of response of the transmitter and the
receiver.

As discussed in Section 13.2, the rise time of a device is the time taken
for the response to increase from 10% to 90% of the final output value when
the input is changed abruptly in a step-like fashion. The total rise time 7, of a
combination of the various elements of the link is given approximately in terms
of individual rise times 7; by the equation

N 172
;;:(E:ﬁj (13.41)

i=}

In a fiber optic communication system, the total link rise time is determined by
the rise times of the transmitter (t;), the fiber link (), and the receiver (7,).
Thus, the system rise time is

= (i) (13.42)

In Chapters 11 and 12 we discussed the rise time of the optical source and
of the optical detector.

In the case of the rise time of the fiber, we approximate the fiber rise time
by the pulse dispersion. Thus, the rise times for different types of fibers can be
written as follows

multimode step index fibers

i A
T = —— L (13.43)
¢
multimode graded fibers
parabolic index
13! 2 . .
Tim = — - AL (13.44)
2c
optimum profile
H 5
Tiw = — - AL (13.45)
8¢

(where the subscript im stands for intermodal)
material dispersion
T, = 85L AL ps(hp ~ 850 nm)

< 0.5LAM ps(Ag ~ 1300 nm)

~ 20LAX ps (kg ~ 1500 nm) (13.46)

with L in kilometers and AA in nanometers.
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The total fiber rise time for multimode fibers is (neglecting waveguide dis-

persion)

H1

= (2 + )" (13.47)

For single-mode fibers, we have (since t = D - L - AL),

T = D LAX
= 2L AAAg ~ 1300 nm, A. ~ 1300 nm)
>~ 16LAA(Ag ~ 1550 nm, A. ~ 1300 nm)
>~ 2LAMAg ~ 1550 nm, A. ~ 1550 nm) (13.48)

with D 22 2 ps/km - nm at 1300 nm and ~ 16 ps/km-nm at 1550 nm with fibers
with A, ~ 1300 nm. Also D ~ 2 ps/km-nm at 1550 nm for fibers with 1. ~
1550 nm. In the above equations AA represents the source spectral width, L the
fiber length, A, the operating wavelength, and A, the zero dispersion wavelength.

Once the total rise time of the link is calculated using equation (13.42),
one can then obtain the maximum permissible bit rate through the link as (see
equation (13.7))

()

0.35

B . RZ

A

Ty

0.7 .
< ——1 NRZ (13.49)
=

We first note that for multimode step index fibers, the pulse spread is
very nearly independent of the spectral width of the source, since the
intermodal dispersion is very much larger than material dispersion.
Taking typical values of n; = 1.46, A = 0.01, we find that the rise
time due to the fiber is 7, =~ 50 ns/km. Using equation (13.49) we
can see that the maximum bit rate that such a fiber can handle is
0.7/50 x 1077 =~ 14 Mb-km/s.

We next consider a parabolic index multimode fiber for which the
intermodal dispersion is given by (see equation (13.44))

H

— AL
2¢

Ty =
Forn; = 1.46, A = 0.01, we have t;,, 2= 0.24 ns/km. For an operating
wavelength of 850 nm, the material dispersion is given by equation
(13.46). If the source is a laser diode with a spectral width of =1 nm,
then the contribution of material dispersion is 85 ps/km and the total
rise time of the fiber = (0.24° + 0.085%))/2 >~ 0.25 ns/km, giving a
maximum permissible bit rate of 0.7/0.25 x 107" = 2.8 Gb-km/s. On
the other hand, if the source is an LED with AA = 25 nm, then 1,,, =~
2.125 ns/km and then the total fiber rise time is (0.25% +2.1259)1/2 ~
2. 14 ns/km. Thus, in this case the rise time is imited due to material dis-
persion and the maximum bit rate is 0.7/2.14 x 10~ ~ 300 Mb-km/s.
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The above estimation neglects contribution due to source and detector
rise times. Indeed, if we assume a typical source (LED) rise time of
5 ns and a detector rise time of 1 ns, the total system rise time for a
fiber length of 10 km is

[(2.14 x 10y + 52 + 17)1/2 ~ 22ns

giving a maximum bit rate (for 10 km) of 32 Mb/s.

The I generation fiber optical communication systems used 850-nm
LEDs (with AL ~ 25 nm), with fiber losses of =3 dB/km, repeater
spacing of ~10 km, and bit rates of 45 Mb/s.

(3) Ifthe operating wavelength is around 1300 nm, the material dispersion
becomes very small and, thus, even with AX ~ 100 nm, the rise time
due to material dispersion = 0.05 ns/km, which is negligible compared
with the intermodal dispersion of 0.15 ns/km.

Again, assuming a source (LED) rise time of 5 ns and a detector rise
time of 1 ns, the total rise time for 30 km is [(0.15 x 30)* + 57 + 17"/
~ 6.8 ns, giving a maximum bit rate of about 100 Mb/s.

The II generation fiber optic systems used 1300-nm LEDs (with
Al ~ 25 nm), with fibers possessing losses ~1 dB/km, repeater spac-
ings of 30 km, and bit rates of ~45 Mb/s.

(4) The next shift was to use single-mode fibers in place of multimode
fibers and operating around 1300 nm where the dispersion passes
through zero. Assuming a typical dispersion of 2 ps/km-nm at the
operating wavelength, using a laser diode with AJ = 2 nm, the fiber
rise time is only 4 ps/km. If the source and detector rise times are
assumed to be given by (0.5 ns each, then assuming a fiber length of
50 km, the total system rise time is (0.2% +0.5° +0.5%)"/? =~ 0.73 ns,
corresponding to a maximum bit rate of 0.96 Gb/s.

The 1 generation fiber optic systems used 1300-nm laser diodes
(with AA ~ 2nm), with single-mode fibers having losses ~ 0.8 dB/km.
The repeater spacing was about 40 km and the bit rate was about
500 Mbys.

(5)  When the operating wavelength is shifted to 1550 nm, the total dis-
persion can again be made very small (<2 ps/km-nm) with dispersion-
shifted fibers (DSFs). The fiber loss at this wavelength is ~0.25 dB/km.
Thus, the TV generation fiber optic systems use 1550-nm laser diodes
with DSFs and repeater spacings of 100 km. The systems operate
at 2.5 Gbfs and higher by using high-speed laser diodes and photo-
detectors.

Table 13.1 gives the evolution of the various generations of fiber optic systems.

Example 13.15: Let us consider the rise time budgeting of a 400-

Mb/s NRZ transmission over 100 km with a BER of 1077, Now, since

B = 400 Mb/s, the total system rise time s (under NRZ transmission)
0.7

T, = — > 1.7518 (13.50y
B
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Table 13.1. Typical characteristics of fiber optic communication systems at different stages

Type of Loss Repeater

Generation Date Bit rate fiber {dB/km) spacing (km)
F(0.8-09 um) 1977 ~45 Mbit/s Muitimode ~3 ~10

{graded index)
IT¢el.3 pm) 1981 ~45 Mbit/s Multamode ~1 ~30

(graded index)
IH €13 pem) At present ~2.5 Gb/s Single mode <0.5 ~4()
IV (1.55 um) At present >10 Gb/s Single mode <0.3 > 100

Note: Futuristic system: WDM, solitons. Infrared fibers (Ag > 2 um); extremely low loss (<1072 dB/km); =
repeater spacing > 1000 km.

Even if we allocate all the rise time to 100 km of fiber, this implies a
pulse dispersion of less than 1.75 x 107/100 = 17.5 ps/km. Surely,
multimode fibers cannot be used and the link has to be based on single-
mode fibers. Because, at 1300 nm, the typical fiber loss is 0.4 dB/km,
100 km of fibers would result in 40 dB of loss (apart from connector
and splice losses), which is too large. Hence, it would be necessary to
use 1550-nm transmission.

A 1300-nm zero dispersion fiber has about 16 ps/km-nmat 1550 nm.
In this case one cannot employ the multifrequency semiconductor
lasers since their spectral width is typically 4 nm and, clearly, 100 km
of the fiber would lead to a pulse dispersion of 16 x 100 x 4 = 6.4 ns,
which is much larger than the permissible value of 1.75 ns for a 400-
Mb/s system. Hence, one has to use single-frequency laser diodes,
which have typical spectral widths of 0.15 nm. Using such lasers,
the pulse dispersion due to the fiber would be 16 x 100 x 0.15 =
0.24 ns, which is much smaller than the total permissible rise time of
1.75 ns.

If we assume a typical rise time of 1 ns for the laser transmitter,
then the permissible rise time of the photodiode is

e ()"

= (1.75% — 0.24% — 1112
~ 1.42 ns

If the capacitance of the photodiode is C and the load resistance is K,
then [see equation (13.9)]

T, = Z.QRLC
giving us
Ry =~ 645Q

assuming C = | pF.
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For power budgeting let us assume that the pigtail laser diode has an
output power of 1 mW (= 0 dBm). If the system has two connectors
(with 1 dB loss at each connector) and 10 splices of 0.1 dB each,
assuming a fiber attenuation of 0.25 dB/km at 1550 nm, the power
reaching the detector would be

Po. =(0—2—10x0.1—-100x 2.5)dBm
= —28 dBm

At the bit rate of 400 Mb/s with K = 0.65 A/W, C = 1 pF, and an
SNR = 144 (for BER of 10~7), the sensitivity of PIN [from equation
(13.34)] is —29.2 dBm. Thus, there is a margin of only 1.2 dB. An
APD can give an improvement of 10 dB (under thermal noise-limited
conditions) and, hence, can be used in the present link.

13.6 Maximum transmission distance due to attenuation
and dispersion

In the following we obtain the maximum unrepeatered link length as imposed
by fiber attenuation and dispersion. These are not fundamental limits as they
can be surpassed by using components such as optical amplifiers, dispersion
compensators, etc.

13.6.1 Attenuation limit

As discussed in Section 13.5, for the transmitted data represented by a digital
pulse sequence to be detected with a BER of less than a certain value (typically
10-9), there must be a minimum number of photons per bit of information. If
this number is Np, then for a bit rate B, the minimum average optical power
received is [see equation (13.37)]

NpBh
p, = ~L200

; 13.51
5 (13.51)

where hv is the energy of each received photon.
If a represents the loss coefficient of the fiber in dB/km, then for an incident
power P, the optical power at any length L of the fiber is given by

Py = P, 1079H/10 (13.52)

Thus, if the received power is to be at least P,, then the maximum permissible
length would be

FRAY p
R 3

10 2P (13.53)
= — 10 3.0
o & NpBhy

Note that the maximum permissible loss-limited length decreases with increased
bit rate.
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Example 13.16: Let us first consider a system operating at 1300 nm
with a fiber loss of @ 2~ 0.4 dB/km. Assuming an input power of 0 dBm
(P; = 1 mW)and Np = 1000, the maximum length for a bit rate of

2.5 Gb/s 1s
I 10 | 2x 1077 x 1.3 x 10°°
may — — 10
“ 0.4 & 1000 x 2.5 x 10° x 6.63 x 1073 x 3 x 108
~ 93 km

Example 13.17: For a system operating at a 1550 nm, o ~ 0.2 dB/km
and assuming P; = 1 mW, Np = 1000, the maximum repeaterless
link length at 2.5 Gb/s is

Lpux = 190 km

The above two examples clearly show the advantage of using a 1550-
nm wavelength where the fiber attenuation is minimum for silica fibers.
Substituting P; = 1 mW, Np = 1000, « = 0.2 dB/km, for an
operating wavelength of 1550 nm, equation (13.53) becomes
Ly = (660 — 50 log B)km (13.54)

The limit as determined by the above equation is plotted in Figure
13.13.

Example 13.18: At 8§50 nm, if we assume a typical fiber loss of
2.5 dB/km, the loss limited length at 100 Mb/s is

Lo = 20km

13.6.2 Dispersion limit

We have seen earlier that, apart from attenuation, broadening also limits the re-
peaterless span length of a fiber optic communication system. Pulse broadening
causes adjacent pulses to overlap, resulting in increased errors. A commonly

Fig. 13.13:

Maximum

transmission distance as
determined by attenuation
and dispersion.
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used criterion for the maximum allowed pulse dispersion 1s

At < (13,

h

5)

=~

where T is the bit duration. In terms of bit rate B(= 1/7'), equation (13.33)
can be rewritten as

4ATHB <1 (13.56)

The above condition can be shown to imply that, at least for Gaussian pulse
shapes, more than 95% of the pulse energy lies within the bit slot T. The
condition imposed by equation (13.56) is more conservative than equation
(13.49).

We consider single-mode fibers for which the dispersion is given by

At = DLAX (13.57)

where D is the dispersion coefficient, L is the fiber length, and AX represents
the spectral width of the source.

We first assume that the spectral width of the source 1s much larger than
the spectrum due to modulation. This is true in the case of modulation of a
multilongitudinal mode laser.

Substituting for At in equation (13.56), we obtain the bit rate Jength product
as

250

B L ——0=
4D A D(ps/km-nm)AA(nm)

Gb/s-km (13.58)

For a conventional single-mode fiber with zero dispersion at 1300 nm, we
take as typical parameters

Ak =1nm, D~ 1ps/kmnm
Thus
B L <250 Gb/s-km

which implies that at 2.5 Gb/s, the maximum repeater spacing is 100 km.
Operating this fiber at 1550 nm, where £ ~ 16 ps/kim-nm, we have (assum-
ing Ax = | nm),

B L <15Gb/s-km

Thus, at 2.5 Gb/s, the maximum unrepeated length is only 6 km. This shows
the enormous reduction in repeaterless length due to increased dispersion.

We next assume that the laser is a single-frequency laser (such as a DFB
laser) and assume that the spectral width due to modulation is much larger than
the inherent source spectral width, Now, if 1, represents the temporal full width
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of the input pulse (assumed to be unchirped and Fourier transform limited),
then the spectral width is

1
Ay ~ — (13.59)
To

which in terms of wavelength becomes

AZ
A) = =2 (13.60)
CTy
Assuming a NRZ pulse sequence (see Section 13.2),
1
W= (13.61)

Using equations (13.60), (13.61) and (13.57) in equation (13.56), we obtain

B*. L< .
4DA5

(13.62)

Note that, in this case, doubling the bit rate would reduce the unrepeated length
by a factor of 4 in contrast to the case in which the source spectral width is large
(equation (13.58)}), wherein doubling the length reduces B by only a factor of 2.

Again, consider a conventional single-mode fiber operating at 1300 nm with
D ~ 1 ps/km-nm,

B’L <4.4 x 10* (Gb/s)*-km

Thus, at 2.5 Gb/s, L < 7040 km and at 10 Gb/s, L <440 km.
For the 1300-nm fiber operating at 1550 nm, D ~ 16 ps/km-nm and,

B?L < 2750(Gb/s)> km

Thus,at B = 2.5Gb/s, L. <440 km and for B = 10 Gb/s, L. < 27.5 km.
If we use DSFs operating at 1550 nm, we then have D ~ I ps/km-nm and

B*L < 3.12 x 10*(Gb/s)> - km

Thus, at 8 = 2.5 Gb/s, L < 4992 km and for B = 10 Gb/s, L < 312 km.

The limits on unrepeated length as imposed by pulse dispersion in single-
mode fibers is plotted in Figure 13.13. One can see that using DSF, even at
10 Gbf/s, optical fiber systems are loss limited rather than dispersion limited.

Problems

13.1  Consider an InGaAs PIN photodiode with the following specifications as
1300 nm:

R=08A/W, C=1pF, I;=5nA

If the load resistance is 1000 £2 and the incident power is 500 oW, obtain the
signal current and the various noise currents for bandwidth Af = 20 MHz.
What is the corresponding SNR?
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13.2

13.3

13.5

13.7

13.8

For the same photodiode of Problem 13.1, consider an incident signal of 500 nW
at 1550 nm at which R = 1 A/W and all other parameters remain the same.
Obtain the signal and various noise currents and the corresponding SNR.
Consider a silicon APD with responsivity R = 0.6 A/W, gain M = 100, excess
noise factor x = (.5, dark current /y = 1 nA, load resistor R; = 1 k&2,
capacitance C = 2.0 pEF, and an operating bandwidth of Af = 1 MHz. Obtain
the signal current and the various noise current terms.

Consider a silicon APD with R = 0.65 A/W, Iy = | nA, R, = 1000€2,
Af = 100 MHz, x = 0.3, and gain M = 100. Calculate the SNR for input
powers of (i) P = 100 nW and (ii) P = 10 uW.

Solution: Using equation (13.26) we obtain

(1) for P = 100 nW

SNR = 493 = 27dB
(2) for P =10uW

SNR = 51000 == 47dB

Consider a germanium APD with R = 0.65 A/W, I; = 10nA, Ry = 1000£,
Af = 100 MHz, 7 = 300 K, and x = 1.0 with an input power of 100 nW.
Calculate the SNR with magnifications of 5, 10, 20, and 30. Note that as M
increases beyond an optimum value, SNR decreases.

A fiber optic communication system is to operate with a graded index multimode
fiber at 850 nm. The source is an LED with a spectral width of 20 nm and
a coupled optical power of —15 dBm. Calculate the loss-limited length and
dispersion-limited length at 10 Mb/s if the fiber has an attenuation coefficient
of 4 dB/km (including splice losses) and the receiver sensitivity is —50 dBm.

Solution: Since operation is at 850 nm with graded index multimode fibers, the
dispersion limitations would be mainly due to material dispersion. At 850 nm,
the material dispersion coefficient is ~852 ps/km-nm, which with AL = 20 nm
gives a dispersion of 1.7 ns/km.

For the system to operate at 10 Mb/s with NRZ, the rise time should be less than
0.7/10 x 10% = 70 ns. Thus, neglecting the rise times of source and detector,
the dispersion-limited length would be 70/1.7 ~ 41 km.

With an input power of —15 dBm and a receiver sensitivity of —50 dBm, the
maximum permissible loss = 35 dB, which, with a loss figure of 4 dB/km, gives
a maximum repeater spacing (without any margin) of 8.5 km. Thus, the system
would be loss limited.

Consider a fiber optic system based on multimode graded index fibers with a
parabolic index core operating at 850 nm. Assume ny = 1.46, A = 0.01, and
the fiber loss is 223 dB/km. The source is an LED with Ax = 25 nm, a rise time
of 5 ns, and a power output of 50 W from a 50-zem core pigtail. If the receiver
is a PIN photodetector with a sensitivity of —35 dBm and a rise time of 1 ns,
calculate the maximum repeaterfess link length as determined by loss as well as
by dispersion.

Calculaie the maximum loss-limited and dispersion-limited distances of a link
operating at 850 nm at 100 Mb/s using the following components:

(1) Source: GaAlAs laser diode with 0-dBm fiber-coupled power, AL = 2
nm, rise time = 1 ns,

(2) Detector: Si APD with a sensitivity of —50 dBm, rise time 2 ns, capaci-
tance of | pF.
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(3) Fiber: Parabolic index multimode fiber with A = 0.01, i1 = 1.46, and a
loss of 3.5 dB/km at 830 nm.
{4y Two connectors with a loss of 1 dB each.
(5} Splice every 2 km with a splice foss of 0.1 dB per splice.

13.9  Consider a parabolic index multimode fiber (A = 0.01, n; = 1.46) operating
at the zero material dispersion wavelength. If we wish to transmit at 100 Mb/s,
what is the maximum unrepeated distance using
(1)  InGaAs LED with —13-dBm fiber-coupled power with AX = 25 nm, rise

time =3 ns.
{2) InGaAs PIN diode with —35-dBm sensitivity, rise time of 0.5 ns, capaci-
tance of .5 pF.
(3) Fiber attenuation of 0.5 dB/km at 1300 nm.
(4) Two connectors with a loss of 1 dB each and splice every 5 km with a
splice loss of 0.1 dB per splice.
13,10 Consider the design of a single-mode fiber link at 1300 nm operating at 565

Mb/s. The source is a GalnAsP laser with a fiber-coupled power of —3 dBm,
spectral width of 2 nm, and a rise time of 0.3 ns. The detector is an inGaAs PIN
with a responsivity of 0.7 A/W, a dark current of 1 nA, a capacitance of 0.5 pF,
and arise time of 0.3 ns. Assuming an average fiber attenuation (including splice
and connector loss) of 0.5 dB/km, obtain the maximum permissible repeaterless
transmission distance.
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14.1 Introduction

As discussed earlier, optical fiber communication systems are ultimately limited
by either loss or dispersion. Loss leads to power levels of received signal that
cannot be detected within tolerable errors, whereas dispersion leads to over-
lapping of adjacent pulses of light with resultant loss in resolution and, hence,
information. Figure 14.1 shows a typical wavelength dependence of loss and
dispersion of a single-mode fiber for both a CSF with zero dispersion around
1300 nm and a DSF with zero dispersion around 1550 nm. As evident from the
figure, the effect of loss can be minimized by operating at the minimum loss
wavelength around 1550 nm, whereas dispersion can be minimized by oper-
ating at the zero dispersion wavelength. Using DSFs has advantages of both
minimum loss and zero dispersion. Figure 14.2 shows the maximum permis-
stble unrepeatered length as a function of bit rate as determined by loss or by
dispersion for both a CSF and a DSF (see Chapter 13 for a detailed discussion of
this figure). The pulses are assumed to be Fourier transform limited. As can be
seen from the figure, even at bit rates of 2.5 Gb/s, a system operating with CSFs
is limited by loss rather than by dispersion. For DSF, loss-limited operation
extends to almost 10 Gb/s.

In long-haul fiber optic communication systems, the effects of loss and pulse
dispersion are normally overcome by using periodically spaced electronic re-
peaters. In these repeaters the input optical signal is first detected and converted
to electrical signals. These electrical signals are processed (reshaped and re-
timed) to remove the effects of pulse dispersion and then ampilified to drive an
optical source, thus regenerating the pulse train. Such repeaters are referred to
as 3R repeaters (retiming, reshaping, and regeneration) (Figure 14.3). Hence,
the signal emerging from the optical source at the repeater is almost as good
as at the start of the link and can be sent again through the next segment of the
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link. In this way almost error-free transmission over thousands of kilometers
can be achieved.

In dispersion-limited systems, the spacing between repeaters is dictated by
overlapping of neighboring light pulses (and, hence, a loss of information)
rather than by loss of signal power. In such a situation regeneration of the
optical signal is necessary.! On the other hand, in loss-limited systems the re-
peater spacing is dictated by signal power loss rather than by loss of resolution.
For such loss-limited systems it would indeed be advantageous to have optical
amplifiers that directly amplify the optical signals without going through the
complicated process of conversion to electrical signal and back again to optical
signal. Indeed, as discussed in Chapter 10, dispersion can be minimized by op-
erating at the zero dispersion wavelength or by using dispersion-compensating
schemes (see Chapter 15). Further, if soliton pulses are used in the data stream,
pulse dispersion can be completely eliminated (see Chapter 16) and the system
will be loss limited.

In Chapter 15 we show that such dispersion effects can also be optically compensated.

Fig. 14.1: Typical
wavelength dependence of
(a) loss and (b) dispersion
of a single-mode fiber for
both a CSF with zero
dispersion around 1300 nn
and a DSF with zero
dispersion around 1550 nn
[(a) Adapted from Miya
etal. (1979). (b) Adapted
from Kimura (1988}.]
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Fig, 14.2: Maximum
possible unrepeatered
length as a function of bit
rate as determined by fiber
attenuation and by
dispersion for operation at
1550 nm. —, Loss limit;
----- , dispersion limit for
CSF; and - - -, for DSF
corresponding to Fourier
transform limited pulses.
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Fig. 14.3:  An electronic
repeater performing
retiming, reshaping, and
regeneration of the optical
pulse train.

Optical

3R repeater

Electronic
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One of the most important optical amplifiers is the erbium-doped fiber am-
plifier (EDFA) (Figure 14.4). The EDFA was first reported in 1987 and the
progress in this technology has been so rapid that American Telephone and
Telegraph has already put into service a terrestial system (since July 1993), and
many more systems employing EDFAs are being installed. Indeed, the transat-
lantic and transpacific submarine systems planned for installation will all be
using EDFAs.

Figure 14.4 shows a typical configuration of an EDFA. A WDM multi-
plexes the light from a high-power pump laser diode (wavelength of 980 nm
or 1480 nm) and the signal to be amplified (in the wavelength region 1530-
1570 nm) into an erbium-doped silica fiber. Because of absorption of the pump
laser light by the erbium ions in the doped fiber, the erbium-doped fiber becomes
an optical amplifier for light waves in the wavelength region 1530-1570 nm
(see Section 14.2). Because of this, the incoming optical signal (lying in the
region 1530-1570 nm) gets amplified as it propagates through the doped fiber.
The amplified signal passes through an optical isolator (which is inserted to
avoid any back reflections) and a wavelength filter to filter out wavelengths
other than the signal wavelength. Using such an EDFA, one can achieve gains
as large as 40-45 dB.

Using optical fiber amplifiers in a fiber optic communication link has many
advaniages.

(1)  Since the information-carrying signals are directly amplified in the
optical domain without conversion to the electrical domain, a long-
haul system employing fiber amplifiers is bit rate transparent — that
is, the amplifier will work efficiently even at higher bit rates, which
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may become necessary at a later date. This 1s in contrast to electronic
repeaters, which work only at the designed bit rate.

Since EDFAs have a large-gain bandwidth (i.e., they can provide gain
over a large spectral bandwidth ~40 nm), one can use a single am-
plifier in wavelength division multiplexed systems.

Fiber amplifiers can be easily spliced to the telecommunication fiber
link with minimal insertion losses.

The noise added by the amplifier is close to the lowest possible level
(3—4 dB).

The gain provided by EDFA is polarization insensitive.

Following are some of the drawbacks of EDFAs.

Currently, they are limited to 1550-nm systems only. For 1300-nm
systems, efforts are under way to develop amplifiers based on other
rare earth elements such as praseodymium,.

They require high pump powers (50—-100 mW).

Very short lengths are not possible.

Today EDFAs are finding many applications in lightwave systems. These
include (Figure 14.5)

(a)

(b)
(c)

Power amplifiers or booster amplifiers to boost the signal power exiting
from a semiconductor laser before launching into the transmission
fiber. Such power amplifiers can increase span length in transmission
systems and also can compensate for splitting losses in networks.
Preamplifiers for enhancing the receiver sensitivity.

In-line amplifiers to boost the signal level periodically along the trans-
mission path.

There are some differences in the characteristics of the three types of fiber
amplifiers mentioned above.

In the case of power amplifiers, the input signal levels are quite high (—3 dBm
to 0 dBm) as they are placed immediately after the transmitter and, thus, the
amplifier operates in the signal saturation region (see Section 14.8), wherein
the gain 1s reduced in comparison with the small signal regime due to gain sat-
uration. For such amplifiers, the most important factor is the obtainable signal

Fig. 14.4:  An optical
amplifier in which the inpy
optical pulses are amplifiec
in the optical domain itself
without any conversion to
the electrical domain. EDF
erbium-doped fiber; WDM
wavelength division
multiplexer,
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Fig. 145 Various
configurations of an EDFA.
(a) Power amplitier to boost

the source power, (b)
preamplifier to improve
receiver sensitivity, (¢)
in-line amplifier to amplity
signals en route, and (d) a
long-haul link using a
power, in-line amplifier,
and a preamplifier.
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output power, which should be high. In such amplifiers, the high-output power
is achieved at the expense of a reduced gain and an increased noise hgure (see
Section 14.10). For better operation characteristics, one could use backward
pumping or even bidirectional pumping — that is. either the pump beam could
propagate in a direction opposite the signal beam or there could be two pump
beams propagating along both directions in the fiber. Power amplifiers do not
need stringent requirements of noise and optical filtering.

The preamplifier, which is placed just before the receiver, is used to increase
the receiver sensitivity and is usually operated in the unsaturated regime since
the input signal powers are very small (=2 —40 dBm to —50 dBm). Since this op-
erates with low-input signal powers, the amplifier should have a very good noise
figure (see Section 14.10) as well as low insertion loss components. Narrowband
optical bandpass filters are usually used to filter the broad amplified spontaneous
emission spectrum falling outside the signal wavelength band. Also, 980-nm
pumping provides better noise figures than 1480-nm pumping. In addition, a
codirectional pumping configuration provides better noise performance than a
contradirectional pumping scheme. Use of preamplifiers in conjunction with
power amplifiers can result in significant increases in available power budget
in a fiber optic communication system.

In-line amplifiers that are located along the optical fiber link are characterized
by moderate gain and a moderate noise figure. Optical bandpass filters are
used with each of the in-line amplifiers to reduce accumulation of amplified
spontaneous emission noise.
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In this chapter we discuss the basic principle behind the operation of EDFAs.
In Section 14.2 we study the basic mechanism involved in optical amplification
and in subsequent sections we obtain the various operating characteristics of
EDFAs.

14.2  Optical amplification

Itis well known that an atom or an ion is characterized by a discrete set of energy
levels in which it can exist. Let £ represent the ground state (the lowest possible
energy level) and E, one of the excited states of the atom (see Figure 14.6).
Let N, and N, be the number of atoms per unit volume in levels E; and £,
respectively.

Generally, atoms lying in energy level £, can make a transition to level £,
with a certain probability and in this process emit radiation at a frequency

Er— k) (14.1)
Y == :
h
with the corresponding free space wavelength given by
he
Ap = —— (14.2)
E, — Ey

Since this process can occur even in the absence of any radiation, this is called
spontaneous emission (see Figure 14.6(a)). The rate of (spontaneous) transitions
from E; to E, is proportional to N; and thus

iN N»
—_" =—AyNy = —— (14.3)

i Ly

Fig. 14.6: Three differen
ways in which an atom
interacts with radiation, (a
Spontaneous emission, (b)
stimulated emission, and (¢
absorption. The frequency
of the radiation

ve 2 (B2 — Ey)/ A
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The constant A7; is called the Einstein’s A coefficient and depends on the en-
ergy level pair; t, P(:A%l) is called the spontaneous emission lifetime due to the
transition £, — E.

In contrast to the spontaneous emission process, atoms lying in £ can also
be stimulated to emit radiation by incident radiation at frequency v,.. This is
called stimulated emission (see Figure 14.6(b)).

The important difference between spontaneous and stimulated emission is
that, although the former is random and incoherent, the latter process is phase
coherent with the incident radiation. This characteristic is used in the amplifi-
cation of optical signals and in lasers for the generation of coherent radiation.

An atom lying in level £ can also absorb radiation at frequency v, and get
excited to level F5 (see Figure 14.6(c)). This is the phenomenon of stimulated
absorption or simply absorption.

The processes of absorption and stimulated emission are induced by the
incident radiation. To calculate the rate of such emissions and absorptions, it is
necessary to introduce the concept of cross section.

Let N, and N2 represent the number of atoms per unit volume that are in
energy states £ and E,, respectively. We assume a monochromatic light beam
(of frequency v and intensity /,) to be propagating through the medium. Thus

T
U—;

(14.4)
1V

represents the number of photons crossing a unit area per unit time. Let
(dN,/dt)m represent the rate of change of N, due to absorption (to level
EL). Now, (dN/dt)s 1s proportional to Ny and to ¢,.. Thus, we may write

dN
(“"C'}“;”l")abs — WO’{J{U)¢)V : Nl

1,
- "'Ua<u)_ : NE (145)
hv

where the constant of proportionality o,(v) is known as the absorption cross
section (having dimensions of area).
Similarly, the rate of decrease of N» due to stimulated emissions is

dN a.(v) I,
— = — . N i4.6
( dt )sl em h’!) ? ( )

where o,.(v) is the emission cross section.

For isolated atoms with nondegenerate energy levels o,(v) = 0,(v) = a(v).
Erbium ions in the silica matrix can be approximately described as a three-level
system provided the transitions are characterized by different absorption and
emission cross sections.?

ZThis is because in the case of erbium iens in the silica matrix, each of the energy levels is
a band consisting of a multiplicity of closely lying energy levels (brought about by Stark split-
ting due to crystal electric field). One can show that the Stark split three-level system of erbium
can be described as a nondegenerate three-level system provided the transitions are characterized
by different absorption and emission cross sections {Desurvire (1994)]. This is due to the rapid
thermalization of the ions within each band resulting in an almost constant population distribution
within each band. Thus, they can be treated as levels rather than as bands.
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To obtain an equation for the rate of change of intensity of a monochromatic
beam as it propagates through a collection of atoms, we let /,(z) and /,(z +dz)
represent the intensities of the beam at z and z + dz (see Figure 14.7). Consid-
ering an area of cross section S, the number of atoms in levels £, and E; in the
volume between z and z 4 dz 18 NS dz and N,S dz, respectively. The number
of upward transitions (absorptions) per unit time is

G{i(u)]lJ(Z)NISdZ
hv

and the corresponding number ot stimulated emissions per unit time s

o (W (2)N:S dz

hv

Hence, the energy absorbed per unit time in the volume S dz is

1.z ; . .
w}w(@—){auN; — g, NSdz h = o, (N| — nN3)5d:z (14.7)
hv
where
p) = 2 (14.8)
(V)

In the wavelength range 1.41-1.57 pm, 5 for erbium ions in silica matrix lies
in the range 0.1-2. Figure 14.8 shows the measured wavelength dependence of
absorption and emission cross sections of a typical erbium doped silica fiber
and Table 14.1 gives the corresponding numerical values.

In writing equation (14.7), we have neglected the contribution due to spon-
taneous emission that is responsible for the noise in the amplifier (see Section
14.10).

The above energy absorbed per unit time must be equal to the net energy
entering the volume S ¢z, which 18 given by

dl
1(z)S =1z +d2)S = (1(2)—](:)—— —~d2)5
dz

dal
=—-——05d:
dz

Fig. 14.7: A planc waw
propagating through a
medium consisting of a
collection of atoms. The
intensity of the beam
changes from /,.(z) at ple
710 f.(z + dzyat plane
{z + dz)duetothe
interaction with the atom
population.
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Fig. 14.8:  Experimentally
obtained emission (solid
curve) and absorption
{(dashed curve) cross
sections of an erbium doped
Ge/A1/P silica fiber. [After
Pedersen (1994).]

Table 14.1. Absorption (a., )} and emission
{040 ) cross sections at different wavelengths
corresponding to a typical erbium-doped
silica fiber. Numerical values correspond 1o
Figure 14.5

Wavelength Oy T,
(nm) (<1072 m?) (x 10725 m?)
1500.3 2.257 1.133
1505.5 2403 1.340
1509.7 2.553 1.514
1514.9 2.744 1.884
1520.2 3.365 2.489
15254 4.421 3.495
1530.6 5.379 4.709
1535.9 4.644 4.644
1540} 3.154 3503
1545.3 2.850 3.386
1550.5 2.545 3410
1555.8 2.229 3.057
1560.0 1,859 2.801
1565.2 1.303 2180
1570.4 0.934 1.717
1575.7 0.759 1.303
1579.8 0.654 1.133
1585.1 0.576 0.978
1590.3 0.503 0.889
1595.6 0.459 0.804
1600.8 0.442 0.727
1605.0 0.402 0.670
1610.2 0.378 0.609
1615.5 0.345 0.544
1619.6 0.325 0.487
1624.9 0.292 0.426
1630.1 0.276 0.369
1635.3 (0.252 0.309
1640.6 (0.252 0.268
6

Cross Section (10%°m’)

0 L N 5
1450 1500 1550 1600 1650
Wavelength (nm)
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Hence, equating the energy absorbed and the net energy entering the volume
S dz we have

dl.(z
d( ) = —0, ()N — ﬂNZ)‘lv(z)
Z
= —CE(U)IV(Z) (149)
where
a(v) = o, (V)N — nN3) (14.10)

is the absorption coefficient.

Equation (14.9) tells us that for light amplification (i.e., for d/ /dz > 0) we
must have nN,; > N,. For nondegenerate levels n = 0./, = 1 and the above
condition reduces to Ny > N,. This is called population inversion. It may be
noted that if n > 1, light amplification can take place even if N; < N.

Under normal conditions o(v) > 0 and the light beam gets attenuated. Thus,
when light at a frequency (£, — E4)/ h passes through such a medium, it will
trigger more absorptions than emissions and therefore the light wave will get
attenuated. On the other hand, if one can create a condition in which a{(v) < 0,
then an incident light wave at frequency v = (E; — E;)/h will trigger more
stimulated emissions than absorptions. This results in an amplification of the
beam rather than attenuation (see Chapter 11).

14.3 Energy levels of erbium ions in silica matrix

At the heart of the EDFA is a short length (5-50 m) of silica optical fiber in
which the core of the fiber is doped with about 200 mole ppm of erbium (an
optically active rare earth element) corresponding typically to an erbium con-
centration of about 10%° ions/m? (see Section 14.13). Figure 14.9 shows the
energy level diagram of the Er°" ion in silica host glass. Each energy level is
split into a multiplicity of levels due to the electric field of adjacent ions in the
glass matrix and due to the amorphous nature of the silica glass matrix. The
energy difference between the ground level and successive excited energy levels
corresponds to wavelengths around 1530 nm, 980 nm, 800 nm, 670 nm, and so
forth. Figure 14.10 shows a typical absorption spectrum of an erbium-doped
fiber showing strong absorptions at the wavelengths corresponding to various
energy levels. Note that peak absorption coefficients are around a few dB/m
compared with typical attenuation figures of 0.2-0.5 dB/km in a silica fiber
used in communication.

When a laser beam corresponding to, for example, a wavelength of 980 nm
or 1480 nm is passed through an erbium-doped fiber, then the erbium ions in
the ground level £,(*1;5 /2) absorb this radiation and get excited to the upper
levels E2(4113/2) and E3(*1, 1/2), respectively. For Er’* jons in silica host, all
transitions are nonradiative® except the last transition between E, and E |, which
is almost 100% radiative. Hence, Er** ions excited to the higher energy levels

A nonradiative transition is one in which the energy released by the atomic system is in a form
other than electromagnetic radiation — for example, in the form of heat given to the host lattice.
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Fig. 14.9: Energy levels
of EX'Y ion in a silica
matrix. Each energy level is
broadened into a band due
to the electric field of
adjacent ions and due to the
amorphous nature of silica
matrix. [After Desurvire
(1994).]

quickly relax down to the level marked £, from which they undergo either
spontaneous or stimulated emission to the level £/,

Figure 14.8 shows a typical variation of absorption and emission with wave-
length corresponding to the energy levels */;3,; and *1;5,2. Note that compared
with the absorption spectrum, the emission spectrum is slightly shifted to longer
wavelengths. This is due to the rapid thermalization of Er’" ions in the */,3,
band and consequent emission from the bottom of the */, 372 level to ‘L 5/2-
This difference in the absorption and emission spectra is taken into account
by assuming o, # o, (see Section 14.2). Figure 14.11 shows the emission
spectra of erbium doped fibers with different codopants. It can be seen that the
spectrum depends on the codopants used and in particular, the flattening of the
spectrum with aluminum codoping. This can be important from the point of
view of WDM applications (see Section 14.11).

For low pump powers, although the Er** ions are getting excited to the
E; level, population inversion may not exist because of spontaneous emission.
Thus, in such a case a signal beam at 1550 nm will get attenuated (due to
absorption from £, to £,) rather than being amplified. As the pump power
increases, the rate of excitation increases and at some power level one can
achieve population inversion between £; and £, and in such a situation a
signal around 1550 nm will get amplified rather than absorbed. This is the basic
principle behind optical amplification by the erbium-doped fiber.

Figure 14.12 shows a schematic of the variation of pump and signal pow-
ers along the length of a doped fiber. Near the input end, the pump power is
high, leading to a population inversion and, hence, signal amplification. As the
propagation distance increases, P,(z) reduces and, beyond a certain length, the
pump power is insufficient to create an inversion and, hence, the signal starts
to get attenuated.

The pump bands corresponding to 800 nm, 980 nm, and 1480 nm are interest-
ing since high-power semiconductor lasers are available at these wavelengths.
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One drawback of the pump wavelengths of 800 nm and other lower wavelengths
is what is termed excited state absorption (ESA). Due to the multiplicity of en-
ergy levels of Er** ions, ions sitting in the level £, can also absorb the pump
radiation and get excited to higher levels. This reduces the pump efficiency
significantly since it affects the population inversion directly and, hence, the
gain. Hence, the pump bands at 980 nm and 1480 nm for which there is no ESA
are the ones more commonly used.

In the next section we will write down the equations for optical amplification
in an erbium-doped fiber by representing it as a three-level system and study the
various characteristics such as gain, pump power, and signal power variations
with fiber length, and so forth.

14.4 Amplifier modeling

As seen earlier, although pumping of erbium-doped fiber is possible at many
wavelengths, the main pump wavelengths that are used are the 980-nm and
the 1480-nm bands as there is no excited state absorption corresponding to

Fig. 14.10: A typical
absorption spectrum of
erbium-doped fiber shov
strong absorptions at me
wavelengths including
1530 nm, 980 nm, 800 r
670 nm, and so forth, [A
Desurvire (1992).)

Fig. 14.11: Emission
spectra of erbium-doped
fibers with different
codopants. [ After Desur
(1994).]
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Fig. 14.12:  Schematic
diagram showing variation
of pump and signal powers

with distance along the
doped fiber.
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both these wavelengths. The 980-nm pump band offers higher pump efficiency
compared with the 1480-nm pump and also has better noise characteristics.
As evident from Figure 14.9, pumping at 980 nm corresponds to a three-level
system. In the following we will write down a simplified form of the rate
equations corresponding to such a system and obtain some of the important
features of EDFAs.

We consider an erbium-doped silica fiber in which the core (or afraction of it)
is doped with erbium with an ion density of N,(r). We will also assume that the
doped fiber is single moded at both the pump (980 nm) and signal wavelengths
(~1550 nm) so that all parameters such as intensities, population densities of
each level and so forth are independent of the azimuthal coordinate ¢.

Let Ny(r. z) and Na(r, z) be the population densities (number of ions/unit
volume) of Er** jon in the ground state £ (4];_5/2) and the upper amplifier level
E>(*1132), respectively. Here 7 represents the cylindrical radial coordinate and
2 is along the fiber axis. Pumping by 980 nm takes the Er’* ions from the ground
state F, to the upper pump level F4 from which the ions relax very rapidly to
the upper amplifier level E;. Since the relaxation rate of level £ is very rapid,
we may assume that level E5 is unpopulated and, hence, write

Ni(r. z) + Nalr, 2) = Ny(r) (14.11)

Let /,(r, z) and I{r, z) represent the intensity distributions of the pump and
signal beams. Let o, 0, and oy, denote the absorption cross section at pump,
absorption cross section at the signal, and emission cross section at the signal,
respectively. We may then write for the rate of change of population of the
ground level £y as

K O”.vc].y NZ )
N+ Ny + — (14.12)

|
dr hv, hv, I, Lsp

dNy . 0[}(1[;) N Osal



294 Optical fiber amplifiers

where
Tpal . . .
—li—”—ﬂ N, = Number of absorptions (per unit time per unit volume)
Ve from level E; to the upper pump level £z due to the
pump at v,.
Osal . o ‘
;f > Ny = Number of absorptions (per unit time per unit volume)
s from level £ to the upper amplifier level £; due to the
signal at vy.
Osel
; * N, = Number of stimulated emissions (per unit time per unit
Vs volume) from level £ to level £, due to the signal at v;.
Ny . _ :
—= = Number of spontaneous emissions (per unif time per unit
Isp volume) from level F> to level E.
Since
o
N = — (14.13)
U.Y()

Equation (14.12) can be written in the form

AN, opal, ool N,
_-— N - N> — N — 14.14
T v, 1+ o, (nsNo 1)+ o ( )

At steady state,

dN,
dt

=10

and elementary manipulations give us

y I,
I+ ——
Natr,z) 77 (1 + )

= (14.15)
Nitr,z) 7
+ - s
(I +ny)
where
. Is(r, hvg hvs
l\'(r» z) = 14 Z); 0= v = s .
Lo Oﬁsdtsp{l + 77?) (Osa + Oye) Lip
(14.16)
~ I.(r z } <
Tz = 2y o R (12.17)
IpO G pu tsp

The physical significance of I, is discussed in Problem 14.17.

Note that since the pump and signal waves are propagating as modes of the
fiber, they have an intensity distribution decreasing radially away from the fiber
axis. Hence, for any given z value the ratio N, /N, is also r dependent.
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Using equations (14.11) and (14.15), we obtain

. I8
b+
No(r,z) = ——= s . (14.18)
1+ 1, + 1,
L+ _Z‘“ I
N2y = —— s N, (14.19)
U+ 1, + 1,

which represent the steady-state populations of the energy states £, and £,
respectively. Note that N(r, z) + Na(r, z) = N,(r) independent of z.

Equations (14.9) and (14.10) tell us that for amplification we must have
ns N2 — Ny > 0. Using equations (14.18) and (14.19) we have

[nsy(r, z) — 1]

sNa(r, z) — Nilr, 2) = i j
nsNa(r, z) 1(r. 2) V41,0 2) + L(r, 2)

(14.20)
Hence, for amplification (at a particular value of r, z) we must have ]:,, > 1/n,0r

1 ;
1,0, 2) > I = — I (14.21)

5

where /,; is known as the threshold pump intensity. Thus, a minimum pump
intensity is needed at any value of (r, z) to achieve amplification.

Example 14.1: For a typical erbium-doped fiber pumped at 980 nm
Ope = 3.1 X 1075 m?
tp =12x 107" s

giving

hv,

Ipo = ~ 546 x 10’ W/m* (14.22)

Opalsp
(a) For asignal wavelength of 1536 nm,
Oy 2= 4.644 x 1075 m?
Ose 2 4.644 x 1072 m?
giving 7, = | and

Threshold pump intensity = -/ 0

s

(for Ay = 1536 nm)
= 546 x 107 W/m? (14.23)

Further,

hv, . 5
lgg= —— = 1.16 x 10" W/m
(G,s'a + O'xe)f‘s’p
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(b) For a signal wavelength of 1550 nm,
Oy = 2.545 x 1077 m’
Ty 2 3.410 x 1077 m?
giving n, = 1.3398 and

Threshold pump intensity >~ 4.07 x 107 W/m>
{for i, — 1550 nm) (14.24)

{c) For a signal wavelength of 1580 nm,

_ Cgp — 1.133 b4 10"25“_12 l 737
e O B 0.654 % 10-25m2 — Z

Thus,

Threshold pump intensity ~ 3.15 x 107 W/m?
(for Ay = 1580 nm) (14.25)

This shows that as a given erbium-doped fiber is pumped harder
and harder, population inversion and, hence, gain is first achiev-
ed at longer wavelengths and then at shorter wavelengths (see
Section 14.9).

14.4.1 Variation of pump and signal powers with length

In Section 14.2 we obtained an equation describing the variation of the intensity
of a wave as it propagates through a medium (see equation (14.9)). Since the
pump wave at frequency v, corresponds to transitions between £ and E3 and
since the population of the E5 level is negligible, we can write for the rate of
change of pump intensity (¢f. equation (14.9))

A= = —Tpa Ny(r, z) Ip("n, ) (14.206)

Similarly, the change of signal intensity with z is described by the equation

%{:’i = O Ny — N (r, 2) (14.27)

In the case of an optical fiber, we should describe the amplification in terms of

signal and pump powers rather than in terms of intensities since the propagating

modes at the pump and signal wavelengths are characterized by transverse

intensity profiles — that is, /,, and /, — which are also functions of the transverse

coordinate 7. If we assume that both the pump and signal radiations exist in
the fundamental mode of the doped fiber, then we can write

1,(r,z) = P,(2) fp(r) (14,28)

Ii(r,z) = Py(z) () (14.29)
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where P, (z)and P (z) are the z-dependent powers at the pump and signal wave-
lengths and the quantities f,(r) and f,(r) represent the transverse dependence
of the modal intensity patterns of the pump and signal waves, respectively, and
are normalized so that

o / Cfrdr =1 (14.30)
]

2m / \ L@ dr =1 (14.31)
0

Thus, the pump power at any value of z is given by

oo plm
[ / {p(r,2)rdrdg = Pylz) (14.32)
0 Jo

Similarly, the signal power at any z value is

oc p2m
[ / Iy(r, 2)r dr dp = Py(z) (14.33)
o Jo
The pump power propagating at any value of z is given by

P,(z) =21 f L oy dr (14.34)
0

Thus,

dpP, 2 /"C dl, /
=27 —=rdr
0

dz dz

= —2mo,, | Ni(r.2y1,(r. 2 r dr (1435
/ I

We now assume that the fiber is doped with erbium with a uniform concentration
Np (ions/m™y up to a radius b (which in general could be different from core
radius ). Thus

N(ry=Ng;, 0=r<b
= 0 r>b (14.36)
Using equations (14.36) and (14.19) in equation (14.35), we obtain

]7 N j

P — ;
JP; b ‘ 5
“ ! = _Q‘RU[JUNU/ _“M-:——][,F dr
dZ 4] l _f_ -[p + I.s‘
. PO
.14 11 _ .(])./ (r)
s 50 s
:_2 )aN e . P,Z')""
Ol ./o P00 PGgE TrErd
L+ +
]/)0 [s()

(14.37)
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Similarly, for the signal power we have (using equation (14.27))

d Py d e
= 2n f L(r,zyr dr
0

dz  dz
[ o] [9
:27{/ E1—‘;*.511/
0

dz
py— / T 08Ns = N Lr dr (14.38)
0

or (using equation (14.20))

Pp(z)

5 i ml
dPs o N fb " 7 P fyryrd
= 2 — s\2) Js\P ) dr
7 sai¥o 0 Pp(z)jp(r) Ps(z)fs(f‘) i
b +
lp() ]S()

(14.39)

Equations (14.37) and (14.39) together describe the evolution of the pump and
signal powers along the doped fiber. To solve these equations, we have to know
the pump and signal intensity distributions in the transverse plane. For a step
index fiber, f,(r)and f,(r) can be written in terms of Bessel functions. Since the
transverse intensity patterns closely resemble a Gaussian pattern, the Gaussian
envelope approximation for f,(r)and f(r) is frequently employed. Using this
approximation one can analytically integrate the RHS of equations (14.37) and
(14.39) under a certain approximation and thus simplify the solution.

14.5 Gaussian envelope approximation

One of the simplest models describing the transverse intensity pattern of the
modes is the Gaussian envelope approximation in which we assume

l 2 2
Y —r/Q
= ——e 14.40
) = —= (14.40)
where €2 is determined by the characteristics of the fiber. The multiplying factor
in equation (14.40) is chosen to normalize f(r).
For a step index fiber, €2 is approximately given by (see Appendix D)

V Ki(W)

7= O W)

(14.41)

where U/, W, and V are parameters characterizing a single-mode fiber and are
defined by

U =a(kni = 3" W =a(p*—k2nd)" (14.42)

V = koay/ n? — n3 (14.43)
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B is the propagation constant of the mode, n; and rn; are the core and cladding
refractive indices, and & is the core radius.

Fora given V, W can be obtained (for a step index fiber) using the following
approximate empirical relationship (see Chapter 8)

W = 1.1428V —0.996 (14.44)

which is accurate for 1.5 < V < 2.5,
Corresponding to the pump and signal wavelengths, one can obtain the re-
spective values of U/, V', and W and subsequently the parameter £2.

Example 14.2: As an example, we consider a fiber witha = 1.5 um,
NA = 0.24. Thus, corresponding to a pump wavelength of 980 nm
and signal wavelength of 1550 nm, we have

V, =2308 V, =1.459
W,= 16416 W,=0.6713
U, =16224 U, =12954

giving

Q, = 120 um
€y >~ L70 um

The above approximation is referred to as the Gaussian envelope approximation
[Desurvire (1994)] in contrast to the Gaussian mode approximation discussed
in Chapter 8. The Gaussian mode approximation provides the best fit to the
power launched into a mode, whereas the Gaussian envelope approximation
provides a better match with the radial intensity distributions of the pump and
signal.

Figure 14.13 show the actual Bessel field pattern and the Gaussian envelope
approximation at the pump (980 nm) and signal (1550 nm) wavelengths for a
typical erbium-doped fiber with

a—=15um, NA=024

It is obvious that the Gaussian envelope approximation gives a good fit to the
intensity distribution at both the pump and signal wavelengths.

The Gaussian envelope approximation can be used for the pump and signal
wavelengths to simplify equations (14.37) and (14.39). We will consider this
in the next section.

14.6 Solutions under the Gaussian envelope approximation
Under the Gaussian envelope approximation we may write
1 N_].Z/QZ
for) = —=e » (14.45)

2
nﬁﬁ
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We will evaluate the integrals in equations (14.37) and (14.39) assuming that
€2 ~~ §2,,. Under this approximation we may write

Py _ 2 NP b
- - o2 TpaiVy p(4 o
P
where
1y Po(2)
H =
1 + s Py()
P,z P.(z
v — n{ )+ s(2)
Pf)() PSG
with
. pA
P.\‘() = FQ‘V [x()
and

5
P;}() = HQP Ipé)

|

[+ e /%

1+ we™ /%

} e By dr

(14.47)

(14.48)

(14.49)

(14.50)

(14.51)

Fig. 14.13:  Comparison
of the modal intensity
patterns corresponding to
(a) pump (980 nm) and (b}
signal (1550 nny)
wavelengths of a fiber with
a = 15pum, NA =024
The solid curve correspond
to the actual Bessel
function, and the dashed
curve is the Gaussian
envelope approximation.
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Note that we have assumed Q, = €, in writing the expression for f(r); this
approximation should not lead to much error as the quantity inside the square
brackets in equation (14.47) is slowly varying in comparison to the Gaussian
function outside the square brackets. Now

b 2 93
f 1 4+ ue™ / é_,;z/gz
o L+ we /¥

bty g b
U w e rdi a2
e e | f YIS Jff e’ /e rdr
w| \u o 1+ we 7/ 0

(o (e e e
w /) 2w 1+ we /% w 2

rdr

Thus,

4P — _Tpa No Pp(2) R _trw u: +u(l — c"hz/ﬂi’)
dz w w |+ we /%

(14.52)

Similarly, we can carry out the integration in equation (14.39) to obtain

d P _ oo Ny Pi(z) [_(1 I 1) In{ I +w } +U(§ __{}h:,/ng)}

dz w w | + we P/

(14.53)
where

P;J(Z)
P

v =1,

(14.54)

and in the evaluation of the integral we have assumed €2, ~ ;. Note that
whereas d P, /dz is always negative, d P, /dz can be either positive or negative,
leading to either amplification or attenuation of the signal.

We will first solve equations (14.52) and (14.53) under the small signal
approximation, which will be followed by the solution in the signal saturation
regime.

14.7 Small signal approximation

In the small signal approximation

Puz) « —20
\ f.&‘(r = O)

and equations (14.52) and (14.53) reduce to

=nQ o = Py (14.55)

Polzy iR
1 4 L2 ot
Pro

dP, -
- = Opg Pp(FNU In P (14.56)
< 1+ e
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Pp b/
de F P ; ; 14+ 5L e s
~ = 03, NoPs PPQ [M(l — e‘bzm‘?) 4+ (1 + 1) In [__mﬁ"o___._}jl

N P
z f po b+ 5=
7

(14.57)

Example 14.3: We consider a typical erbium-doped fiber with the
following characteristics:

core radius a = 1.64 pm

NA = (.21

Doping radius b =164 um

fop = 12x 10735
Doping concentration =6.8 x 10* m™?

(= 120 mole ppm)
Pump absorption cross section op, = 2.17 X 102 m?
Signal absorption cross section oy, = 257 x 1075 m?

Signal emission cross section oy = 3.41 x 107 m?
Pump wavelength hp = 980 nm
Signal wavelength Ay = 1550 nm (14.38)

For these values of parameters, the Gaussian envelope approximation

gives us

Q, = 1.35um

Q, =196 um (14.59)
Also

I,0=781x 10" W/m’
Using these values we obtain
P[,() = 0.41 mW

Now, under the small signal approximation,® the variation of pump
power, signal power, and gain are described by equations (14.56) and
(14.57); the corresponding numerical resuits (for an amplifier charac-
terized by equation (14.58)) are plotted5 in Figures 14.14-14.18.

Figure 14.14 shows the variation of pump power with the length of the fiber
for different input pump power levels of 3, 5, and 7mW. As expected, the pump
power monotonically reduces as it propagates along the fiber. It is worthwhile
to note that the decrease is initially almost linear when the pump power is high
and becomes exponential for lower pump powers (see Problem 14.17).

Figure 14.15 shows the variation of signal power with length for an input
signal power of P,(0) = 1 p'W. The signal power increases initially and reaches
a maximum value before beginning to reduce. The corresponding variation of

4The validity of the small signal approximation is discussed in Problem 14.6.
SCalculations were carried out by Dr. Parthasarathy Palai.
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Fig. 14.14:  Variation of
pump power P,(z) with z
corresponding to input
pump powers of 3,5, and 7
mW for an erbium-doped
fiber described by the
parameters given in
eguation (14.58). Note that
around the input, the pump
power is high and the
decrease 1s almost linear,
whereas for large z it
becomes exponential.

Fig. 14.15:  Variation of
signal power £(z) with z
for an input signal power of
1 u'W. Initially the signal
power increases with z due
1o the presence of inversion.
Beyond an optimum length
(which is ~ 7 m for

Pu(0) = 5 mW), the signal
gets attenuated. As is
evident from the figure, the
optimum length depends on
the input pump power. The
fiber parameters are those
given in equation (14.58).

Fig. 14.16:  The variation
of gain with z
corresponding to Figure
14.15. For maximum gain,
the length of the fiber must
be chosen equal to the
optimum value. The fiber
parameters are those given
by equation {14.58).
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gain is shown in Figure 14.16. It can be seen that for every input pump power
level, there is an optimum length of the fiber for achieving maximum gain. For
example, for P,(0) = 5 mW, the optimum length is about 7 m. This behavior
can be easily understood from the fact that, as the pump light propagates through
the fiber, it gets absorbed by the fiber and the pump power level keeps falling
monotonically with z (Figure 14.14). Thus, the inversion keeps reducing with z,
which in turn reduces the gain at any value of z. At some z value the pump power
drops below the critical value, wherein the fiber becomes attenuating rather than
amplifying. Any fiber length beyond this point reabsorbs the amplified signal,
thus reducing the gain. Indeed, Figure 14.17 shows the variation of the optimum
length with input pump power.
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Figure 14.18 shows the variation of gain with the input pump power for
different fiber lengths. Note that for any given fiber length there is a threshold
pump power for transparency of the fiber. At this pump power, the signal gets
neither attenuated nor amplified. Beyond this threshold pump power, the gain
increases with increasing pump power, finally saturating at large pump powers.
The saturation behavior is essentially due to the fact that as the pump power is
increased, more and more erbium ions get inverted and, for large pump powers,
almost the entire fiber is inverted. Hence, there would be no more increase in

inversion and, hence, gain.

Figure 14.19 shows the variation of normalized values of Ny, Ny, P, and Ps
as a function of z. Note that the signal power attains its maximum value close
to N> =~ N, and then starts to decrease.

Fig. 14.17:  Variation of
optimum length with the
input pump power for the
fiber parameters given in
equation (14.58).

Fig. 14.18:  Variation of
gaint with input pump power
for different lengths of the
erbium-doped fiber. Note
that the gain saturates to
different values depending
on the length of the fiber.

Fig. 14.19:  Variation of
NI/qu NIZ/N!- P;)/Ppnmx-,
and P,/ Pypax 28 a function
of z for the fiber specifiied
by equation (14.58). Py
and Pymay correspond to
maximum values of Fp, and
F,, respectively.
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Fig. 14.20: Dependence
of gain on Input pump
power corresponding to
different pump
wavelengths. The largest
gain coefficient of 11
dB/mW corresponds to a
980-nm pump. [After
Desurvire (1994).1
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The largest value of the ratio of gain to pump power is referred to as
the gain coefficient and is measured in dB/mW. This is one of the figures
of merit of an amplifier and depends on the pump laser wavelength. Fig-
ure 14.20 shows the variation of gain with pump power corresponding to dif-
ferent pump laser wavelengths and shows that the maximum gain efficiency of
Il dB/mW has been achieved with a 980-nm pump laser. The maximization
of gain coefficient can be achieved through proper optimization of the fiber
parameters (core radius and NA) and confinement of Er ions within the fiber
core.

14.8 Signal saturation

We first note that the quantity (n, N, — N{) depends on [, (see equation (14.20)),
decreasing as /, increases. This reduction leads to a reduction in the gain (see
equation (14.27)). Thus, if the input signal is very high or if the gain is high,
then the amplified signal can lead to saturation of the gain. This is referred
to as signal-induced gain saturation. Thus, for large signal powers the gain is
expected to decrease below the small signal value.

In the previous section we discussed the characteristics of the amplifier under
the small signal approximation — that is, [, < /o at all z. This is true for low
signal input powers and low gains. It the signal input becomes large or if the
gain becomes high so that /,(z) becomes comparable to or larger than /,q, then
we must solve equations (14.52) and (14.53) to obtain the evolution of pump
and signal powers with z in the presence of signal saturation.

Figure 14.21(a) shows a typical plot of gain versus input signal power,
Figure 14.21(b) shows the corresponding gain variation with output signal
power, and Figure 14.21(c) shows the variation of output amplified signal
power with input signal power for the same fiber parameters as given by equa-
tion (14.58).

Note that as the input (or the output) signal power increases, the gain de-
creases from the small signal value. The output signal power where the gain
is reduced by 3 dB compared with the small signal value is called saturation
output power. Typically, the saturation output power is around 10 mW. The



306 Optical fiber amplifiers

QS 1] 1 ] T T T T T |
20+ &
m 1k -
e
g
510 .
“ Py = 15mW
10mW
5 SmW '
U i | 1 H [ ] 1 ! H
-30 -25 20 -15 -10 -B 4] 5 10 15 20
(a) P, (dBm)
25 T T Y T T T T T T
20 -
m 15k J
=
H
=
10 - -
o Pl 15mW
10mW
5F 5mW B
O 1 i i i 1 o 1 I E
-30 25 20 -1 10 -5 0 5 16 15 20
(b) P (dBim)
jfz i 1] T 13 T T T
Ay i
: 8
(c) Piin{mW)

saturation output power is an important parameter specifying a power ampli-
fier.

14.9 Gain spectrum and gain bandwidth

Since the absorption and emission cross sections depend on the signal wave-
length (see Figure 14.8 and Table 14.1), the gain of an erbium-doped fiber will
depend on the signal wavelength. Figure 14.22 shows a typical spectral de-
pendence of gain of an erbium-doped fiber amplifier pumped at 980 nm with
different pump powers. The parameter y is defined as

P)O P} SANY £
L, =00 _ 5O ("”-?) (14.60)

Pp() A r h )

Fig. 14.21: Variation o
gain with (a) input signa
power, (b} output signal
power, and (c) output
amplified signal power %
input signal power for a
erbium-doped fiber
described by equation
(14.58) and for different
input pump powers. Not
that, for small input sign
powers, the gain is almo
independent of the signs
power and for large sign
powers the gain decreas:



14.9 Gain spectrum and gain bandwidth 307

Fig. 14.22: Typical
variation of gain with signal
wavelength of a 980-nm
pumped EDFA for different
input pump powers. The
parameter y is defined in
equation (14.60); y = 0
corresponds to zero input
pump power and increasing
value of y to increasing
pump powers. [After
Desurvire (1990).]
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where P,(0) is the input pump power. Thus, y = 0 corresponds to an unpumped
fiber and the large value of y represents the high pump power regime.

The figure clearly shows that for a given input pump power, the fiber ex-
hibits gain for wavelengths greater than a specific wavelength and exhibits
attenuation at wavelengths shorter than this specific wavelength. As the pump
power increases, the specific wavelength for which the net gain is zero (i.e.,
there is neither amplification nor attenuation) moves toward shorter wave-
lengths.

The fact that for a given pump power, there is net amplification on the long-
wavelength side and a net attenuation on the short-wavelength side of a specific
wavelength can be understood because absorption from the ground level is
smaller at longer wavelengths than at shorter wavelengths and fluorescence is
larger at longer wavelengths than at shorter wavelengths (see Figure 14.8). Fora
signal wavelength of 1550 nm, the fiber becomes transparent for y =~ 1 —that is,
for P,(0) = P,q. For large pump powers, the gain does not change appreciably
due to complete inversion in the medium. Figure 14.22 also shows that apart
from a peak around 1535 nm, the gain is almost uniform over a bandwidth of
approximately 25 nm or so. Thus, such an amplifier is capable of amplifying
simultaneously optical signals over a band of wavelengths in a region of about
25 nm. This is very interesting from the point of view of application in WDM
systems (see Section 14.11).

Example 14.4: Let us calculate the gain bandwidth in the frequency
domain corresponding to a gain bandwidth of 30 nm in the wavelength
domain centered around 1550 nm. Since v = ¢/Ag, we have

Av i A)&()
v A
Hence,

v C
Av = “—A}\Q = —Aky 3.7 THz

2
Ao 1]

which 1s an enormous bandwidth. This huge bandwidth can be fully
exploited using WDM schemes.
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14.10 Noise in EDFA Fig. 14.23:  (a) Spectrum

of the signal input into an
We have seen that amplification of the optical signal takes place by stimulated  EDFA and (b) the

emission from an upper energy level to the ground level in Er’* ions. The corresponding amplifier
ions sitting in the higher energy state can also emit radiation by the process zifji;:\j)‘j:r‘:;;?:;i‘:i‘::m”
of spontaneous emis%ion, This spoptaneous em{ssion appears over the entire ﬁumeécence band due to
fluorescent band and is completely incoherent with respect to the signal beam. ASE. [After Chen et al.
Some of this spontaneously emitted radiation is coupled into the LPy; mode  (1995)]
of the erbium-doped fiber and as it propagates through the amplifying fiber
(in both forward and backward directions) gets amplified just like the signal.
The resultant optical radiation is referred to as amplified spontaneous emission
(ASE). This incoherent radiation also propagates with the signal and interferes
with the signal when it is detected by a photodetector. This results in the gen-
eration of noise that ultimately limits the receiver sensitivity of an optical fiber
transmission system.
Figure 14.23 shows the spectrum of an input signal and the output amplified
spectrum from an EDFA. It is obvious that along with the amplification process,
the EDFA also generates a background spontaneous emission noise over the
entire gain band.
The noise in the wavelength regions outside of the signal spectrum can be
filtered by using optical wavelength filters with a pass band coinciding with
the signal spectrum. On the other hand, the noise added in the region of signal
spectrum interferes with the detection process and results in the noise of the
amplifier.
The noise figure £ of an amplifier is defined as the ratio of the input signal
to noise ratio ((SNR);) to that of the output signal to noise ratio ((SNR),,).

NR);
- _ (SNR)

_ 14.61
(SNR), (14.61)

It can be shown that for high gain amplifiers [see, e.g., Yariv (1991), Desurvire
(1994)]

Ny

Fe2 oo -
(N2 — Nyp)

(14.62)

where Ny and N, are the population densities of the lower and upper amplifier
levels.
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Fig. 14.24: Dependence
of noise figure of an
amplifier purmped at

980 nm on the input pump

power. [After Laming and

Payne (1990}.]
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Minimum noise figure is obtained when N, > Ny (i.e., the population den-
sity of the lower level is negligible compared with that of the upper level) and F
is equal to 2. This corresponds to the theoretical limit of noise figure and in the
logarithmic scale is 3 dB. An F value of 2 implies that the SNR at the output of
the amplifier is degraded by a factor of 2 with respect to the SNR at the input.

For the case of pumping with a 980-nm pump, one can achieve the condition
N, >3 N, and, hence, a noise figure of 3 dB; on the other hand, since the 1480-
nm pump wavelength corresponds to the same levels used for amplification, the
pump itself induces downward transitions (in addition to upward transitions)
and in this case it is not possible to have N> > N. Thus, the noise figure with
the 980-nm pumping scheme is lower than with the 1480-nm pumping scheme.
This is one of the advantages of using a 980-nm pump.

Figure 14.24 shows the dependence of noise figure on the input pump power
at 980 nm for an input signal power of | uW at 1535 nm and shows that as
the pump power increases beyond a certain value (for a given length of doped
fiber, which was 11 m in this case), the noise figure reaches the theoretical
limit of 3 dB. As the input pump power increases, there is a greater amount of
population inversion and, hence, greater gain. As the inversion increases, the
factor N, /(N, — Ny) in equation (14.62) decreases and beyond a certain gain
(typically, 15 dB), the noise figure reaches the lowest possible value.

14.11 EDFAs for WDM transmission

There are two routes to increasing the capacity of a fiber optic communication
system. One involves increasing the bit rate, which would require sophisti-
cated time division multiplexing and demultiplexing components. The other
route involves using multiple signal wavelengths to carry different channels,
also referred to as WDM. The second route is not attractive using conventional
electronic repeaters since each WDM channel would need an individual opto-
electronic repeater. On the other hand, the appearance of EDFAs has made the
latter choice very attractive and today WDM looks to be the most promising
route to enhancing the capacity.

Since one of the major advantages of an EDFA over the conventional elec-
tronic amplifier is the ability of the EDFA to simultaneously amplify many
signals at different wavelengths, EDFAs can be advantageously used for ex-
panding the capacity of the fiber optic system using WDM. Such multiplexing
schemes are limited by a variety of phenomena, including fiber nonlinearities
(in which four-wave mixing is the most significant), wavelength-dependent gain
of the EDFAs, and accumulation of noise in the channels.
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Unfortunately, the inherent wavelength dependence of the gain and noise
characteristics of EDFAs implies that different wavelengths in the signal will
have different gain and noise characteristics and, hence, will suffer from an
imbalance in the SNRs. Thus, to employ erbium-doped fibers in WDM sys-
tems, it 1s very important that the gain and noise characteristics of the various
wavelengths should be almost the same. For a conventional EDFA| the gain
spectrum is, in general, not flat (see Figure 14.22) and there is a significant
spectral variation of gain. There are many techniques that currently are being
studied for gain flattening in EDFAs, including aluminum codoping [ Yoshida,
Kurvano, and Iwashita (1995)], preemphasis of the signal levels to compensate
for the differential gain [Chraplyvy, Nagel, and Tkach (1992}], using optical
bandpass and notch filters [Shimojoh et al. (1996)], using erbium-doped flu-
oride fibers [Miyajima et al. (1994)], using blazed Bragg gratings [Kashyap,
Whyatt, and Mckee (1993)], using a twin-core doped fiber [Zervas and Laming
(1995)], and using long-period gratings [ Vengsarkar et al. (1996a,b)].

As an example, Figure 14.25(a) shows the filter shape of a long-period fiber
Bragg grating (see also Section 17.11) compared with the inverse gain spectrum
of an amplifier chain made up of ten EDFA spans; Figure 14.25(b) shows the
corresponding relative gain variation of the chain with and without the filter.

Fig. 14.25: (a) The
variation of the inverse
spectral response with
wavelength and the
corresponding filter spectral
variation of a long-period
grating. (b) The relative
spectral gain variation for a
6300-km amplifier chain
with and without passive
gain equalization. [After
Bergano and Davidson
(1996}.]
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Fig. 14.26:  Variation of
gain with signal wavelength
of a high Al concentration
erbium-doped fiber. The
gain flattened region
extends from 1544 to 1557
nm. [After Yoshida et al.
(1995).]
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It can be seen that with the filter, the gain bandwidth of the chain has been
increased from 3.5 nm to over 11 nm, showing a three-fold improvement.

Another solution for gain flattening involves doping the active fiber with a
high concentration of aluminum [Yoshida et al. (1995)]. With 2.9 weight % of
Al concentration, an extremely flat gain characteristic with gain excursion of
less than 0.02 dB/nm/stage (in a multiamplifier system) from 1544 to 1557 nm
has been demonstrated (see Figure 14.26). The flat gain characteristic was also
verified by conducting a 16-channel, 100-GHz spaced WDM experiment.

Figure 14.27 shows the input and output spectra of 10 WDM channels with
each channel operating at 10 Gb/s after propagation through 1200 km of fibers
with 11 EDFAs in the link (repeater spacing of 100 km). The result shows the
signal excursion is less than 2 dB and also the absence of any four-wave mixing
(FWM) components,

One of the major problems that a WDM system has to counteract is the effect
of fiber nonlinearities on the propagating signals. Among all nonlinear effects,
FWM is the most deleterious. FWM is caused by the mixing of three different
signal frequencies to generate a fourth signal frequency. Thus, if w, -, and
ws are three signal frequencies propagating through the fiber, FWM results in
the generation of frequencies given by

Wy =y £ ws

If any of these frequencies coincides with an existing signal frequency, then
it will result in cross talk between the different channels. Different techniques
have evolved to reduce the effects of FWM, including operation at a wavelength
away from zero dispersion wavelength, which would reduce the efficiency of
FWM because of nonphase matching of different frequency components. In-
deed, such nonzero dispersion fibers are becoming very important in system
applications. Another route is to use unequal channel spacing, which would
not reduce FWM but would not lead to any cross talk. Yet another technique
referred to as dispersion management is to use fibers possessing positive and
negative dispersion coefficients in the link so that, although the total dispersion
in the link may be very small, the different wavelengths are not phase matched
in each fiber link, thus reducing the effects of FWM.
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14.12  Comparison with plane wave case

For an infinitely extended medium, doped uniformly with erbium with a concen-
tration of Ny ions/m>, with plane waves of mtensity /,(z) and /;(z) propagating
through the medium, the populations Ny and N, would be independent of r
and equations (14.26) and (14.27) then would be independent of r. In such a
case, considering area § of the beams, we can transform equations (14.26) and
(14.27) in terms of powers Pp(=1,S) and Py(=1,5) to

dP, ,
= 0N\ P, (14.63)
ez
d P,
(1 - = G”m(mNz - N])Ps (1464)
az

which under small signal power approximation and using equations (14.19) and
(14.20) can be written as

dP, _ —0pyNo P, (14.65)
dz 1+ 15]3 e

1P, n P, — 1
Rk = O'.\‘([N{)P.x‘_"“:;“
dz P, +1

(14.66)

Fig. 14.27:  Optical
spectrum of 10 WDM
channels each operating a
10 Gb/s (a) before and (b)
after transmission through
1200 km of fiber with 11
EDFAs in the link. [After
Yoshida et al. (1996).]
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where 1"3,, =P,/Sl = 17!]_ When the pump power is also small, we may assume
F’{, < 1 and equations (14.65) and (14.66) become

dP, dP,

d; - —(7!7(1NUP[): dZ - ""O'.WN(}P\‘ (1467)
which can easily be integrated to give

Py(z) = Py(0)e M5 Py = P(0)e™ "N (14.68)

thus giving the pump and signal absorption coefficients of up’ = 0pq Ng and
0’;\», = 054 No.

On the other hand, for a doped fiber, as discussed in Section 4.7, the :
variation of pump and signal powers (under small pump and signal power
approximation) are given by (from equations (14.56) and (14.57))

dpP,
= = =0 Nty P (14.69)
dP,
""""}“";” = —05,No& Py (14.70)
dz

y

where 7, = (1 — ff!’sz’) and ¢, = (1 — e 1. From equations (14.69)
and (14.70) we get the effective absorption coefficients of o, = o0,,No{, and
w, = oy, No & for the case of a fiber. Hence, comparing with the plane wave
case, we note that the factors ¢, and ¢, take account of the fact that the doping
is not uniform (N, = 0 for 7 > £) and that the pump and signal waves have a
transverse intensity distribution. Indeed, if we let b — o0, then {, = ¢, = |
and the fiber case (for small pump and signal powers) reduces to the plane wave
case.

14.13 Relation between mole ppm, weight ppm, and ions/cm*
of Er concentration

The erbium doping concentration in a doped fiber is specified usually in terms
of mole ppm (parts per million) or weight ppm or in terms of number of Er’*
ions per cm?. In this section we will show a relationship between these. Let M
represent the mole ppm of Ery O in a doped pure silica fiber. This implies that
in 1 mole of the composite material there is (1-107% M) mole of Si0O> and 10°°
M mole of Er, Q5. Since the molecular weight of $i0» is 60,1 and that of Er>Os
is 382.6, the weight of 1 mole of doped 510 is

(1 —107°M)60.1 + M x 107°382.6 >~ 60.1 ¢

Since | mole of any substance contains 6.02 x 10%* molecules, 60.1 g of the
composite material will contain 6.02 x 10** molecules. If D (g/cc) is the mass
density of the doped material, then this implies that 60.1/D ¢cm?® of the material
contains 6.02 x 10°* molecules. The weight of Er,Os in this volume is 382.6 x
107 M g. Now, 382.6 g of Er,O3 contains 6.02 x 10> molecules of Er;Os.
Hence, 382.6 x 107 M g of Er,O5 will contain 6.02 x 10" M molecules of
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ErOs. Since every molecule of Er,O5 contains two ions of Er'™, the number of
Er't jons in this will be 12.04 x 10" M. Thus, 60.1/D cm ™~ of the composite
material contains 12.04 x 107 M ions of Er’*. Hence, the Er** ion density is

1204 x 10" x D x M
60.1

ions/cm’
Hence,
C|concentration in ions/m”*] > 5.73 x 10** M (mole ppm)
(14.71)

where we have used the density D of SiO-, which is about 2.86 g cm ™.
Thus, 100 mole ppm corresponds to about 5.73 x 10%* ions/m”.

14.14 Demonstration of some EDFA systems

There has been tremendous progress in the demonstration of various high-
capacity long-distance optical fiber communication systems, and new record
figures are being achieved at a tremendous pace. In this section we will briefly
mention some representative system demonstrations.

Using 274 EDFAs over a 9000-km fiber optic link, groups at AT & T in the
United States and KDD in Japan have demonstrated error-free performance at
5 Gb/s using NRZ signals. Figure 14.28 shows the pulse sequence at the mnput
and the output (after propagating through 9000 km of fiber) and 274 EDFAs. It
is obvious that the pulses are almost undistorted and are almost free from noise.

Figure 14.29 shows an experiment conducted by British Telecom demon-
strating the broadcast of signals at 39.81 Gb/s (using 16 DFB lasers operating

Fig. 14.28: The upper
trace shows a
pseudorandom bit sequence
at 5 Gb/s in NRZ format at
the input, and the lower
trace shows the
corresponding output after
the pulses have propagated
through 9000 km of fiber
with 274 EDFAs, Note that
the output pulses are almost
free from distortion and
noise even after 9000 km of
propagation. [After
Desurvire {1994).]
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Fig. 14.29: The broadcast
distribution network
demonstrated by British
Telecom for transmission to
43.8 million potential users
within a 527-km range at
39.81 Gb/s using 16 DFB
lasers, cach sending signals
at 2.448 Gb/s. [After
Forrestier et al. {1991).]
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at slightly different wavelengths, each one carrying a data rate of 2.488 Gby/s)
to 43.8 million potential users within a 527-km range. This experiment shows
the immense potential offered by EDFAs in future broadcast networks.

Transoceanic systems installed across the Atlantic ocean in 1996 and the
Pacific ocean in 1997 will offer 5 Gb/sec capacity per fiber. The latter system is
expected to transmit 200-ps pulses over the 9000-km distance between North
America and Japan without any regeneration.

Experimental demonstration of speeds in excess of 1 Th/s are becoming
common [Chraplyvy et al. (1996), Onaka et al. (1996)]. Recently, a group from
NEC in Japan has reported a record data transmission at a rate of 2.6 Tb/s
over 120 km (European Conference on Optical Communication, 1996). The
system used WDM transmission with 132 channels lying between 1529.03 nm
and 1563.86 nm spaced at 33.3 GHz. Gain-flattened EDFAs were used in this
record transmission experiment.

With loss taken care of by optical amplification, one has to design systems
to overcome polarization mode dispersion and various nonlinear effects such
as self-phase modulation, FWM in WDM systems, and so forth.

Problems

14.1 Consider an erbium-doped medium with 5 x 102 m~* Er’™ ions per unit vol-
ume. Using the absorption cross sections listed in Table 14.1, obtain the number
ol absorptions per unit time per unit volume if light of power 1 mW with a
cross-sectional area of | mm? and wavelengths of 1535.9 nm and 1570.4 nm
is incident on the medium. Obtain the corresponding absorption coefficients
(assuming Np >~ 0).

Solution: A 1-mW beam with a cross-sectional area of 1 mm? corresponds to

103

| = —— =10° W/m?
[0-6 fm
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14.3

For 2 = 1535.9nm. oy, = 4.644 x 1072 m? and

IN 10° x 15359 x 10~ ,
(‘ 3) — 4.644 x 1025 x . % 5% 102
abs

X
dt 6.62 % 1073 % 3 x 108

~ 1.8 x 1022 m3s~!

Corresponding to A = 1570.4 nm, gy, = 0.934 x 1072° m? and we obtain
similarly

IN :
(f i) =3.60x 10* m™? !
de abs

The corresponding absorption coefticients are given by (see equation (14.10))

@(1535.9nm) = 4.644 x 1072 x 5 x 104
=~ 2.322m™!

which i1s equivalent to »z 1 dB/m.

@(1570.4 nm) = 0.934 x 10725 x 5 x 10

= 0.4670m™!
which is equivalent to == 0.2 dB/m.

For the fiber parameters given by equation (14.58), assuming low signal power,
obtain the threshold pump power required for amplification of the signal at any
value of z.

Solution: To have amplification at any - value, d P, /dz must be greater than
zero. Thus, from equation (14.57) we obtain for the threshold pump power to
have amplification

Pp byt
F h2 o2 I+ ”ﬁ“f“““/’ !

Pt —e P/ 1 (1 4 in T
Ppo |+ 5

plr

!l
<

(14.72)

For a given fiber. we have to solve the above transcendental equation to obtain
the value of P,/ F 0. For the fiber parameters given by equation (14.58), the
solution of equation (14.72) gives us

P
L~ 0.95
[[1()

which shows that for the signal wavelength of 1550 nm, amplification at any
value of z can be achieved at P, = 0.95 P,n. Note that this threshold pump
power depends on signal wavelength through n; and ;.

For the same fiber considered in Problem 14.2, calculate the threshold pump
powers corresponding to a signal wavelength of 15330 nm (for which o, =
525 % 10727 m?, g4 = 4.36 x 1072 m?). Assume €2, 1o be the same as in
Problem 14.2.
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14.4

Selution: Using equation (14.72), we obtain the threshold pump power required
for amplification at any value of z as

P,z 1.51 Py

Note that this is much larger than that obtained in Problem 14.2 for a signal wave-
length of 1550 nm. The difference arises primarily because of the difference in
175 value.

Consider an erbium-doped fiber with €2, = 1.591 pm, €, = 2.288 um, and a
core radius of 2.5 pm. Estimate the threshold pump power required for achiev-
ing amplification at any value of z for doping radii b = a, 0.5a, 0.254, and
0.1a for a signal wavelength of 1550 nm for which ny = 1.327. Assume
Ope = 2.17 % 1072 m?, Lyp = 12 x 1073 s, Ay = 980 nm.

Solution: For the given values of parameter

Ppo = 125 1 p0 ~ 0.62mW

Further, solving equation (14.72) for P, for different values of b, we obtain the
required threshold pump powers

() b=a P,=1.206P, =0.75mW
(i) b=05a P,=0862Py =053 mW
(i) h=02a P, ~0772 Py =048 mW
(iv) b=0.1a P, ~076P, =047 mW

Note that the threshold pump power required for amplification decreases with
decreasing b. ‘

Indeed, for b — 0, one can show thar the solution of equation (14.72) 1s given
by

P[} s Pp()/’?s

For a given fiber, this limit corresponds to P, =2 0.754 Py == 0.467 mW. Note
that the threshold pump power required for signal amplification is independent
of doping concentration; however, the gain will depend on the concentration of
the erbium ions.

Assuming the pump intensity distribution to be Gausgian as given by equation
(14.45) with Q,, = 1.591 um in an erbium-doped fiber of core radius 2.5 um
with the entire core doped with 2.44 x 10* erbium ions/m®, at what pump
power will the entire core cross section have N2 = N7 Assume 7, = |

Solution: From equation (14.21) we note that for obtaining No > N, the local
pump intensity should satisfy
ip(") > [;J()

Now, due to the Gaussian nature of the pump intensity distribution, the local
intensity is maximum on axis and decreases with increasing r. For achieving
inversion n the entire core, we must have

1/)("' =)= P[,fp(}" =a)= [,u()
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14.6

14.7

Using /0 = 5.46 x 107 W/m? (see Example 14.1) and equation (14.51), we get

0
1/)
PP >

B fp('" = a)
~ 5.13mW

5 2702
=, e Ipo

Thus, at P, < 5. 13 mW, only a fraction of the doped core will be inverted while
the remaining portion would have N7 < N| and, hence, would be absorbing.

In the small signal approximation, we assume that over the entire amplifier length
I, = I;/1 < 1. For a typical value of I,g of 4.07 x107 W/m? (see Example
14.1) and an 2, of 1.96 um, determine what this implies in terms of signal
power.

Solution: Since the maximum intensity is at » = 0, we shall consider the im-
plications of this at r = 0. Now from equations (14.29) and (14.46), we obtain
atr =0,

I,00,2) = P /m2}

For

we have

P2y =m0 140, 2) « w22 I

Substituting the values of fyp and {2, this implies

P(z) « 049 mW

Hence, for input power levels of less than ~ | 1 W and gains of less than about
20 dB, the small signal approximation will work well.

Maximum efficiency of energy conversion from pump to signal is reached when
every pump photon results in one signal photon due to stimulated emission.
Assuming such a condition, estimate the maximum efficiency of conversion for
pump wavelengths of 980 nm and 1480 nm and a signal wavelength of 1550 nim.

Solution: If v, and v are the pump and signal frequencies, then the maximum
efficiency is given by

hug Ap
hvp - Ag

T —

> 63% fork, = 980 nm

=~ 95% fori, = 1480 nm
An erbium-doped fiber has a doped core with a dopant concentration of 10°* m™?
with 2, = 1.59 pm, &2, = 2.29 um. Given that the absorption cross sections
at 980 nm and 1535 nm are 1.57 x 1072 m? and 1.75 x 1072 m?, obtain the
absorption coctficient of the fiber at these two wavelengths for low light levels.
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14.9

14.10

Solutien: For low light levels (which are conventionally used for measuring the
absorption coefficient of a fiber) we may assume that only a very small fraction
of atoms get excited from the ground state. Thus, we may assume Ny = con-
stant =10 m~3. The power in the light beam varies according to the following
equation (see equations (14.69) and (14.70))

1P
%i‘; L\;“'UN()CP

where P =P, or P;, o =0py OF Uy, and { =&, or ¢, for the pump and signal,
respectively. Thus

P(z) = P(0)e o No¢?

The absorption coefficient in dB/m is given by

P{dm
a = —10log {m) = 10c¢ Nylog,ne
P(0) 10

=~ (.62 dB/m at 980 nm
=~ (.53 dB/m at 1550 nm

Note that if the entire fiber cross section is doped, then b — o and Ip = L
{s > L. For this case the absorption coefficients would be 0.68 dB/m and 0.76
dB/m at the pump and signal wavelengths, respectively.

Consider an erbium-doped fiber containing 20 ppm of erbium, which corre-
sponds to a concentration of 4.41 x 1023 jons/m?. Assuming well-confined mode,
obtain the absorption coefficient of the fiber at 1535 nm, given that the absorption
cross section at 1535 nm is 5.57 x 1072 m?_ (¢ = —10o N, log,ge = | dB/m
[Ohashi and Tsubshawa (19913].

An optical amplifier can become a source of radiation — that is, a laser if optical
feedback is provided. Such a feedback is provided by placing the amplifier be-
tween a pair of mirrors. The reflections from the bare ends of a fiber amplifier
could act as feedback, forcing the fiber amplifier into oscillation. Estimate the
threshold small signal gain at which the reflections from the fiber ends make the
fiber amplifier into an oscillator.

Solution: The refractive index of the fiber core is about 1.46. Assuming a per-
fectly perpendicular cut, the reflection coefficient from each fiber end would
approximately be

146 — 112
R=~[-"2""1Y) ~0035
1.46 + 1

If an input signal power PI" becomes P at the output of the amplifying fiber,
then the single pass gain G is

Pout
G = 10log —=-
PP
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14.13

or
. . . N .
P\\«ou{ - P,Jnmb/m - P;n c()m}(B L&

Laser oscillation threshold corresponds to an exact compensation of loss by gain.
Assuming the only loss to be the mirror reflections, the threshold corresponds
to

pin 023036 g N3G R _ pin
or

- InR
0.2303

For R = 0.035, this gives G =~ 14.6 dB. Such gains are easily obtainable in
an erbium-doped fiber amplifier. Thus, at G > 14.6 dB, the fiber amplifier may
begin to oscillate to form a fiber laser just from the feedback provided by Fresnel
reflections from the cleared fiber end.

Consider an erbium-doped fiber with a core radius of 1.9 pm, NA = 0.20
doped in the entire core with erbium with a concentration of 1000 ppm by
weight.

(a) Calculate the cutoff wavelength of the fiber.

{b) Obtain the Gaussian envelope mode sizes at 980 nm and 1530 nm.

(¢) Assuming op, = 3.1 x 0P m?, o, =7 % 1072 m?2, obtain the ab-
sorption coefficient of the fiber at 980 nm and 1530 nm.

(d) Obtain the transparency pump power for a fiber length of 20 m.

(e) For this length calculate the pump power required for a small signal gain
of 20 dB.

Find the characteristics of an erbium-doped fiber with the same characteristics
as in Problem 14.11 except that the same doping is up to aradius of only 0.75 pum
and 0.5 um. Compare the performance with the case in which the entire core is
doped.

Consider an erbium-doped fiber with ¢ = 1.8 pum, NA = 0.19, and whose
entire core cross section is doped with 4370 ppm by weight of Er.

(a) Obtain the cutoff wavelength.
{(b) Obtain the absorption coefficient at 980 nm and at 1535 nm.

Consider a step index erbium-doped fiber with a core diameter of 2.2 ym and
NA of 0.3 doped within the entire core with Er;O3 concentration of 40 ppm.

(a) Calculate the cutoff wavelength of the fiber.
[ANSWER: A, = 0.86 um]

(b) Calculate the Er concentration in ions/m”.

[ANSWER: 2.29 x 10%*m™7]

(¢) Obtain the corresponding small signal absorption coetticients of the fiber
at 980 nm and 1532 nm. Assume o,, = 3.1 x 1072 m? and oy, =
7 % 1072 m*.

{d) Obtain P,y and Pqp.
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14.15

14.16

14.17

Solution:

V(0.98 umy =2.116, U (1.532 um) =1.353

U (0.98 pm) =1.5668, V (1.532 um) =1.2361

W (098 um) =1.4222, W (1.532 um) =0.5502
€, =0.925 um s =1.359 um

ap =0, Nrnp=3.1x 1072 x 229 x 10% x 0.7569.
R, =175%10"m=0.5373m™ = 2.3dB/m

oy =0s Nons =7 % 1077 x 2.29 x 10%* x 0.4806
~ 0.7704m~! ~ 3.3dB/m

Calculate the minimum splice loss at 1550 nm achievable between an erbium-
doped fiber with a core radius of 1.55 pm, NA = 0.22, and (a) a conventional
SMEFE with an MFD of 10 pm and (b) a dispersion-shifted SMF with an MFD
of 7 pm.

Solution: Using Gaussian approximation, the splice loss between two fibers
with Gaussian spot sizes wy and wy is given by (see Chapter 8)

2 3
wT 4wy
Loss = 20 log(—zl—-—E—)

wius

The given EDF has a V value of 1.38 at 1.55 pum. Using Marcuse’s formula for
spot size of a fiber (see Chapter 8), we obtain wy ~ 3.2 zom. Thus, the splice
loss for the conventional SMF would be =~ 0.84 dB and for the DSF would be
0.03 dB.

Splice loss reduction in the optimization of an erbium-doped fiber ampli-
fier is a subject of great importance [see, e.g., Zheng, Hulten, and Rylander
(1994).]

Show that if the concentration of Er;Os is specified as P ppm by weight,
then this corresponds to approximately @ 9.0 x 10°! P m™3 concentration of
Ert,

Consider propagation of only the pump beam through an erbium-doped medium.
In such a case, using equations (14.19) and (14.26), we obtain

dl, _ T pa

T LAV 14.73
dz L+ dp/l0 7 719

Obtain the solution o the above equation when {, « 1,0 and when I, is com-
parable to /q.

Selution: For /7, << [, we obtain

dl,
dz

= —Upa Nz']p
whose solution 1s

[[7(2) — [[? (O) ()*O“/m Ny z

showing an exponential decrease in intensity.
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For 1, comparable to /0. we rewrite equation (14.73) as

1 1
= A —— | dl, = —0o,, Ny dz
(Ip ]]90) P paivt

On integrating the above equation, we obtain

1,(2) 1 ;
In [m] + " [1p(@) = 1, (0)] = =0 N,z (14.74)

For {, > [, equation (14.74) becomes

dl,
dz

= _O'paNr
whose solution is
1/7(3) = ip 0 - (fp(thZ
showing a linear decrease in pump intensity.

Figure 14.14 shows the linear decrease at large pump powers and an expo-
nential decrease at small pump powers.
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15.1 Introduction

In recent years there has been considerable work on dispersion-compensating
fibers (DCFs), which are being used extensively for upgrading the installed
[310-nm optimized optical fiber links for operation at 15350 nm. In Section 15.2
we discuss the basic principle behind dispersion compensation, and in Section
15.3 we discuss the characteristics of DCFs. In Section 15.4 we discuss disper-
sion management to overcome the effects of nonlinear interactions in WbBM
systems. In Section 15.5 we show explicitly that broadening of an unchirped
(Fourier transform limited) pulse is accompanied by a corresponding frequency
chirp within the pulse — that is, the instantaneous frequency within the pulse
does not remain constant but changes continuously from the leading edge to
the trailing edge of the pulse. We also show that a chirped pulse can be made to
undergo compression if passed through a proper dispersive medium. In Chapter
16 we show how such a chirping and pulse broadening can be compensated by
using the nonlinear properties of the optical fiber leading to solitons.

15.2 Dispersion compensation

Let us consider a pulse (of spectral width AXy) propagating through a fiber
characterized by the propagation constant 8. The spectral width Aiy could be
due to either the finite spectral width of the source itself or the finite duration of
a Fourier transform-limited pulse. In Chapter 6 we considered the propagation
of such a pulse and showed that the group velocity of the pulse is given by

1 dp

= (15.1)

U dw
For a conventional single-mode fiber with zero dispersion around 1300 nm,
a typical variation of v, with wavelength is shown by the solid curve in Fig-
ure 15.1. As can be seen from the figure, v, attains a maximum value at the
zero dispersion wavelength and on either side it monotonically decreases with
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wavelength. Thus, if the central wavelength of the pulse is around 1.55 um
(see Figure 15.1), then the red components of the pulse (i.e., longer wave-
lengths) will travel slower than the blue components (i.e., smaller wavelengths)
of the pulse. Because of this the pulse will get broadened. The leading edge
(which appears earlier) of the output pulse is blue shifted and the trailing edge
15 red shifted.

Now, after propagating through such a fiber for a certain length L |, we allow
the pulse to propagate through another fiber where the group velocity varies, as
shown by the dashed curve in Figure 15.1. The red components will now travel
faster than the blue components and the pulse will tend to reshape itself into
its original form. This is the basic principle behind dispersion compensation.
Now, the total dispersion of a single-mode fiber is given by (see Chapter 8)

2we d°B
/\(3) do?

Dy =D, + D, =~ (152)

Thus, d*B/dw* < () implies operation at 1y > A- and conversely. Let (D))
and (D, ); be the dispersion coefficient of the first and second fiber, respectively,
Thus, if the lengths of the two fibers (L and L») are such that

(DLi+(Di)ela=0 (15.3)

then the pulse emanating from the second fiber will be identical to the pulse
entering the first fiber.

To explicitly understand this, in Figure 15.2(a) we show the broadening of
an unchirped pulse as it propagates through a fiber characterized by

(D) >0 (hg > 4o)

Thus, because of the physics discussed above, the pulse gets broadened and
chirps, the front end of the pulse gets blue shifted, and the trailing edge of the
pulse gets red shifted (the details are given in Section 15.5). The pulse is said
to be negatively chirped. If such a negatively chirped pulse is now propagated
through another fiber of length L, characterized by

(D) <0

then the chirped pulse will get compressed (see Figure 15.2(b)), and, if the length
satisfies equation (15.3), then the pulse dispersion will be exactly compensated.

Fig. 15,10 Typical
vartation of v, with Aq fora
CSF (conventional
single-mode fiber) and a
DCF. At the operating
wavelength, the CSF has
(small) positive dispersion
and the DCF has (large)
negative dispersion. Notice
that the fractional variation
of v, is much more for the
DCF.
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Fig. 15.2:  The basic
principle of dispersion
compensation.
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15.3 Dispersion compensating fibers

As discussed in Section 10.2, CSFs are characterized by large (~5-6 pum) core
radii and zero dispersion occurs around 1300 nm (see Figure 10.2), Operation
around Ag =~ 1300 nm thus leads to very low pulse broadening, but the at-
tenuation is higher than at 1550 nm (see Figure 14.1(a)). Thus, to exploit the
low-loss window around 1550 nm, new fiber designs were developed that had
zero dispersion in the 1550-nm wavelength region. These fibers are referred
to as DSFs and have typically a triangular refractive index profiled core. Us-
ing DSFs operating at 1550 nm, one can achieve zero dispersion as well as
minimum [oss in silica-based fibers (see Figure 10.3).

Now, in many countries, tens of millions of kilometers of CSFs already exist
in the underground ducts operating at Ag > 1300 nm. One could increase the
transmission capacity by operating these fibers at 1550 nm and using WDM
techniques and optical amplifiers. But, then there will be significant residual
(posttive) dispersion. On the other hand, replacing these fibers by DSFs would
involve huge costs. As such, in recent years, there has been considerable work
in upgrading the installed 1310-nm optimized optical fiber links {or operation
at 1550 nm. This is achieved by developing fibers with very large negative
dispersion coefficients, a few hundred meters to a kilometer, which can be used
to compensate for dispersion over tens of kilometers of the fiber in the link.

Compensation of dispersion at a wavelength around 1550 nm in a 1310-nm
optimized single-mode fiber can be achieved by specially designed fibers whose
dispersion coefficient (D) is negative and large at 1550 nm. These types of fibers
are known as DCFs,

Since the DCF has to be added on to an existing fiber optic limit, it would in-
crease the total loss of the system and, hence, would pose problems in detection
at the end. The length of the DCF required for compensation can be reduced by
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having fibers with very large negative dispersion coefficients. Thus, there has
been considerable research effort to achieve DCFs with very large (negative)
dispersion coefficients.

As an example, if we consider propagation in a 50-km length fiber (i.e.,
L. = 50 km) with D = 16 ps/km-nm, then to compensate the dispersion by a
2-km-long fiber we must have

D’ = —400 ps/km-nm

The higher the dispersion coefficient of the compensating fiber, the smaller
will be the required length of the compensating fiber. Figure 15.3 shows the
waveforms at the input to a 50-km conventional single-mode fiber, the output
without the dispersion compensator, and the output witha DCF with D = —548
ps/km-nm and of length 1.44 km. Note that without the compensating fiber, no
information can be retrieved while the DCF fully restores the pulses.

To achieve a very high negative value of D, the core of the compensating
fiber has to be doped with relatively high GeO; compared with the conventional
fibers. Unfortuantely, the total fiber loss (o) increases because of this doping.
Hence, for DCFs a measure of the dispersion compensation efficiency is given
by the figure of merit (FOM), which is defined as the ratio of the dispersion
coefficient to the total loss and has a unit of ps/(dB-nm)

FOM(ps/(dB-nm)) = |D|/a (15.4)
A typical refractive index profile of DCF is shown in Figure 15.4, which has

D ~ =300 ps/(km-nm) and FOM ~ 400 ps/(dB-nm) [Hawtof, Berkey, and
Antos (1996)].

Fig. 15.3:  (a) A schematic
of dispersion compensation
scheme in a CSF system
operating at 1550 nm using
a DCF. (b} A typical result
showing the performance of
a dispersion compensator
for a 2.5-Gb/s bit pattern.
[After Poole et al. (1994).]
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Fig. 15.4: Typical
refractive index profile and
the corresponding
dispersion of a DCF. [After
Hawtof et al. (1996).]
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In a recent paper [Thyagarajan et al. (1996)], a novel DCF design capable
of providing very high dispersion values has been proposed. It consists of two
highly asymmetric concentric cores (see the inset in Figure 15.5(a)). It has been
shown that this design can provide a very high value of D(~ —5000 ps/(km-
nm)) with proper choice of parameters. Figure 15.5(a) shows the variation of
effective index (= B/ ky) with wavelength. Far away on either side of 1550 nm,
the fundamental mode index is very close to those of the individual fiber modes
of the inner and outer cores. On the other hand, close to the phase matching
wavelength of 1550 nm, the mode index of the composite fiber changes rapidly
because of a strong coupling between the two individual modes of the inner and
outer core. Due to a strong refractive index asymmetry between the two cores,
there is a rapid change in the slope of the wavelength variation of the fundamen-
tal index. This leads to a large value of D around 1550 nm (see Figure 15.5(b)).

In arecent paper, Onaka et al. (1996) have demonstrated 1.1-Tb/s (55 wave-
lengths x 20 Gb/s) WDM transmission over 150kmofa [.3-um zero-dispersion
single-mode fiber; wideband EDFAs and DCFs with a negative dispersion slope
were used (see Figure 15.6).!

! Optical amplification of the signal in the EDFA is accompanied by noise due to ASE generated
in the amplifier. Optical filters are used to filter the ASE spectrum, but the noise generated in the
frequency band of the signal does result in a decreased SNR. EDFAs can provide typical gains of
30-40 dB and saturated output powers of about 100 mW around the 1550-nm wavelength region
(see Chapter 14).
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15.4 Dispersion management in WDM systems

Transmission performances of long-haul optical transmission systems using
different signals can be limited by the presence of dispersion, nonlinearity, and
noise. For long-haul systems the nonlinear refractive index of the fiber can cou-
ple different signal channels at different wavelengths and can also couple the
signal with noise. Until recently, the idea of using the system around the zero
dispersion wavelength to achieve maximum bandwidth was prevalent. How-
ever, when the system is operated at the zero dispersion wavelength, the signal
and noise from the amplifiers will have similar velocities, leading to a large
interaction length, which will enhance the nonlinear interactions between the
channels and noise components. This deleterious interaction can be alleviated
by using the system not at zero dispersion wavelength but slightly away from
it so that the chromatic dispersion present will reduce the phase matching or,
equivalently, the interaction length. This is the basic concept of dispersion man-
agement in long-haul systems where the nonlinear interaction is controlled by
tailoring the accumulated dispersion to keep the interaction length small and
also the end-to-end dispersion small.

In an example discussed by Bergano and Davidson (1996), an eight-channel
5-Gb/s WDM transmission experiment was performed. Here eight signals with

Fig. 15.5:  (a) Varation of
the mode index with
wavelength for the
refractive index profile
(RIP) of the dual-core DCF
shown in the inset. The
solid curve corresponds to
composite step RIP design,
dashed and dotted curves
correspond 10 Ewo separate
fibers, one corresponding to
a fiber with inner core with
step RIP and the other with
outer core, respectively.
{b) Variation of 1} with
wavelength. Solid and
dashed curves correspond
to step and parabolic RIPs,
respectively. [After
Thyagarajan et al. {1996}.]
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[Adapted from Onaka et al.
(1996).]

(Pin=-25 dBm at ch.1)

wavelengths from 1556 nm to 1560 nm were transmitted over 900 km of a
single-mode fiber with D = —2 ps/(km-nm); the zero dispersion wavelength
was 1585 nm. This ensures that the signals are not traveling at similar velocities.
The total accumulated dispersion over 900 km of fiber is compensated by 100
km of CSF with Ay = 1310 nm.

One can notice (see Figure 15.7) that the accumulated dispersion of all chan-
nels at the end of the link (1000 km) does not become zero as the conventional
fiber with Ay = 1310 nm has a dispersion slope opposite, but not exactly equal,
to that of the 900-km fiber used so that the compensation of dispersion will be
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exact at one only wavelength. The residual dispersion for all other wavelengths
can be compensated at the receiver end.

15.5 Dispersion and chirping

In Section 6.3 we discussed pulse broadening caused by group velocity disper-
sion in an optical fiber. For the specific case of a Gaussian input optical pulse
of the form (see equation (6.22))

E(z =0,1) = Ege /% g/l (15.5)

we showed in Section 6.4 that the electric field variation of the output optical
pulse at distance z along the fiber is given by (see equations (6.32) and (6.36))

(~2)

E =) g
Ezty=— 2 — ———— | expli(P(z. 1) — Blwy)z)]

(14 o2)1/a P 22(2)
(15.6)
where
z 2 i
D(z, 1) = wyt +k (t — _) — —tan"! (o)
Uy 2
2oz
g =
'Ug
o
(15.7)

_—
(1+oh)1
T%(2) = 13(1 + o)

dzﬁ
o = e
dw?

=20

Fig. 15770 Acccumulated
chromatic dispersion versus
transmission distance for
eight channels of a WDM
transmission experiment.
The majority of the
amplifier spans use a
negative dispersion fiber
with Ay = 1585 nm and

D =2 =2 ps/km-nm. The
dispersion is compensated
every 1000 km using a CSF
(i.e., g = 1310 nm). [After
Bergano and Davidson
{1996).]
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Fig. 15.8:  Calculated
temporal variation of the
electric field of an optical
pulse with wgtg =7
corresponding to different
values of Z. Note that as the
pulse propagates, it
broadens in time domain
and also gets chirped.
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In Section 6.4 we discussed the corresponding intensity distribution of the
output pulse and saw that the envelope of the pulse broadens due to a finite
value of «. This phenomenon is termed group velocity dispersion (GVD).

From the phase term in equation (15.6) it follows that the oscillations within
the output pulse are not periodic. Now for a time varying function of the form

g(r) = At (15.8)
we can define an instantaneous angular frequency as

w(t) = g_é." (15.9)
dt

Thus, it £{t) = wyt, then @ = wy — that is, the wave is a pure sinusoid. From
equation (15.6) we obtain for the instantaneous frequency within the pulse
envelope

Jdd z -
w(t) = e = wy + 2k (l — —w) (15.10)
i

Vg

Thus, the instantaneous frequency within the pulse envelope changes with time.
Such a pulse is termed a chirped pulse.

If o is positive (i.e., d’n/ dk% > () and the instantaneous frequency within
the optical pulse increases with time, the leading edge of the pulse corresponds
tot < z/v, and the trailing edge corresponds to # > z/v,. Thus, the leading
edge of the pulse has a frequency lower than @y and the trailing edge has a
frequency higher than wo. Similarly, for d?n/d} < 0, the leading edge will
be upshifted and the trailing edge will be downshifted. Figure 15.8 shows the
calculated temporal variation of the electric field of the optical pulse for the
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Figure 15.9 shows the corresponding variation for
wpTy =2 11.2

and other parameters having the same values. Both figures clearly show the
phenomenon of chirping associated with broadening caused due to group ve-
locity dispersion. In Figures 15.8 and 15.9, the parameters have been chosen to
distinctly show chirping within the pulse; for actual values of parameters, the
chirping leads to frequency variations of only 10™* vy within the pulse.

The fact that the output broadened pulses should be chirped can be under-
stood from the following argument. Since we are not considering any frequency-
dependent attenuation or gain and the system is linear, the optical spectrum of
the input and the output pulses should be the same. Thus, analyzing the input
and the output pulse by a Fabry—Perot interferometer (or an optical spectrum
analyzer) would show no difference in the spectra. Since the output pulse enve-
lope is broader and it has the same frequency spectrum as the output, it should be
chirped. 1t is worthwhile to note that the inverse relationship between the pulse

t/t,

Fig. 15.9: Calculated
temporal variation of the
electric field of an optical
pulse with wotg = 11.2
corresponding to different
values of Z. Note that as the
pulse propagates, it
broadens in time domain
and also gets chirped.
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temporal width 7y and the corresponding spectra width Av,

Avai (15.11)
To
is valid only for unchirped pulses, which are also referred to as Fourier transform-
limited pulses. For a chirped pulse, the spectrum can be much greater than the
inverse of its temporal width. At the same time, for a given spectral width Av,
the shortest pulse width that one can achieve is that satisfying equation (15.11),
This fact is used in pulse compression (see Section 15.6).
As discussed in Section 6.4, the output pulse is broadened to a new temporal
width of

T(z) = (1 +0%)!/? (15.12)

To get a numerical estimate of broadening and chirping in an actual optical
fiber, we consider a 10-ps puise at Ay = 1.55 #m propagating through pure
silica. For pure silica at Ay = 1.55 JAm,

d’n 2

—— > =42 x 107 um™? = —42 x 10°m™2
dig

We neglect waveguide dispersion and consider only material dispersion (see

Problem 15.1) to obtain

A ,d?
o= A()w—lz > —2.77 x 107°°s%/m
2me? dA

which corresponds to a dispersion coefficient of

2rco

s

0

D= - =~ 21.7 ps/km-nm

For z = 50 km, we have

2oz
o=— =277
T
Thus
T(z) = 277 ps

If g and wo + Aw, respectively, represent the mstantaneous frequencies at the
center of the pulse (r = z/v,) and at + = z/v, + 277 ps, then

Aw = 2k1(z)

or

KT(2)

Av = ~3.18 x 10" Hz

T

which of course is very small compared with the pulse center frequency of
1.94 x 10" Hz.
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15.6 Compression of a chirped pulse

Let us consider an unchirped Gaussian pulse given by
E(1) = Ege "/ gient (15.13)

The spectral distribution of such a pulse is obtained by taking a Fourier transform

| B :
Alw) = —f E(tye '“'dt

27 oo

Eg (e — (1)())2‘[02
—_ —— Y 15.14
2JET€) exp [ 4 ( )

The corresponding full width at half maximum (FWHM) of the power spectral
density |A(w)]? is

2
FWHM = Aw; = —+/2In2 (15.15)
‘ To

For this spectral width, the shortest pulse width is the FWHM of the pulse
represented by equation (15.13) and is given by

FWHM = Aty = 19v/21In2 (15.16)
From equations (15.15) and (15.16) we have
A(,L)/‘Alf =4In2 > 2.8

As discussed earlier, when such a pulse propagates through a linear dispersive
medium (such as an optical fiber), it gets broadened in the time domain while
remaining unchanged in its spectral width. Such a broadened pulse is chirped
and its temporal width Ar}- satisfies the relationship

4in2
Aa)f

7
Arf >

One can compress this chirped pulse by propagating it through another linear
dispersive medium but with a dispersion having a sign opposite that of the
first medium (see Problem 6.9). Thus, if the chirping is due to propagation
through a fiber operating above its zero dispersion wavelength, one can achieve
compression by propagating through another fiber operating below the zero
dispersion wavelength. This concept is indeed being exploited as an optical
equalizer or dispersion compensator in fiber optic communication systems.
Note that having started from an unchirped pulse, if the spectrum of the pulse
is not changed during propagation, one cannot compress it below the starting
pulse width.

To achieve pulse compression beyond the initial pulse width, one has to first
broaden the spectral content of the pulse (without any broadening in the time
domain) and then by using dispersion (with a proper sign) the temporal width
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of the pulse can be reduced below the starting pulse width. This can be done by
using nonlinear effects in fibers as discussed in Chapter 16.

As an example, let us assume that we start with an unchirped pulse whose
FWHM is 100 fs. The corresponding spectral width is

21n2

TATy

~ 441 x 10" Hz

A l)f =

If the corresponding wavelength is 1 pm, the carrier frequency is

vy = Al =3 x 10" Hz
Ao

Thus, Avy/vy = 0.015. If we now wish to compress the pulse to say Al’}
= 10 fs, then we must increase the spectrum of the pulse to

2In2
AV = 0 _ ~ 4.4 x 10° Hz
: TAty

that is, a ten-fold increase in spectrum. Indeed, in Chapter 16 we show that
such increases in optical spectrum can be achieved by using nonlinear optical
effects.

15.7 Propagation of a chirped pulse through a linear
dispersive medium

We now demonstrate explicitly how a chirped pulse can get compressed as
it propagates through a dispersive medium with a specific sign of dispersion
coefficient. We consider a chirped Gaussian pulse at z = 0

1 :
E(z=0,1)= Eyexp [—-; (1+ ig):l e
2

272 tz
= Ege”’ /T exp [i (wol - --2—g)] (15.17)
T

where g is known as the chirp parameter; g < 0 corresponds to up chirp in
which the instantaneous frequency increases from the leading to the trailing
edge, whereas g > 0 corresponds to down chirp when the opposite occurs. The
spectrum A(ew) of the pulse is given by

EO IZ . (o — )t
Alw)y = — J exp| —— (1 +ig)| ™™™ dt
2 72
Eot (w — wp)t?
= exp| ———— 15.18
27l +ig) p[ 41 +ig) (1>-18)
The corresponding power spectrum is given by
EZt? (w — wy)*1?
S(w) = |Alw))]* =—ob —— 15.19
@) =A@l = e exp[ 20+ g0 } 12
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with a FWHM widih of

2221+ g2
Awp = Y1 i (15.20)
T

Note that the FWHM of the pulse given by equation (15.17) is
Aty =1v2In2

Thus, for the pulse

ACL)\/ AT} =4 1n 2\/ 1 -+ (_5{'2 (1523)

Hence, for the chirped pulse the product Aw, Aty is always greater than the
minimum value 4 In 2.

As seen earlier. a pulse with the spectral width given by equation (15.20)
can be compressed to a Gaussian pulse with a minimum pulse width of

4In2 T
ATy = =4In2

Awy 22In2/ 1 + ¢?

= V22—
(1+g2)!2

(15.22)

For a pulse with an up chirp (¢ < 0) the leading edge has a lower frequency
than the trailing edge; thus for compression, the dispersion should be such that
higher frequency components travel faster than lower frequency components
and, hence, can “catch up” with the low-frequency components. A medium in
which higher frequency components travel faster than lower frequency compo-
nents corresponds to negative GVD. Similarly, a down chirped pulse needs to
be passed through a positive GVD medium for pulse compression (see Problem
6.9).

Figure 15.10 shows the compression of a down chirped pulse as it propagates
through a linear dispersive medium (the figure corresponds to positive linear
dispersion).

15.8 Dispersion compensation of a Gaussian pulse
In Section 6.4 we showed that an input pulse represented by

£y gl (’Mmr/m (}.523)

after propagating through a fiber of length L. becomes

5
T4 ; B T
E() - 0 ‘ é:“‘)(‘i() =Ty +2ier Ly (1524}
15 + 2ol

where « represents the dispersion property of the fiber and is given by equation
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Fig. 15.10: Compression  (15.7). Thus, propagation through the fiber changes
of a chirped pulse as it
propagates through a linear

2 2 . ;
L ; . Ty — 1) + 2Zicl 5.25
dispersive medium. After o 0 (1 )
Compressing Lo a minimum
width, the pulse again  and
undergoes broadening.
2
T
Ey — E{) 5 AT (15.26)
Ty + 2ial
Hence, if we consider a chirped input pulse given by
6)[(»<~,r e—!"\/{r(f—k?,ml,) (3527)

to propagate through a fiber of length L and dispersion parameter o', then using
the recipe given by equations (15.25)-(15.26), the output pulse would be

/

| 7+ 2ialL
0+ 2i (el +a'L)

()l-(/u;l

2
><e><p[~~»~2 = f/}
15+ 2ilel +o'L')

f

- T(? Fn [i - :I
= Ey, [ — , "™ expl — — : -
75 + 2i(al A a'L") Ty + 2i (ol + 'L

(15.28)
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Thus, the pulse will compress to its original width 7 if

Q{]Lf _ —C(L (1529)

» D . . . N - - .
Since o = m%(jr—(\, where D is the dispersion coefticient of the fiber, equation

(15.29) can also be expressed as
DL = ~DL (15.30)

Note that beyond the length L/, the pulse will once again undergo broadening.

The length of the DCF depends on the dispersion coefficient. The DCF
should be designed to introduce minimal additional loss (including splice loss
to the transmission fiber as well as propagation loss). The additional loss needs
to be compensated by use of optical amplifiers.

Problems

15.1 (a) If we neglect waveguide dispersion and consider only material dispersion
then, we may write

W
B = — nlw)
.

Show that

D=p, - 2rc cfﬁ _ 1 (Azdzn)

)12.) dw? cio \ Yy ,\(2)

(b) If we neglect material dispersion and consider only waveguide dispersion then
(for step index fibers)

2re d? A bV
D:[’)mm—_—N(fm—ﬁw—M (Vc( ))

A(z) dw? g dv?

where the parameters are defined in Chapter 10.

152 When one uses WDM systems, one often operates at a wavelength slightly lower
than the zero dispersion wavelength (see Section 15.4). For the fiber parameters
discussed in Example 10.3 (i.e., fora =23 um, np = 1.447, A = 0.0075), use
Tables 6.1 and 10.1 to calculate the material, waveguide, and total dispersion at
3o = 1540 nm. What would be the total dispersion for a 100-km length of the
fiber?

15.3 Consider the silica fiber discussed in Problem 10.1. It had zero dispersion at
Ao = 1330 nm. If the fiber is operated at 1540 nm, using Tables 6.1 and 10.1
calculate the material dispersion, waveguide dispersion, and total dispersion. How
much length of such a fiber would be required to compensate for the negative
dispersion calculated in the previous problem?

154 Using Table 6.1, plot the group velocity v, [see equation (6.4)] as a function of
wavelength and show that it attains a maximum value at Ag == 1.3 pm.
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16.1 Introduction

In Chapters 6, 10, and 15, while considering the broadening of an optical pulse
propagating through an optical fiber, we treated the optical fiber as a linear
medium — that is, the intensities associated with the propagating optical pulse
were assumed to be so small that there was no significant effect on the prop-
agation characteristics of the waveguide. In actual practice, all media exhibit
nonlinear effects. In the case of silica optical fibers, one of the manifestations
of the nonlinearity is the intensity-dependent refractive index according to the
following equation

f?:ﬂo—{*ngl (Eél)

where ng is the linear refractive index of silica (for low intensity levels), 1>
is the nonlinear refractive index coefficient, and / = P /Ay is the effective
intensity within the medium with P being the power carried by the mode and
Ay the effective area of the fiber mode. For single-mode silica fibers operating
at 1550 nm

no = 146, ny ~32x 107 m*/W, A~ 50 um’ (16.2)

Thus, when an optical pulse travels through the fiber, the higher intensity por-
tions of the pulse encounter a higher refractive index of the fiber compared with
the lower intensity regions. This intensity-dependent refractive index leads to
the phenomenon known as self-phase modulation (SPM). The primary effect
of SPM is to broaden the spectrum of the pulse while keeping the temporal
shape unaltered. The phenomenon of SPM is discussed in Section 16.2, and in
Section 16.3 we discuss the spectral broadening (i.e., generation of additional
frequencies) due to SPM,

This spectral broadening of the pulse without a corresponding increase in
temporal width leads to a frequency chirping of the pulse. Indeed, for silica
optical fibers for which n; is positive, the frequencies in the trailing edge of the
pulse are upshifted and those in the leading edge are downshifted with respect
to the center frequency of the pulse. This broadening of the pulse spectrum
generates new frequencies in the pulse and will ultimately lead to an increased
broadening through the phenomenon of dispersion.
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In silica optical fibers, if the operating wavelength is above the zero disper-
sion wavelength, then higher frequencies travel faster than lower frequencies
and pulse broadening in the absence of any nonlinear effect is accompanied by
a chirp within the pulse — that is, within the pulse, the instantaneous frequency
decreases with increasing time.

SPM leads to a chirping with lower frequencies in the leading edge and higher
frequencies in the trailing edge, which is just opposite the chirping caused by
linear dispersion in the wavelength region above the zero dispersion wave-
length; thus, by a proper choice of pulse shape (a hyperbolic secant shape) and
the power carried by the pulse, we can indeed compensate one effect with the
other (see Section 16.4). In such a case the pulse would propagate undistorted
by a mutual compensation of dispersion and SPM. This is schematically shown
in Figure 16.1. Such a pulse would broaden neither in the time domain (as in lin-
ear dispersion) nor in the frequency domain (as in SPM) and is called a soliton.
Since a soliton pulse does not broaden during its propagation, it has tremen-
dous potential for applications in super high bandwidth optical communication
systems.

For a soliton propagating around a 1550-nm wavelength, the peak power
in the pulse (in mW) and pulse duration are related through the equation (see
Section 16.4)

Fig. 16.1:  (a) An optical
pulse propagating througha
linear dispersive medum
undergoes temporal
broadening as well as
chirping. For operation ata
wavelength greater than
zero dispersion wavelength,
the instantaneous frequency
decreases with increasing
time. (b) A pulse
propagating through a
nonlinear nondispersive
medium undergoes no
temporal broadening but
undergoes only chirping.
Note that the chirpings in
(a) and (b) are of opposite
sign. (c) A soliton is a pulse
propagating through a
nonlinear dispersive
medium that broadens in
neither the temporal domain
nor the spectral domain.
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Fig. 16.2:  Transmitted
data patterns (1100110011}
consisting of soliton pulses
as received after 50 million

km and 180 million km

(15-min delay time) of

single-maode fiber in a
recirculating fiber loop
experiment, [After
Nakazawa (1994).]
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where D is the dispersion coefficient in ps/kmnm and 7 is the pulse FWHM'
in picoseconds. Thus, for a 10-ps soliton operating in a dispersion-shifted fiber
with [ = | ps/km-nm, the required peak power will be approximately 15 mW.

Figure 16.2 shows the results of experiments on dispersionless soliton prop-
agation over 180 million kilometers at a data rate of 10 Gb/s. The results show
the limitless possibilities that soliton systems offer us.

The emergence of EDFAs that optically compensate any tiber attenuation
and optical solitons that use dispersion and nonlinearity against each other
simultaneously compensating both effects are truly revolutionizing the field of
optical fiber telecommunications. These developments are expected to make
terabit communication systems over hundreds of thousands of kilometers a
reality.

16.2 Self-phase modulation (SPM)

In a linear medium the electric polarization is assumed to be a linear function
of the electric field

P = €(;XE (]64)
where, for simplicity, a scalar relation has been written. The quantity x s termed
the linear dielectric susceptibility. At high optical intensities (or equivalently at
high optical fields) all media behave nonlinearly — that is, the relation expressed
in equation (16.4) is approximate and one has

P=coxE+eoxPE> +eyVE 4+ ... (16.5)

'For a Gaussian pulse given by equation (16.26), Ty =19 2In2 = L 187,
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For noncrystalline media such as the optical fiber x'¥ = 0 and the lowest order
nonlinearity is due to x .

If we consider a plane optical wave with an electric field variation of the
form

E = Egcos(wt — kz) (16.6)
then

P = eox Egcostawt — kz) + eox W Eg cos” (wt — kz) (16.7)
Now

cos’ o = j—g(cos 36 + 3cosd) (16.8)
Hence

3 3 2 ) X(R) 3
P=eyl x+ ZX YE; ) Eocos(wt — kz) + (—.(;TE(‘) cos 3wt — kz2)

(16.9)

The second term on the RHS corresponds to third harmonic generation, which
is negligible in optical fibers due to phase mismatch between frequencies w and
3w. The polarization at frequency w is

‘ S
P =¢ x+1x‘)55 Epcos(wr — kz) (16.10)

For a plane wave given by equation (16.6), the intensity is given by

1 _
! = ;)—Cg{)noEé (16.11)

where ng 18 the refractive index of the medium at low fields. Hence

3 X(3)
P =e (X + =
2 cently

i) Eqcos{wt — kz) (16.12)

The general relationship between polarization and refractive index is given by
P = eg(n® — 1)Eg cos(wt — kz) (16.13)

Comparing eqguations (16.12) and (16.13), we see that the nonlinear term con-
taining x ' leads to an intensity-dependent refractive index

3 (3)
=14y += X
2 Ceflp

1 (16.14)
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Since the last term in the above equation is usually very small even for very
intense light beams, we may approximate by a Taylor series expansion

3 (3)
n g+ - X 51
Cepny
:H(;%‘ﬂg[ (1615)
where
ng=1+x (16.16)
and
3 (3;
=X (16.17)
4 Cepity

1s the nonlinear coefficient.
For fused silica fibers

ng == 146, 1y ~32x107% m*/W

If we consider the propagation of a mode carrying 100 mW of power in a single-
mode fiber with an effective mode area = 50 um?, then the resultant intensity
is 2 x 10° W/m? and the change in refractive index due to nonlinear effects is

An = nyd ~ 64 x 1071 (16.18)

Although this change in refractive index seems too small, due to very long
mteraction lengths (10-10,000 km) in an optical fiber, the accumulated effects
become significant. In fact, it is this small nonlinear term that is responsible for
the formation of solitons.

If P is the power carried by a mode in an optical fiber, since the propagating
mode has a transverse intensity distribution, [ in equation (16.15) represents
the effective intensity within the fiber that can be approximately written as

I~ — 16.19
A, { )

where A, represents the effective area of the fiber mode. If one uses the Gaus-
sian approximation for the fundamental mode (see Section 8.5.1), then

Aeytf = Nwé (3620)

where wy is the Gaussian spot size of the mode. Thus, for a fiber we may write

P
A eff

1= Ry + "y (16.21)

This change in refractive index leads to a corresponding change in the effective
index of the mode. Thus, if f, is the propagation constant in the linear case,
then the new propagation constant can approximately be written as
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kona P ‘ «
B = Pot —— (16.22)
Augr
Hence, an incident wave of the form Ae'" would emerge as
N B korn P ,
Ae’l(wﬂliﬁ‘} = A exp [F ((U()Z - ,{302 — U Z)} (1()23)
Ay

If the input wave is a pulse with a power variation given by P (1), then the output
phase dependence would be

kons P (1
exp [i (ca()r — w: — ﬁgz)} (16.24)
Ay

Since P(1)is a function of time, the output pulse is chirped. This is termed SPM
wherein the power variation within the pulse leads to its own phase modulation.

As in the previous chapter, we can define an instantaneous frequency within
the pulse

k()i’lQZ adpP

o(t) = wy — 16.25)

wl v A(ﬂ' dr ( )
As an example, if we consider an input Gaussian pulse given by

E(f’ = 0, 1y = E(; 6"42/&; i’iwﬁ/ (1626)

then after propagating through length L of an optical fiber, the pulse becomes

. kony P(1)
xexpli | wot — pol — ———L (16.27)
Ay

where fy. v,, and A,y represent, respectively. the propagation constant. group
velocity, and effective area of the fundamental mode of the fiber; we have
neglected the effects of dispersion. The quantity P(r) represents the temporal
variation of the power in the pulse, which is given by

P(z.t) = Pyexp | —————— (16.28)
T

Thus, the instantaneous frequency is given by (see equation (16.25))

2
konaz r—z7/v,) 2t - "")
wl(t) = wy 0 4( ,,/ ¢ Pyexp —--w;—‘—~—
Ay 145 Ty
kpn Z a7 2
= g + 22 Pye 2T (16.29)

2

eff Ty
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Fig. 16.3:  For a pulse with
power varying with time as
shown in (ay, d P/dr varies
as shown in (b). Since
dPjdr = 0forr < z/u,.
the frequency in the leading
edge is less than ay [see
equation (16.25)].
Similarly, the frequency in
the trailing edge is greater
than .

PiT)
{a) ! T >
dFP/dT
0
.

)} ‘ ' ‘ o

where
T=t—-= (16.30)
v,

represents the time in the moving frame. The above equations clearly show that
nonlinearity leads to the spectral broadening of the pulse leaving the pulse enve-
lope unchanged. Figures 16.3(a) and (b) show the variation of P(t) and d P /d¢
for a Gaussian pulse. The leading edge of the pulse (1 < z/v,) corresponds to
dP/dr > 0 and the instantaneous frequency is downshifted from wy, whereas
the trailing edge (tr > z/v,) corresponds to d P /dt < 0 and the instantaneous
frequency is upshifted from wy. Figure 16.4 shows the real part of equation
(16.27) corresponding to an unchirped pulse (L = 0) and a chirped pulse for
L > 0. One can clearly see the chirping phenomenon generated as a result of
SPM.

Note that GVD leads to broadening of the pulse in the time domain keeping
the spectral content the same, whereas SPM leads to broadening of the spectrum
keeping the temporal distribution unaltered.
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!/tg

From equation (16.25) we have for the excess spectral width resulting from
SPM

ny Ly dP
A0 Afﬁ‘ dr

Avspar =2 (l()?ﬁi)

where Ly is the effective fiber length over which the propagating light pulse
(which is getting exponentially attenuated) can be assumed to have an approxi-
mately constant average intensity. If « is the loss coefficient of a fiber of length
L, then

L e ] —e @ L
L{,ﬁ»:f eV dy = (16.32)
B 0 o

Thus, if e L < 1, then Loy = L andif o L > 1, then Log > 1/o. At 1550 nm,
a >~ 0.2dB/kmand fora L > 1, Ly~ 20 km.
If we assume

dP P
—_— — ~ PAvp (16.33)
i 70

where 7y is the input pulse width that is the inverse of the pulse spectral width
Avp and P is the pulse peak power, then for Avgpy = Avp we have

Ao Ay

P L 2.5 x 10° mW.km

i3]

where for silica fibers operating at 1550 nm we have used ny ~ 3.2 x 1072
m?/W, A =~ 50 pum?. Hence, if optical amplifiers are used to compensate
any loss, then for L,y = 1000 km, a pulse peak power of 3 mW will lead to a
spectral broadening by a factor of two.

Fig. 16.4:  Time variation
of the real part of equation
(16.27) representing the
actual electric field
variation of the optical
pulse corresponding to the
input and output.
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Fig. 16.5: Digital-
intensity spectral curves of
1064 nm laser pulses
propagating in a I-m,

2.5 pum core optical fiber
with different peak powers.
The left hand column shows
the experimental results,
and the right hand column
displays the numerical
simulations. {(a) Input laser,
(by Py=1800 W,

(¢) Pp=2300W,

(d} Py =3900W,

(e} Pp=4900 W

) Py=5700 W, [Adapted
from Wang et al. (1994)].
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16.3 Spectra of self-phase modulated pulses

In the previous section we showed that SPM leads to chirping of the pulse
and that, because of the intensity-dependent refractive index, new frequen-
cies are generated in the pulse. The spectral power distribution can be ob-
tained by evaluating the Fourier transform of the temporal pulse distribu-
tion:

E(’z:L,w):/E(z:L,t)e‘“"’dz (16.34)

where £ (z = L, 1) is given by equation (16.27). Figure 16.5 shows the mea-
sured and calculated power spectra (= |E(z = L. )[?) corresponding to an
input laser at 1.064 pm propagating through a fiber of core diameter 2.5 m
and of length 1 m. The various figures correspond to increasing input power
with (a} corresponding to the input laser pulse. It can be seen that as the in-
tensity of the input laser pulse increases, the spectrum broadens. Obviously,
for a given input power the spectrum will broaden with an increase in length
of fiber (neglecting attenuation). The large intensity oscillations within the
spectra are due to interference effects. Figure 16.6 shows a corresponding
experimentally measured video display of the output spectra. One can see a
close match between the ones calculated and those measured experimentally.

16.4 Heuristic derivation of soliton power

In the previous chapter we have seen that dispersion produces chirping in a
pulse. For a Gaussian input pulse, the instantaneous frequency within the pulse
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Fig. 16.6:  Measured video
display of output spectra of
a pulse at 1.064 ;om after
propagating through 1 mof
a fiber for varying input
powers. The measured
spectra ¢losely match the
theoretically estimated one
on the basis of SPM. [After
Wang et al. (1994)
Photograph Courtesy
Professor R. R, Alfano ]
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envelope 1s given by (see equation (15.10)).

20 -z e
wyt) =wy + —————s | I — — (16.35)
(1 4+ o)ty Uy
where
20z
o= (16.36)
T
and

N
ké d=n

o = 5 =
21 ¢+ drg

(16.37)

Similarly, we saw in Section 16.2 that, because of intensity-dependent refrac-
tive index, the pulse gets chirped without any broadening. The corresponding
instantaneous frequency {(close to the center of the pulse) is given by [see equa-
tion (16.29}]

; dkonyz f z Py .
Wy (1) = wy + ———— |t — — } — (16.38)
I3 Ve ) A

where P 1s the peak power carried by the pulse and A,y is the effective area of
the fiber mode.
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If the chirping etfects due to the dispersion and nonlinearity cancel each
other, then we would have a pulse that remains unaltered both in time and in
frequency domains. This would be the soliton.

We first note that to cancel the two chirps, o in equation (16.35) has to be
negative. Thus, such a soliton can be formed only in the negattve group velocity
dispersion regime.

For a soliton to be formed, we require that over infinitesimal propagation
distances the chirpings produced by dispersion and nonlinearity cancel each
other. Thus, in equation (16.35) we assume o < | and equate the chirping due
to dispersion and nonlinearity to obtain

dkonrz Py 20 duz

3
T Acpr 1 Ty

)

or

IQ’]A(W

Py = (16.39)
2
k(; 27Ty,

The dispersion coefficient D of the optical fiber is given by (see equation (6.8))

2w ¢ _ Ao d*n

D=— o =——
A5 ¢ dig

(16.40)

Thus, equation (16.39) gives the following approximate equation for the peak
power in the pulse.

3
— A 1D 1A¢1}“
P() )
dmccny T

A more rigorous analysis (see Section 16.7) gives

A 1D ,
w—---———-——-————~,) A()H ( E(’)Za";}

7lens T;

Py = 0.776
where 7, is the FWHM of the pulse, which is given by
Ty = pv2in2 ~ 1.18 1,

In terms of FWHM, equation (16.41) becomes

03543 D Ay
Pyt} mﬁl [ Aay (16.43)
Ty

[¢

which is different from the more accurate calculation (equation (16.42)) by a

“In the positive group velocity regime one can form what are termed as dark solitons.
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factor of about 2. For silica fibers operating at 1550 nm,
Ap = 1550nm, n, =32 x 1072 mIw, Agp == 50 ,umz
we get (using equation (16.42))
Pot; ~ 1.5 % 10°D (16.44)

where Py, 7/, and D are measured in mW, ps, and ps/km-nm, respectively. For
a CSF (with zero dispersion wavelength at 1300 nm), D =~ 18 ps/km-nm (at
1550 nm) and we obtain

P() T

jf: ~ 2.7 x 10* mW-ps’

Thus, the power required for the formation of a soliton with an FWHM of 10
psis

Py >~ 270 mW

On the other hand, for a DSF (with zero dispersion wavelength around 1550
nm), we may assume D >~ 1 ps/km-nm and we obtain

Pyt = 1500 mW.ps*
Hence, the power required for a 10-ps soliton is
Py~ 15mW

For transmission bit rates below 20 Gb/s, the soliton pulse width is typically 20
ps and the required peak power is only a few mW, which is easily achievable
with laser diodes.

Figure 16.7 shows experimental results on transmission of 55-ps pulses at
4 Gb/s measured after propagation through 125 and 310 km of CSF with zero
dispersion at 1300 nm. It can be seen that at low power levels the pulses, after
propagating through the fiber, overlap considerably and, indeed, after 310 km
of propagation are completely unresolvable. By increasing the power level to
that required for soliton (19-mW peak power), the pulses are restored to their
original width even after 310 km of propagation.

As an example, we consider the experiment of Taga et al. (1994) using DSFs
operating at 1559 nm. The values of various parameters were

T, = 30ps
hop = 1559 nm
D = 0.6 ps/km-nm
Py = —=7dBm >~ 0.2mW
where P, represents the peak power of the pulse. From equation (16.44) we get

Py = 1 mW, which gives the correct order. The discrepancy may be due to a
smaller effective mode area.
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Fig. 16.7: Experimental
results of transmission of
55-ps pulses at 4 Gb/s
measured after propagation
through 125 km and 310
km of CSF with zero
dispersion at 1300 nm. At
low power levels the pulses
are completely unresolvable
after 310 km of
propagation, whereas by
increasing the power level
to that required for soliton,
the pulses are fully restored.
[After Christiansen et al.
(1994).]
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Since solitons use nonlinear effects to compensate for pulse dispersion, the
pulse must have sufficient peak power, as discussed earlier. Actual optical fibers
possess loss and, thus, even though the launched optical pulse may have suf-
ficient power to form a soliton, as it propagates through the fiber it will suffer
attenuation, leading to reduced power, finally resulting in nonsoliton-like behav-
ior — that is, suffering dispersion. For retaining the soliton nature of propagation
in the entire link, it is very important to compensate this loss. The development
of the EDFAs {see Chapter 14) has finally resolved this problem and has made
soliton communication a reality. EDFAs capable of amplification of signals
around 1550 nm (the lowest loss wavelength of silica-based fibers) are placed
every 30-40 km and have to compensate for losses of 7.5-10 dB (assuming
a typical loss figure of 0.25 dB/km at 1550 nm). With this, propagation of 80
Gbf/s over 80 km [Iwatsuki et al. (1993)], 10 Gb/s over 1 million km [Nakazawa
(199431, have been demonstrated.

16.5 Compression of a chirped pulse

In the previous chapter we showed that a (positively) chirped pulse, while
propagating through a dispersive medium (characterized by negative disper-
sion), can be made to undergo compression {see Figure 15.3). SPM can indeed
be used to achieve chirping of the pulse, which can then be passed through a
dispersive system to achieve pulse compression. Figure 16.8 shows the experi-
mental arrangement of Nikolaus and Grischowsky (1983) showing pulse com-
pression. A 5.9-ps, 2-kW optical pulse is first propagated through an optical
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Fig. 16.8:  Experimental
arrangement for achieving
pulse compression. With
this arrangement an input
pulse of 5.9 ps was
compressed to 90 fs using
spectral broadening through
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pulse compression usinga |
grating-prism arrangement, ”f
[After Nikolaus and
Grischowsky (1983).]
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fiber; the SPM leads to frequency chirping (due to dispersion, there is a slight
broadening also — the 5.9-ps pulse broadens to 10 ps). The chirped pulse is
allowed to fall on a grating prism pair as shown in Figure 16.8; the anomalous
GVD is caused by the angular dispersion of the grating-prism pair [see, €.2.,
Agrawal (1989)]. The compressed pulse of width 1 ps is again passed through
an optical fiber and a grating-prism pair. The final output is a 90-fs (10 kW)
puise.

16.6 The nonlinear Schridinger equation (NLSE)

The evolution of an optical pulse propagating through a nonlinear dispersive
medium is approximately governed by the following equation.

af L oof 1 9%f o ,
—i |- — =) —za—+T|fI"f=0 16.45
: (az i az) 2% TS (164
where
1 , dk
e = 2 (16.46)
v, dw =
., dk
a=k" = g (16.47)
(]ww L=y
| ‘
= 5 wip€n Noplts {16.48)

and f (z.t) represents the envelope term of the pulse (cf. equation (6.32)).

Ez 1) = H[wo[ww-‘k(mo):I f(Z‘ 1) (16.49)
e ol !

Phase term  Envelope term

with

[£214)

kwy) = — (16.50)

The second term on the LHS of equation (16.45) is proportional to « and
represents the dispersion term; the last term on the LHS corresponds to the
nonlinear term. In the following we justify equation (16.45).

16.6.1 Propagation in absence of dispersion and nonlinearity

To understand the physics of pulse evolution described by equation (16.45), we
first neglect the terms representing second-order dispersion and nonlinearity to
obtain

of I af

vl (1651)
dz v, Ot

We go over to a moving frame and change the variable set (z.7) to (2. T)
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where

T=t— = (16.52)

Thus, equation (16.51) takes the form®

of (z, T
ii%——zzo (16.53)

The above equation has the general solution

f=hmT=f (r - i) (16.54)

Vg

Equation (16.54) indicates that the pulse propagates without any distortion with
the group velocity v,. If we multiply equation (16.51) by f* and the complex
conjugate of equation (16.51) by f and then add, we get

FIFE 1 alf”?
<¥f|_%~_ [f]
dz v, Ot

=0 (16.55)

implying that the pulse energy also propagates with the same velocity. Thus,
in the absence of dispersion and nonlinearity, the pulse propagates without any
change.

16.6.2 Propagation in presence of dispersion only

We next include the second-order term in equation (16.45) but neglect the
nonlinear term to obtain (in the moving frame)

Bf @ Ty 1 8%°f . T)
A A A S 16.56
T 2% TTTe (16.56)

Using the method of separation of variables, one can readily obtain the general

3

afz 1y 8f T N Af (z.TY T
dz dz aT 9z

_afe Voafz.T)

3z v, AT

aftz ) af e Ty oz af (2.T) 4T

af a: o ar ot

_ i@
Tar
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solution of the above equation; the result is
f(z,T)zfA(Sz) e (BT202) 4@ (16.57)

Obviously A(2) represents the frequency spectrum of the input pulse.
We obtained the above equation in Section 6.4 and evaluated it for a Gaussian
temporal pulse. The pulse underwent broadening and chirping due to dispersion.

16.6.3 Propagation in presence of nonlinearity only

We next neglect the second-order dispersion term and analyze the effect of
nonlinearity alone on the zeroeth-order solution (equation (16.54)). Neglecting
the dispersion term and keeping only the nonlinear term, equation (16.45) gives

3 13
—i((‘f +—-—~—f)+l“lfi2f<z,f)=0 (16.58)
dz Uy Jat

In the moving frame, the above equation becomes

_i‘df (z.T)

o TP ST =0 (16.59)

If we multiply the above equation by f* and its complex conjugate by f and
subtract we obtain
alfI

0z

0 (16.60)

which has the general solution

&

lflzzF(T)zF(t*-;) (16.61)

Ug

Thus, if the nonlinearity is weak enough (so that v, remains intensity inde-
pendent), the absolute square of the wave envelope | f}2 retains its shape as
it propagates through the fiber. We therefore look for a solution of equation
{16.59) in the form

f(z,T)= fo(T)e '?=D (16.62)

where fy(T) and ¢ (z, T) are assumed to be real functions. From equations
(16.59) and (16.62) we obtain

d ) _
f =1 fo (D) (16.63)

Hence

H(z, Ty =+ T fo (T z (16.64)
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where

¢o =P (T.0) (16.65)
We can always put ¢y = 0, which yields

f(z. Ty = foTyexpl—i T fo(T)I 2] (16.66)
implying that nonlinearity leads to phase modulation that is directly proportional

to the pulse intensity and the distance of propagation (see Figure 16.4). This is
the phenomenon of SPM. Thus, the electric field is given by

E(z.t)= fo (t — MZ;)
A Ug
z - k(a)())Z}} (16.67)

x cxp[i{w()r — f’]fu(t — 5—)
Vg

Corresponding to this SPM there is a frequency modulation given by

a . Z bl
Aw = -T2z ‘—Uﬁ;(t — —-)
atr Vg

l (16.68)

which is what we had obtained in Section 16.2. It is clear from the above
analysis that nonlinearity leads to the broadening of the spectrum, leaving the
pulse envelope unchanged.

16.7 Soliton solution to NLSE

The analysis carried out in the previous section suggests that it may be possible
to completely balance the frequency modulations induced by dispersion and
nonlinearity and obtain a soliton solution of the NLSE. To obtain the soliton
solution we rewrite equation (16.45) as

y Ny . 7
~4(M+MLﬂJ Lol rip =0 (16.69)

dz v, Ot 2 a1

Once again, going over to the moving frame we obtain

of 1 B S 2 L

We look for a soliton-shaped solution of the form
f(z.T)= Egp (T) e "% (16.71)
where £y represents the peak electric field and the envelope function ¥ (T') is

assumed to be a real function of 7. The phase term is assumed to be independent
of time so that there is no chirping. Substituting equation (16.71) in equation
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(16.70) we obtain

d , 1 dzw o .
d(f Eg (T) — 5o E()W +TE; v (TY=0

or

dop 1 1 dy o
e ca— Y _rR2yNT
dz 2%y dr? oy (1)

1
— K (16.72)

“

Since the left-hand side depends only on the z coordinate and the right-hand
side depends on 7', in the last step we have set each side equal 1o a constant
;K. Thus

¢ ()= —% Kz (16.73)

where we have neglected an unimportant constant of integration. Rewriting
equation (16.72) we get

dy 2 o5 K |
(]ng -k YT — LW =0 (16.74)

We multiply the above equation by 2 dv//d T and rearrange to obtain

d | (dy\ T ., K <
e [ =2} = = E2y%T) — = yXT)| =0 16.75
dr [(d?’) g LoV ) o v )} (‘ )
Thus
d’(ﬂ 2 I* o3 4 K gl . ~ R
_T) = — E2yHT)+ —yXT)+ C (16.76)
da7 o o

where C is the constant of integration. Now, for a localized soliton we should
expect

Lim y(T)=20 (16.77)
Fr o0
and
d
Lim Y g (16.78)
T—oo dT
Therefore
C=0 (16.79)

implying
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N2 2
(f{j&) _ % AT + E WA(T) (16.80)

dT o o

For a localized soliton, ¥ (T) must have a maximum and without any loss of
generality we may choose the value of Ey so that the maximum value of Y (T)
is unity. Since at the maximum value (dyr/dT) = 0, we must have

Pr=1 when (dy/dT) =0 (16.81)
implying
TE; K
— e Q
o o
or
K = _rES (16.82)

Since #15 (and therefore I') is a positive quantity, K must be negative. Using the
above value of K, we get

f;_!;f _ VWW (16.83)
where
K 1/2 I 1/2
L= (_) - (M) Eo (16.84)
o (44
Thus
[ W [ar (16.85)
N |

We can readily integrate the above equation by making the substitution

¥ = sech ¢ (16.86)
Thus

/ de =y T
or

W (T) = sech 0 = sech(y T) (16.87)

Thus, the soliton solution of equation (16.69) is given by

f(z.t) = Egsech l:y‘ (r - —)] L (16.88)

vé{

where

g=—5ay =T Ej (16.89)
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Problems

The solution given by equation (16.88) can also be verified by direct substitution
in equation (16.69); the solution represents a soliton of amplitude Ejy.
At z = 0 - that is, at the input — the soliton 1s given by

f(z,T)= Egsech(yt) (16.90)
The FWHM of the above pulse is obtained by solving
1

sech? yig= <
2

and is given by

2 1.7627
Ty = 2t = -]H(] -+ \/i) o~
4 v

Now, using equations (16.84), (16.48), and (16.40) and the following expression
of peak soliton power

1
Py = 5 €onoc|Eol* Agy

we obtain
A IDLA,
Py = 0.776 2010 A (16.91)
TECnTy

consistent with equation (16.42).

Problems

16.1  Show by direct substitution that

flz.1) = Egsechly(t — z/vg)le "% (16.92)

is a solution of the NLS equation given by equation (16.69). Show that the values
of y and g are given by equation (16.89).
16.2  Show that the general solution of equation (16.56) is given by equation {16.57).

16.3 (a) Equation (16.56) takes into account terms up to the second order in disper-
sion. Show that the corresponding equation taking into account the third-
order dispersion will be given by

af 1 if i 9tf

i 3% Tek e TP (16.93)
where
k=K"= ;—]2 (16.94)
@ W=

{by Show that the general solution of equation (16.93) is given by

f.T)= / A(Q) of (AT —3atiz=fxs) 4o (16.95)
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17.1 Introduction

With the increased penetration of optical fibers into the subscriber loop and their
applications in various different kinds of sensors and other optical processing
applications, there is a growing demand for in-line fiber optic components capa-
ble of performing various functions such as modulation, splitting, filtering, etc.
Normally these functions are performed by taking the light out of the fiber, pro-
cessing 1t using bulk optical components, and then coupling the hght back into
the fiber. This would involve interruption of the light beam as it propagates in the
fiber and thus would lead to high optical insertion loss, problems of stability of
the components, and larger size and perhaps would be costlier. These problems
can be overcome by using in-line fiber optic components in which the processing
is performed without taking the light out of the fiber and which are completely
compatible with the transmission medium — namely, the optical fiber.

There are many different kinds of fiber optic components that are used in
many applications in fiber optic communication systems, fiber optic sensors,
fiber optic local area networks, etc. These can be broadly classified as fol-
lows:

Amplitude/intensity components
Couplers
Splitters
Amplifiers
Attenuators
Reflectors
Phase components
Phase shifters
Phase modulators
Polarization components
Polarizers
Polarization splitters
Polarization controllers
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Wavelength components

Wavelength filters

Wavelength division multiplexers/demultiplexers
Frequency components

Frequency shifters

Filters
Active components

Fiber amplifiers

in this chapter we discuss some of the most important in-line fiber optic
components, including the fiber optic directional coupler, the fiber optic polar-
izer, fiber optic polarization controller, and Bragg fiber gratings. In Chapter 14
we have discussed fiber optic amplifiers in detail.

17.2  The optical fiber directional coupler

The optical fiber directional coupler is the gnided wave equivalent of a bulk
optic beam splitter and is one of the most important in-line fiber components. It
is based on the fact that the modal field of the guided mode extends far beyond
the core—cladding interface. Thus, when two fiber cores are brought sufficiently
close to each other laterally so that their modal fields overlap, then the modes
of the two fibers become coupled and power can transfer periodically between
the two fibers. If the propagation constants of the modes of the individual fibers
are equal, then this power exchange is complete. On the other hand, if their
propagation constants are different, then there is still a periodic, but incomplete,
exchange of power between the fibers.

Directional couplers have many interesting applications in power splitting,
wavelength division multiplexing/demultiplexing, polarization splitting, fiber
optic sensing, and so forth. In this section we briefly outline the coupling phe-
nomenon and discuss some of its applications.

17.2.1 Principle

To understand the basic working mechanism of a directional coupler, let us first
consider the simpler case of a directional coupler formed by a pair of identi-
cal symmetric single-mode planar waveguides (see Figurel7.1). The coupled
wiaveguide system can be viewed as a single waveguide with two cores. This
system will have two modes, the fundamental being the symmetric mode and
the first excited being the antisymmetric mode. These two modes will have dif-
ferent propagation constants. When power is incident on one waveguide, then
it excites a linear combination of the symmetric and the antisymmetric modes.
The excitation would be such as to add the lobes in one waveguide and cancel
in the other (see Figure 17.2}. Since the propagation constants of the two modes
are unequal, as the fields propagate through the system, they develop a phase
difference. When the accumulated phase difference is 7, then the superposition
of these two modal fields will result in a cancellation in the first waveguide
and an addition in the second. Further propagation over an equal length will
result in phase difference 27, leading to a power transfer back to the first wave-
guide. Thus, the power exchanges periodically between the two waveguides.
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The above picture is in terms of a beating between the normal modes of the
composite directional coupler structure. An equivalent picture is to treat the
system as a coupled waveguide system. It is shown in Appendix E that when
the two interacting waveguides — be it fibers, planar or channel waveguides —
have the same propagation constant, then the power transfer is complete. On
the other hand, for waveguides with unequal propagation constants, the power
transfer is incomplete.

17.2.2 Power exchange

Consider a directional coupler formed of two, in general, nonidentical single-
mode fibers supporting the LPy; modes with propagation constants 8, and .
In Appendix E we have shown that if £,(0) is the power launched into fiber |
at z = 0, then at any value of z the powers propagating in the two fibers are

given by
Pz kLo
= | — —sin“ yz
Pi(0) ZA
Py(z) Kt 2
= —sin"yz

(17.1)

(17.2)

Fig. 17.1: A directional
coupler formed by a pairof
identical symmetric single-
mode planar waveguides,
The symmetric and
antisymmetric mode fields
of the composite structure
are also shown.

Fig. 17.2: Atz =0 pows
is launched into waveguid
i, which excites the
symmetric and
antisymmetric modes. Since
Bs # Ba. the two modes
develop a phase difference |
as they propagate. When
the phase difference is 7,
then the superposition wil
cancel in waveguide | and
add in waveguide 2,
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where

2

ol
y? =K+ (Ap) (17.3)
and

A =pr—p (17.4)

In the above equations « is called the coupling coefficient and is a measure
of the strength of interaction between the two fibers, which depends on the fiber
parameters, the separation between the cores, and the wavelength of operation
(see Section 17.2.3). The parameter Ap is referred to as the phase mismatch.

Note from equations {17.1) and (17.2) that

Pi(z) 4+ Py(z) = Pi(0) (17.5)
independent of z. This is nothing but a statement of conservation of power.
If the two fibers are separated by a very large distance (large compared with

the mode size), then there would be no interaction between the two fibers. In
such a case, ¥ = 0 and equations (17.1) and (17.2) give us

Pi(z) = P(0) Pz2)=0 (17.6)
that is, there is no exchange of power. We now consider some special cases:
(a) Phase-matched case: Let us first consider a directional coupler made
up of two fibers with identical propagation constants. For such a case
Ap = 0 and equations (17.1) and {17.2) reduce to
P\(z) = P,(0)cos’ kz (17.7)
Pa(z) = P(0)sin®kz (17.8)
Figure 17.3 shows the variation of the powers in the two fibers as a

function of z. From the above equations and Figure 17.3 we note that
there is a periodic exchange of power between the two fibers. At

, . =— m=0,1,2,.... (17.9)

n 27 mm
K K K

P(z) = P(0) and P»(z) = 0 —that is, the entire power is i the input
fiber. At

[\
l

S
= (m+ 5)3; m=012 ... (17.10)

Pi(z) =0, Py(z) = P(0) and the entire power is in the other fiber.
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The minimum distance at which the power completely transfers from
the input fiber to the other fiber is given by

(17.11)

and 15 referred to as the coupling length. Strong interaction implies a
large value of ¥ and, hence, a small coupling length.

For typical single-mode fibers operating at a wavelength of 1.3 zm,
k >~ 0.8mm 't00.3 mm™', leading to a coupling length of =2-5 mm
(see Section 17.2.3).

One of the obvious applications of such a fiber directional coupler is
as a power divider. Thus, for example, if we form a directional coupler
with two identical fibers and choose a length of interaction L so that
L = 7 /4« then for power Py launched at the input end in fiber 1, the
powers in each waveguide at 7 = L will be

I i
Pl—iPm PEMEPD
that is, it acts as a 3-dB power splitter. Obviously, since « itself is

wavelength dependent, the device would work as a perfect 3-dB splitter
only at a certain chosen operating wavelength.

By appropriately choosing the value of « L, we can fabricate cou-
plers with an arbitrary splitting ratio.
Non-phase-matched case: Let us now consider the case when 8, # B,.
For this case, equations (17.1) and (17.2) describe the evolution of
power in both waveguides as a function of z. In Figure 17.4 we have
plotted the z variation of P2(z) for AB/2x = 0.1, 1, and 5. For clarity,
we have plotted only P>(z); Pi(z) would, of course, be Pi(0) —Py(2).
From Figure 17.4 we note the following:
(1) It AB # 0, there is an incomplete transter of power. In fact,

the maximum fractional power that is transferred from the input

Fig. 17.3: Variation of
powers in the two fibers ina
directional coupler as a
function of z when the two
fibers have the same
propagation constant.

i

il
i
i
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Fig. 17.4:  Variation of 1 A L A S e B
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incomplete. The larger the = ,’“ \ o o / - \ ./ \

value of AB/ 2k, the smaller . 0.4 B l‘f \ ! ‘|( ;1\‘ D \ / ]ﬂ ;’ ' 1
is the fractional power B S \ '-, ;‘ ! \‘X / :' 3} ! ) \1 ‘\ .
transfer. The three curves f . \,’ ' :' \\ ! o \ ’f A

corespond to AB/2x = 0.1 02 Vo [ v \ s ] \ ’,‘ \ ]

(long dash), 1.0 (small } “ ,’\ / o './ ;' &“ \; i ‘1 / \
dash) and 3.0 (solid). I ' ! ] Y. Ly I
AnAAAAAN A ANRDNAANG .

i

0 2 4 6 8 10 12 14

fiber to the coupled fiber is given by

7 _ P?..mu.x . (ﬁ ‘;inz ',V")
. PI(O) 7/2 | ) max

1

= 17.12
1+ (AB) 2 ( :

Y’R
Y

Thus, for complete power exchange, we must have A = 0.
the larger the ratio Af/2«, the smaller is the fractional power
transfer. For example, for AB/2«x = 0.1, 1, and 5, the maximum
fractional power transferred is 0.99, 0.5, and 0.04. Hence, very
little exchange of power will take place between two highly non-
phase-matched (large AS) fibers even if their cores lie close 1o
each other (i.e., large «) as long as AB/2x > 1.

As an example, let us consider a coupler with x = 0.2 mm™".
If we require that n,,, should be less than 1%. then

AB > 4 mm™!

If Xy is the wavelength of operation and n, is the effective index
of the mode of the fiber, then

2 2
A=A (— n()) = — An, (17.13)
0 Ag

Hence, we obtain for Ag = 1.3 um
An, > 8 x 107

Compare this with the typical core—cladding refractive index
difference value of 3 x 107% in single-mode fibers.

{11y Note also from Figure 17.4 that for larger AB/2« values. the
oscillations in power become more and more rapid with 7. This
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effect is used in integrated optics for realizing optical switches
[see, e.g., Ghatak and Thyagarajan, 1989], in wavelength multi-
plexers/demultiplexers (see Section 17.7.2), in polarization split-
ting using birefringent fibers, and so forth.

Figure 17.5(a) shows a three-dimensional plot of variation of transverse in-
tensity pattern along the propagation direction for a pair of identical planar
waveguides. The corresponding density plot clearly showing complete power
transfer is given in Figure 17.5(b). Figures 17.6(a) and (b) show the correspond-
ing plots for a pair of nonidentical planar waveguides.

17.2.3  Coupling coefficient of identical fiber directional couplers

By using the fields of the LPy; modes of a step index fiber, one can obtain the
following approximate expression for « for identical fibers [Snyder (1972)]

;‘\.() U2 K(;(ch/(l)

4y =
ktd) 2y a*V? O KEHW)

(17.14)

where Ag is the free space wavelength, n; and n, are the core and cladding
refractive indices, respectively, of the fiber, a is the fiber core radius, d is the
separation between the fiber axes, and K, (x) is the modified Bessel function of

Fig. 17.5:  (a) Three-
dimensional plot of
variation of power with
propagation length ina
directional coupler with
Ap = 0. Note that the
power exchange between
the two wavegnides (WG
and WG2) is complete. (b
The corresponding density
plot.
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(a)

Fig. 17.6: (@) order v {see Chapter 8) and
Three-dimensional plot of

variation of power with 2 20172
propagation length in a U = koa (nl - ”e) (17.15)
directional coupler with
1/2 ]
Af # 0. Note the W = koa(n? — n3) / (17.16)

ncomplete power transfer
between the two
waveguides (WGI and V = VU2 + W2 = kpa/n? — n? (17.17)
WG2). (b) The -
comesponding density plot.

' 27
0= —
g
and
B
n, =
ko

is the mode effective index.
A simple and accurate empirical relation for « for a directional coupler made
up of identical step index fibers is given by [Tewari and Thyagarajan (1986)]

T @ 67(A+BJ+CJ:)

k(d, V)= 5 (17.18)
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where
A = 5.2789 — 3.663V + 0.3841V"* (17.19)
B = —0.7769 + 1.2252V — 0.0152V* (17.20)
C = —0.0175 — 0.0064V — 0.0009V* (17.21)
5= i i”? i=? (17.22)
n; o

Equation (17.18) is accurate to within 1% of the value given by equation (17.14)
for the practical range of 1.5 <V <25and 2.0 < d <45,

As an example, let us consider a directional coupler formed between two
single-mode fibers with the following specifications.

ny = 1.4532
ny, = 1.45
(17.23)
a =50um
}\,() = 1.3 MHm

Using the above numbers we get
V =2329 and 6 =0.0044
Thus, using equation (17.18) we obtain
k= 20.8 exp[—(—1.1693 + 1.9945d — 0.0373d°) mm™!
For a fiber core center to center spacing of 12 yum, we obtain
K = 0.694mm™!

Thus. the corresponding coupling length is

T
L., =— > 226mm
2K

Figure 17.7 shows the variation of k with d /a for a fiber specified by equation
(17.23).

Example 17.1: For the directional coupler considered above, for a
length of interaction of L./2 = 1.132 mm, the coupled power at
1.3 m will be

Pyihg = 1.3 um) = sin“(k-L./2) = 0.5

Thus, it will behave as a 3-dB coupler for 1.3 gum. If the same coupler
is used at 1.35 um, then at 1.35 ym (from equation 17.18)

k ~ 0.7422 mm~!

where we have neglected the wavelength dependence of n; and na.
Thus, for the coupler of fength 1.132 mm, which behaves as a 3-dB
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Fig, 17.7:  Variation of 0.0014 L AL EAALAL L ELALALELE LALLALIE BLALALEL SLELALAL BLELILILN

with d /a for a fiber §

directional coupler 0.0012 T ny =1.4532 N

consisting of fibers - n,=1.45 .

specified by equation 0.001 [ a=50um A

(17.23). . . A=13um

T 0.0008 [ .

E : :

= 3 1
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Fig. 17.8:  For an input
power Fy, the transmitted
power, coupled power, and P, —\_—/— > B
back-coupled power are F,.
P, and P.. Anideal
directional coupler would P e— e I

have P, = (J and
P+ Po= P

coupler at 1.3 ;4 m, the coupled power at 1.35 pem will be
PQ()»() = 1.35 pm) = 55.5%
thus showing the strong wavelength dependence of the coupler.

17.2.4  Practical parameters of a coupler

If power P; is launched in the input port of a directional coupler as shown in
Figure 17.8 and if the transmitted power, coupled power, and back-coupled
power are P,, P., and P,., respectively, then the various characteristics of the
coupler are

P, ‘

Coupling ratio R{%) = - x 100 17.24;
oupling ratio R(%) P(~+P,X ( )
P+ P,

R(dB) =10 1og[’—+—;J
: ~ P;
Excess loss L;(dB)y =10 log| ——— (17.25)
P+ P
. P
Insertion loss = 10 Iog(w)
P.
= Coupling ratio + excess loss (17.26)

P,
Directivity D(dB) = 10 log[F} (17.27

i
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Good directional couplers should have low insertion loss and high directivity.
Commerically available directional couplers have coupling ratios from 50/50
to 1/99, excess loss <0.1 dB, insertion loss <3.4 dB (for 3-dB coupler), and
directivity of better than —55 dB.

17.3 Fabrication of fiber directional couplers

Practical single-mode fibers have athick cladding to 1solate the light propagating
in the core. Hence, to fabricate a directional coupler, it is necessary to remove
a major portion of the cladding so that the cores can be brought sufficiently
close for the coupling process. Two main techniques have been developed to
accomplish this. In the following, we briefly describe the methods.

17.3.1 Polished fiber couplers

Polished fiber couplers rely on exposing the core of the fiber by mechanically
polishing off the cladding along one side of the fiber. To achieve this, the fiber is
first bonded (using, e.g., ultraviolet cure epoxy) on a curved groove fabricated
on a fused silica block by use of, for example, a diamond impregnated wire saw.
The groove depth at the center of the block is slightly greater than the cladding
diameter of the fiber; the substrate (along with the fiber) is then ground and
polished by standard mechanical polishing techniques so as to almost expose
the core (see Figure 17.9).

One of the standard methods to verify the proximity of the core to the pol-
ished surface is to observe the change in the transmission through the polished
surface when a drop of index matching liquid with a refractive index slightly
greater than the core is placed on the polished region. If the core is far from the
polished surface, then there is almost no change in transmission. On the other
hand, if the core is very close to the polished surface, the transmission drops
to a very small value because of feakage of light from the core to the higher
refractive index liquid. From the drop in power, one can estimate the proximity
of the core—cladding interface to the polished surface.

A directional coupler is formed by mating two such polished fiber blocks
(see Figure 17.10). Usually the space between the substrates is filled with an
index matching liquid.

I

Fig. 17.9: A polished firer (|
half block fabricated by
side polishing the cladding. ‘
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Fig. 17.10: A fiber
directional coupler made up
of two side-polished fiber
half blocks. Tuning is
achieved by one block
against the other.

Fig. 17.11:  Experimental
points and theoretical curve
(solid line) showing the
tunability of a side-polished
fiber directional coupler.
The figure corresponds to
Ao = 633 nm. [After
Digonnet and Shaw
(1982).]
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One of the principal advantages of a polished fiber directional coupler is
tunability (Figure 17.11). By laterally moving one block with respect to the
other block (Figure 17.10), one can change the fiber core separation. This in
turn changes « (see equation 17.14) and, hence, the power coupled (see equation
17.8). Hence, such couplers are also referred to as tunable directional couplers.

Polished fiber directional couplers exhibit excellent characteristics. Their
coupling ratio can be tuned continuously from =<0 to 100. Their directivity is
usually very high; values as small as —70 dB have been realized. The insertion
loss of such couplers can also be as low as 0.005 dB. Also, such couplers
are almost polarization insensitive — that is, the variation in coupling ratio can
be less than 0.5% as a function of the state of polarization of the input light.
However, their performance could be highly temperature sensitive because of
temperature dependence of the refractive index of the liquid filling the space
between the two polished fiber blocks.

One of the interesting features of the polished fiber half block is that the
evanescent field of the propagating mode is accessible through the polished sur-
face. Thus, by choosing appropriate materials as cover media on the polished
fiber surface, one can design several in-line fiber optic devices (see Section
17.5).

If, instead of using ordinary circular core optical fibers, one uses polariza-
tion maintaining fibers, one can achieve polarization maintaining couplers or
polarization splitting couplers. Commercial polarization maintaining couplers
with a polarization extinction ratio better than —25 dB and excess loss less
than 0.05 dB are available. In such couplers, in addition to the usual aspects
of fabrication of couplers, it is very important to achieve correct alignment
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of the birefringence axes of the polarization maintaining fibers. Such couplers
are useful components of fiber optic sensors based on polarization effects, in
coherent optical communication systems, and so forth.

17.3.2 Fused couplers

Although polished fiber couplers have excellent characteristics, fabricating
them is a time-consuming operation. In contrast, fused directional couplers
are easier to fabricate and their fabrication can be automated without much dif-
ficulty. Fused couplers are fabricated by first slightly twisting two single-mode
fibers (after removing their protective coating) and then heating and pulling
them so that the fibers fuse laterally with one another and are also tapered (see
Figure 17.12). Heating can be accomplished by using an oxybutane flame or
miniature electrical heating elements.

Figure 17.13 shows the cross section of a fused fiber coupler composed of
polarization maintaining fibers. One can see the two cores that lie close to each
other. The coupling ratio is monitored on line as the fibers are fused and drawn.
Figure 17.14(a) shows a typical variation of the power exiting from the fiber (in
which input power is coupled) as a function of drawing length. The variation
of output power from the other port is complementary to the curve shown. As
can be seen, the exiting light power oscillates as a function of the drawn length

Fig. 17.12:  Schematic
experimental setup for
fabrication of fused fiber
directional couplers. The
outputs at Port T and C are
used for on-line control of
the fabrication process.

Fig. 17.13:  The cross
section in the fused region
of a fused fiber coupler
composed of two
polarization maintaining
fibers. Note the proximity
of the two cores. [Adapted
from the data sheet
provided by Andrew
Corporation, Orland Park,
IL, USA]
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Fig. 17.14:  (a) Typical
variation of normalized
power exiting from the

input fiber as a function of
drawing length. Note the
periodic oscillation (with
decreasing period) of the
power output. [After
Eisenmann and Weidel
(1988).] (b) Measured
normalized power exiting
the two fibers versus the
drawn length. [After
Eisenmann and Weidel
(1988).]
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with complete power transfer. At larger drawn lengths, the small difference
in the power transfer characteristics of the two polarization states results in a
decrease in oscillation amplitude. Figure 17.14(b) shows the normalized power
exiting from both the output ports versus drawn length showing a sinusoidal
dependence with decreasing period.

Fused fiber couplers find wide applications in local area networks, WDM
applications, etc. Excess loss of such a coupler is typically less than 0.1 dB with
directivities in excess of —55 dB.

17.4 Applications

17.4.1 Power dividers

As discussed earlier, one of the most important applications of a fiber directional
coupleris as a power divider. In many applications, such as in local area networks
or in fiber optic sensing, it is necessary to split or combine optical beams. Such
a fiber optic directional coupler forms an ideal component since it is compact
and possesses low loss. Application of such couplers to sensors is discussed in
Chapter 18.

17.4.2 Wavelength division multiplexers/demultiplexers

Another very important application of such couplers 1s in wavelength division
multiplexing/demultiplexing. As discussed earlier, fiber directional couplers are
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in general wavelength sensitive since the propagation constants of the modes and
the coupling coefficient « are functions of wavelength (see equations (17.18)—
(17.22)). Let us consider a directional coupler of length L made of identical
fibers and let ¥y and x» be the coupling coefficients at wavelengths A; and A»
so that

KL =mm

|
K2l = (nf — —) g
2

In such a case, if light beams at wavelengths 4, and A, are launched simulta-
neously in the input fiber, then for light of wavelength 2

(17.28)

and

(17.29)

Py, L) = Prsin®( L) =0 (17.30)
and for light of wavelength A,
P>, L) = Pysin’(kal) = P (17.31)

Thus, light of wavelength 2| will exit from the input fiber and that of wavelength
Ao will exit from the other fiber (see Figure 17.15). Such a device forms a
wavelength demultiplexer. The same device can also operate as a wavelength
multiplexer.

As an example of a wavelength demultiplexing coupler, let us consider a
directional coupler made of identical fibers with the following specifications.

ny = 1.4525

ny = 1.45

(17.32)

a =>56um

Fig. 17.15: (a) A
directional coupler as a
wavelength division
demultiplexer. The length L
is chosen so that for
wavelengths Ly and A,
equations (17,28} and
(17.29) are satisfied. In such
a case, light of wavelength
A1 exits from the input fiber,
whereas that of wavelength
A exits from the coupled
fiber. (b) The corresponding
caleulated variation of the
normalized power exiting
from the second fiber with;
for a fiber directional
coupler made with fibers
characterized by equation
(17.32).
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Devices fabricated to operate near the maximum or minimum values of the
sinusoidal dependence will have the least sensitivity. Thus, if a directional cou-
pler is made with two nonidentical fibers, then the maximum fractional power
coupled from the input port to the coupled port will be less than unity. The
maximum power coupled is given by equation (17.12). Thus, if Ag = 2k, then
Poax = 1/2. Couplers fabricated in this fashion are expected to show much
lower wavelength dependence. Figure 17.17 shows a typical wavelength de-
pendence of a tused fiber coupler fabricated from a pair of identical fibers in
which one of the fibers is slightly pretapered before tusion. The pretapering of
one of the fibers makes the fibers nonidentical and, thus, the coupler formed
exhibits less wavelength dependence.

Commercial wideband couplers operating in the wavelength region from
1260 to 1580 nm with a uniformity of better than 0.85 dB and excess loss less
than 0.1 dB are available.

17.5 Other polished fiber half-block devices

In Section 17.3.1 we discussed a technique to fabricate fiber directional couplers
by a side-polishing technique. A polished fiber half block prepared in this

Fig. 17.16: A typical
variation of insertion loss
versus wavelength for the
two output ports of 4
980/1550-nm WDM.
[Adapted from the data
sheet of MP Fiber Optics,
USA]

Fig. 17.17:  Variation of
insertion loss with
wavelength of a wavelengh
flattened directional coupler
formed of two nonidentical
fibers. [After Mortimore
(1985).]
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Assuming no material dispersion (i.e., ny and ny to be independent of wave-
length), the V number of the fiber at Ay = 1.55 um and 1.3 pm are 1.934 and
2.306, respectively. For d = 2.473 — that is, core center to center spacing of
13.85 ;um — using « given by equation (17.18) we obtain

k) = «(1.55 um) = 6.496 cm™" (17.33)
and
;= xk(1.30 um) = 4.872cm ™! (17.34)

Note that «; is larger than «, due to greater field penetration in the cladding of
the field at 1.55 pm compared with 1.3 pum.
If we consider an interaction length of 9.67 mm, we obtain

KL >=2m and xyl = %Jr (17.35)
Since the coupling length is given by /2« (see equation 17.11), the coupler
has four coupling lengths at 1.55 pom and three coupling lengths at 1.3 zm (see
Figure 17.15). Thus, if light of wavelengths 1.55 pm and 1.3 pm is incident on
the same fiber at the input of the coupler, light corresponding to 1.55 pm will
exit from the same fiber, whereas that at 1.3 pom will exit from the other fiber,
The above example of wavelength demultiplexer was based on two identical
fibers and used the variation of the coupling coefficient with wavelength. Such
couplers usually have a large channel wavelength separation for moderate in-
teraction lengths. The wavelength selectivity can be significantly enhanced by
making couplers with highly dissimilar fibers [Marcuse (1985)]. If the two fibers
are chosen so that their modal propagation constants are equal only at a partic-
ular wavelength, then strong power exchange occurs only at this wavelength.
At a nearby wavelength, the modal propagation constants will be unequal (i.e.,
A # 0-seeequation (17.4)) and there would be very little exchange of power.
Thus, by choosing a proper interaction length, one can achieve efficient wave-
length multiplexing/demultiplexing. Such couplers can exhibit much narrower
channel spacings compared with identical fiber directional coupler multiplexers.
Wavelength multiplexing/demultiplexing couplers form very important com-
ponents in the rapidly emerging area of fiber optic amplifiers (see Chapter 14)
as well as in communication systems using wavelength division multiplexing
schemes for increased bandwidth in transmission. Figure 17.16 shows the van-
ation of insertion loss with wavelength of a typical commercially available
980/1550-nm single-mode WDM. The device exhibits an excess loss of (.3 dB,
an insertion loss of 0.5 dB, and an isolation of about 20 dB.

17.4.3 Wavelength flattened couplers

The coupling ratio of fused tapered directional coupler power splitters is quite
wavelength dependent. Thus, a 50/50% coupler at 1300 nm can have a coupling
ratio anywhere from 80/20% to 99/1% depending on the fusion. For couplers
made from identical single-mode fibers, the coupling ratio has the strongest vari-
ation with wavelength around the 3 dB point due to the sinusoidal dependence.
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fashion has a significant fraction of the evanescent field of the propagating
mode close to the polished surface. Such a direct access to the propagating fiber
mode leads to many interesting and important applications of such polished
half blocks, including fiber polarizers, polarization splitters, wavelength filters,
modulators, evanescent field sensors, and so forth. In the following, we discuss
some fiber devices based on polished fiber half blocks.

17.5.1 Fiber polarizers

In many applications, expecially in fiber optic sensors or in integrated optics, it
is necessary to choose the state of polarization of the light entering the device.
Since nominally circular core fibers do not maintain the polarization state of the
propagating beam, it is necessary to be able to polarize the light before it enters
the fiber device. Various in-line fiber optic polarizers have been developed,
some of which are discussed below.

(a) Metal-clad polarizers: It is well known that a metal-dielectric inter-
face can support a TM guided wave (which is polarized perpendicular
to the metal dielectric interface), which is also referred to as the sur-
face plasmon mode. Because a metal has an imaginary component
of dielectric constant, such a surface plasmon mode is lossy. At the
same time, the metal-dielectric interface cannot support any guided
TE wave since one cannot satisfy the required boundary conditions at
the dielectric-metal interface. Now, if a polished fiber half block that
is polished almost up to the core of the fiber is coated with a metal, then
the fiber mode with polarization perpendicular to the metal interface
(TM) will suffer losses due to the metal, whereas the parallel polas-
ization (TE) will suffer much less loss. Using direct coating of gold or
aluminum, one can achieve reasonable losses in the TM polarization.

Because the metal film supports a lossy plasmon mode, the attenu-
ation of the TM polarization can be considerably increased by using
an intermediate buffer layer, since in such a case we can consider the
metal-coated fiber device as a directional coupler between the fiber
mode and the metal-clad plasmon mode. Changing the buffer refrac-
tive index and the thickness leads to changes in the plasmon mode
and fiber mode effective indices. Thus, by varying the buffer refrac-
tive index and thickness, phase matching between the plasmon mode
and the fiber mode may be attained, leading to increased attenuation
at a specific buffer thickness/refractive index. The existence of a criti-
cal buffer thickness was experimentally demonstrated by Thyagarajan
et al. (1983), and Figure 17.18 shows the corresponding typical de-
pendence of the attenuation on buffer thickness, as demonstrated on
an integrated optical waveguide. One can see that attenuations as high
as 200 dB/cm are possible.

Compared with the TM polarization, because there is no correspond-
ing plasmon mode with polarization parallel to the metal interface (TE
polarization), the fiber mode with its polarization parallel to the metal
interface suffers much less attenuation. This leads to a polarizer action
of the device.
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Fiber-based polarizers based on plasmon mode interactions using
metal coating on fibers have typical extinction ratios of 30-40 dB and
msertion losses of less than 1 dB [Dyott, Bello, and Handreak (1987)].
Thin metal-clad polarizers: In the conventional metal-clad polarizer
discussed above, the thickness of the metal layer is usually very large
compared with the ficld penetration and, hence, the outer metal surface
not in contact with the waveguide does not play any role. In another
class of metal-clad polarizers, called thin metal-clad polarizers, the
thickness of the metal layer is only about 10-15 nm [Johnstone et al.
(1988)]. In such a case, the depth of penetration of the plasmon mode
is larger than the metal thickness and the behavior of the polarizer
is also affected by the refractive index of the overlay medium placed
above the polarizer. If the refractive index of the overlay is varied,
then one observes that at a specific overlay refractive index the loss
of the perpendicular polarization component can become very large
and, at the same time, have a low loss for the parallel component. This
behavior can be explained on the basis of resonant coupling of power
from the fiber mode to the plasmon mode and subsequent leakage of
power to the overlay [Thyagarajan et al. (1990)]. Such polarizers have

Fig. 17.18:  Measured
attenuation of TM
polarization with the buffe
thickness as induced by a
metal (in this case,
mercury). [After
Thyagarajan et al, (1983)]
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Fig. 17.19:  Variation of
loss of two side-polished
fibers as a function of the
refractive index of the
overlay medium. [After
Burns (1994).]
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been demonstrated to have extinction ratios greater than 50 dB and
insertion loss less than 0.5 dB at 1300 nm. [Johnstone et al. (1988),
(1990)].

Using another polished half block on a thin metal-coated polished

half block, one can indeed design a fiber polarization splitter [Thya-
garajan, Diggavi, and Ghatak (1988a)]. In this case, the TM mode
resonantly couples from one fiber to the other via the plasmon mode
and the other polarization remains in the first fiber.
Birefringent crystal-clad polarizer: Another very interesting technique
to realize an in-line fiber polarizer involves the use of a birefringent
crystal on a side-polished fiber. When a side-polished fiber is covered
with a medium, transmission of the polished fiber depends on the re-
fractive indices of the cover medium. Thus, if the refractive index of
the cover 1s less than the fiber mode effective index, then total internal
reflection continues to take place and there is no additional attenua-
tion. On the other hand, if the refractive index of the cover is higher
than the core index, then power from the fiber mode leaks away due
to transmission to the high index layer (see also Chapter 24). If the
polishing exposes the core of the fiber, this leakage is simply due to
partial reflection at the core—overlay interface. On the other hand, if
a finite thickness of cladding is still lett or if a thin low refractive in-
dex dielectric buffer layer is deposited on the polished fiber surface,
then this phenomenon can be explained by the phenomenon of frus-
trated total internal reflection. The modes formed in this fashion are
called leaky modes (see Chapter 24), and by a proper analysis one can
indeed calculate the leakage loss as a function of various parameters
for optimization purposes [Ghatak, (1985), Thyagarajan, Diggavi, and
Ghatak (1987a)].

For maximum rate of attenuation, the refractive index of the cover
medium should be higher than, but close to, the effective index of the
fiber mode. Figure 17.19 shows the loss for two side-polished fibers as
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a function of the refractive index of the overlay medium, in this case
oil. The peak loss close to the fiber core refractive index is apparent.

The above principle can indeed be used to fabricate a polarizer
[Bergh, Lefevre, and Shaw (1980)]. If a birefringent crystal is used as
the overlay and if the effective index of the fiber mode lies between
the ordinary and extraordinary refractive indices of the crystal, then
by properly orienting the crystal, one of the polarizations would “see”
an overlay with an index lower than the effective index and, hence,
would be guided. The other polarization would “see” an overlay index
greater than the effective index and, hence, would leak away.

Using the above principle, very high extinction ratio (60 dB) fiber
polarizers have been demonstrated.

17.6 Multimode overlay fiber devices

Figure 17.20 shows a typical multimode overlay fiber device in which a multi-
mode planar dielectric waveguide is coated on a side-polished fiber half block.
This device functions as a directional coupler formed between a single-mode
fiber and a multimode planar waveguide. We discussed in Section 17.2.1 that
in a directional coupler, when the effective indices of the modes of the two
interacting waveguides are equal, then a strong exchange of power from one
waveguide to the other takes place. In the present configuration, the fiber is
single moded, whereas the planar waveguide is multimoded. Thus, depending
on the parameters of the fiber and the multimode overlay and the wavelength,
the effective index of the fiber may or may not coincide with the effective index
of a particular mode of the overlay waveguide. The effective index of the fiber
mode as well as the indices of the multimode overlay will depend on wavelength
and they will also be characterized by different modal dispersions. Thus, for
a given multimode overlay device, as we vary the wavelength, there would be
specific wavelengths at which the effective indices of the fiber mode and one of
the modes of the multimode planar waveguide will become identical. At such
wavelengths, the power propagating in the optical fiber can efficiently couple to
the planar overlay waveguide, and if the length 1s close to the coupling length,
then there will be a drop in transmission through the fiber. At other wavelengths,
when the modes are not phase matched, there will be little coupling of power
and the single-mode fiber will transmit almost the entire power. Hence, such a
multimode overlay covered polished fiber half block can act as a wavelength
filter or what is referred to as a channel dropping filter.

Figure 17.21 shows a typical experimentally measured transmission spec-
trum through a side-polished single-mode fiber covered with a 7.6-pum-thick

Fig. 17.20: A typical
multimode planar
waveguide overlay device in
which a side-polished fiber
is covered by a multimode
planar waveguide.
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One can obtain the approximate positions of the resonant coupling between
the fiber mode and the multimode planar overlay by noting the following.

The multimode overlay medium usually has a refractive index n, greater
than the fiber core index n|. The modes of the multimode overlay planar
waveguide have effective indices between ny and n; (the cladding
index), with the fundamental mode being closest to ny and the highest
order mode closest to ns (see Figure 17.22). Since the fiber mode index
ney lies between i) and o, as we change the overlay parameters or the
wavelength, phase matching will take place between the fiber mode
and one of the highest order modes of the planar waveguide, which is
close to cutoft.

Now, the equation determining the effective indices n,, of the modes of
the planar overlay waveguide is given by [see, e.g., Ghatak and Thyagarajan
(1989)]

2 - W1/
—f—d(n() —nfn)i/z =@ +¢+mmr; m=0.12,... (17.36)

0
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where

¢ = tan™' (17.37)
¢y = tan”! (17.38)
y1 = > = | for TE polarization (17.39)

n? 02
yi=—= and y, = —2 for TM polarization (17.40)

n; ng

d is the thickness of the multimode waveguide and n, is the refractive index of
the medium covering the overlay.

For efficient coupling between the fiber mode and the planar waveguide
mode, we must have n.r = n,,. The precise positions of resonances can thus
be obtained from the following equation, which is obtained by replacing n,,
with n, s in equation (17.36)

2 5 =
—d /n; — nop =
Ay :

+ mrn (1741

Thus, the precise positions of the resonances depend on the following.

(i) The wavelength — both a direct dependence as well as an indirect one
through the dependence of the refractive indices of the media and
effective index on wavelength. This feature is used in its application
as channel dropping filter.

(i1)  The refractive index 7, of the multimode overlay. This dependence is
used in the realization of in-line fiber modulators, in which the overlay

Fig. 17.22: The refractive
index profile of a
side-polished fiber covered
by a multimode planar
waveguide overlay device.
Phase matching takes place
between the LPg; mode of
the fiber and one of the
modes close to cutoff of the
multimode planar
waveguide.
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is an electrooptic medium such as lithium niobate and whose refractive
index can be changed by applying an external electric field [Johnstone
etal. (1991)].

(111)  The refractive index n; of the medium-covering the overlay (see Fig-
ure 17.22). This dependence can be used for sensing refractive index
changes in the cover medium hy measuring the changes in the res-
onance positions [Johnstone et al. (1992), Raizada and Pal (1996)].
Sensitivities of better than 107 in refractive index changes have been
demonstrated [Johnstone, Fawcett, and Yuiv (1994)].

17.7 Bandpass filters

In the above discussion, the multimode overlay covered polished half block acts
as a channel dropping filter, wherein specific wavelengths are removed from the
fiber. Another class of filters that can be realized by using multimoded overlays
on polished fiber half blocks are the bandpass filters [McCallion, Johnstone, and
Fawcett (1994), McCallion et al. {(1995)]. Unlike the channel dropping filters, in
this case the fiber is side polished to such an extent into the core of the fiber that
the polished fiber region is below cutoff. Thus, in the absence of the multimode
overlay, there would be high attenuation of the input light. When a high index
multimoded planar overlay waveguide is deposited on the polished block, then
the wavelength response of the device shows a periodic bandpass characteristic
rather than as discussed in Section 17.6. The response of one such device with
an overlay index of 1.65 and of thickness 23 yem is shown in Figure 17.23. It
can be seen that the device transmits strongly at certain wavelengths, and in the
intermediate region the transmission drops to very small values.

The resonant wavelengths are approximately given by [McCallion et al.
(1995)].

B 27!«.’!(&13 — n%)!/z

Ay = (17.42)
M + @y
where
o [n3—n? ,
¢y =tan" y | —S— (17.43)
ng —n;

na, o, and n, are the refractive indices of the fiber cladding, the overlay medium,
and the medium above the overlay (usually air); ¥ = 1 for TE and (ny/n, ) for
TM polarizations. Equation (17.42) can be obtained from equation (17.41) under
the assumption that n.y = n, (which is a reasonably good approximation for
weakly guiding fibers). Equation (17.42) tells us that by appropriately choosing
n, and d one can tailor the peak transmission wavelengths. Indeed, by choosing
an overlay that is electrooptic (i.e., whose refractive index can be varied by
applying an external electric field), one can tune the resonant wavelengths.
McCallion et al. (1994) and Creaney, Johnstone, and MaCallion (1996} have
reported such a tunable in-line fiber optic bandpass filter by using thin LiNbO3
substrate as an overlay. Resonant wavelength shifts of 110 V/nm have been
demonstrated [Creaney et al. (1996)].
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17.8 Fiber polarization controllers

Circular core fibers whose axes are straight are not birefringent — that is, the two
orthogonally polarized LPg; modes have the same effective indices. Bending
such a fiber introduces stresses in the fiber and makes the fiber linearly bire-
fringent with the fast and slow axes in the plane and perpendicular to the plane
of the loop, respectively. The bending-induced birefringence of a single-mode
silica fiber is given by [Ulrich, Rashleigh, and Eikhoff (1980)]

3

b2
A”e’_’if =My ey = ~C (E) (17.44)

where n,, and n,., represent the effective indices of the LPy; modes polarized in
the plane and perpendicular to the plane of the bend, respectively, b is the outer
radius of the fiber, R is the radius of the loop, and C is a constant that depends
on the fiber material and the elastooptic properties of the fiber. For silica fibers,
C 2= 0.133 at 633 nm.

Equation (17.44), tells us that the smaller the loop radius, the larger is the
birefringence. Note that any bending will also introduce attenuation and, hence,
very small bend radii are not very practical.

Example 17.2: Let us consider a silica fiber of outer radius b =
62.5 pm bent into a circular loop of radius 30 mm. The birefringence
of the fiber at 633 nm is then

0.0625

5 2
) ~577 % 1077
30 ) %

Ane[]‘ = —0.133 (

which is indeed very small compared with the core—cladding indices
difference,

Although the induced birefringence is very small, by having the two
polarizations propagate over a long fiber length, one can obtain large
phase shifts. Thus, if the fiberis coiled around N loops of radius R, then

Fig. 17.23: A bandpass
characteristic is obtained if
a multimode planar
waveguide is coated on an
overpalished side-polished
fiber. [After McCallion

et al. (1994).]
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the bend-induced phase difference between the two polarizations is
2
Ap = TAnd,zZN RN (17.45)
0

Substituting for Any from equation (17.44), we obtain

A¢>—4H2C172N (17.46)
ko R A0

where we have disregarded an unimportant negative sign. For achiev-
ing phase differences of 7 (corresponding to a half-wave plate) or 7 /2
(corresponding to a quarter-wave plate), we must have

4R CBEN
R(Ap =m) = ———
O
AN 87 Ch*N
A=y )=

Example 17.3: For simulating a quarter-wave plate at A = 633 nm,
using bend-induced birefringence, if we have a single loop (N = 1),
then

87 x 0.133 % (62.5 x 1079)°
R = —— . ~2.1cm
(0.633 x 1079

Using the same loop radius of 2.1 cm, we can simulate a half-wave
retardation plate using two loops (N = 2). Bend-induced linear bire-
fringence can be used to build in-line polarization controllers [Lefevre
(1980)]. Figure 17.21 shows an in-line fiber polarization controller
that utilizes bend-induced birefringence. It consists of three fiber bire-
fringence components; the first and the last are quarter-wave retarders
and the central one is a half-wave retarder. The bent fibers are fixed at
points marked A, B, C, and D. The three fiber loops are free to rotate
as shown in Figure 17.24. A rotation of each of the loops will rotate
the principal axes of the birefringent fiber sections with respect to the
input polarization state. This is analogous to rotation of a classical
bulk half-wave or a quarter-wave plate with respect to the incident
light. Thus, rotation of the three loops is equivalent to the rotations of
a combination of a A/4, A/2, and 2 /4 plate. One can show that with
this combination, any input polarization state can be transformed to
any other output polarization state.

The polarization controller described above is used in many ap-
plications such as in fiber optic sensors where control of the state of
polarization of the light propagating through the fiber 1s required.

Polarization controllers operating over a wavelength range of 1250-
1600 nm with optical insertion loss variations of less than 0.004 dB




386 Single-mode fiber optic components

over the band are commercially available. Such polarization con-
trollers are extremely important components in the measurement of
polarization dependence of optical devices such as optical isolators,
EDFAs, and so forth.

17.9 Fiber Bragg gratings

When a germanium-doped silica core fiber is exposed to ultraviolet (UV) ra-
diation (with wavelength around 240 nm), this leads to a permanent change in
refractive index of the germanium-doped region. This is termed photosensitiv-
ity and, using such an exposure, it is possible to obtain refractive index changes
as large as 1077 in germanium-doped silica fibers.

Now, if the fiber is exposed to a pair of interfering uv beams as shown in
Figure 17.25, then in regions of constructive interference and, hence, high UV
intensity the local refractive index will increase. At the same time, in regions of
destructive interference, where the intensity of UV light is negligible, there is
no index change. Therefore, an exposure to an interference pattern will result in
a periodic refractive index modulation along the length of the fiber, the period
of modulation being exactly equal to the spacing between the interference
fringes (see Figure 17.25). When light is made to propagate through such a
fiber with a periodically modulated refractive index, under certain conditions,
the propagating light beam can get strongly coupled to the mode propagating
in the backward direction (see Chapter 21). This happens when we satisfy the
Bragg condition — namely, that the difference in the propagation constants of
the two coupled modes must be equal to the spatial frequency of the grating
(see Chapter 21).

27
Bo— (=B =K="- (1747)

where B, is the propagation constant of the forward propagating guided mode,
— B, is that of the backward propagating guided mode, and A is the spatial period
of the grating. Figure 17.26 shows the corresponding vector diagram wherein
the propagation vectors and the grating vector satisfy the condition given by

Fig. 17.24:  Fiber

polarization controller
consisting of a sequence of
Af4, A/2, and A/4 in-line
fiber retarders.
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Fig. 17.25:  Exposing a UV light
germanosilicate fiber to the
interference pattern formed
between two UV beams A
leads to the formation of a —
permanent refractive index
grating in the core of the
fiber. The period of the
grating can be controlled by
thoosing the angle between
the interfering beams.

Fig. 17.26:  Vector A
diagram showing the Bragg >
condition to be satisfied for

strong reflection; B, is the
propagation constant of the
LPy mode and K = 27 /A

is the grating vector.

ﬁg - i}g

equation (17.47). If n g is the effective index of the mode, then equation (17.47)
can be written as

5 2 27
— R = ——
An eff
or
A;g =2A }Tg,ﬂ’ ( | 748}

where A is called the Bragg wavelength — that is, the wavelength that satisfies
the Bragg condition. The Bragg wavelength depends on the effective index as
well as the grating period.

Example 17.4: Let us consider a step index fiber with n, = 1.45,

= 3um, and NA = 0.1. The corresponding cutoff wavelength of
the LP;, mode is A, = 0.784 um. At 850 nm, the effective index of
the LPy; mode can be calculated by the approximate formula given in
Chapter 8, and this gives us n.; = 1.4517. The spatial grating period
required for inducing a strong reflection using this fiber at 850 nm is

A= 2= 0.293 um

2 Ref

Note that the required grating period is less than the optical wavelength.
Figure 17.27 shows a typical transmittance of a 4.8-mm-long fiber
grating having an index modulation of 2.6 x 107, The grating reflects
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very strongly at the design wavelength and transmits other wavelengths
without much loss. Hence, such a device acts as a notch filter. The
FWHM of the grating filter is ~0.4 nm (see Example 17.7).
Equation (17.48) gives us the wavelength that will undergo a strong
reflection. Physically this can be understood trom the fact that, at each
change in refractive index, some light is reflected. If the reflections
from points that are a spatial period apart are in phase, then the vari-
ous multiple reflections add in phase leading to a strong reflection. This
happens when we satisfy equation (17.48), Using a coupled mode the-
ory for contradirectional coupling due to a periodic perturbation, one
can show that the reflection coefficient is given by (see Section 21.7)

R = tanh” « L (17.49)

where L is the length of the fiber grating and « is the coupling coef-
ficient, which is approximately given by (see Appendix F)

nhAnl
Ap

K =

(17.50)

where [ is a transverse overlap integral of the modal distribution with
the region where the grating is formed — for example, over the core of
the fiber. The overlap integral /(< 1) accounis for the fact that only a
part of the light propagating within the core interacts with the periodic
refractive index variation; the field in the cladding is traveling in a
region of uniform refractive index. [For plane wave interaction in an
infinitely extended medium with a periodic index modulation, / = 1,
see, e.g., Ghatak and Thyagarajan (1989).]

The bandwidth of the reflection spectrum, which in this case is
defined as the wavelength spacing between the two reflection minima
on either side of the central peak, is approximately given by [see e.g.,
Ghatak and Thyagarajan (1989)]

)

}\.’.
Ah= —B  (2L7 4 gl (17.51)
T Ayl

Fig. 17.27:  Transmission
spectrum of a fiber Bragg
grating and the
corresponding theoretical
fit. The length of the grating
is 4.8 mm and the index
modulation corresponds o
2.6 x 107+ [After Dong
et al. (1996).]

i
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Example 17.5: Let us assume that we need to have a fiber Bragg
grating at 800 nm that should have a reflectivity of 90% with a length
of 25 mm. Then, from equation (17.49), we have

tanhx L = 0.9

giving us
1 1+ 0.9
k = —In Vo2 ~ 0.073mm™"
2L 1 —+40.9

Assuming / = 0.5, equation (17.50) gives us
An~3.72x 107

which is very reasonable. The corresponding bandwidth is
Ax = (.02 nm

Example 17.6: To achieve the same reflectivity of 90% with a 10-mm-
long grating, the required coupling coefficient would be ¥ =~ 0.183
mm~ !, which (assuming I =~ 0.5) gives us An == 9.3 x 107°. The
corresponding bandwidth would be 0.05 nm.

Example 17.7: From Figure 17.27, showing the measured transmis-
sion spectrum, we note that the peak reflectivity is about 0.93, corre-
sponding to a Bragg wavelength of 1532.1 nm. Since the peak reflec-
tivity is given by tanh? x L (see equation 17.49), we obtain

tanhx L = +/0.93
which gives

wl ~ 2

Since L = 4.8 mm, we obtain from equation (17.50), the effective
index modulation of

KA ,
Ang = Anl = ARALAEVE, BV T
d -

Since I < 1, the actual index modulation is larger and has been re-
ported to be 2.6 x 107%. We can also estimate the bandwidth of the
reflection spectrum from equation (17.51), which, using the above
parameters, gives

AA >~ 04nm

which matches closely with the measured spectrum shown in Figure
17.27.
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Example 17.8: Let us assume that we wish to fabricate a Bragg grating
filter at 1550 nm with a peak reflection of 99% and a bandwidth of 1
nm. Since R = 0.99, we have from equation (17.49)

kL =2993

Since Az = 1550 am, AA = 1 nm, and n,y = 1.45, we have from
equation (17.51)

2
[ — Ay (KZLE +7{2)1/2
nngﬂ-Ak

= 2.29 mm
Using equation (17.50) for « we have
Anl = 6.45 x 107*
Taking a typical value of 0.75 for /, we obtain the required An as
An~8.6x 107"

Example 17.9: Assuming a sinusoidal refractive index modulation
that is uniform within the core of the fiber, / will correspond to the
fractional power in the core of the fiber. In such a case, one can ap-
proximately write [Appendix F]

2
=1 mexp{—Z(i) :l
Wy

where a is the fiber core radius and wy is the mode spot size, which
under the Gaussian approximation, is given by equation (8.63).

If we consider a fiber with @ = 5 um and NA = 0.09 with a Bragg
grating to reflect 1.3-z0m radiation, we obtain

‘ 2
Ve —ag-NA>=2.1749
Ao

Thus, wy/a =~ 1.182 and I ~ 0.76.

Fiber gratings are finding wide applications in fiber optic communications and
sensing. One of the most interesting applications is as narrow-band notch filters
to reflect a chosen wavelength. Such reflectors can be used to stabilize dis-
tributed Bragg reflector lasers [Bird et al. {1991)], as reflectors for fiber lasers
[Kashyap et al. (1990)], and as WDM components [Juma (1996)]. Multiple
gratings at different positions on the fiber can be designed to reflect different
wavelengths, and different gratings with overlapping reflection spectra may be
designed to generate tailored transmission spectra. A pair of identical gratings
separated by a certain length of the fiber forms a Fabry—Perot filter and can
be designed to form a narrow-band transmission filter [Morey, Ball, and Meltz

i
i

L
I

)
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(1994)]. Chirped fiber Bragg gratings in which the grating period varies along
the fiber length can be used for dispersion compensation [Ouellette (19871
Fiber gratings can be used in gain flattening of EDFAs (see Section 17.11).
Sensing is another area that is finding wide application. At 1300 nm, the temper-
ature coefficient of wavelength shift is ~0.009 nm/°C, and the strain coefficient
is ~0.001 nm/u strain. Thus, from the changes in the Bragg wavelength, one
can measure temperature and/or strain [Patrick et al. (1996)].

17.10  Fabrication of fiber gratings

Many different techniques have been developed for the fabrication of fiber
gratings. UV light from a laser (excimer or frequency-doubled argon) is split
into two beams with a beam splitter and the two beams are then made to interfere
(see Figure 17.25) by using two beam steering mirrors [Meltz, Morey, and Glenn
(1989)]. The angle between the two interfering beams would decide the period
of the interference fringes and, hence, the grating (see Problem 17.7). The fiber
is placed in the region of interference and exposed to the beam. Cylindrical
lenses can be used to produce a line focus on the fiber. Such an arrangement
has also been used for writing gratings with a single UV pulse while the fiber is
being drawn [Askins et al. (1992), Archambault et al. (1993)]. Since the grating
periods are less than a micrometer, the interference pattern must be very stable
over the exposure time.

In the interference pattern method described above, it is quite difficult to
write gratings of a precise wavelength. A simpler technique involves the use of
phase masks. A phase mask is produced by exposing a silica mask plate to an
electron beam followed by etching to produce a surface relief grating with the
required period. When the UV laser beam is incident on the mask, it diffracts
into the +1, 0, and —1 orders. The +1 and —1 order diffracted beams are
made to interfere on the fiber by placing the fiber just behind the phase mask,
as shown in Figure 17.28. This arrangement is highly stable and is also very
compact.

Another technique involves creating refractive index increases by tightly
focusing a UV laser beam at periodic positions along the fiber. This is referred
to as the point-by-point writing technique [Hill et al. (1991), Bilodeau et al.
(1991)]. Since very tight focusing is difficult, this technique is usually applicable
to form gratings with periodicities of greater than several tens of micrometers.
An advantage of this method is that the writing beam need not have a very high
degree of coherence,

One can increase the photosensitively of doped silica fibers by treating the
fiber with hot hydrogen [Lemaire et al. (1993)]. This is done by exposing
the fiber to high-pressure hydrogen gas (20-750 atmospheres) at temperatures
ranging from 21°C to 75°C. This has been shown to lead to index changes as
large as 5.9 x 1073,

The formation of gratings in the fiber require UV light around a wavelength
of 240 nm. The lasers that have been used for the fabrication are excimer lasers
(KrF emitting 248 nm), 244 nm of frequency-doubled Ar—ion laser operating at
488 nm, or the frequency-tripled output of the 1060-nm Nd: YAG laser. Typical
average power levels of 4-20 mW and exposure times typically of S min are re-
quired for fabrication. Single-shot fabrication typically requires pulse energies
of a few hundred millijoules in about 20 ns.
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UV light from laser

Phase mask

-1 order A +1 order

Induced refractive index
modulation in the core of the fiber

Recent experiments have demonstrated that even phosphorous-doped silica
fibers that are sensitized by deutertum fiber gratings can be formed by UV
exposure {Strasser (1996)]. These fibers, indeed, show better characteristics in
terms of index modulation and are easily integrated in fibers like Er/Yb-codoped
fiber lasers that do not contain germanium.

17.11 Long-period fiber Bragg gratings

In Section 17.9 we described Bragg gratings that couple from a forward propa-
gating mode to a backward propagating mode (contradirectional coupling). As
discussed, such gratings have periods of a micrometer or less. Fiber gratings
can also be used to couple light from one mode to another propagating along the
same direction (codirectional coupling). If nn,; and n,; are the effective indices
of the two modes that need to be coupled, then the required grating period is
obtained from the Bragg condition (see Chapter 21).

2 2 2
— My — - oy =~
Ao Ao
or
Ag)
A = (17.52)

(”(’I - n(«’?,,)

The corresponding vector diagram is shown in Figure 17.29.1f n,; and n» corre-
spond to two forward propagating guided modes of the fiber (for example, LPy,
and LP;; modes or two orthogonally polarized modes of a birefringent fiber),
then (n.) — n.2)mar = An, the index difference between core and cladding.
Since An lies in the range 0.005 — 0.01, the required period lies between 100
and 200 times the optical wavelength —thatis, periodicities greater than 100 zom.
Such gratings are referred to as long-period gratings and have been a subject of
study in recent years [ Vengsarkar et al. (1996a, 1996b), Patrick et al. (1996)].
One of the interesting classes of long-period gratings involves coupling from
the guided LPy; mode to the forward propagating cladding modes — that is, those
modes that are guided by total internal reflection at the cladding—air interface.

Fig. 17.28:  Fabrication of
fiber gratings by exposing
the fiber to the fringe
pattern formed by passing
the UV laser radiation
through a phase mask. The
phase mask is a binary
grating in which the groowe
profile and depth are
spectally tailored to diffract
most of the incident light
into +1 and —1 order
waves,
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17.11 Long-period fiber Bragg gratings

Fig. 17.29:1  Vector
diagram showing Bragg
coupling from one mode

into another mode
propagating in the same
direction. In this case,
length of Kis much smalier
than in the use of reflection
(see Figure 17.26).

Fig. 17.30:
spectrum of a long-penod
grating at -min intervals,
starting from 1 min (curve
A). Note that as exposure

increases, there is a

Transmission

decrease in the transmission
tresonance and also a drift
of the center wavelength to
longer wavelengths. [After
Vengsarkar et al. (1996b).]
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Such cladding meodes are lossy due to the large scattering losses at the cladding—
air interface as well bends and other perturbations. Since the periodic coupling
process 1s wavelength selective, this coupling acts as a wavelength sclective
loss element that is finding applications in many areas such as gain flattening
of EDFAs {see Chapter 14), sensors, etc.

For the fabrication of long-period gratings, a hydrogen-loaded germanosili-
cate single-mode fiber is exposed by a UV laser beam (from a KrF laser emitting
at 248 nm) through an amplitude mask made of chrome-plated silica; the mask
has periodic openings corresponding to the pattern required. Typical exposure
energies are 250 mJ/pulse at a repetition frequency of 20 Hz for about 5-10 min.
The transmission spectrum is usually monitored in real time as the grating gets
written in the fiber. Figure 17.30 shows the change in the transmission spectrum
as a function of exposure time. The peak loss increases with time as the index
modulation increases, and the peak wavelength also increases because of an
increase in the average refractive index in the grating region. These gratings are
usually annealed at 150°C for a few hours to outgas the unreacted hydrogen as
well as to anneal any unstable UV-created site.

A typical transmission spectrum of a band rejection filter is shown in Figure
17.31. The corresponding grating period was A = 402 zzm and the length was
25.4 mm. The maximum loss is 32dB at &, = 1517 nm with Ax (3dB) = 22
nm. The insertion loss at an off-resonance wavelength is less than 0.2 dB. These
gratings correspond to An ~ 5 x 1074,

By concatenating two or more gratings with different transmission spectra.
one can generate almost any required transmission spectrum. This ability is
finding applications in gain flattening of EDFAs. As discussed in Chapter 14,
EDFAs are characterized by a particular gain spectrum thatis not flat — that is, the
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0 Fig. 17.31:  Transmission
spectrum of a band
-5 F rejection filter made froma
long-period grating of
-10 - length 2.54 c¢m and a period
o of 402 m. The peak lossis |
2 5L 32dB at 1517 nm with an
_§ insertion loss of 0.2 dB
@2 ool [After Vengsarkar et al,
& (1996a).]
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Fig. 17.32:  Comparison
of inverted erbium amplifi
gain spectrum and the
corresponding transmission ‘
spectrum of a Bragg fiber
filter obtained by
concatenating two
long-period gratings, |After
Vengsarkar et al. (1996h)]
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gain is a strong function of signal wavelength. This can pose serious problems
when EDFAs are used in wavelength division multiplexed systems as different
signal wavelengths will have different gains, and an optimum design for all
signal wavelengths is not possible. Hence, there is a great deal of interest in
flattening the gain of EDFAs for WDM applications (see, e.g., Bergano (1996)].

Figure 17.32 shows a comparison of inverted erbium amplifier gain spectrum
and the corresponding transmission spectrum of a Bragg fiber filter obtained by
concatenating two long-period grating filters. This filter used with an EDFA can
provide a flat gain (with gain variations of < 0.2 dB) over a 25- to 30-nm band.

Problems

17.1 Consider a fiber witha = 3.5 um and An = 0.007. Assuming n2 = 1.45, obtain
the grating period required for a Bragg wavelength of 800 nm.

17.2  Ceonsider a directional coupler formed by a pair of identical step index single-
mode fibers with ¢ = 4 pmand NA=0.11, Assuming n; =~ 1.45 and a core-to-
core separation of 12 pm, obtain the coupling length at 1.3 um and at 1.5 pm.
For a coupler with a length equal to the coupling length at 1.3 m, what fraction
of power would be exiting from the two fibers at 1.5 pm?
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17.3

17.4

17.5

17.6

17.7

Consider a fiber optic directional coupler with an interaction length (equal to the
coupling length) of 5 mm.

{a) Obtain the corresponding coupling coefficient.
(b)  What should be the value of k¥ so that & 5-mm-long coupler behaves as a
3-dB coupler?

Consider a single-mode fiber with @ = 3.5um and An = 0.007.

(1) Obtain the cutoff wavelength
(ii) Calculate the mode effective index at 1550 nm assuming pure silica cladding.
(iii) Calculate the required grating period for a Bragg wavelength of 1550 nm.
{iv) If you had assumed the effective index to be that for pure silica (instead of
the estimated effective index), what would have been the period? For this
period, what would be the actual Bragg wavelength?

Assuming the effective index of the fiber mode to be approximately equal to
the refractive index of pure silica, obtain the grating period required for a Bragg
wavelength of 800 nm and at 1550 nm. Use the Seliemier formula given in Chapter
6 for estimating the refractive index of pure silica at these wavelengths.
Consider a single-mode fiber with a core diameter of 3 pm and NA of 0.3. What
should be the Bragg grating period for a resonance wavelength of 1532.1 nm (see
Figure 17.27)7

Two plane waves at free space wavelength A, propagating at an angle & with
each other are made to interfere in a medium of refractive index n,,. What will
be the fringe spacing?

Solution: Let us consider the two waves to propagate at angles £6/2 with respect
to the x-axis in the x—z plane. If the interference pattern s viewed on the plane
z = 0, then the intensity pattern is given by

=1 e,‘k: sinf /2 +e—sz sinf /2 2

where k = {“-Tinw and /y is the intensity of each of the interfering waves. Thus

I = 41 sin*(kzsin8/2)

.3 2 . 2]
= 4]y sin” }L—nu,;,z, s — (17.53)

_ 2
uy -
Thus, the periodicity of the interference pattern is

)"lﬂf . N
A= ———— (17.54)
Fyp SIN(G/2)

A fiber exposed to the above interference pattern would have a refractive index

modulation with the period A.
As an example, let us calculate the angle # required for forming a reflection
grating at a reading wavelength A x. For this we need a grating period of (see

equation 17.48)

A= — (17.55)
2np
where n g is the effective index of the fiber mode at the reading wavelength Ap.
Thus, using equation (17.55) in equation (17.54) we obtain
g Ayv NR

sin — = 2
2 AR Hyup

(17.56)
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For Ag = 1550 nm, np =~ 1.45, and for A,, = 244nm, n,, = 1.508, and we
obtain

g~ 352°
which is easily achieved.

Consider a multimoded fiber overlay device. When the fiber mode is phase
maltched to one of the modes of the multimode planar waveguide and the inter-
action length equals the coupling length, then when neglecting interaction with
other modes of the multimode guide no power will exit from the fiber. Calculate
the fractional error in the interaction length that is permissible if the loss is to be
greater than 99%.

Solution: If L. denotes the coupling length then, at any z, the power remaining
in the fiber is

~y af T2
Pf‘ﬂCOS°KZ,:COS'(-ﬁ )

Z dop

where k = 7 /2L I z = L., Py = 0.For Py < 0.01, we must have

cost{ = < < 0.01
2 L.

cos(w - ) < 0.1
L.

It we write

AL
::LL»:EAL:L(-(I& 7 )
e,

=

or

=
3

3

then we have

m AL
sin ——— < 0.1
2 L,
Or
AL 0.2
— e 22 (1,064
L, b4

where we have assumed AL <« L.

Thus, if the coupling length is 5 mm, then for the peak loss in the device to
be greater than 99%, the length of the device should lie between 4.68 mm
and 5.32 mm.
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18.1 Introduction

Although the major application of optical fibers has been in telecommunica-
tions, there is a growing application of optical fibers in sensing applications
for measurement of various physical and chemical variables, including pres-
sure, temperature, magnetic field, current, rotation, acceleration, displacement,
chemical concentration, pH, and so forth. Such fiber optic sensors are finding
applications in industrial process control, the elecirical power industry, auto-
mobiles, and the defense sector.

One of the main advantages of a fiber optic sensor stems from the fact that
optical fibers are purely dielectric and thus can be easily used in hazardous
areas where conventional electrically powered sensors would not be safe. In
addition, fiber optic sensors are immune to electromagnetic interference, have
greater geometric versatility (i.e., they can be configured into a variety of ar-
rangements to suit the application), and should have a very short response time.
They can be multiplexed into various configurations and the information from
various sensors can be transmitted over long distances by optical fibers. They
can also be configured to provide spatially distributed measurements of external
parameters.

In a typical optical fiber sensor, light from a source such as a laser diode
or LED is guided by an optical fiber to the sensing region. Some property of
the propagating light beam gets modulated by the external measurand such as
pressure, temperature, magnetic field, and so forth. The modulated light beam
is then sent via another (or the same) optical fiber for detection and processing.
The modulation could be in terms of the intensity, phase, state of polarization, or
frequency. Using multimode fibers for sensing applications leads to less sensi-
tive but simpler, low-cost solutions. On the other hand, with single-mode fibers
and laser diodes, orders of magnitude improvements in sensitivity are possible
but require more sophisticated optical components as well as processing.

There are many different types of sensors using multimode as well as single-
mode fibers. Sensors based on single-mode fibers are much more sensitive than
multimode fiber sensors. In this chapter we briefly outline three basic single-
mode fiber optic sensors — namely, the Mach-Zehnder interferometric sensor.
the fiber optic current sensor, and the optical fiber gyroscope. For more details,
readers may consult Dakin and Culshaw (1988) and Grattan and Meggitt (1995).

18.2 Mach-Zehnder interferomeiric sensor

One of the most sensitive arrangements of a fiber optic sensor is the Mach-
Zehnder interferometric sensor arrangement shown in Figure 18.1 (see also
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Section 2.6.1). Light from a laser is passed through a 3-dB fiber optic coupler
(see Section 17.2), which splits the beam equally into the two single-mode fiber
arms. After traversing the fiber lengths, the two fibers form inputs to another
3-dB coupler, which helps in superposing the two beams. In a bulk Mach—
Zehnder interferometer, the two 3-dB couplers are beam splitters, The two
outputs of the output coupler arms are detected and processed. One of the arms
of the interferometer is the sensing arm and is usually coated with a material that
is sensitive to the parameter of interest, and the other arm, called the reference
arm, is shielded from the external perturbation. When an external parameter acts
on the sensor it alters the phase of the light propagating through the sensing
arm by changing the refractive index and/or the length of the sensing arm. At
the same time, since the light propagating in the reference arm is shielded,
the external perturbation has no influence on the phase. Thus, as the two beams
enter the second 3-dB coupler, the powers exiting from the two output arms will
be determined by the phase difference between the two beams. A measurement
of the output intensities gives us the parameter to be measured.

Indeed, if ¢y and ¢, are the phases of the two beams as they enter the output
3-dB coupler, then one can show that

A
I, = I, cos’ 29 (18.1)

2

and A
I, = I sin’ ,,zf (18.2)

where {j 18 the input intensity, /; and /5 are the output intensities from arms |
and 2 (see Figure 18.1), and

Ap =¢1 — ¢ (18.3)

Thus, if the signal and reference arms introduce identical phase shifts, then
A¢ = 0 and all power exits from output 1. Similarly, for a phase difference of
7, all power exits from output 2. For other values the power gets divided into
both arms. Note from equations (18.1) and (18.2) that
L+ 5L =1 (18.4)

which is a constant.
Figure 18.2 shows the variation of /; and 7, with A¢. Since the external
perturbation usually induces very small changes A¢ (milli- to microradians)

Fig. 18.1: The
Mach—Zehnder
interferometric arrangemen
for sensing. DC representsa
fiber optic directional
coupler.
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Ao —

Fig. 18.2: Variationof  between the two arms, we note from Figure 18.2 that if the sensor is operated
owputs /- and [y with Ad. yraund the minima (or maxima), then the intensity modulation due to change in
Ag¢ will be very small. The most sensitive point of operation is around a phase
difference corresponding to (2m + 1)Z. This is referred to as quadrature point.
Due to temperature and pressure fluctuations, the phase difference A¢ may
drift with time. This would lead to the point of operation shifting away from
the quadrature point, leading to signal fading. Usually an active controller is
placed in the reference arm to maintain the operation at a desired point. This can
be accomplished by wrapping a length of the reference arm on a piezoelectric
cylinder. When a voltage is applied across the cylinder, the cylinder expands
and stretches the fiber, leading to a controlled Ag¢.
If the interferometric sensor is operated at the quadrature point then

b4 ‘

Agp = ) +34 (18.5)
where 7 /2 is the fixed bias and § is the phase change induced by the measurand;
the phase change & is usually very small compared with 7. Using equation (18.5)
in equation (18.2) and assuming § < 7, we can approximately write

h= g sint (542
= Sin — —
2 0 SI 4 B

IU
’;‘7;(34*5) (18.6)

Thus, under such a case, the intensity variations in [/, (and similarly in /) are
linearly related to the phase change 6.
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We can approximately estimate the minimum detectable phase change §
assuming that the detector is shot noise limited (see Section 13.3). In such a
case, the signal current in the detector is

! :
Iy = ;1'(},05 (18.7)

where p is the responsivity of the detector. Now the shot noise current is (see
Section 13.3)

i = (2eiAf)? (18.8)
where ¢ is electronic charge, Af is the detection bandwidth, and 7 is the mean
photocurrent in the detector. Since the mean optical intensity falling on the

photodetector is Iy/2, we have

]
| = —of, 18.9)
i=5pl (18.9)

Thus
v = (eplyAf)V? (18.10)

Hence, the SNR is given by

3 1/ ol \ 2
SNR:J@:—('OO, 5 (18.11)
IyN 2 EA]{

Defining the minimum detectable phase change to correspond to an SNR of
unity we have

AF 1/2
579:11; . 2(6 ]L) (]812)
Py

As an example, we consider a detector with p = 0.5 A/W, [, = | mW, and for
a detector bandwidth of 1 Hz, we have

\ 1.6 % 10719 % 1\
(‘)min =2
05 %1077

~36x 10 %rad

This shows that extremely small phase changes are detectable. In actual systems,
the detector is not shot noise limited, and the minimum detectable phase shift
is larger than predicted by equation (18.12). The other noise factors include
laser phase and intensity noise. Even in the presence of these noise sources,
measurement of phase changes of 107° rad is possible.
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Example 18.1: A phase change of 107° rad corresponds to a change
in fiber length of

Ap  107°x0.633 x 107°
(3—7 ~n) - 2 x 1.45

i

Al =

~7x 107" m

assuming Ap = 0,633 um. This is indeed remarkable.

When the measurand 1s applied on the signal arm, then it changes the phase
of the light propagating through the arm. Thus, if the phase is given by
21
¢ = — ngl (18.13)

A

where X is the free space wavelength, n.s and L are the LPy; mode effective
index and the fiber length, then

27
AP = K—Enqﬁ\AL + LAngl (18.14)
0

where AL and An,g are the changes in the length of the fiber and the mode
effective index, respectively. Thus, the fractional change is
Ad) AL An()/f
L ~
¢ L e

(18.15)

In equation (18.15), the first term — the length change - is the dominant term.
The second term (caused because of the strain in the fiber) is the change in
effective index due to changes in the core and cladding refractive indices and
changes in the core diameter (and, hence, V). The variation brought about by
core diameter variation is negligible and, hence, we may replace n,4 by n, the
refractive index of silica.

The phase change per unit length of sensing fiber due to changes in pressure
1s approximately given by

A 27 AL An ,
= |n- +— (18.16)
LAP An LAP AP
For silica fibers'
AL 1 i
n ~ —1.53 %« 107" rad/Pa (18.17)
LAP
and
An iy )
— 2= 108 % 107" rad/Pa {18.18)
AP

" Pa=1Nm?.
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Thus, at 633 nm,

Ag
LAP

~ —45 x 107 rad/Pa-m

Sound pressure levels (SPLs) are usually measured in decibels with respect
to a reference pressure level P,.

P
SPL = 20 mg(F) dB re P, (18.19)

e

Note the factor 20 instead of 10 - since sound intensity is proportional to P2 and
thus an increase in pressure by +/2 would double the intensity. The reference
pressure is usually chosen either as 1 @Pa or to correspond to the threshold of
hearing, which is 2 x 107> Pa.

Example 18.2: Sound levels with respect to the threshold of hearing
are specified as decibels. Thus, 0 dB would correspond to threshold of
hearing [see, e.g., Halliday, Resnick, and Walker (1993)]. A whisper
at 1 mis 20 dB; the corresponding pressure P, is given by

P,

or

P,=2x10"Pa
Similarly, normal conversation corresponds to 60 dB or a pressure of
2 x 1072 Pa, and the threshold of pain is 120 dB or a pressure of 20 Pa.

Example 18.3: Let us consider an MZ interferometer with a 100-m-
long sensing arm consisting of a coated optical fiber with a sensitivity
of 3.4 x 10™* rad/Pa/m. Sound at the threshold of hearing falling on
the sensing arm would induce a phase change of

A =34x 107" x2x 1077 x 100
~ 6.8 x 107" rad

which 18 measurable.
Example 18.4: If§,,,, = 3.6 x 1078 rad, then the minimum detectable

pressure for [-m length of sensing arm using a coated fiber with a
sensitivity of 3.4 x 107 rad/Pa/m is

3.6 x 107°
Pue——
3.4 % 10-*

~ 10"*Pa
If this fiber is wound on a hollow polyethylene cylinder, one can in-

crease the sensitivity to 107% Pa, which is below the threshold of
hearing.
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As we saw earlier, the pressure-induced phase changes in a bare silica fiber
are about 4.5 x 1077 rad/Pa/m. One can indeed increase the sensitivity to
pressure by using special coatings with materials such as rubber, silicone, and
plastics. For example, a thick coating of PTFE (a plastic) can increase the
pressure sensitivity to 3.4 x 10™* rad/Pa/m (a ten-fold increase). The sensitivities
can be further increased by two orders of magnitude by winding the jacketed
fiber on hollow cylinders made of polyethylene [McMohan and Cielo (1979}].
One can also reduce the sensitivity to pressure by using metal coatings. Thus, a
10-pum-thick nickel coating or a 96-um-thick aluminum coating has been shown
to reduce the pressure sensitivity to zero. Using such coatings one can thus
completely desensitize the reference arm from the measurement [Giallorenzi
et al. (1982)].

Fiber optic pressure sensors are finding applications as hydrophones for
detection of underwater sound waves. One of the great advantages in such an
application is the possibility to configure them as omnidirectional or highly
directional receivers.

Any measurand that changes the phase of one of the arms with respect to the
other can be measured by using the Mach-Zehnder arrangement. The sensitivity
to various measurands is

temperature ~ 100 rad/K/m (18.20)
LAT
. 5¢ 4
Axial loadl —— |} >~ 2 x 107 rad/N/m (1821
LAF
Linear strain =~ 10~ rad/m/unit strain (18.22)

18.3 Current sensors

Measurement of currents with optical fibers is very attractive since optical fibers
are dielectric and, hence, electrical isolation is not a problem. Such sensors
are also immune to electromagnetic interference, have a high bandwidth, and
potentially have a lower cost alternative. One of the most important fiber optic
current sensors uses the Faraday effect in glass. The Faraday effect refers to
the rotation of the plane of polarization of a linearly polarized wave traveling
through a medium in which a strong magnetic field is applied along the direction
of propagation. This rotation can be thought of as being brought about by the
fact that, in the presence of a longitudinal magnetic field, the medium becomes
circularly birefringent - that is, the right circularly and left circularly polarized
waves travel with different velocities.

The amount of rotation is propertional to the applied magnetic field and the
length of interaction. Mathematically we may write for the rotation

e):v/ﬁ.df (18.23)

where ¢ is the rotation of the plane of polarization, H is the apphied mag-
netic field, and V is called the Verdet constant. For silica, V =~ 2.64 x 10~*
deg/A = 4.6 x 107° rad/A.
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Figure 18.3 shows a typical arrangement of a fiber optic current sensor based
on Faraday effect. It consists of a single-mode fiber wound helically around the
current-carrying conductor. The magnetic field associated with the current leads
to a rotation of the plane of polarization of the light propagating through the
fiber. If there are N turns of fiber around the conductor, then by Ampere’s law

/ﬁxdf:z\ll (18.24)

where [ is the current through the conductor. Thus
0=VNI (18.25)

The rotation of the plane of polarization is detected by first passing the output
through a Wollaston prism, which breaks up the incident light into two or-
thogonal components whose intensities change when the plane of polarization
rotates.

Note that the rotation 6 is dependent only on the current enclosed by the
fiber loop and is independent of the shape of the loop as well as any current
sources lying outside the loop.

Example 18.5: Let us consider 30 turns of fiber wound around the
current conductor. For a current of | A, the rotation 18

6 =~ 7.92 x 107 deg

Fig. 183 A typical
arrangement to measure
current by using Faraday
rotation in an optical fiber,
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Fig. 184: A typical
variation of output signal
with current. Note the linear
response and possibility of
measuring large currents.
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Each of the outputs of the Wollaston prism is detected separately, and then
one obtains the following quantity by electronically processing the outputs of
the photodetector.

h—1
= et = K (18.20)
L+ 1

where [y and [, are the intensities of the two orthogonally polarized components
and K is a constant. The ratio R is proportional to the rotation #. The above
processing makes the output independent of received light power and, hence,
of laser drift.

Figure 18.4 shows a typical measured output signal with applied current. The
response 1s very linear and shows the capability of such a sensor to measure
large currents.

In the discussion above we have assumed that the fiber perfectly maintains
the state of polarization (SOP) and the only change (rotation} is due to the
applied magnetic field. In practice, this is not true since real fibers do possess
some random birefringence that leads to a change in SOP even in the absence of
the magnetic field. In addition, bending the fiber introduces linear birefringence;
the smaller the loop radius the larger is the birefringence (see Section 17.8). In
fact, in the presence of linear as well as circular birefringence, the signal R is
given by

_ sin A )
R =20 (18.27)
A

where

AP =467 + §° (18.28)
with

2
§ = — Anyy 2mRN (18.29)

0
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being the total phase retardance due to the linear birefringence An.z and 6 is
the Faraday rotation in radians. (One can indeed show that 26 represents the
phase retardance between the two circularly polarized modes due to Faraday
effect.) We thus see from equation (18.27) that

siné
R = ZQT 5> 60
>~ §in 26 R {18.30)

Thus, if § > 6 — that is, the linear birefringence is large compared with the
circular birefringence — the sensitivity is low, whereas if § <« 6 — the circular
birefringence is much greater than the linear birefringence — then the sensitivity
is large. Also, in such a case the signal is independent of any linear birefringence
in the fiber.

Example 18.6: Let us consider a Faraday current sensor consisting
of 30 loops of a single-mode fiber of radius 62.5m bent around a
circular former of radius 20 cm. In such a case (see equation (17.44))

2

bh*
Aﬂ(ﬁ‘ = ""0 133 EE

where b 1s the fiber radius and R is the loop radius. Thus

5.25 b2
b=
o R

For the present case
5 =~ 4.86rad
The corresponding Faraday rotation for a current of 1 A is

=VNI

—264 % 107 x 2 %30 x |
180

~1.4 x 107" rad

which is indeed very small compared with the linear birefringence!

One of the methods to reduce the effect of linear birefringence is to introduce
an additional circular birefringence, which can be brought about by twisting
the fiber that introduces a circular birefringence in the fiber [Graindorge et al.
(1982)]. If the twist rate is such that the total circular birefringence is com-
parable to linear birefringence, then the effect of linear birefringence is very
much reduced.

Now, for silica optical fibers, the rotation 2 of plane of polarization produced
by a twist rate ¢ over a length 7 is given by [Ulrich and Simon {1979)].

Q=0073¢z (18.31)
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Thus, to reduce the effect due to linear birefringence, the required twist rate is
such that

bl
0.073¢z2 > 525—N
£z > ok

Using z = 27 RN, we have

b?

Ao R?

> 11.44

Using b = 62.5 um, R = 30 cm, Ag = 0.633 zm, we have
¢ > 0.78 rotations/m

Twisted fibers can also be annealed to eliminate any residual linear birefringence
[Rose, Ren, and Day (1996)].

18.4 Fiber optic rotation sensor (gyroscope)

The fiber optic rotation sensor based on the Sagnac effect is shown in Figure
18.5. It consists of a loop of polarization maintaining single-mode optical fiber
connected to a pair of directional couplers, a polarized source, and a detector.
Light from the source is split into two equal parts at the coupler close to the fiber
loop (DC2), one part traveling clockwise and the other traveling anticlockwise
through the loop. After traversing the loop the beams are recombined at the
same coupler, and the portion returning to the other coupler DC1 then has 50%
of it detected and processed. Assuming that the directional couplers are lossless,
we first note that if the entire arrangement is not rotating, then the times taken
by the clockwise and anticlockwise propagating beams through the loop would
be same. Since a directional coupler introduces a 7 /2 phase difference between
the two output arms, if the loop does not introduce any phase difference then
the coupler DC2 gives an additional phase difference of /2, resulting in all
the power returning toward DCI.

Now, if the entire arrangement rotates with angular velocity €2, then a phase
difference given by [Burns (1994)]

_ 81NAQ

A
¢ Chy

(18.33)

is introduced between the two beams. Here N is the number of fiber turns in
the loop, A is the area enclosed by one turn (which need not be circular), and
Ag is the free space wavelength of light.

One way to picture the Sagnac effect is by noting that when the entire setup
is undergoing rotation (say clockwise) about an axis perpendicular to the loop,
by the time the clockwise beam propagates through the loop the output coupler
will have rotated and, hence, it will have to travel an extra path length before
coupling out. On the other hand, the anticlockwise propagating beam will have
to traverse a smaller path length to reach the output coupler. This difference
leads to a phase difference given by equation (18.33).
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To get a feeling for the phase shifts involved, let us consider a fiber optic ~ Fig. 18.5:  An all-fiber
gyroscope with a coil diameter of 10 cm and having 1500 turns (corresponding ~ OPUc gyroscope. [After
to a total fiber length of DN = 470 m) operating at 850 nm. The corresponding Allen et al. (1994).]
phase difference is

Ad = 1.16 Q2 rad

If £2 corresponds to earth’s rotation speed (15°/hr), then the corresponding phase
change is

Ad = 8.4 x 1077 rad

a small shift indeed.
The output intensity from the Sagnac loop is given by

[ = g(l +cos Ag) (18.34)
where I 1s the intensity entering DC2. The sensitivity of the interferometer
1s zero around A¢ = 0. This problem is similar to that in the Mach-Zehnder
interferometer. Thus, for maximum sensitivity the operating point should be
shifted to the quadrature point where, with no rotation, the phase difference
between the two interfering beams must be 7 /2. Assuming such a phase shift,
equation (18.34) gets modified to

P cos(Z A
=7 +L055+¢

= &(} — sin Adg)
5 s
which for small A¢ becomes

I
= -,}m — AQ) (18.35)

=
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If the detection is shot noise limited, then, as discussed in Section 18.2, the
minimum detectable phase shift and the corresponding minimum detectable
rotation rate are

PAf ) 12 . SnNAQmin

Appyin = 2 (
i p[o CX(}

Thus

O . (.')\Q (6&]‘ 12
min 47NA P[()

If we assume a loop radius of 5 cm and a total fiber length of | km, p = 0.5 A/W,
Iy = 1 mW, Ap = 850 nm, and Af = | Hz, we obtain for the minimum
measurable rotation rate as determined by shot noise

Quin = 1.5 x 107 rad/s

= 0.003"/hr

In an actual gyroscope the total fiber length is limited by loss, the radius of
the loop is limited by other constraints, and the optical power is the only free
parameter.

The configuration shown in Figure 18.5 is called the minimum configuration
in which the detection is done not at the output of DC2 but at the output of DCI.
This is because the output in the other arm of DC2 is formed by the interference
of two beams that have not followed perfectly identical paths. For example, the
anticlockwise beam exits after two crossovers in DC2, whereas the clockwise
beam never couples over to the other port. Thus, the output returning along the
input fiber in DC2 is the reciprocal port and is used in sensing. The output from
the free end of DC2 would be sensitive to even reciprocal perturbations such as
temperature, vibrations, and so forth whereas the other output is free from this
problem.

Fiber optic gyroscopes for various applications are available commercially.
These applications include missile guidance, vehicle stabilization, land naviga-
tion, industrial robots, and so forth. The gyroscopes use polarization maintaining
fibers and broadband light sources. With lowering costs, fiber optic gyroscopes
should find a variety of applications [Burns (19943].

Problems

18.1 InthediscussioninSection 18.2, we assumed the source to be perfectly monochro-
matic. If the source is a laser with a spectral width A, what is the maximum
permissible difference in length between the two arms of the Mach—Zehnder
interferometer in order to obtain a signal at the output?

18.2  Consider a fiber optic gyroscope with 500 m of fiber wound on a cotl of radius
10 emi. What is the phase difference between the two outputs for a rotation rate
corresponding o earth’s rotation at 15/hr? Assume Ag = 633 nm,
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[ANSWER: A¢ ~ 250 purad.}

18.3  If the frequency of the laser source in a Mach-Zehnder interferometric sensor
changes by Av, what is the corresponding effect on the two outputs of the inter-
ferometer?

18.4  What would be the effect of magnetic field on a fiber optic gyroscope with regard
to the phase shifts?
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19.1 Introduction

Characterization of optical fibers is very important for a number of reasons. The
users of optical fibers need the fiber characteristics to design the optical fiber
communication system, whereas the manufacturers need them for optimizing
their fabrication processes to obtain fibers with desired characteristics. The
fiber characteristics are also necessary for the development and verification of
various theoretical models for predicting various performance properties of the
fiber. The two most important characteristics of an optical fiber are bandwidth
(or pulse dispersion) and loss. In addition, one requires knowledge of various
other parameters such as refractive index profile, core diameter, and so forth for
predicting losses at joints. Table 19.1 lists the various characteristics of optical
fibers along with their effect on system performance.

A large number of techniques have been developed for measuring various
fiber characteristics. In this and the following chapter, we briefly discuss some
of the standard technigues used in fiber characterization; for more details of the
various techniques, readers may consult Pal, Thyagarajan, and Kumar (1988)
and Thyagarajan, Pal, and Kumar (1988b).

In Section 19.2 we discuss some general experimental considerations rele-
vant to fiber measurements, and in Section 19.3 we discuss various techniques
for the measurement of refractive index profile, spectral attenuation and pulse
dispersion, or bandwidth. In Chapter 20 we discuss measurement of character-
istics specific to single-mode fibers only — namely, mode field diameter, cutoff
wavelength, and birefringence.

19.2 General experimental considerations

19.2.1 Fiber end preparation

In most fiber measurements, one has to launch light into an optical fiber and
observe the light output from the fiber. The quality of fiber cut at the input
end will essentially determine the power coupled into the optical fiber from the
source, which could be an incoherent source such as a tungsten halogen lamp
or a laser. The quality of fiber cut at the output end is very critical, especially in
experiments requiring measurement of radial power distribution. A number of
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Table 19.1. Optical fiber characteristics and their effect on system performance

Measured Effect on system

Fiber type parameter performance

Multimode Attenuation Repeater spacing
Refractive index Bandwidth, number of modes,
Profile splice loss, source—fiber

Single mode

Dispersion/bandwidih
Numerical aperture

Geometry

Attenuation

Refractive index profile
Cutoff wavelength

Chromatic dispersion
[zero dispersion wavelength
(ZDW) and slope at ZDW|
Mode field diameter

Beat length

coupling
Bit rate, repeater spacing
Source-fiber coupling,
splice loss
Splice loss, connector design
Repeater spacing
Dispersion characteristics
Single-mode operating
region, modal noise
Bit rate, repeater spacing,
optimum operating
A, WDM capability
Splice loss, microbend
loss, source~fiber
coupling loss, waveguide
dispersion
Birefringence, polarization
mode dispersion.

Note: Adapted from Pal, Thyagarajan, and Kumar (1988).

manufacturers supply a fiber-cutting tool and most of them rely on scribing the
bare fiber (after removing the plastic coating) placed under some tension along
a curved surface and pulling to break the fiber. In the absence of a commercial
tool, one could employ a simple tungsten carbide blade for scribing the fiber
placed along a finger tip and then pulling it to obtain a good cut.

The quality of the fiber end cut could be assessed either by illuminating with
a white light source and observing under a microscope or by coupling laser
light (e.g., a He—Ne laser) and observing the radiation pattern on a screen. A
ctreularly symmetric and uniform pattern essentially implies a good cut.

19.2.2  Cladding mode stripping

Since light can be total internally reflected at the cladding—air interface, light
launched at the input end may also be guided along the cladding. It is very
important in all measurement setups to remove the cladding light. This is ac-
complished by using what are referred to as cladding mode strippers. To remove
the cladding light, one removes the plastic jacket covering the fiber over alength
of about 50 mm at the input and output ends. This is then covered by a few
drops of an index matching oil (like paraftin), which has a refractive index very
close to, but slightly higher than, the cladding. This will then attenuate the light
propagating i the cladding. Some fiber manufacturers use a buffer coating over
the fiber, which itself serves as a cladding mode stripper.
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19.2.3 Launching light into fibers

Figure 19.1 shows a general launch optics setup that can be used to excite the
fiber under different launching conditions. Lenses L; and L, form a condenser
pair and help in imaging the incoherent source onto an aperture A;. The beam
emerging from A, falls on another aperture A, through a beam splitter and
is finally focused by lens Lj to the fiber tip. The size of the focused image
on the fiber end can be controlled by varying the size of Ay, and the NA
of the focused spot can be controlled by varying A». The beams emerging
from the beam splitter can be used for detecting source power fluctuations as
well as for viewing the input fiber end. For measuring wavelength-dependent
characteristics, one can introduce interference filters between the lenses L and
L5 as shown in Figure 19.1. In this space one could also introduce a mechanical
chopper for phase-sensitive detection.

There are mainly two different input launch conditions that are used in the
measurement of multimode fiber characteristics.

(a)  Overfilled lannch: In this case the apertures A and A» are so adjusted
that the launched spot at the fiber end has an NA greater than the fiber
NA and the spot size is greater than the core diameter.

(b) Limited phase-space (LPS) launch: The apertures A; and A, are so
adjusted that the focused spot has a dimension that 1s 70% of the core
size and has an NA that is 70% of the NA of fiber.

19.2.4 Coupling from fiber to detector

Care must be excercised while coupling light from the fiber to the detector.
Thus, one shold take care that the light emerging from the fiber illuminates
about 70% of the detector area around the center. This would take care of
any nonuniformities present in the detector surface and also would reduce the
intensity level on the detector, thus reducing problems of saturation. While per-
forming measurements on multimode fibers, if the detector area happens to be
smaller than the illuminated spot, then one may have problems of modal noise.

19.3 Measurement of attenuation

Attenuation is one of the basic characteristics of the fiber and. along with disper-
sion, limits the repeater spacing. One of the most commonly used techniques is
the cutback technique, and Figure 19.2 shows a typical experimental setup used
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in attenuation measurement. Light from a tungsten halogen lamp is coupled into
the test optical fiber typically of length 1-2 km and the spectral variation of
output power [say F(A)} is first measured. Then the fiber is cut back, leav-
ing typically 2 m of the fiber, and a repeat measurement of power [say P,(A)]
at different wavelengths is performed. The attenuation at any A is then given
by

10 . P.(3)

a(l) = T log P

dB/km (19.1)

where L is the length of the fiber cut in kilometers.

Although this procedure seems very simple, it is not trivial, especially for
multimode fibers, because in a multimode fiber different mode groups suffer
different attenuation rates. This is referred to as differential mode attenuation
(DMA), which results in a measured attenuation that critically depends on the
excitation conditions of the optical fiber. DMA also leads to a length depen-
dence of the attenuation coefficient unless light propagates in a steady-state or
equilibrium-mode distribution (EMD). Thus, it is very important to measure at-
tenuation under steady-state mode distribution so that one can scale attenuation
lincarly with length for design in fiber communication systems.

In a long multimode optical fiber, EMD is established after propagation
through a sufficiently long length (~ several hundred meters to a kilometer) of
the fiber. In such a case the output mode distribution becomes independent of
the launch conditions. To simulate an EMD one uses either of two approaches.

(a) To use an overfilled launch followed by a mode filter. The overfilled
launch condition results in the excitation of all modes and the mode
filter is used to generate an EMD. Figure 19.3(a) shows a typical
mode filter consisting of five turns of the fiber wound on a mandrel of
diameter 1-1.5 cm. The output after the mandrel is expected to be a
steady-state mode distribution.

To determine whether the mode filter is generating the EMD, one
measures the angle at which the intensity falls to 5% of the peak in the
fiber far field with a long (1-2 km) fiber and at the output of the mode

Fig. 19.2: A typical
experimental setup for
measurement of spectral
attenuation in fibers,
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Fig. 19.3:  (a) A typical
mode filter for generating

equilibrium-mode 5 turns
distribution in a short length Equilibrium
of fiber. (b) For a mode Mode
filter 0.94 05 < 6 < 05 1f Distribution
(7‘5” > fs, this implies
incomplete mode filtering. (a}
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Fig. 19.4: A typical
attenuation spectrum of a
multimode step index fiber \
with a core diameter of 200
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filter (see Figure 19.3(b)). If the former is termed 65 and the latter 65.
then for a mode filter

0.9405 < 0; < 65 (19.2)

(b} To use an LPS launch in which the launch NA is 0.7 of fiber NA and
launch spot size is 0.7 of fiber core size.

Figure 19.4 shows a typical attenuation spectrum corresponding to a step
index multimode fiber for different launch NAs. The dependence of attenuation
on launch NA can be clearly seen.
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Although the attenuation obtained by the above technique may be used to
estimate link Josses over long distances, the same may not be true for short
distances (for example, in multimode fiber links in a local area network). For
such cases, it may be more appropriate to actually measure nonequilibrium
attenuation values. Figure 19.5 shows the measured variation of attenuation
per unit length for different fiber lengths. For such cases one may define an
attenuation coefficient as

alL) = ap + e M (19.3)

where o, and L, are constants and «y is the steady-state attenuation.

In the above context, instead of measuring the total attenuation, one may
excite different groups of modes of the fiber and measure the DMA.

Single-mode fibers do not suffer from the problem of multimode effects and,
hence, it is much more straightforward to measure attenuation. One usually
overfills the input (typically with spot sizes of 200 um and NA of 0.2) to
minimize sensitivity to input fiber end position. In addition, since cladding to
core area is much larger in a single-mode fiber than in a multimode fiber, good
cladding mode strippers should be used. Figure 19.6 shows the spectral loss of
a typical commercial single-mode fiber from Corning Glass Works.

19.4 Measurement of refractive index profile

The bandwidth of a multimode optical fiber can be optimized by choosing a
proper transverse refractive index profile (see Chapter 5). Even in single-mode
fibers, one can tailor the dispersion characteristics by an appropriate choice of

Fig. 19.5: A typical
measured variation of
attenuation per unit length
for various fiber lengths
with LED and LD
excitations. | After Kapron
(19877.]

Fig. 19.6:  Spectral
attenuation of a commercial
single-mode fiber from
Corning Glass Works.
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Fig. 19.7: Experimental
setup for measurement of
refractive index profile
using the TNF method.

the transverse refractive index profile (see Chapter 10). Thus, measurement of
refractive index profiles of optical fibers is quite important, especially in the
optimization during fabrication. Although there are many techniques for the
measurement of refractive index profile, here we discuss two of the standard
techniques that are also the most widely used.

19.4.1 The transmitted near-field (TNF) method

This method is based on the fact that if all guided modes of a multimode fiber are
excited equally, then the near-field power distribution P(r) (l.e., the variation
of optical power P(r) with radial distance » from the axis) is given by

POy = Py @) (19.4)
=1 n*(0) — n3(a) .

where « is the core radius. For a profile described by

ni(r) = nz(()_}[f - 2Af(£~):|; Fo<d
a

= (01 —2A); r >ua (19.5)

Equation (19.4) becomes

P(r) S{r ‘
Py~ (5) (19.6)

Thus, the profile described by f(~) can be estimated by just measuring P(r).

Figure 19.7 shows the experimental setup used. Light from an incoherent
source (such as a tungsten halogen lamp or an LED) is used to excite a |-m-
long fiber under overfilled launched conditions (typically input spot of ~70 pum
and NA = 0.3 for a 50-p2m core diameter, (0.2 NA fiber). Cladding modes are
stripped by using a cladding mode stripper at either end. The output end of
the fiber is magnified and imaged on a scanning photodetector that measures
P(r). Figure 19.8 shows a typical result obtained on a graded index multimode
fiber.
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I{r) (arbitrary units)

r (arbitrary units)

The measurement resolution is primarily limited by fiber NA. Figure 19.9
shows the output end of the fiber being imaged by a lens of focal length f on
a screen. The effective lens diameter is

D =>=2f0 ~2fNA (19.7)
Thus, the limit of resolution is given by

Af A
Ar = 12220 — 061 (19.8)
D NA

For A ~ 600 nm, and NA ~ 0.2
Ar >~ 1.8 um

Also, since the local NA — 0 near the core—cladding interface, the resolution
drops as one nears the core—cladding boundary.

The above method is very simple to employ, but the estimated profile may
suffer from errors due to propagation of leaky modes. For near parabolic index
profiles, leaky mode corrections do not seem necessary. In addition, the pro-
portionality between P(r) and n°(r) is true only for equal mode excitation. In
spite of the above, the TNF method is convenient for a quick estimate of the
refractive index profile.

The TNF method in the above form is valid only for multimode fibers. If
one replaces the incoherent source by a laser and measures the near-field power
distribution of a single-mode fiber, one will essentially obtain the modal power
distribution. If P(r) can be measured very accurately, one may invert the wave
equation to obtain n?(r). Thus, if R(r) represents the radial distribution of modal
field, then it satisfies the following scalar wave equation (see Section 8.3).

d*R 1dR 5

16

Fig. 19.8: A typical
measured refractive index
profile of a graded index
multimode fiber using the
TNF method. [After Dilip
(1981).]
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Fig. 19.9:  Calculation of
limit of resolution in the
TNF method.

Fig. 19.10: Measured
near-field intensity profiles
atr =13 14 and I.5um

and comparison of the
refractive index profile
calculated from the near
field with that measured by
the RNF method. [Coppa et
al. (1984).]
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where n. 13 the effective index of the mode (= 8/kq) and ky = 271/ is the
free space wavelength. The modal power distribution P(r) is

P(r)y= KR*(r) (19.10)

where K is a proportionality constant. In terms of P(r), equation (19.9) can be
modified to

o T, d*P dP\* 2P dP
2 2 0

—nt - [ ——) 2P — [ = =20
1) = ey (4;-;}3)[ dr? (dr) T dr}

(19.11)

Thus, an accurate measurement of P(r) can lead to an estimation of n°(r). Fig-
ure 19.10 shows typical results obtained with the above technique in comparison
with the refracted near-field (RNF) method.
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19.4.2 The refracted near-field (RNF) method

In the TNF method one measures the variation of guided power with radial
position. The RNF method relies on the fact that if we focus a light beam with
a high NA at any point in the fiber cross section, the power that is not coupled
into the guided modes is proportional to n%(r) at that point. Thus, measuring
the power not guided as a function of the position of the focused spot directly
yields the refractive index profile. The advantage of this technique over the
TNF technique lies in the fact that the effect of leaky modes can be completely
eliminated and, in addition, the method can also be used to profile single-mode
fibers.

Figure 19.11 shows a typical experimental setup. Light from an unpolarized
(or circularly polarized) He—Ne laser is focused at the entrance face of an optical
fiber immersed in a cell filled with a liquid of refractive index slightly higher
than the cladding. The rays refracted by the fiber are collected by a large-
diameter lens (like a Fresnel lens) and focused onto a detector. A stop is placed
as shown in Figure 19.10 and subtends an angle larger than the NA of the fiber
at the 1input end; this stop is to ensure that no leaky rays are allowed to reach
the detector.

To understand the basis of the RNF method, consider a bare fiber of refractive
index n immersed 1n a liquid of refractive index n; (see Figure 19.12). Consider
a ray of light incident at an angle 6 as shown in Figure 19.12. Using Snell’s
law, we may write

sinf = nsiné, {(19.12)
ncosfy = ny costh (19.13)

ny sinfy; = sinf’ (19.14)

Fig. 19.11:  Typical
experimental setup to
measure refractive index
profife by the RNF method.
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ig. 19.12: (a)Pathofa
as it propagates through
the fiber and refracts out.
1) An opaque stop blocks
ht rays up to an angle 8s,
which encompasses the
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On eliminating ¢, and #; we obtain

2

ne = fzi + sin® 6 — sin” 6’ (19.15)

Thus, for a given &, the angle 6 at which the ray emerges from the cell is related
to n. For a fiber, n varies with the radial coordinate r; thus, a given cone of rays
focused on the fiber end would emerge within a certain cone whose angular
region is determined by the refractive index at the point of focus of the incident
beam.

For a Lambertian source, the power emerging within a cone with vertex
angle ¢ is

PO’y = Asin’ ¢’ (19.16)

Hence, if a disc is placed behind the fiber (see Figure 19.12(b)) such thatit stops
all rays emerging at an angle less than &,. then the power crossing the stop is

P(O') = A(sin? 6" — sin” 6,) (19.17)

If the power collected for focusing on the liquid of refractive index n, is Py,
then 6 = 6 (see equation (19.15)) and

Py = A(sin® 6 — sin’ 6,) (19.18)
Substituting from equations (19.17) and (19.18) in equation (19.15), we obtain

PO — Py

(sin® @ — sin” &) (19.19)
Py

2 2
n(r)y=n; +

Thus, a measurement of P(4’) with r gives n°(r).

Figures 19.13(a) and 19.13(b) show typical refractive index profiles corre-
sponding to a graded index multimode fiber and a single-mode fiber.

The advantages of the RNF method over the TNF method are

(a) No leaky mode correction is required.
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Fig. 19.13: Refractive
index profiles of (a) the
same multimode fiber as in
Figure 19.8 and (b)a
single-mode fiber using the
RNF technique. [After
Subramanyam (1983).]
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(b) A coherent source such as a laser can be used.

(¢c)  Very high resolutions in refractive index (~107%) and spatial position
(~0.4 um) are possible.

(d) The method can be used to profile single-mode fibers also.

19.5 Measurement of NA

One can estimate the NA of a fiber from the measured refractive index profile

NA = (n] —n2)'"* (19.20)
where n; and i, represent the refractive index at the core center and of cladding,
respectively.

A direct measurement of NA can also be performed by overfilling the input
of a 2-m-long fiber and measuring the far field of the fiber (see Figure 19.14).
If &5 represents the angle between the axis and 5% intensity point, then the NA
1s usually assumed to be given by

NA = sints {(19.21)

Fig. 19.14:  Far-field
technique for the
measurement of NA of 4
multimode fiber.
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NA measured by equation (19.21) is generally less than that estimated from
equation (19.20) due to DMA. In addition, NA is critically dependent on the
excitation conditions and could also be length dependent because of the presence
of leaky modes and DMA.

19.6 Measurement of pulse dispersion and bandwidth

It is well known that optical fibers may possess very high bandwidth (or very
low pulse dispersion). Pulse dispersion essentially determines the information
transmission capabilities of the optical fiber. We now discuss bandwidth mea-
surements in multimode and single-mode fibers.

19.6.1 Multimode fibers

The main pulse broadening mechanism in multimode fibers is the intermodal
broadening. In addition to this, another important broadening mechanism is
material dispersion, which is approximately 90 ps/km-nm around 0.85-p:m op-
erating wavelength and less than 0.2 ps/km-nm around 1.3 pm (see Chapter 6).
Normally encountered laser diodes around 0.85 pem have spectral width Aig
of about I nm. Thus, the material dispersion over a 1-km fiber is

d’n
dr;

xol
T = —

¢

0

=~ 85ps (19.22)
where we have used the fact that at 0.85 pm, dzn/dké ~ 3% 10" m™2. The
dispersion given by equation (19.22) corresponds to a 3-dB bandwidth of about
(see equation (19.27)).

) 0.44 : \
foa = AT 2= 5GHz (19.23)
T

Thus, material dispersion becomes significant only for profiles having band-
width in excess of about 1 GHz-km. Dispersion measurements around 850 nm
with source spectral width of about 1 nm essentially give intermodal dispersion
in fibers having a bandwidth of about 1 GHz-km. Since material dispersion is
much lower around 1.3 pm, sources with much greater spectral width can be
used for measurement of intermodal dispersion.

Figure 19.15 shows a typical experimental setup used for the measurement
of pulse dispersion in multimode fibers. Pulses (of duration ~200-400 ps) are
launched into the optical fiber after passing through a mode scrambler. The mode
scrambler essentially mixes various modes to provide a well-defined launching
condition irrespective of the source radiation pattern. The pulse coming out of
the test fiber (typically [-2 km) is then detected by an APD and is measured
in a sampling oscilloscope. A delayed trigger from the laser is used to trigger
the sampling oscilloscope. The broadened output pulse duration (FWHM) 7 15
then measured. Then the fiber is cut back (as in the measurement of attenuation)
and the pulse duration (FWHM) 7; is again measured with the help of the
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sampling oscilloscope. The impulse response is then approximately calculated
as

22 2 :
TPy - {19.24)
The above approximation becomes an equality for Gaussian pulses.
Alternatively, one can first compute the Fourier transforms of the output
and input pulses. It the variations of the corresponding amplitudes (in dB)
with frequency are represented by By( ) and B;( f), respectively, then one may

estimate
Br(f) = Bo(f) — Bi(f) (19.25)

The —3-dB bandwidth is then the lowest f value for which Bz (f) = =3 dB. If
the input and output pulses are approximately Gaussian, then by simple Fourier
transform analysis one may show that (see Problem 19.3)

3-dB Optical BW x RMS impulse width >~ 187 MHz-ns (19.26)

3-dB Optiéal BW x FWHM impulse width >~ 440 MHz ns
(19.27)

The presence of a large number of modes in a multimode fiber leads to a
dependence of the measured bandwidth on input launch conditions. The mode
scrambler overfills the launch into the test fiber and. hence, may predict a
bandwidth lower than that obtained with a small spot excitation.

In addition to the above method in the time domain, one may directly measure
bandwidth in the frequency domain. In this domain, the source is sinusoidally
amplitude modulated at various frequencies and the corresponding depth of
modulation at the output (in dB) of a long (1-2 km) length of the fiber is mea-
sured. The same measurements are again taken after cutting back about 1-2 m of
the fiber and one obtains B;( /) (in dB). The frequency response is given by equa-
tion (19.25) and the 3-dB bandwidth is the lowest f for which By(f) = —3 dB.

Fig. 19.15: A typical
experimental setup for pulse
dispersion measurement in
the time domain in
multimade fibers.
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Fig. 19.16:  Experimental
setup for the measurement
of pulse dispersion in a
single-mode fiber using the
pulse delay technique.
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19.6.2 Single-mode fibers

Since dispersion is much smaller in single-mode fibers compared with mul-
timode fibers, the conventional technique of measuring 7y and v; is not em-
ployed, and other techniques have been developed for measuring the dispersion
in single-mode fibers.

Dispersion in single-mode fibers is specified in terms of the wavelength of
zero dispersion (X.) and the dispersion slope Sy at the zero dispersion wave-
length (ZDW), Since the only dispersion mechanism in single-mode fibers is
the chromatic dispersion — that is, variation of group velocity with wavelength —
one can calculate the dispersion by first measuring the variation of time delay
7(2) through a given length of the fiber as a function of X and then obtaining
dt/dx. Figure 19.16 shows a simple arrangement for obtaining 4. and S using
the pulse delay technique. Light from a multiwavelength source is coupled into
the test fiber (~1-2 km) and the output is fed to a detector connected to an
oscilloscope. A reference signal from the pulse generator is also connected to
the oscilloscope through a delay generator. The variation of delay through the
fiber is measured as a function of A for both the long and the reference lengths.
From these measurements one obtains the group delay 7() per unit length. The
dispersion coefficient is

Dy = dr (19.28)
Cda -
The multiple wavelength source could be a fiber Raman laser or a set of laser
diodes at specified wavelengths. One could even use an LED in combination
with interference filters to generate different wavelengths.
One usually fits the measured 7(2) versus A curve to an analytic function
(such as Sellemeir fit or a polynomial) of the form

) So N PEAS 19.29)

T =15+ — - 7o
ey A (

(A= AL P+ B 4+ C+ Dr+ EM (19.30)

M =A+BO.—D)+CO.— D)+ E(h— D) (19.31)
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where A, ..., E are constants and in equation (19.29) i, is the wavelength of

zero dispersion and Sy is the slope at ZDW. Thus, from the fit one may easily
obtain both A, and Sp.

Figure 19.17 shows a typical measured variation of (1) with A and the
corresponding D(1). The fiber has Ag = 1321 nm and So = 0.0834 ps/km-nm?>.
The group delay v(A) can also be obtained by measuring the variation of the
phase shift ®(4) suffered by a sinusoidally modulated source as a function of
A since (see Problem 6.7)

B(A) = 27 fr ()L (19.32)

where [ 1s the source modulation frequency and L is the length of the fiber. The
relative variation of phase with A can be measured by comparing the optical
output (detected with an APD) and the electrical signal input by using a vector
voltmeter. Again, measuring $(4) for different A essentially yields () from
which &. and Sy can be obtained.

Dispersion can also be measured by using an interferometeric technique
that requires only short lengths (~1 m) of fibers and, hence, can be used to
pretest short fiber pieces before drawing a fiber from the perform or can also be
used for measuring axial nonuniformity of dispersion characteristics of fibers.
Figure 19.18 shows a typical experimental setup in which interference is formed
between two beams, one passing through the test fiber of length L and the
other through a reference arm length Ly. The reference beam can be given
an additional variable delay via a movable mirror as shown in Figure 19.18.
A source having spectral width AX has coherence length A°/AX. Thus, as




Problems 427

Detector

Ly
1

Monochromator
AX~ 10 nm

Fig. 19.18: A typical
experimental setup for
measurement of X, and Sy
using the interferometric
technique.

[

Variable delay

A
—-— —-—

\. J

the delay between the two beams is varied, maximum contrast will appear
when

ctl = Lo+ 21 {19.33)

where 7 is the delay per unit length of the fiber and [ is shown in Figure 19.18.
For path differences much larger than A2/ A, the contrast in the interference
pattern would be very poor. If one measures / for position of maximum con-
trast for different center wavelengths, one essentially obtains 7(4). From the
measured 7(X), one can again obtain %, and Sp. It may be mentioned that for
good resolution in 7()) and good signal level, AL should be large. On the other
hand, large AX reduces the accuracy in dt/d ). Figure 19.19 shows a typical
measured variation of ZDW along a fiber and demonstrates a typical application
of the interferometric technique.

Problems

19.1 If the measured variation of P(r) is Gaussian — that is

Pir)= P()efzrj/'“z (19.34)

show that the corresponding refractive index profile is parabolic.

19.2 If, instead of using an incoherent source, a laser is used in the TNF measurement
of multimode fibers, what would happen to the near-field profile?

19.3  If the input and output pulses are Gaussian, derive the relationships of equations
(19.26) and (19.27).

Seolution: If the input and output pulses are Gaussian, then the impulse response
of the fiber 1s also Gaussian. Hence, for an impulse input, we write the output
optical power variation as

P=Pye T (19.35)

The electrical signal from the detector would be proportional to P and. hence.
would have a time variation of the form e~ /7. Now, the FWHM of the pulse
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represented by equation {19.353) can be obtained by putting

ot 1
2
implying
t=+r,vVIn2 (19.36)
Thus
FWHM = 27,+In2 (19.37)
Also

=1L (19.38)

RMS width = { 7

ST SR LA 172

J o re fdtji
oo —tjTg

[7e idt

To obtain the 3-dB optical bandwidth we first take a Fourier transform of equation
{19.35) and obtain for the frequency response

~ 0 T
P(f) :f P(tye 2 dr

— 0

o 2 2 - -
= P()/ e e gy

—

= Py ™ 17T (19.39)
Hence, the 3-dB bandwidth f3 is obtained by setting
ex I:MFTZ 22"2] _!
xp 3T = 5

or

ViIn2

Ty

fi= (19.40)

Fig. 19.19:  Typical
measured variation of . at
various points in a fiber
using the interferometric
technique.
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Using equations (19.37), (19.38), and (19.40) we obtain

. . I3ty 1 /in2
3-dB optical BW x RMS Impulse width = ~—=- =

V2 Ty 2
~ 187 MHz ns (1941

3-dB optical BW x FWHM Impulse width = f327,+/In2

2In2

T

~ 440 MHzng (19.42)

19.4 In the phase shift technique, if the maximum relative phase shift is to be less than
27 over the whole measured wavelength region, show that the maximur allowed
modulation frequency is

2

‘ 8x 100 [ )2 ,

Jmax = —'g(;‘l—_ Aj -}:— MHz (19.43)
SoL ;

where L is the length of the fiber (in km), A (in nm) and S (in ps/km/nm?) are
the ZDW and slope at ZDW, respectively, and A; is the source wavelength that
minimizes fmax-

Solution: The phase change of the propagating modulated wave is (see Prob-

lem 6.7)
PRy = L2r(A) (19.44)
where
2
s [ K (19.45)
(M =1 — A - = 4
U -

Thus, if the difference in phase change between the ZDW () and another source
wavelength ; should be less than 27 we must have

Lty —t(h)] < 2m

implying

which gives

-2
. § x 10° N 12 MU
. e e B — ya
JImax S()L N ;

where Q@ = 21 f.
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20.1 Introduction

In the previous Chapter we discussed various techniques for the measurement of
refractive index profile, spectral attenuation, and dispersion in both multimode
and single-mode fibers. Some characteristics are relevant only to single-mode
fibers; these are the cutoff wavelength, mode field diameter, birefringence, etc.
In this chapter we discuss the principles and techniques for the measurement
of these parameters in single-mode fibers. In Section 20.2 we discuss various
cutoff wavelength measurements, in Section 20.4 mode field diameter measure-
ments are discussed, and finally in Section 20.6 we discuss various methods for
measurement of birefringence.

20.2  Cutoff wavelength

Cutoff wavelength of the LPy; mode forms one of the most important char-
acteristics of a single-mode fiber as it essentially determines the wavelength
above which the fiber behaves as a single-mode fiber. We have seen in Chapter
8 that for a step index fiber, the cutoff wavelength 4, of the LP|; mode is given
by

2ma

2 2 /
n? 20.1
74048V T (20.)

(_:

where a is the fiber core radius, and #, and n, are the core and cladding refra-
ctive indices. For other refractive index profiles, one can estimate theoretically
the cutoft wavelength. However, a direct measurement of 2. essentially leads
to a value also known as the effective cutoff wavelength, and this value is, in
general, different from the theoretical value 2. This is essentially due to the fact
that, as one approaches the cutoff wavelength from the lower wavelength side,
the LP;| mode gets less and less confined to the core, and small deviations from
straightness of the fiber in the experimental setup result in a large attenuation
of the LP;; mode. The effective cutoff wavelength is usually defined as that
wavelength at which the ratio of the total power to the fundamental mode
power 1s 0.1 dB. The effective cutoff wavelength is slightly smaller than the
theoretical value of the cutoff wavelength.
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It is very essential in a single-mode fiber link that, at the operating wave-
length, the residual power in the LP); mode be as low as possible so that no
modal noise is introduced in the link. Thus, in this respect it is advantageous to
have the cutoff wavelength much lower than the operating wavelength. At the
same time, since the fundamental LPy; mode should also be tightly confined to
the core (to reduce bending loss), one would like to operate as close as possible
to the cutoff wavelength. Thus, knowledge of the cutoff wavelength is very
important from the utilization point of view.

There are many techniques for the measurement of cutoff wavelength. Here
we discuss the bend reference technique and multimode reference technique in
detail.

20.2.1 Bend reference technique

Figure 20.1 shows the experimental setup used in the bend reference technique.
The spectral variation of power output Py(A) from a 2-m-long test fiber having
a single circular loop of 140-mm radius is first measured. Remaining portions
of the fiber should be substantially free of any external stresses and should not
contain any bends of 140-mm radius or smaller. Then, without changing the
input excitation condition, an additional loop of radius 30 mm is introduced,
and again the spectral variation of output power P,(4) is measured. Then, a plot
of the following quantity

(20.2)

. P(A)
Ry(n) = 10 log [ }

Py(A)

is made as a function of A. Figure 20.2 shows a typical plot for a fiber from
York Technology (United Kingdom). The cutoff wavelength is defined to be that
wavelength where the long-wavelength edge of the bend-induced loss is greater
than the long-wavelength baseline by 0.1 dB. Thus, from the measured variation
of R,(*) we can obtain 2., by determining the point of intersection of a straight
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line parallel to the A-axis and displaced by 0.1 dB from the long-wavelength ~ Fig. 20.2:  Typical

baseline. variation of Rp(2) given by
The above method of defining the effective cutoff wavelength essentially ;ﬁ::ﬁ:}f%fi}:&;(‘:ﬁib”

determines the wavelength at which the attenuation of the LP;, mode caused (Uniled‘[{ingdum), ﬁe

by the 140-mm bend is 2220 dB. To show this, we first recall that the LP,; mode peak on the right

is doubly degenerate (due to the two independent polarization directions) and  corresponds to the cutoff of

the LPy, mode has four-fold degeneracy (due to sin ¢, cos ¢ dependence, and ~ LPi1 mode and that on the

two orthogonal polarization states) (see Chapter 8). We assume that the input iif d‘:”[';iing:[:]?i LBy

incoherent source excites all modes equally, say each with power s(1). Thus, (1986).] ‘

the power in the fiber before the 140-mm loop is 65(4). Close to the cutoff of the

LP;; mode, the LPy; mode is well confined and, thus, the 140-mm bend may

be assumed to introduce negligible loss of the LPy; mode but would introduce

some loss (1) for the LP|; mode. Thus, we may write for the power after the

[40-mm loop as (see Figure 20.3)
Pi(h) = 25(0) + e(A)s(h) (20.3)

where e(A) s(4) is the power left over in the LP|; mode. When we introduce the
30-mm bend, even the remaining power in the LP; is lost and we essentially
measure the power in the LPy; mode, which is (see Figure 20.3)

Pr(A) = 2s(}) (20.4)
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Fig. 20.3:  Without the
additional 30-mm bend,
Po(Ay = 25(A) + €{A} 5(A),
where s(A) is the power into
each of the modes of the
fiber and ¢(A) is the loss in
LP;, mode due to the
140-mm bend. After the
30-mm bend, one has
Pp(d) = 25(1).

P, =65s(1)

P, =6s(})

Thus
2 Y
Ry(3) = l()l(‘)g{i;&—z} (20.5)
The wavelength A = A, at which R,(A) = 0.1 dB corresponds to
e(h) =47 x 1077 (20.6)

Thus, the initial power 4s(3) (in the LLP;; modes) before the 140-mm bend
reduces to 4.7 x 1072 s(3) after the 140-mm bend. This corresponds to a bend-
induced attenuation of

()
4

10 iog{ J == 20dB (20.7)

Thus, at the effective cutoff wavelength, the 140-mum bend induces an attenua-
tion of approximately 20 dB in the LP;; mode.

As the wavelength reduces below A, the attenuation induced by the 140-
mm bend decreases and, thus, €(A) increases; consequently, R,(}) increases as
A decreases (see Figure 20.2). The maximum value of R, (1) would correspond
to a point where the 140-mm bend does not introduce any loss for the LPy,
mode while the 30-mm bend removes the LP,; mode completely. Thus, at this
point

Py(h) = 6s(2)

P, = 25(A)
and thus
Rp(A)y = 10 log(3) = 4.8dB (20.8)

In Figure 20.2 we see that the peak value of R,(A) is almost 4.5 dB.

As the wavelength decreases further, even the LP; mode gets tightly con-
fined and, thus, both the 140-mm bend and the 30-mn bend do not introduce
any attenuation of the LP; mode; thus, R,(4) — 0 dB. R,(L) would exhibit
other peaks corresponding to the cutoff of other modes (see Problem 20.1).
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20.2.2 Multimode reference technique

In the multimode reference technique one first measures P;(A) as described
earlier, and then the single-mode fiber is replaced by a multimode fiber and the
spectral dependence of power P,,(A) 1s then measured. One then plots

Py(h
Rpu(h) = l()log[ + )] (20.9)

o Eo(2)

as a function of A. Figure 20.4 shows the measured variation of R, (A) with A
for the same single-mode fiber as in Figure 20.2. A straight line is fitted to the
long-wavelength region of R,,(4) and shifted up by 0.1 dB (see Figure 20.4).
The X value at the point of intersection of this line with the R,,(A) curve gives
the cutotf wavelength.

Table 20.1 gives a comparison of the effective cutoff wavelength measured
by the two techniques of a single-mode fiber from York Technology (United
Kingdom) and International Telephone and Telegraph (United States). For
single-mode fibers operating at 1300 nm, the recommended cutoff wavelength
1s 1280 nm or lower.

20.3 Bending loss measurement

One can use the above experimental setup to measure bend-induced loss. To do
this, one first measures the spectral variation of output power with A for a fiber

Fig. 20.4:  Variation of
loss R, (A) given by
gquation {20.9) for the same
fiber as in Figure 20.2 using
the multimode reference
technique. {After Banerjee
(1986).]




20.4 Mode field diameter (MFD) 435

Table 20.1. Comparison of cutoff wavelengths
obtained using the bend reference technique
and the multimode reference technigue

Ace{nm)

York SM-600 ITT T1601

Technique fiber fiber
Bend reference 576+ 4 596 & 4
Multimode reference 578 £ 4 5398 + 4

with a bend radius greater than about 140 mm. Then, about 40-100 turns are
given on a 75-mm-diameter mandrel to simulate splice housings and one again
measures P,(1). The bend-induced excess attenuation is

(20.10)

Typical specifications for telecommunication-grade fibers are A < 0.1 dB at
1310 nm and <1 dB at 1550 nm for 100 turns on a mandrel of diameter 75 mm.
The bend-induced attenuation depends critically on the mode field diameter
(see Chapter 8).

20.4 Mode field diameter (MFD)

In single-mode fibers, it is the MFD rather than the core diameter that is an
important parameter. The MFD essentially specifies the transverse extent of
the fundamental modal field. For typical single-mode fibers, the modal field
extends far into the cladding and, thus, MFD can be very different from core
diameter. MFD can be used to estimate joint losses between two single-mode
fibers, coupling efficiency, cutoff wavelength, backscattering characteristics,
microbending and macrobending losses, and even waveguide dispersion.

There are various definitions for MFD. In the following we define three
commonly used definitions.

(1) Near-field rms MFD: If ¢2(r) is the transverse modal intensity pro-
file, then the near-field rms MFD is defined by

50 N 9 /2

2 [ P2 r dr

dy =2 ‘/”O: ) rd (20.11)
Jo wArydr

The near-field spot size is defined as

W, = = dy (20.12)

I
2

Joint losses for small angular tilts are proportional to di, and mi-
crobending loss is proportional to d, [see, e.g., Jeunhomme (1983)].



436 Measurement methods in optical fibers: I

(2) Petermann-2 spot size: The Petermann-2 spot size is defined by the
following equation

2 [y rdr
. Jo
wp = | (20.13)
f() (”"“”“) rdi

dr

Losses across a joint for small transverse offset are proportional to
Af w%) (see Problem 8.9) and the waveguide dispersion is proportional
to d /d’(}/w%) (see Problem 8.12). The far-field rms MFD [see equa-
tion (8.105)] is given by

Cl[:' = 2wp (2014)

The above relation has been derived in Section 8.5.4.

20.5 Gaussian mode field diameter

In Chapter 8 we discussed the Gaussian approximation for the fundamental
mode of single-mode fibers. We recall that for conventional fibers operating at
1300 nm, the fundamental mode can be accurately represented by a Gaussian
function of the form

bo(r) = Ae ™"/ (20.15)

where wS is usually known as the spot size. Using this Gaussian modal field,
one can calculate the various splice losses, launching efficiency, and so forth
with considerable ease (see Chapter 8). It is obvious that one may use a variety
of methods for the determination of the Gaussian spot size, wy, for a modal field
having a near Gaussian field distribution. For example, one may assume the
MFD to be the diameter of the mode at 1/¢? intensity points, which is given by

Cf(,' = Qw() (2016)

However, this usually leads to a poor approximation. A widely used criterion
is to choose the value of wy so that the Gaussian beam leads to the maximum
launching efficiency of the actual fundamental mode. For example, for a step
index fiber lyingin the range 0.8 < V < 2.5, the following empirical expression
gives a value of wq that has an accuracy better than 1% [Marcuse (1977),
Chapter 8]

wo 1.619 2879
e 22 {) 65 J—
a 0-65+ V32 * Vo

(20.17)

where a is the core radius. Similar empirical relations for a graded index fiber
are given in Marcuse (1978).

For CSF profiles such as single clad step index or graded index, the three
spot sizes — namely, near-field, far-field rms, and Gaussian spot sizes are nearly

approximation works well for such fibers. On the other hand, for specialized
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Fig. 20.5: Wavelength
variation of the three spot
sizes — namely, the
near-field rms spot size w,,
the far-field rms spot size
wr, and the Gaussian spot
size wq for a step index
fiber and a triangular profile
fiber corresponding to
A=075%andg = 2.3
. Note that for a step
index fiber the three spot
sizes are very nearly equal,
whereas for the triangular
core fiber they are
substantially different. This
is due to the almost
Gaussian nature of the field
for a step index fiber. [After
Ghatak and Sharma
(1986).]
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profiles such as the triangular core or multiple clad, the two spot sizes, w, and
wp, may differ substantially and it is not appropriate to approximate them by
wo [Das, Goyal, and Srivastava (1987)]. This point is illustrated in Figure 20.5,
where we have plotted the variation of w,, wp, and wy as a function of 4, for
a step index fiber and for a triangular profile fiber.

The two spot sizes, wp and w,, give a good estimate of some of the important
characteristics of single-mode fibers and, hence, play a very important role in
the design and characterization of single-mode fibers.

There are various techniques for the measurement of MFD. These include

(a) Near-held technique
(b) Far-field technique
{¢) Transverse offset technique

20.5.1 Near-field technique

Figure 20.6 shows the experimental setup in which a laser beam is launched into
the test fiber and the near field of the fiber is magnified by using a microscope
objective on a scanning photodetector or a vidicon. Cladding mode strippers
are used at either ends. The measured intensity pattern is

I(r) oc 4 (r) (20.18)
For near Gaussian fields one does a curve fitting to a Gaussian
Glr) = Gge ¥/"i (20.19)
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Test Fiber
Laser CMS CMS
MO MO

Scanning
Photodetector

MO: Microscope Objective

CMS: Cladding Mode Stripper

that is, maximize the overlap Fig. 20.6: A typical

experimental setup for the
measurement of the
near-field intensity pattern
of a single-mode fiber.

r_ L VTG0 dr] (20.20)
jo I(rydr fo Glryrdr

If wy is the value that maximizes [, then dy = 2wy.

For non-Gaussian modal fields one can directly calculate dy or dp by using
equation (20.11) or equation (20.13).

Some of the problems associated with measuring dy using this method
are
(a) Difficulty in determining exact position of image plane
(b)  The quality of the fiber end face, which must be good

20.5.2 Far-field technigque

Figure 20.7 shows a typical experimental arrangement for measurement of dr
by using the far-field technique. Here the far-field intensity profile is measured
with a photodetector. For Gaussian near field, the far-field intensity pattern may
be written as (see Problem 20.2)

()7 = [W(0)[2 20 0/ o (20.21)
where
. )« ‘
51N 9/1 = o (2022)
Wi

For small ¢ and @, equation (20.21) may be written as
[W(0)]2 = [W(0)| e 2147 (20.23)

Thus, the measured far field can be fitted to equation (20.23) to obtain the
optimum value of 6, and using equation (20.22) we have

2A
dfr = 2‘!1)() = - (‘2&24)
' T sinby
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Fig. 20.7:  Typical
experimental setup for
measurement of the
far-field intensity pattern of
a single-mode fiber.
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Test Fiber

From the measured far-field data, one can also obtain dr by directly using
equation (8.105).

20.5.3 Transverse offset technique

Figure 20.8 shows the transverse offset technique for the measurement of the
MFD. In this, one measures the variation of power through a transverse offset
between two pieces of the test fiber. Now, for a transverse misalignment of d
the loss is given by (see equation (8.114})

d \?
adB & 4.343(—) (20.25)
we
ford <€ wp. Thus, by fitting a parabola to « (as a function of d) one can obtain
Wp.
[n these measurements ene must note the following:

(a) The separation between the fiber ends should be less than about 5 pm.

(b)  Overfilled launch conditions should be used to reduce sensitivity to
input fiber position.

(¢) Good cladding mode strippers must be used.

(d) For measurements close to the cutoff of LP;; mode, the LP;; mode
should be filtered off by using a bend on either side of the joint.

This method can be used with ease for the measurement of variation of
MFD with wavelength by using a white light source and a monochroma-
tor/interference filter at the launch end. Figure 20.9 shows a typical variation
of measured spot size with wavelength.

We may mention here that for power law profiles — such as step index,
parabolic index, and triangular core index — f has been found to be accurately
described by the following empirical relation [Tewari, Thyagarajan, and Ghatak
(1986)].

42 T
T [n3 4 se] (20.26)

B = —
Ao

where «, §[= (n] — n3)], and h are fitting parameters. Using equations (20.26)
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and (8.13 1), we obtain
N g‘”‘{g ‘
Wp = (20.27)

iy B
nza/zk{; )

Thus, if one measures the wavelength dependence of wp and fits the experi-
mental data using equation (20.27}, one can obtain the parameters «, §, and
h, which on substitution in equation (20.26) gives the Ay variation of £ in

Fig. 20.8:  Experimental
setup for measurement of
MFD by using the
transverse offset technique.

Fig. 20.9: A typical
measured variation of mode
field diameter with
wavelength using the
transverse offset technique.
For this fiber, the cutoff
wavelength corresponding
to the LP; mode is around
705 nm. [After Mahadevan
(1985).]
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Table 20.2. Values of various parameters appearing in equation (20.26)

g =00 g =2 g =1

Fiber #l(a = 5.0) #2(a = 1.5) #3(a =5.0) #4(a =1.5) #5(q = 5.0) #6(a = 1.5)

Using
. (20.27) 0.01428 0.03716 (.01828 (.05559 0.02204 0.06069
0 Exact  0.01313 0.04447 0.01973 0.07634 0.02723 0.10981
o Using

(20.27) 0.30421 0.72217 (0.45288 0.92709 0.55582 0.90097
h Using

(20.27) 1.66157 2.08060 1.58386 1.95202 1.43889 1.97728
B (in ,u,m_1 yat  Using

(20.26) 604328 6.04193 6.04309 6.04230 6.04368 6.04221
Ay = 1.5 um Exact 604197 6.04197 6.04197 6.04197 6.04197 6.04197

Note: The quantities a and Ag are measured in pum and £ is measured in um™!; the value of @ is determined
accordingly. [Adapted from Tewari et al. (1986).]

the wavelength range of interest. The accuracy of this procedure is illustrated
in Table 20.2, where exact values of 8 have been compared with the corre-
sponding value obtained by fitting equation (20.27) in the exact computed Aq
dependence of w%, The two values of B agree very well. An important appli-
cation of the Ao dependence of 8 obtained above is in the calculation of the
crossover wavelength X, in a wavelength filter consisting of a pair of noniden-
tical single-mode fibers [Marcuse (1985)]. The crossover wavelength A, is the
wavelength at which the propagation constants of the two fibers are identical.
One can easily plot 8 as a function of A for both fibers and the point of in-
tersection will correspond to A,. For example, using the fitted values of the
parameters for fiber 1 and fiber 4 (see Table 20.2), the calculated value of A,
comes out to be 1.46 um, which is within 3% of the exact numerical value of
1.50 pom.

20.6 Birefringence measurements

A perfectly circular core single-mode fiber actually supports two modes that
have almost orthogonal linear polarization states and have the same propaga-
tion constant. In practical single-mode fibers the core is nominally circular and
with the presence of stress, twist, bend, and so forth, such fibers are slightly
birefringent. This small difference in propagation constant leads to a coupling
of power between the orthogonal polarization states even under the smallest
external perturbation. Thus, for such fibers, input linearly polarized light be-
comes elliptically polarized over short distances and, in addition, the output
state of polarization changes with changes in external perturbations. The ran-
dom change in the state of polarization creates problems when the single-mode
fiber 1s to be used in coherent communications, in fiber optic phase sensors,
or in applications in which the fiber has to be coupled to polarization-sensitive
devices such as integrated optic devices.
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To overcome these problems, special fibers such as elliptic core fibers and
stress-induced birefringent fibers have been developed. Not only do these fibers
have applications in areas mentioned earlier, but very interesting optics exper-
iments can be done with them; these experiments also enable us to determine
the birefringence in the fiber.

For an elliptic core fiber (see Figure 20.10) the “modes™ of the fiber are
(approximately) x- and yv-polarized — that is, if an x-polarized beam is incident
it will propagate without any change in the SOP with a certain phase velocity
w/p,. Similarly, a y-polarized beam will propagate as a y-polarized beam with
velocity w/f,. The birefringence in a fiber is a measure of the difference in the
effective indices of the two orthogonally polarized modes and is defined by

}\“‘
B=én, =38 (ﬁ) =sp (20.28)
k() 2

Let us consider a circularly polarized beam to be incident on the input face of the
fiber at z = O; then we must resolve the incident beam into x- and y-polarized
beams propagating with slightly different phase velocities. Thus

E(r, 2) = ¥r(x, y)[Kcos{wr — B z) + ¥sin(wr — B,2)] (20.29)
where ¥ (x, v) is the transverse field distribution of the fundamental mode. (It
may be readily seen that it 8, = B,, as is indeed true for circular core fibers,

the beam will remain circularly polarized for all values of z.) Now, at z = 0

E. = y(x, v)coswt _
C (20.30)
E, = (x, y)sinwt

which represents a right circularly polarized wave (see Figure 20.11). For

i

_ 20.31
208y — Br) ( )

that is, for 8, z) = B,z + /2
Ey = ¥(x,y) cos(wt — ¢y)
Ey = y(x,y) sin(wt — ¢y — /2) = —¥(x, y) cos(wt — ¢y)

(20.32)

Fig. 20.10:  Cross-section
of an elliptic core fiber that
is birefringent — the modes
of the fiber are almost
x-polarized and y-polarized
and their propagation
constants are different.
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Fig. 20,11 A circularly
polarized input periodically
changes its state of
polarization as it propagates
along a birefringent fiber.
The beat length Lp
corresponds to the
separation between two
adjacent points along the
fiber where the state of
polarization repeats itself.

<5

/ ]

B [°
N

£
/B//

\>\\/
R

Lo

/

\

where ¢ = f,z;. The above equations represent a linearly polarized wave (see
Figure 20.11); we assume the direction of the E—vector to be along the y' axis.

Similarly, at

T

By =B

P — J—

4

|

22

E, = Y(x,y) cos(wt — ¢)

E, =Y(x,y)sin(wf — ¢ — ) = —(x, y) sin{wr — ¢)
where

$r = P22
and the wave will be left circularly polarized (see Figure 20.11). At

B 2“3\ - ﬁ;) o

=23

21

we will have

E, = y(x,y) cos(wt — ¢a)

3
E, = y(x,y) sin(wr — ¢y — ._;r_) = ¥(x, v) cos(w? — ¢3)

where

= .33

(20.33)

(20.34)

(20.35)

Thus, the wave would again be linearly polarized, but now the direction of the
oscillating electric field will be at right angles to the field at z = z;. In a similar
manner, we can easily continue to determine the SOP of the propagating beam.
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Thus, at z = 5z;,9zy, 13z, ... the SOP will be the same as at z =— z, and at
z=Tzy, Hzi, 15z, ... the SOP will be the same as at z = 3z;. Similarly, at
7z =4z,.8z2;, 1221, ... the beam will be RCP and at z = 2z, 6z, 10z4, ... the
beam will be left circularly polarized (LCP).

We have seen above that a given SOP repeats itself after a distance of
4z, = 2x/5p; this length is referred to as the beat length of the fiber.

2

= — 20.36
55 (20.36)

Ly

The beat length is a measure of the birefringence of the fiber; the smaller the
beat length the larger 1s the corresponding birefringence.

The birefringence property of the fiber can be measured either by measuring
B directly or by measuring the beat length L,. We now discuss some technigues
for measurement of L, and also for direct measurement of 5.

20.6.1 Rayleigh scattering technique

Rayleigh scattering is a fundamental mechanism by which light is scattered
out of the fiber. It is well known that for a linearly polarized light undergoing
scattering, there is no scattered wave along the axis of the dipole ~ that is,
along the direction of polarization — and the scattering is maximum in a plane
perpendicular to the direction of polarization.

To use the above principle in the measurement of beat length, one uses an
experimental setup as shown in Figure 20.12. Light from a linearly polarized
laser (or an unpolarized laser with a polarizer in front) is first passed through

Fig. 20.12: (1)
Experimental arrangement
for measurement of beat
length of a high
birefringence fiber using the
Rayleigh scattering
techmique. (b) Photograph
showing the transverse beat
pattern observed on the
fiber. [Adapted from a
photograph by Andrew
Corporation, Orland Patk,
IL., USA; the authors came
across this photograph in
Jeunhomme (1983).]
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Table 20.3. Comparison of beat
lengths of an elliptic core fiber from
Andrew Corporation { United States)
using the Rayleigh scatiering
technique and the prism coupling
technigue. [After Thyagarajan,
Shenoy and Ramadas (1986)]

Technique Beat length (mm)
Prism coupling 1.50 = 0.01
Rayleigh scattering  1.52 £ 0.08

a A/4 plate to convert it into a circularly polarized beam and is subsequently
focused on the entrance face of the test fiber. Cladding modes are removed with
a cladding mode stripper, and the fiber is kept almost straight with the other end
dipped into an index matching fluid to avoid any reflections from the fiber end.
Now, as discussed earlier, as the beam propagates through the fiber, its state
of polarization oscillates between a circular and a linear polarization state (see
Figure 20.11). If one observes the fiber transversely along a direction making
an angle of 45” with the fiber eigen axis, then, as discussed earlier, whenever
the state of polarization is linear and directed along the direction of observation.
the intensity of the scattered light will be very small. Half-a—beat length later,
the state of polarization again will be linear with its direction at right angles
to the direction of observation. At this point, one would receive a maximum
of scattered light. Thus, observing the fiber, one would see alternate bri ght and
dark regions (see Figure 20.12) and the distance between two adjacent bright or
dark bands would just be the beat length. Table 20.3 presents results obtained
by using this technique on an elliptic core fiber measured with a He—Ne laser
at 0.6328 um.
As a numerical example, we consider an elliptic core fiber for which

20 =214 um, 2b =10.85um
) = 1535, Hz = 1.47

For such a fiber operating at 1g = 0.6328 pum (kg ~9.929 x 10 cm™! )

éﬁ > [.506845 and é =~ 1.507716
X0 <0
The quantity
2 2
Lpy=—=——— ~0727 mm
Arﬁ ﬁ)‘ - ﬁx

is known as the beat length. Obviously, if we measure L, we can calculate AB.
The Rayleigh scattering technique has also been used to measure twist-
induced birefringence in single-mode fibers |Graindorge et al. (1982)).
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Although the Rayleigh scattering technique is a direct and accurate method
to measure [, and hence A B, it has some limitations:

(a) The method is best suited to highly birefringent fibers with a beat
length of only a few millimeters.

(b)  Since Rayleigh scattering decreases as A%, the method is convenient
to use only in the visible region.

20.6.2 Magneto optic modulation

The magneto optic modulation technique is based on the Faraday effect, in
which an application of a longitudinal magnetic field on a material induces
circular birefringence in the medium. Consider again a circularly polarized
input beam propagating through a birefringent fiber and periodically changing
its state of polarization. If a small electromagnet providing a magnetic field
along the length of the fiber is placed around the fiber, then the applied magnetic
field will induce a local circular birefringence at the point of application of the
magnetic field. The effect of this induced circular birefringence depends on the
state of polarization of the light beam at that point. Thus, if the polarization is
circular, there is no etfect and maximum effect will be felt when the polarization
1 linear. Hence, if the electromagnet is scanned along the length of the fiber,
and the modulation in the state of polarization at the output is detected, then
one will observe a periodic variation in the depth of modulation. The distance
between two consecutive points of maximum or minimum modulation will be
half the beat length.

The experimental arrangement is shown in Figure 20.13. Light from a laser
is first passed through a polarizer, A /4 plate combination to achieve a circular
polarization and is coupled into the optical fiber. A microscope objective col-
limates the light coming out of the fiber, which is then passed through a A /4
plate followed by a Soleil Babinet compensator (SBC) and a linear analyzer.
The A /4 plate is adjusted so that in the absence of any magnetic field, the light
coming out of the fiber 1s made linear. The SBC 1s then adjusted so that its
slow axis is aligned with the linear state of polarization emerging from the 1 /4
plate, and then the linear analyzer is aligned with its pass axis at 457 to the
axes of the the SBC. Such an arrangement results in an analyzer that is most
sensitive to the changes in the state of polarization. The phase retardation of

Lock-in

Fig. 20.13:  Experimental
setup for measurement of
beat length of birefringent
fibers using the magneto
optic modulation techigue.
The solenoid is moved
along the fiber length and
the modulated signal is
detected by a photodetector.
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20.6 Birefringence measurements
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Fig. 20.14:  Output signal
as a function of the position
of the solenoid along the
fiber. The solid curve
corresponds to an input
linear SOP and the dashed
line corresponds to an input
circular SOP. The beat
length of the fiber is 41.5
em. [After Bhat (1984).)

Distance d {cm)

the SBC is adjusted for every position of the solenoid to maximize the modula-
tion signal. An alternating current across the electromagnet leads to an output
signal varying periodically with time, which can be detected with a lock-in
amplifier.

Figure 20.14 shows a typical variation of the amplitude of modulation signal
as a function of the position of the solenoid for linearly and circularly polarized
input. One does indeed observe a sinusoidal modulation and also a phase shift
of half a period between linear and circular inputs (why?). For the fiber used,
the beat length (which is twice the period) is 41.5 cm.

20.6.3 Prism-coupling technigue

[n the methods based on Rayleigh scattering and magneto optic modulation one
estimates the modal birefringence by measuring the beat length. We now dis-
cuss another technique in which one directly measures the birefringence rather
than the beat length. This method is the same as the conventional prism—film
coupling technique used in integrated optics to couple into and out of optical
waveguides. In this technique a prism whose refractive index is greater than
the film is placed close to the waveguiding film. Since the waveguide becomes
leaky in the presence of the prism, the light propagating in the waveguide
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couples out of the prism. Owing to a phase-matching condition, the direc-
tion at which the out-coupled light emerges from the prism is characteristic
of the propagation constant of the mode of the waveguide. Thus, by measur-
ing the out-coupling angle, one can obtain the propagation constant of the
mode.

For this method to work, the prism must be placed close to the waveguiding
region so that the evanescent wave of the mode can interact with the prism. In a
normal cladded fiber, the modal field is not accessible from outside because of
the thick cladding. However, if most of the cladding is removed by polishing the
fiber transversely, it is then possible to couple out light by the prism-coupling
technique. Because the two fundamental modes have different propagation con-
stants in a birefringent fiber, they will emerge at different angles and one can
then obtain the modal birefringence by measuring the propagation constant of
each individual polarization.

Figure 20.15 shows a transverse section of the experimental arrangement in
which a high-index prism is placed on top of a side-polished single-mode fiber.
The phase matching condition is

B =kon,cosy (20.37)
where n, is the refractive index of the prism, 8 is the propagation constant

of the mode, and v is shown in Figure 20.15. If A represents the angle of the
prism, then the effective index can be calculated through the relation

p=b o s_in[A +sin”! (Smgﬂ (20.38)

K np

Thus, by measuring 6, and knowing A and n,,, one can obtain §.

Figure 20.16 shows the output from an elliptic core fiber polished with its
major axis perpendicular to the polished surface. The two lines are orthogonally
polarized and are separated by an angle ~4'. Table 20.3 shows a comparison of
the results obtained from the prism-coupling method and the Rayleigh scattering
method.

The above method is suitable only for high-birefringence fibers (with a beat
length < a few millimeters). Since polished fibers are used in the fabrication
of fiber directional couplers, the above technique can indeed be used for a
local measurement of birefringence of the polished fiber. This is important

Fig. 20.15. A high-index
prism is placed in close
contact with the laterally
polished fiber half block
{see Section 17.3.1), and
light coupled into the
optical fiber couples out
through the prism at specific
angles corresponding to the
phase-matching condition.
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(a)

Fig. 20.16:  Photograph
showing the output coupted
m lines through a prism
from an elliptic core fiber
from Andrew Corporation
(United States) at a distance
of (a) ~15 ¢cm and (b) ~2 m
from the polished half
block. The two lines are
separated by an angle of
~4" of arc, | After
Thyagarajan, Shenoy. and
Ramadas (1986).]

because the polishing operation and the removal of cladding do change the
birefringence.

Problems

20.1  For a step index fiber, if the cutoff wavelength of LP; mode is 576 nm, estimate
what should be the approximate cutoff wavelength of the next higher order LP»
mode. Compare with the corresponding value obtained from Figure 20.2.

Solution: The cutoff V values of LPj; and LPy modes are 2.405 and 3.832,
respectively. If we neglect variation of NA with ), then the ratio of cutoff wave-
lengths of LPg> and LP|; modes should be

y) Vel 2.405
At Ve 3.832

Ay
il ~ 0.63

Thus, if A7 18 376 nm, A.02 should be approximately 362 nm. From Figure 20.2
we get the cutoff wavelength of the LPyy mode to be 376 nm, which is not very
far from the predicted value.

20.2 Show that for (r) given by equation (20.15) dy = dp = 2wy.
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Solutien: for v (r) given by equation (20.13),
-Zﬁ;% 3 =2 Wi gy 12
dy =2 P
g ¢ 7 MWor dr
- 1/2
wg/S / .
N wy /4
To calculate df we first calculate the far field corresponding to v¥/(r) given by
equation (20.15). A Gaussian field distribution remains Gaussian as it propagates,
and, for a near-field pattern given by equation (20.15), the far field is given by
(see Chapter 2)
(W () = [W(0)|? e 2oin*6/sin” 8y (20.40)
where
. A
sinflp = — (2041
‘ T Wy
writing
2T
g = o sin @ (20.42)
we get
W(g)? = W) e 2 (20.43)
Substituting in equation {20.13) for W2(g) from equation (20.43) and integrating,
we obtain
dr = 2wy {20.44)
20.3  Using the expression for the modal field for a step index fiber, show that [Neumann
(1988), pages 225, 226]
= 22 [mj"(U) NI (20.45)
dy = —= —_— At s A5
NElunw vt w2
1 Jy(U
dr =232 (20.46)
WJo(U)
20.4  For a single-mode fiber operating at 1300 nm, the MFD is approximately 10 pm.

For far-field measurements, at what distance from the fiber tip should the detector
be placed?

Solution: For far field, we must have

avZ

The detector is usually placed at a distance greater than 20 mm from the fiber tip.
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If the expected MFD is ¢, what pinhole diameter in front of the detector would
you use in the far-field measurement setup?

Solution: For a goad resolution one has to use as small a pinhole size as possible,
but that then reduces the power detected by the detector and, hence, a compromise
has to be made. Thus, if one arbitrarily chooses ten resofvable points in the far
field, if A is the pinhole diameter and z is the distance between pinhole and the
fiber tip, then we may write

o Y
— o0 z
~T0a " "t T04

IS

Hence, if d = 10 um, z = 50 mm, A = 1.3 um, then

h £0.65mm

In Figure 20.10 explain why the measured MED first reduces and then starts to
increase at some wavelength when the wavelength is continuously decreased.
(a) In the Rayleigh scattering method, if one observes along an eigen polarization
direction, would one see any beats? Explain. (b) If the incident beam is linearly
polarized along an eigen polarization direction, can one see beats along any direc-
tion of observation? Explain. (c) What will happen if, instead of an input circular
polarization, one chooses an elliptic polarization state?

Can the magneto optic method discussed in Section 20.5.2 be used o measure
circular birefringence?

Consider a polished conventional single-mode fiber with a prism placed on top.
(a) What will happen to the output coupled light as the wavelength is reduced?
(b) Can this be used to measure the cutoff wavelength of the fiber?



21

Periodic interactions in waveguides

21.1  Introduction 452
21.2  Coupled-mode equations 454
21.3  Application to a wavelength filter 461
214  Coupling between orthogonal polarization in a birefringent fiber 464
21.5 In-line fiber frequency shifters 465
21.6  Grating input-output couplers 467
21.7 Contradirectional coupling 473

Problems 478

21.1 Infroduction

Periodic waveguides in which either the thickness, refractive index, or any other
waveguide characteristic varies periodically along the propagation direction
are used in many fiber optic (see Chapter 17) and integrated optic devices.
These include mode converters, polarization transformers, wavelength filters,
input—output couplers, frequency shifters, second harmonic generators, etc.
Periodic waveguides also form basic components in distributed feedback and
distributed Bragg reflector lasers (see Section 11.5.2). Figure 21.1 shows two
common types of periodic waveguides with a pertodic modulation of either
the refractive index or the thickness of the waveguide. The periodic refractive
index modulation can be inbuilt in the waveguide (such as produced by UV
lightirradiation in an optical fiber; see Chapter 17) or can be externally induced
by using electrooptic or acoustooptic effects.

One of the chief characteristics of periodic coupling is that the periodic
perturbation couples power mainly among two modes that satisfy a quasi-phase-
matching condition. According to this, if 81 and 8, are the propagation constants
of two modes, then a periodic perturbation with period A will induce coupling
between these modes if

Bi — By = £K (21.1)
where
2
K = - (21.2)

Because of the quasi-phase-matching condition, periodic coupling is very se-
lective and this leads to its various applications in guided-wave optics. Figures
21.2(a) and 21.2(b) show the transverse intensity distributions for the first two
TE modes of an unperturbed planar waveguide as they propagate through the
waveguide. For example, the propagation of the fundamental and the first higher
order TE mode is given by

Wolx, 2) = olx) e o (21.3)

W (x, 2) = P (x) @A (21.4)
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W

Film

Substrate

where By and B, are the propagation constants of the TEq and TE, modes
and o(x) and ¥ (x) are their corresponding transverse mode profiles. Each
of the above modes propagates “unchanged” except for a phase change given
by the exponential factor. We could also have a propagation like (see Figure
21.2¢)

W(x, 2) = [Afolx) ™% 4 By (x) e 75 e 215

which represents a linear combination of the two modes and A and B are con-
stants; the corresponding intensity distribution for A = B is plotted in Figure
21.2(¢). Note that in this case there is no “mode coupling” ~ that is, there is
no transfer of power between the two modes, and the power associated with
each mode remains the same as the field propagates. However, at different val-
ues of z. the two modes interfere with different phases, resulting in a varying
transverse intensity pattern.

Figure 21.2(d) shows the same planar waveguide with a section in which
the thickness varies periodically with a period satisfying equation (21.1). Thus,
power launched in the fundamental mode couples into the first excited mode,
which then exits from the waveguide, thus showing the phenomenon of periodic
coupling.

In this chapter we discuss periodic coupling and some of its important
applications.'

21.2 Coupled-mode equations

As discussed in the previous section, in the presence of a periodic perturbation of
the type shown in Figure 21.3, predominant coupling takes place only between
those modes with propagation constants f,, and g, satisfying

, 2

ﬂm""ﬁnzil{:i?
and coupling to other modes is negligible. Thus, if at z = 0, we launch power
in the gth mode, then power gets coupled only to those modes for which Af >~

Bm — B, = LK. Assuming that power gets coupled only among two modes,
we may write the total field at any z as

E(x,2) = A()E (x, y) e % + B(2)Ex(x, y)e 7= (21.6)

't is interesting to note that the problem of periodic coupling is very similar to the quantum
mechanical coupling of two energy eigenstates by the application of a time-varying harmonic per-
turbation. Indeed, the coupled made theory to be described here is very similar to the time-dependent
perturbation theory used in quantum mechanics, and through experimental and theoretical studies
on periodic wavegnides one can very easily appreciate some of the effects related to harmonic
perturbation in quantum mechanics.

Fig. 21.3: A sinusoidal
variation of film thickness
in a planar waveguide.
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where E;(x, y) and E»(x, y) are the modal field profiles of the two interact-
ing modes and 8, and f3; are their corresponding propagation constants. The
coupling between the two modes 1s described by the following coupled-mode
equations (see Appendix F)

dA

~ = kB ZL7)
dz
dB .
I o kAl (21.8)
dz

where
F=8 -8 —-K {(21.9)

is the phase mismatch and « is known as the coupling coefficient since it is
responsible for coupling among the modes of the waveguide.

The value of « depends on the waveguide parameters, wavelength of op-
eration, and the extent of the periodic perturbation. For example, in a planar
waveguide for a sinusoidal periodic perturbation of the type shown in Figure
21.3, the value of « is given by

1/2
7w h ( _”cz)(’lff ”22) (21.10)
ko Ndid> RetMen o
where /1 is the amplitude of the periodic thickness variation
I I
dy=d+ + 21.1D)
k()‘/n?,l —n? ko nﬁk — n?
I 1
dr=d+ + (21.12)
ko fz:j2 —n: Kk ”Sz —n?
are the effective waveguide thickness for the two modes and n,., = §/ky,

ng = Ba/ ko are the effective indices of the modes 1 and 2 that are coupled;
ny, ng, and n. correspond to the film, substrate, and cover refractive indices,
respectively, and d is the film thickness.

We now solve the coupled-mode equations and discuss various aspects of
the coupling process.

21.2.1 Solution under phase maiching

We first consider the case I = 0 — that is, the periodic perturbation has a period

2 )\.0
A= 21.13)

ﬂ ﬁZ (no1 — ne2)

where By = 27 n.1/ o, B2 = 2mn.o/hg and 1,y and n,, are the effective indices
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of the modes. In such a case, equations (21.7) and (21.8) become

dA

=«hB (21.14)
dz
1B
“b —k A LI5S
dz

Differentiating equation (21.15) with respect to z and using equation (21.14)
we obtain

=«’B (21.16)

whose solution is

B(z)=bicoskz + brsinkz (2117
Using equation (21.17) in equation (21.15), we have

Alz) = b sinkz — by CcosSkz (21.18)
The constants by and b, in equations (21.17) and (21.18) are determined through
the initial conditions at 7 = 0. If we assume that at 7 = 0, mode E; is launched
with unit power (see Figure 21.1(d)), then

Az=0=1, Biz=0=0 (21.19)
Thus

by =0 and b, = -1
and we obtain

A(z) = coskz (21.20)

B(z) = —sinkz (21.21)
Thus, the powers carried by modes Ey and Ey vary with z as

P, = |A(2)]> = cos’kz (21.22)
Py = |B(2)® = sin’kz (21.23)

We notice from equations (21.22) and (21.23) that there is a periodic exchange
of power among the two modes and at

o == 21.24
7= (t——é“;f (21.24)
all power from the input mode £, is transferred into mode E (see Figure
21.1(d)). Figure 21.4 shows the periodic power exchange given by equations
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Fig. 2140 Variation of ~ (21.22) and (21.23). We will see in Section 21.2.2 that such complete power
power in the two modes — ¢opyersion is possible only for I' = 0 — that is, only if there is phase matching.
satisfying the
quasi-phase-matching Example 21.1: We consider a planar waveguide with

condition (equation 21.1)
with ;. Note the periodic
and complete exchange of
power between the modes.

np=151, n, =150, n.=10, d=4pum
Atig = 0.6 pm such a waveguide supports two TE modes whose prop-
agation constants can be determined from the transcendental equation

for modes (see Chapter 7). The corresponding effective indices for the
first two TE modes are

ﬁ]/k() -, = f’l(,(TE()) = 1.50862
ﬂg/l\"(; = ey = fl{»A(TEE) = 1.5046

To efficiently couple power among these two modes, we must choose
a periodic perturbation whose periodicity is given by (see equation

(21.13))
2 }&()
A= — = —
Ap An,
= 1493 um

where An, = n,) —n.. Such a periodic perturbation can be provided
by having a periodic thickness variation as shown in Figure 21.1(b).
Using equations (21.11) and (21.12) we obtain

dy = 4.678 um

dy = 4.897 um
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Assuming 2 = 0.01 xom and substituting in equation (21.10) we obtain
x =0.598cm ™’

Thus, the length for complete power transfer is

b4
L,= - =263cm
2K

21.2.2 General case

We now solve equations (21.7) and (21.8) for the case when I’ = 8, — 8, — K #
0. Differentiating equation (21.8) with respect to z and using equations (21.7)
and {21.8) to eliminate A, we get

dzB dA —iT'z . iz
g T Fgge Tikhae

= —k*B — iFd—B

dz
or

d*B _dB 5

4ir L k2B =0 (21.23)
dz? dz

The general solution of equation (21.25) is
B(z) = e b1 4 bre™ 7] (21.26)

where

2

, r
)/" = ;(2 -+ Z- (2;27)

and 5, and b, are constants. Substituting from equation (21.26) in equation
(21.8), we obtain

o r o\ r ,
Ay = 2T 2 [ = =y )bre”  + (= +y |boe " (21.28)
K 2 2

The constants b; and b, are determined by the initial conditions at z = 0.
As an example, we assume that at z = 0, unit power is launched in mode 1 ~
that is

Az=0)=1, Bz=0=0 (21.29)

Hence, from equations (21.26) and (21.28) we have

by +b=0 (21.30)

L(E— b+.r—{— by =1 {(21.31
K2yl(§y2_ 3D
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Fig. 21.5: Variation of
Pi(z) and Pr(z) with 7z for
M=2xand " = 10k —
that is, non-quasi-phase-
matched condition when
unit power is incident in
mode I at z = 0. Note the
incomplete power
exchange. The
corresponding variations
for I' = 0 are shown in
Figure 21 .4,

107

0.8}

Solving equations (21.30) and (21.31) we have

K
bhh=i—=-b
1 12)/ 2
Thus
B(z) = — Se T2 giny 2 (21.32)
4
, irz)2 A
A(z) =€ ““|cosyz —i—sinyz (21.33)
2y
Thus, the power in modes 1 and 2 at any value of z will be
. ) 2 od FZ .7
Pi(z) =A@ = cos" yz + ——sin ¥z (21.34)
4y?
2 K .2
Py(z) = [B(2)|" = — sin” yz (21.35)
2

Equations (21.34) and (21.35) describe the variation of power in the two modes
with z. Figure 21.5 shows a plot of P:(z) with z for T' = 2« and I’ = 10«.
The corresponding variation with I = 0 is shown in Figure 21.4. From equa-
tion (21.35) we notice that the maximum value of P; is %/ *, which is al-
ways less than or equal to [; it is equal to unity only when y = x — that
is, I' = 0. Thus, complete power transfer is possible only if ' = 0. Also
for y > «, —thatis, for I' » 2«, Po(max) < . Thus, strong exchange of
power takes place only between modes for which ;i; < 1. This justifies our as-
sumption made at the beginning to consider coupli~ng only between two modes,
which almost satisfy the phase-matching condition given by equation (21.1).
Figure 21.6 gives the variation of P»(z) with I'/2«k for kz = n /2. The figure
shows how the coupling of power decreases as we move away from the point
I" = 0. This characteristic is used in the design of wavelength filters (see
Section 21.3).
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Fig. 21.6:  Variation of
Pr(z) with T (the phase
mismatch) at kz = /2,
showing how the power
coupling between the two
modes decreases as [
increases. For I' > 2x, Py
1$ very small.

Example 21.2: We consider the same waveguide as in Example 21.1
and assume that the periodic perturbation has a period of (1) 100 um
and (11) 148 pum. We will calculate the maximum power that can be
transferred between the modes and obtain the distance at which P
becomes maximum.

(i) Foraperiod of A = 100 um

K — = 0.027 pum™!

|5

and

21 2
=8 —-FKF K=", —nmn) — —
B =B )\0( | — Me2) X

=207 x 107 um™!

Thus
r2y 172
(.2 -2 -1

Since x =0.598 x 10~ um~! (see Example 21.1), we see that in
this example I' 3> «. The maximum power that gets transferred
between the modes is

2
2

~33x 107

PEnmx -

Hence, for this case the power transfer between the modes is
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very weak. The distance for maximum power transfer is

T
L=-—~152um
2y

which is much smaller than the coupling length with ' = 0.
(i) For A = 148 um,

27 27
M= — K= —n, —n,)— —
ﬂl ﬁ?, }\.()( el z‘.) A

= —3.566 x 107* em™!
Thus
y =1.89 x 107" um™!

and maximum power transfer is given by

K'z —l
Prmax = — ~ 10
4

which is much greater than the first case since the period is close
to the phase-matching periodicity of 149.3 pm.

21.3 Application to a wavelength filter

We consider a waveguide device consisting of two unperturbed waveguides
joined together by a periodically perturbed region as shown in Figure 21.7.
If mode 1 is incident from the left, then the periodic perturbation will couple
power from mode 1 to mode 2 depending on the value of [". Now the power
coupled from mode | to mode 2 after propagation through length L of the
periodic waveguide is (see equation (21.35))

, i L, TA o
where
=g -p-K
27{( 2m (21.37)
= — (N — R} — —— ch
FPS Y

It is obvious from equation (21.37) that I can be made equal to zero only at a
particular wavelength Xy = A, (say) and will be nonzero at other wavelengths.
Thus, complete power transfer will be possible only at ), and the coupling of
power from mode [ to mode 2 will exhibit a bandpass characteristic. Thus, if
mode 2 is filtered out at the output, then the device will act as a wavelength
filter.
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A~

— MODEN

m—> MODE 2

Using equation (21.36) we have calculated the variation of the power in TE,
mode at the output of a periodic waveguide when a TEy mode (with unit power)
1s incident at z = 0. The calculations correspond to the following values of
various parameters.

ng=151, n;=150=n,
d=4um, h=0.0lum
Ap=0.6um, A = 1493 um

The corresponding variation is shown in Figure 21.8. In these calculations we
have neglected material dispersion — that is, assumed »n y and n; to be indepen-
dent of wavelength. The length of the periodically varying region is chosen so
that at Ay = 0.6 um, complete conversion from TE ; to TE; mode takes place.
The period A is also chosen so that at Ay = A, = 0.6 um, the TE; and TE,
modes satisfy the condition I' = 8, — 2, — K = 0 —that is,

2 ; 27
“}\:‘“[”el(}\c‘) - ’162(}‘(‘).1 = "K
or
Ae
A= (21.38)

Ly (A() - n’(’?..(}‘(‘)

The bandpass characteristic of the device is obvious from Figure 21.8.

We shall now obtain an approximate expression for the bandwidth of the
filter. We choose the length L of the periodic waveguide equal to one coupling
length at A,.. Thus

T

L =
2k (he)

(21.39)

and P>(z = L.) = 1. For any other value of A,

4 ()
v/ k2 (Ag) + TDZ’T

2u6c(Ag)

k(o) .9
sin

Prz=L. h) = —
i () 4+ e Sf‘”

Neglecting the wavelength dependence of «, the coupled power drops to 0.5

Fig. 21.7:  Two
unperturbed waveguides
joined by a periodically
perturbed waveguide of
length L. The period of the
perturbation is such thatatg
center wavelength Ag = A,
all incident power in mode
1 gets coupled to mode 2
after length L. Such a
device acts as a wavelength
filter.
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waveguide with 4!{2()\.0) 4;(2()\5)) )
ny = 1.51.n, = 1.50,
ne. = 1.50,d = 4 pm and
having a periodic ~ Whose solution is
perturbation of period
A = 1493 um. The M(hg) _
bandwidth of the filter is 00 +0.8
approximately 3 nm. ‘
or
ne1(ho) —ne2(ho) 1 b4
27| - . — — | =408~ (21.41)
A A L
where
AVS .
i = Ao = T (21.42)

are the wavelengths where P, = 0.5 and Ai would represent the FWHM of
the filter. For AA <« A,, we have

Aﬂ«(}%)) — Ane(’\-c)
b (e F )
Ang(i.) L UAA , ;
o 2R L An () (21.43)
e 2.

where we have assumed An,(Ay) = An.(A.). Substituting equation (21.43) in
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equation (21.41) and using equation (21.38), we obtain

Al 0.84, A
—_— e == () B — (21.44)
A An (AL L

Thus, the fractional bandwidth of the wavelength filter is approximately equal to
the ratio of the period of the perturbation to the length of the periodic waveguide.

Example 21.3: For the waveguide considered in Example 21.1, we
have A = 1493 yum and L = 2.63 ¢m. Thus

A .
Ad = O'SZA(" ~27A

where we have used A, = 0.0 pm.

21.4 Coupling between orthogonal polarization
in a birefringent fiber

In Chapter 20 we learned about birefringent fibers in which the x-polarized and
v-polarized modes travel with different velocities. If n, and n, represent the
effective indices of the x- and y-polarized LPy; modes, then the birefringence
of the fiber is defined by

B =|n, —n, {(21.45)

and the corresponding beat length is

L, =2 (21.46)
B

High-birefringence fibers have typical beat lengths of 2 mm at 1300 nm corre-
sponding to a birefringence of 6.5 x 1074,

As described in Chapter 20, one of the primary advantages of high-birefrin-
gence fibers is its polarization maintaining capability. Thus, if at the input, light
is launched in the x polarization, under normal perturbations of the fiber the
light does not couple to the y-polarization state. This is primarily because to
couple power from x-polarized mode to y-polarized mode, we need a periodic
perturbation with a period given by (see equation (21.13)).

A
A= —— =], (21.47)
(”x "" ny)

Since Lj, ~2 mm, under normal perturbations such as bending, twisting, etc.,
the amplitude of perturbations corresponding to such small spatial period (or
such large spatial frequencies) would be negligible. One could, however, pur-
posely create perturbations with period ~L, and hence induce coupling
among the x- and y-polarized modes. Thus, if a birefringent fiber is peri-
odically stressed by placing the fiber between a pair of corrugated plates of
period A as shown in Figure 21.9(a), one can induce a strong coupling of
power between the modes. For coupling of power, it is necessary to have a
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Fig.21.9: (@ ifa
birefringent fiber is stressed
periodically by placing it
under a corrugated plate
having corrugations with a
period given by equation
(21.47), then there is strong
coupling of power between
the two polarizations. (b)
The cross section showing
the direction of applied
stress with respect to the
etgen axes.

@ 0]
Hi-Bi
Fiber
(@)
b
(b)

finite coupling coefficient. This can be met by orienting the fiber birefrin-
gence axes so that the stress is applied at 45° to the eigen axes (see Figure
21.9(b)).

By measuring the changes in output power in the x and y polarization states
as afunction of pressure, one can use this principle to construct pressure sensors.
In the following section we show how this coupling can be used for making
in-line fiber frequency shifters.

21.5 In-line fiber frequency shifters

In-line fiber frequency shifters are required in many applications such as in opti-
cal heterodyning in fiber optic sensors or in coherent communications, etc. One
of the most interesting in-line fiber frequency shifters uses traveling acoustic
waves to couple light between the two orthogonal polarization modes. Unlike
the earlier cases of coupling by periodic gratings, which were all fixed (i.e.. not
moving), the periodic grating caused because of the periodic strain accompa-
nying a traveling acoustic wave is a propagating grating. The consequence of
coupling due to a propagating periodic grating is to induce a frequency shift
[see, e.g., Ghatak and Thyagarajan (1989)]. If n, and n are again the effective
indices of the x- and y-polarized LPy; modes of the fiber, then the required
period of the grating is given by

At (21.48)

B lny — ’7}']

If the acoustic wave is traveling in the same direction as the propagating light
waves, then

A== (21.49

where v, and f are the velocity and frequency of the acoustic wave. Thus

Uy !n.\' - n'\'E Uy

= (21.50)
k() Li}
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Al Block
) ///\/// Hi’B/i Fiber ,
0

Fused quartz
biock
Acoustic Transducer

If v; is the frequency of the incident light wave, the frequency of the diffracted
wave will be v; + f or v; — f. This is determined by the polarization states of
the input and the diffracted light wave and also by the direction of propagation
of the acoustic wave. Let us assume that the acoustic wave also propagates
along the direction of the light wave. If n, > n, and incident light is x-
polarized, then the diffracted wave will be y-polarized and will have frequency
v; — f. On the other hand, if the incident light is y-polarized, the diffracted
wave will be x-polarized and will have frequency v; + f. One of the tech-
niques to launch an acoustic wave along the fiber is to use an arrangement
shown in Figure 21.10 [Risk et al. (1984)]. It consists of a wedge of fused
quartz with a piezoelectric transducer to excite acoustic waves, and the fiber
is sandwiched between the quartz block and an aluminum base for mechanical
contact. In such a case the acoustic wave vector makes angle (5 — ¢) with
the fiber axis and the corresponding periodic perturbation on the fiber has a
period

U{I

A= 21.51
fsind ( )
For this case the required acoustic frequency is
P (21.52)
~ Lsin6 T

Experimental results have been demonstrated for in-line fiber frequency shifts
of 15 MHz [Risk et al. (1984)].

Example 21.4: In silica v, = 5.96 km/s. Thus, for L, = 2 mm the
acoustic frequency required to couple between the two polarizations
is (for 8 = 0)

f =% ~ 298 MHz
b

Example 21.5: Figure 21.10 shows a schematic of the arrangement
used for frequency shifting by using bulk acoustic waves. If the beat
length of the fiber is 1.7 mm at 632.8 nm, and if # = 13.5°, the
corresponding acoustic frequency required to induce coupling is

5.96 x 10°

— ~ 15MH
17 % 107 x sin 13.5 g

Ja

Fig. 21.10: A fiber optic
frequency shifter in which
acoustic waves launched
into the quartz wedge
induce periodic traveling
refractive index
perturbation in the fiber
through the strain optic
effect. The perturbation
induces a coupling between
the two eigenmodes, and
the coupled lightwave is
frequency shifted due to the
traveling periodic
perturbation. [Adapted
from Risk et al. (}984).]
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Fig. 21.11: <{a) A grating
output coupler in which
coupling between a guided
mode and radiation modes
propagating in the substrate
and cover 1s induced by a
periodic perturbation. (b) A
grating input coupler in
which an incident beam is
coupled to a guided mode
by a periodic perturbation
in the waveguide.
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If the interaction length L is 1.03 cm, the corresponding bandwidth is

Afa A Ly
fo L L

consistent with the measured values [Risk et al. (1984)].

21.6 Grating input-output couplers

In the previous sections we have restricted our consideration to coupling of
power among two guided modes of the given waveguide due to a periodic
perturbation. Periodic waveguides can also be used to couple power from a
guided mode to radiation modes (waveguide output coupler), which carry power
out of the waveguide (see Figure 21.11(a)), or to couple power from an incident
propagating beam into a guided mode of the waveguide (input coupler) (see
Figure 21.11(b)). Such a coupler, which is known as a grating coupler, is very
similar to a prism~film coupler, wherein one uses the phenomenon of frustrated
total internal reflection.

Just like the requirement of a quasi-phase-matching condition for efficient
coupling of power among two guided modes (see equation (21.1)), even for
this case one has to satisfy a quasi-phase-matching condition. To illustrate this,
we consider a planar waveguide consisting of a film, substrate, and cover of
refractive indices ny, ny, and n. (with n, > n, > n,), which is assumed to
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support a guided mode with the propagation constant satisfying Fig. 21.12:  Quasi-phase-

kone < kony < B < kony

Let a sinusoidal perturbation of spatial period A(= 2m/K’) be introduced on
the waveguide. If the periodic perturbation is to couple power from the guided
mode to a wave propagating into the substrate and making angle ¢ with the
-direction (see Figure 21.11(a)). then we must have

B — K = kpngcost

B — K
6 =cos (-—m——[ )
ko

Note that if | — K| is greater than kon,, such a coupling is not possible since
then # becomes imaginary. Also, if f — K is positive, then coupling takes
place to a wave propagating in the substrate in the forward direction (see Figure
21.12(a)); on the other hand, if § — K is negative, then coupling takes place to
a wave propagating in the backward z-direction (see Figure 21.12(b)). Similar
considerations are applicable to coupling to a wave propagating in the cover.
In an identical fashion one can also discuss coupling of power from a propa-
gating beam into a guided mode. One obvious fact is that, whereas in an output
coupler the coupled beam automatically chooses the propagation direction so as
to satisfy the quasi-phase-matching condition, in the case of the input coupler,

(21.54)
Or

(21.55)

matching condition implies
that the radiation coming
into the substrate (or cover)
appears at a certain
well-defined direction (as
given by equation (21.53}).
In (2) the period of the
arating is such as to induce
coupling to a torward
propagating wave in the
substrate and in (b) to a
backward propagating wave
in the substrate.
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Fig. 21.13:  Simultaneous
guided to radiation-mode
coupling by a number of
guided, discrete, visible
laser wavelengths incident
on a fiber grating structure.
[After Rowe, Bennion, and
Reid (1987). Photograph
courtesy Professor

I. Bennion.]

the angle of incidence should be such as to satisfy the quasi-phase-matching
condition.

Figure 21.13 shows simultaneous guided to radiation-mode coupling by a
number of guided, discrete, visible laser wavelengths incident on a fiber grating
structure.

Grating couplers can be fabricated on a waveguide either by etching the
waveguide surface or by depositing a film on the waveguide, whose thickness
is then periodically modulated. One can achieve efficiences of greater than 50%.

Example 21.6: Consider a waveguide with the values of various pa-
rameters as given in Example 21.1. Assuming a sinusoidally periodic
thickness variation with period A = 6 um, we will now obtain the an-
gles at which the radiation coupled out from the TE; and TE, modes
will propagate in the substrate.

If 6, and 6, are the angles with the z-axis made by the waves
coupled out from TE; and TE, modes, then

2m i
ﬂ(TE()) - -K— = k()i’l_y COS ﬁ‘y() (21 5())

. 2 _
B(TE)) — e = kon, cos by (21.57)
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or in terms of effective indices

Ag
el — X = n, cos by (21.58)

AQ
oo — N = N, CO8$ b, (21.59

Using the values of n,, and n,, as obtained in Example 21.1, we have

0 ! ol 20.1°
o =cos | —tn,, — — || =20
0 7 I A
1 A
6, = cos™! |:—(n€,2 — —0)} ~ 20.5°
Mg A

The corresponding angles in the cover would be given by replacing
ng by n.. Since both (n,; — Ag/A) and (n. — Ao/ A) are greater than
unity, no coupling can occur to a wave propagating in the cover.

Example 21.7: In the above example if we had chosen A = 0.2 um,
then the radiation would appear in the substrate at angles given
by

B, = 173.9", 8, =175.5°

that is, the coupling takes place to a wave propagating along the back-
ward direction as shown in Figure 21.12(b).

21.6.1 Pictorial representation for grating couplers

The phase-matching condition imposed by the equation (see equation (21.54))
B — K = kgn, cosf (21.60)

can be pictorially represented by a wave vector diagram as shown in Figure
21.14(a), in which the horizontal axis represents the z component of the propa-
gation vector of the propagating waves. The upper semicircle is of radius kgn,
(corresponding to the cover), and the lower semicircle is that of radius kgn,
(corresponding to the substrate). A guided mode can have the B value so that
either

kon, < f < kony (21.61)
or

—kony < B < —kong (21.62)
the latter corresponding to a wave propagating in the —z-direction. Any wave

propagating in the cover will have its k of magnitude kon. and any arbitrary
direction. Thus, waves emanating from the waveguide and propagating in the
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Fig. 21.14: The wave
vector diagram
corresponding to a grating
coupler. The £ value of the
propagating mode lies
between kony and kony, K
represents the wave vector
of the periodic perturbation.
The vectors O8 and OC
give the directions of the
propagating waves in the
substrate and cover that
satisty the phase-matching
condition. (a) Coupling to
both cover and substrate
waves, (b) coupling to only
substrate waves.

cover will be represented by a vector starting from the point O and ending on
the upper semicircle. Similarly, any wave emanating from the waveguide and
propagating in the substrate will be represented by a vector starting from O and
ending on the lower semicircle.

Because the periodic structure has a z dependence of the form sin Kz, we
can also represent the periodic structure by a vector of length K pointing to the
right or to the left along the 8 axis in Figure 21.14(a).

Now, the phase-matching condition as represented by equation (21.60) can
be interpreted to imply that the z component of the propagation vector of the
wave in the substrate must be equal to § — K. This cz;xg_)be pictorially repre-
sented as shown in Figure 21.14(a), where the vector 08 gives the direction
of propagation of the substrate radiation that satisfies the phase-matching con-
dition. Note that one can also satisfy a phase-matching condition for a wave
;)Lo}pagating in the cover, and the corresponding direction is given by the vector
OC. Thus, as is obvious from Figure 21.14, if the spatial period of the periodic
structure is such that

—kone < B — K < kon,
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then coupling will take place to radiation propagating in both cover and substrate
(we are assuming n, <t #,). On the other hand, if

kon, < B — K < kony (21.64)
then coupling takes place only to the forward propagating wave in the substrate
(see Figure 21.14(b)) since phase matching cannot be satisfied in the cover.
Figures 21.15(a) and (b) show wave vector diagrams corresponding to

0= f—K > —kyn,
and

—kon, > B — K > —kgn,

Note that in the above cases the radiation in the substrate (and in the cover)
propagates in the backward direction. Also note that depending on the K value,

coupling may take place to radiation propagating only in the substrate or in
both substrate and cover (remember, we are assuming n, < ag).

Fig. 21.15:  Wave vector
diagrams corresponding to
coupling to backward
propagating waves.
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Fig. 21.16: (a) A periodic
structure with a
nonsinusoidal thickness
variation. (b) Wave vector
diagram showing
multiple-beam coupling.

In the above discussion we have assumed that the periodic perturbation
is perfectly sinusoidal. If, for example, the thickness variations are of the
form shown in Figure 21.16(a), then the periodic perturbation can be de-
scribed by a Fourier series expansion, which would thus contain terms such
as sin Kz, sin2K z, sin 3K z, and so forth, where K =27 /A, A being the pe-
riod (see Figure 21.16(a}). In such a case, one could indeed have multiple-order
beam coupling, and the phase-matching condition (equation (21.60)), gets mod-
ified to

k()ll(y Sin@n = ﬁg) + pK; p = 1,2,3... (2]65)

This 1s shown in Figure 21.16(b}, where one can see multiple beam coupling.
Note that if —kon, > B — K > —kgn,, then even for a nonsinusoidal per-
turbation one will have only a single-beam coupling into the substrate. Such
single-beam coupling is desirable to achieve high coupling efficiency.

Typical grating couplers have a length of a few millimeters and one can
achieve a maximum launching efficiency of 81% by using grating input cou-
plers. Some of the major advantages of using grating couplers are as follows:

(1)  Guided waves can be excited by a large width input beam and posi-
tioning is not very critical as in end-fire coupling.

(2)  One can selectively excite various guided modes.

(3) Gratings are compact, stable, and integrable with the waveguide.

21.7 Contradirectional coupling

In Section 21.2 we discussed coupling between two modes propagating along
the same direction. This leads to what 1s called codirectional coupling. In this
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section we consider coupling between two modes propagating in opposite di-
rections. Hence, light may couple from a forward propagating mode to the same
mode propagating in the backward direction. Such a coupling phenomenon can
be used as a reflector for reflecting power in a mode and finds applications in
distributed Bragg reflector (DBR) and distributed feedback (DFB) lasers based
on semiconductors, as Bragg reflectors in rare-earth-doped fiber lasers [Morkel
(1993)], in external fiber cavity semiconductor lasers [Rowe et al. (1987)],
bandpass or band stop filters [Kashyap et al. (1993a)], and so forth. (see Chap-
ter 17). To consider this coupling let 8; represent the propagation constant of
the mode propagating in the +z-direction and f that of the mode traveling
along the —z-direction. In such a case, instead of equation (21.3), we will have
for the total field at any z as

E(x.2) = ADE(x)e P 4 B(2)Ey(x) P (21.66)

where again £(x) and F;(x) represent the transverse mode patterns and A(z)
and B(z) are the z-dependent amplitudes of the two modes. Proceeding in a
manner similar to that for the case of codirectional coupling, we obtain the
following coupled-mode equations

dA
—_ i(Be'l - (21.67)
dz
d
= kAe 7 (21.68)
dz
where now
=g +p—-K (21.69)

For the present case, for phase-matching we require I' = ( implying
pr+ph=K (21.70)
If the coupling is between two identical modes traveling in opposite directions,

then B = fr = (27 /ho)ns where ny is the effective index of the mode. If
we let K = 2m /A, then equation (21.70) implies

A
A= 0
2ngy

(21.71)

Comparing with equation (21.13) we note that the periodicity required here is
much smaller than in the case of codirectional coupling. We will solve equa-
tions (21.67) and (21.68) when the modes are phase-matched — that is, I' =0.
We differentiate equation (21.68) with respect to z and obtain (using equation
(21.67))

d’B )
=x°B
dz?
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Fig. 21.17:  If the period
of perturbation is so chosen
to quasi-phase-match a
forward and a backward
propagating mode
{corresponding to
contradirectional coupling),
then the periodic region acts
as a reflector. The
corresponding period is
given by equation (21.63).

A(Z=0) —>] ;MA(Z:L)
|
B(Z=0) <—I ;
! i
| |
|
Z=0 Z=L

whose solution is
B(z) = bie*" 4 bye™*F

Note that unlike the codirectional case, here the solutions are not oscillatory,
Substituting in equation (21.68) we obtain

A(z) = [be"* — bae ™7} (21.73)
We now assume that unit power is incident in mode A on a periodic waveguide

of length L — that is, A(z = 0) = 1 (see Figure 21.17). Since there is no
back-coupled wave beyond z = L, we must have

Blz=1)=0 (21.74)
Thus
bie*F 4 bye™t =0: (b —by) =1
which give us
eﬂcL _e%-/(L
= z——) b= —— (21.79)
2coshk L 2coshi L
Hence
B(z) = sinhx{z — L) 21.76)
: coshk L (2176
and
AGz) = coshu(z — L) 2177
" coshkL o
Note that in the present case
|A(2)1* — |B()]* = (cosh® kL)™' = constant 21.78)

which is the equation for energy conservation since the two waves are now
traveling along opposite directions. Figure 21.18 shows the variation of power
carried by the two modes as a function of z.
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The mode B(z) corresponds to the reflected mode and, hence, we define a
reflection coefficient from the periodic structure as

=0
= g = kL (21.79)

The energy reflection coefficient is given by
R =[r|> =tanh’«L (21.80)

For a medium of refractive index n having a periodic refractive index grating
given by

n(z) =ng+ Ansin Kz (21.81)
the coupling coefficient is [see, e.g., Ghatak and Thyagarajan (1989)]

TAR
K = (21.82)
Agy

If a similar expression is assumed for an optical fiber with a refractive index
grating in the core given by equation (21.81), then the reflectivity of a fiber
grating of length L is

A ARL , .
R = tanh~ (21.83)
AQ

It has recently been demonstrated that refractive index gratings can indeed be
written directly into the core of a single-mode fiber by irradiation with UV light
(see Chapter 17). If we wish to fabricate a reflector centered around 1550 nm,

Fig. 21.18: ¢z variation of
power carried by the two
modes undergoing
contradirectional coupling.
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Fig. 21.19:  Reflectivity of
a Bragg fiber grating as a
function of wavelength.
[After Rowe et al. (1987).]
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the required grating period is

Ao 1550
- 20 2 x 146

A = 531 nm

Typical UV written gratings have An =~ 0.4 x 107, Hence, if the grating length
is 2 mm, the reflectivity is given by

L{(m x04x 107 x2x 1077
R = tanh =0.85

1.55 x 103

The corresponding bandwidth of the reflector is given by [see, e.g., Ghatak and
Thyagarajan (1989}]

2

Y )
A}&() — B (Ksz +f[2)E/~
JTHQ«;L

>~ 0.8 nm (21.84)

Example 21.8: Figure 21.19 shows the reflectivity of a Bragg fiber
grating as a function of wavelength. The center wavelength corre-
sponds to 1092 nm and the measured bandwidth (FWHM) of 0.8 nm.
The length of interaction was 1 mm. Since peak reflectivity is R =
(.98, we have

R = tanh’x L = 0.98

or

=2.64mm™!

Assuming an effective index of 1.46 for the mode, we obtan for
the required period A

A o 109
C 2ng 2% 1.46

~ (.37 um
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The bandwidth of the Bragg reflector for a length L is approximately
given by

A
Ah == hg—
L
which for the present case gives
AA 2 0.4 nm
Example 21.9: Consider a Bragg reflector formed on a side-polished
fiber or on a D-fiber for operation around Xy = 1.55 um [Ragdale,
Reid, and Bennion (1989)]. If we assume n,4 == 1.46, the required
periodicity comes out to be
A 1550
A = 0 = ~ 531 nm
2ngy 2% 1.46
Gratings with interaction lengths of L = 1 cm with peak reflectivity
of 0.85 have been made. This implies a coupling coefficient « of
1
K= — tanh‘l(\/ﬁ)
L
=1.589m™"
The bandwidth of the Bragg reflector is approximately given by (see
equation (21.84))
AX = (.16 nm
Problems

21.1 For the waveguide as in Example 21.1, plot the variation of Pap,x with A.
21.2  Consider a symmetric planar waveguide with

ng=150, ny=n=148 and d=062um

operating at Ag = [.0 pm.

(a) Show that the waveguide supports three TE modes — namely, TEq, TEy, and
TE;. Obtain their effective indices.

{by Calculate the perturbation period required for coupling of power among
TEq and TE| modes, TEq and TE; modes, and TE; and TE; modes.

(¢) For a thickness variation with & = 0.01 um, calculate the coupling coetfi-
cients between TEo < TE| modes, TEg « TE; modes, and TE; « TE;
modes.

{d) Assuming athickness variation with a period corresponding to phase match-

ing between TEq <« TE; modes, show that the coupling between TEy and
TE2 modes and between TE| and TE> modes is very weak.
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[ANSWERS:

(ayne.0 = 1.49792, n. = 149187, n.p = 1.4829

(b) Agy = 16529 um, Agp =66.58um, A =11148um

()upgr = 477 x O *um™ !, kp=513%x 107" pm !

k12 = 11.9 x 107% zm™!

(A = Ay, ABO < DH—K =0, ABO < 2)—K = 0.0564 3 kg2
= AB(l < 2) — K = 0.0184 >3 «3.]

21.3  Expand An.(Ag) around Ay = A, and retain terms up to AX and show that a more
accurate expression for FWHM of the filter is

A osh Ane(de)
)‘c‘ L [Ai?g()\.() . }L(ldﬂnp

dig

(21.85)

A ]
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22.1 Introduction

In this chapter we obtain rigorously correct solutions of the ray equation for a
square law medium characterized by the following refractive index variation

2 2
n(x, y) = n%|:1 - QA(X %;y )} (22.1)

a?

Fibers possessing such parabolic or near-parabolic refractive index variation
have very low pulse dispersion and, hence, have extremely high information-
carrying capacities (see Chapter 5). The ray equation itself will be derived in
the next section.

22.2  The optical Lagrangian and the ray equation

In geometrical optics we have the Fermat’s principle, which determines the
path of rays. According to this principle, a ray from point A to point B (see
Figure 22.1) will be such that the time taken by the ray is an extremum. Now the
time taken by the ray from point A to point B along path ACB (see Figure 22.1)
is given by

B ds 1 (B ‘
T = / —— = nds (22.2)
A vV CJa

where ds represents the arc length along the path of the ray. For an allowed ray
path, T should be an extremum — that is,

1 B
5T = ——8/ nes =0
€ Ja
or simply

B
5/ nds =0 (22.3)
A

Now, the arc length ds along the path of the ray is given by

(ds)* = (dx)* + (dy) + (d2)* (22.4)
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Fig. 22.1:  According to
Fermat's principle, the ray
will take that path from A
to B so that the time taken
by the ray is an extrernum.

which can be written in the form

ds =1+ 12 + 32 dz (22.5)

where

dx dy .
i = —  and V= — 22.
X e and v - (22.6)

Thus, equation (22.3) becomes
B
k) / n(x, vy, V1 +x2 4+ 3y2dz =0 (22.7)
JA

or

5 f Ld: = (22.8)
where

L=nx,v,2)y/1+x>4? (22.9)
represents the optical Lagrangian. Since equation (22.8) is of a form identical

to the Hamilton’s principle in classical mechanics, we can immediately write
the corresponding Lagrange’s equations of motion (see Problem 22.4)

d oL\ 0L
dz\ox )  ox

or
d mx an
— ] = 1+ 7+ 37 22.10
dz(\/l +.i'2+)‘;2) BRI ( )
Similarly

d ny —— dn
— e | = Xy — (22.11)
dz /1 + %2 + 5/,2 dy

Now, equation (22.10) may be written in the form

I d | dx on . ;
n——— = (22.12)

JFi+32di\ J1+x2+ 32 dz 0x
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If we now use equation (22.5) we get

d( dxy _an (22.13)
ds \ ds dx

Similarly
—(-1- nﬁ‘}i) = % (22.14)
ds \ ds dy

and'
d { dz an
—fn— ] == 22.15
ds (n ds) 0z ( )

The above three equations can be combined into the following vector form

d { dr
—|n— )=V 22,16
ds (n d.s) 7 ( ®)

which is known as the ray equation. The above equation can also be derived from
Maxwell’s equations [see, e.g., Born and Wolf (1975)}]; however, the algebra is
much more involved.

22.3 The ray invariant Ei for a waveguide

We next consider a waveguide with a z-independent refractive index profile
given by

n = n(x, y) (22.17)

Thus, equation (22.15) becomes

d dz d
)= (22.18)
ds das az
implying
dz . 4
n a5 = £ (an invariant of the ray path) (22.19)
§

If 6 1s the angle that the ray makes with the z-axis (see Figure 22.1), then

dz
— = 086
ds

'Equation (22.15) follows from the fact that one could equally well have written ds = [14 3 +
271Y7 dx with dots now representing differentiation with respect to the x coordinate. Alternatively,
equation (22.15) can be derived by using equations (22.13) and (22.14) [see, e.g., Ghatak and
Thyagarajan (1978}, Section 1.3].
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and

n(x, y) cosO(x, y) = B (22.20)

The above equation implies that as the ray propagates through the waveguide,
it will bend in such a way that the product n cos # will remain unchanged. We
rewrite equation (22.19) and use equation (22.5) to get

- d \
fmn®_o_ney) (22.21)
ds /1 4+ %2 + yz

If we use the above equation in equation (22.10) we get

d B dx B n(x,v) on

dz\"dz) B ox
Thus

d*x 1 an’ (22.22)

dz2 252 dx T
Similarly

2 2
d-y 1 dn (22.23)

The above equations represent rigorously correct ray equations for media
with n? independent of the z coordinate,

22.4 Exact solutions for a parabolic index fiber

We consider a parabolic index fiber characterized by the following refractive
index variation

2 2 2 4y’
5 ny 1—2Au—1 =ni|l =2A il B 0 <r <acore

n-= (22.24)

n% = n% (1 —2A); r > acladding

where n| and n, represent the core and cladding refractive indices, respectively,
a being the core radius, and r = a represents the core—cladding interface. In
the core of the fiber, the refractive index is given by equation (22.24), and
equation (22.22) takes the form

d?x
dz?

+Tx(z) =0 (22.25)

where

=
ﬁ
>

(22.26)
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Thus
x{(z)=Asinl'z+ B cosl'z (22.27)

and similarly
wz)=Csinl'z+ DcosT'z (22.28)

which represent the rigorously correct ray paths inside the core of a parabolic
index fiber. The constants A, B, C, and D are determined from the initial launch-
ing conditions of the ray; this is indeed very similar to the two-dimensional har-
monic oscillator problem where the trajectory of the oscillator is determined
from the initial conditions. We next consider some special launching conditions:

22.4.1 Ray launched in the x—: plane (an example
of a meridional ray)

We first consider a ray launched in the x—z plane on the z-axis making an angle
¢} with the z-axis. Thus, the launching conditions on the plane z = 0 are

Viz=0)=0= D=0

{f
E=0=0=C=0

x(z=0)=0=B=0

dx

— = tané
dz .

The last equation implying

1 ‘ a ‘
A= —tanb = tan 6,
I ) 2A
or
asing,
A= (22.29)

V2A

where in the last step we have used the fact that § = 1, cos 6, (see equation
(22.20)). Thus, the ray paths are

@) asiné; | V2A
x(z) = sin

V2A
y(z) =0

rigorously correct meridional ray

ey
paths in a parabolic index fiber (22.30)

— 2
acost

The above equations describe the meridional rays confined in the x—z plane;
we point out that the meridional rays are defined so that they are confined in
a plane and intersect the z-axis. Obviously, there would be meridional rays
confined in the y—z plane — indeed, in any plane containing the z-axis. The ray
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paths given by equation (22.30) are exactly the same as given in Section 4.2 and
the discussion there is equally applicable here. Once again, for paraxial rays,
the periodic length

2ma cos b 2ra

V2A VA

is independent of ¢, and therefore in this approximation all rays take the same
amount of time. Furthermore, for bound rays we must have

Zp -

ny < B <n (22.32)

a result that is also valid for nonmeridional rays.

22.4.2 Helical ray

In general, equations (22.27) and (22.28) describe what are known as skew rays,
which, in general, do not remain confined to a plane. We consider an extreme
form of skew rays in which the ray is launched on the x-axis (at x = a”) in the
y—z plane (making angle 6" with the z-axis). Thus

xXl..o=da = B=d

and
s a=0
dz z=0 B B
Thus
x(z)=a'cosT'z (22.33)
Further,
Yi=0 = 0= D=0
and
dy , tan &’ atanf’
— =tanf = C = -
dz | g I 20

If at the launching point, n = »n’, then 8 = n’cos 6’ and

. an’ sind’
4 v 2ZA

Thus, the ray path is given by

x(z) =a'cosTz
an'sind’ (22.34)

(2) = ———=—=sinT'g
Y f’l}\/zA
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Fig. 22.2: Propagation
of a helical ray in a
parabolic index fiber.

If
7 "
‘m2ZA yr e
sing/ = LY=2 N1 (22.35)
an 14
then
x(z)=a'cos Iz
(@) ) (22.36)
y(z) =a'sinl'z
and
x%(z) + y*(z) = a” independent of z (22.37)

that is, the ray spirals around the z-axis as a helix at a constant distance a’ from
it (see Figure 22.2). Such a ray is an extreme form of a skew ray and is known
as a helical ray.

Problems

22.1  Consider a typical parabolic index fiber with
ny =147, A=0.01, a =50um

Consider bound meridional rays launched on the z-axis making angle #) with the
z-axis. Calculate the minimum and maximum values of £, 8y, and Zp.
[ANSWER: 1.4553 < § < 1.47.]
22.2  For the fiber described in Problem 22.1, calculate the launching angle 6 for the

ray to be helical if the ray is launched at x = 20 um and at x = 40 pm.

22.3  Obtain the ray paths in an elliptic parabolic index fiber characterized by the
following refractive index distribution.

n’ :n?[l —ZA(im; -+ %ﬁ)] for ;—f -+ ;7; < 1
' , . {22.38)
2 Y S S L
=n{(1 =2A) =n; for ;_2+“[,‘2‘ > 1
Solution: The ray paths inside the core of the fiber are given by
x(zy= Acoslyz+ Bsinl',z
B ‘ o (22.39)
v(z) = Ccos[yz + Dsinlyz
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where

VIA J2A
r,=2¥e2 0 p, = MY (22.40)
ap bA

Thus, the periodic lengths along x and y would be different.

o
[
N

Derive Lagrange’s equation from Fermat's principle. [Goldstein (1950) Section
231

Solution: We consider only the case in which we assume the Lagrangian to be
independent of the v coordinate, Fermat's principle tells us that

) 2
0= 8/ Lix(z), x(2). z1dz :f SL[x(z), x(z}. z}dz

<

AL JL
. Lox ax

where 8 L represents the change in the Lagrangian as we go from the actual ray
path to a nearby path having the same endpoints (i.e., §x|,, = dx|,, = 0}. Now

9L 23l d |
,—‘—&rdz:/ — —§x dz
; 0% 5 0% dz
e
— —| = ) dxdz
5 5 dz\dx
2od (ol
:[ ——(——) Sxdz
o dz\ 9%

Thus, equation (22.41) becomes

LraL d /3L .
— — —| — | |$xdz =0 (22.42)
; Lox  dz\dx

Although 8x(z) is an infinitesimal quantity, it is an arbitrary function of z; thus,
the integrand of equation (22.42) must vanish, which gives us

d oL oL
— " = — 22.43
dz (dx ) dx ( )

The above considerations can easily be generalized to the Lagrangian depending
on the y coordinate also.
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23.1 Introduction

In most optical fibers, the refractive index depends only on the distance from
the axis — that is,

n = n{r) (23.1)

which are usually referred to as cylindrically symmetric media. In Section
23.2 we use the Lagrangian formalism to derive the equations determining the
ray paths in a cylindrically symmetric medium; these equations were used in
Section 5.3 to calculate pulse dispersion for a general class of graded index
optical fibers. Such calculations are of extreme importance in obtaining the
optimum profile that gives rise to minimum pulse dispersion (see Section 5.2).

In Section 23.3 we obtain solutions of the ray equation for a parabolic index
fiber. We compare these solutions with the ones obtained in the previous chapter,
where we solved the ray equation in Cartesian coordinates.

In Section 23.4 we use the equations determining the ray paths to classify
different types of rays that are excited in the fiber. We show that the rays that
are excited in the fiber can be classified into

(1) bound rays
(2) refracting leaky rays
(3) tunneling leaky rays

Bound rays remain guided in the fiber. Refracting leaky rays leak out of
the fiber in a very short distance. On the other hand, tunneling leaky rays leak
out gradually from the core of the fiber; the attenuation distance of tunneling
leaky rays can vary from a few millimeters to kilometers! Thus, a study of
excitation of different types of rays is of importance in the understanding of the
propagation of an optical beam through the fiber.

The analysis given in this chapter is based on papers by Ankiewicz and Pask
(1977) and Ghatak and Sauter (1989),

23.2  Ray equation for cylindrically symmetric refractive
index profiles

In the previous chapter we derived the ray equation
d| dr

—|n—|=Vn (23.2)
ds| ds
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Fig. 23.1:  The cylindrical
system of coordinates

{(r. v, 2). The z-axis
represents the axis of the
fiber.

where ds represents the arc length along the ray path. If we take the 7 component
of the above equation we get

d dz an J
— = — =0 (23.3)
ds| ds

dz

where we have used equation (23.1). Thus, we obtain the invariant

~ d
p=mn Z’% =n(r)cost (23.4)

where ¢ is the angle that the ray makes with the z-axis (cf. equation (4.3)).
Now, in a cylindrically symmetric medium (i.e., n = n(r)), it is obvi-
ously more convenient to use the cylindrical system of coordinates (r, ¢, 2)

(see Figure 23.1) for which the arc length along the path of the ray is given
by

ds = [(dz)’ + (dr) + (r dy)*] 2
=147+ dz (23.5)

where dots represent differentiation with respect to the z ¢oordinate.

1r ‘ /)
p=dr g o4y (23.6)
dz dz
Thus
~ 1z 2(r )
=n e nr) ray invariant (23.7)

ds 1472 4 r2y2

Furthermore, Fermat’s principle gives us

0=35 / nds =46 / n(Hl + 7+ FZIZIZIUZ dz
implying

L = Loy = n(r)1 + i 4 riyg?)l? (23.8)
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as the optical Lagrangian. The Lagrangian equation

d (BL) AL
dz\ay /) oy

gives
d { n(ryr*y } aL
dze{ (1+ 2+ r2g)i2 | 3y
or
d - .
—[Breyg]l=0 (23.9)
dz

where we have used equation (23.7). Thus, we obtain another invariant of the
ray path

=1 ray invariant (23.10)

In the above equation the parameter a represents the core radius, which has been
introduced so that the invariant / is dimensionless. Physically, the invariants 3
and [ are manifestations of the translational and rotational invariance of the
refractive index profile. The parameter [ is usually referred to as the skewness
parameter; obviously, for meridional rays, the angle ¢ remains unchanged and
I=o0.

Now, {rom equation (23.7) we have

[Lj)] =1+ +rhy’

I5}
B 2'l~a 2
=1+7 +r(-§7§

Simple rearrangement gives us

dr |

Fo= P + ”B"[f(f)}ifz (23.11)
where
52
Flry=n'(r) - (rfa)z -r (23.12)
The evaluation of the integral
- dr
ﬁfw = :i:fdz (23.13)

would give us the r coordinate of the ray as a function of z as it propagates
through the fiber. Once r(z) is known, the integration of the equation

. d {
Y= W __a (23.14)
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would determine the azimuthal coordinate v as a function of z. Obviously, f(r)
should be positive; this condition will be used later for classification of different
types of rays.

23.3 Exact ray paths in a parabolic index fiber

In Section 22.4, we obtained ray paths in a parabolic index fiber by using the
Cartesian system of coordinates. We now use equation (23.13) to determine the
exact ray paths in a parabolic index fiber for which the refractive index variation
(inside the core) is given by

2
n*(r) = n%[l o QA(i> ] = f'zg — gt (23.15)
o
where
2A
gz _ ”%_2 (23.16)
a

Typical parameters for a parabolic index fiber are
ny >~ 145 A =001, a=25um
implying
g =82 % 10°m™

Substituting the parabolic refractive index variation in equation (23.12), equa-
tion (23.13) takes the form

ﬁ/ dr —i[d” (23.17)
o =) e < 3.
[n%—g*rw——’ - B }/

(r/a)?

Carrying out the integration we obtain (see Problem 23.3)
2o . 2g
re(z) =y +acos ~B—(Z~ZE) (23.18)

which represents exact ray paths in a parabolic index fiber. In equation {(23.18)
7y is the constant of integration,

2 _ g2 72 2
— I
_ 2’5 =_[1—-'6—2-]ﬁ— (23.19)
2g 2 nyJ2A
and
72 2 282 522
I"a - { 2 2A
al=y? - 8 m(“ LY (23.20)
g 2A 4 ny ny
Since

2g |
—] < cos =(z—2z;) < 1
B
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[ 7 Fig. 23.2:  Variation of /?
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2{ )
we have
Vo <r2{::)<y+of (23.21)
as shown in Figure 23.2. The circles
)=y —o =1 (23.22)
and
r(z)=Jy +a=n (23.23)

represent the inner and outer caustics where f(r) (and hence dr/dz) vanishes
(see Figure 23.3). For [ = 0, @ = y and the radius of the inner caustic becomes
zero and the ray intersects the axis (see also Figure 5.9(a) and (b)). To obtain
r{(yry we divide equation (23.10) by equation (23.11) to obtain

Ry 1P
a dr [ f(r)i?

or

(23.24)

[dt//-_—iaif d}: =
r2nr) - A= -]

r_o_
(r/ay

If we now substitute equation (23.15) for n?(r) and carry out the integration
(see Problem 23.4) we get

;3- = v+ pcos 20y — Yry) (23.25)
where yr; is a constant of integration,
b= Mo f‘ =L 1= ]_;_’ (23.26)
207a? - 1
and
o= [,,2 £ ]I _ B; _ Hl/z (23.27)
["a?
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Fig. 23.3:  The projection
of a ray on the x—y plane is
an ellipse, The two circles
(r=riandr =ry) . r=ry
represent the inner and /\/
outer caustics. In general, ’ ;

the axes of the ellipse will
muike an angle with the x-
and y-axes. For meridional
rays, the ellipse will
become a straight line, and
for helical rays ry = ra,

Using equations (23.18) and (23.25) we can calculate r and v as functions of
z. The projection of the ray path in a plane perpendicular to the g-direction
is shown in Figure 23.3 and, as can be seen, the projection is a closed ellipse
(see also Section 22.4 and Problem 23.4). In Figures 5.9(a) and 5.9(h) we have
shown typical variations of r(z) and also the projection of the ray path on the
transverse plane for/ > 0 and [ = 0, respectively.

We next consider some special cases.

23.3.1 Meridional rays (I = 0)

For meridional rays, [ = 0 and

1( 62)542
2 ny /24

Thus, equation (23.18) can be written in the form

2 ) I:l 2g }
r@)=y|l+cos =@ —2)
ﬂ 1

=2y cosz[ 2 (7 — z;)} (23.28)

T oo

or
rz)=+2y co{%(: - Z])}

~D

2 172
:i[(l-—?—)i} cos(@zwqﬁl) (23.29)

nt /)24 ap

Since r should always be positive, we must choose the + sign where the cosine
function is positive and the — sign when the cosine function is negative (see
Figure 5.9(b)). If we put B =n,cos6, and ¢, = /2. the above equation is
identical in form to the ray path given by equation (22.30). Further. when/ = 0,
we must have

cos2(yr —yr) =10
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or

3

T
1//““1#1:'2',—2‘

implying that ¥ should not change with the 2 coordinate except for abrupt
changes from 7 /2 to 37 /2.

23.3.2 Helical rays ( I=1,)

From equation (23.20) one can readily see that the maximum value of [ is given
by

2

2
= W v ny — B .
[ =1, = = — (23.30)
"Ta T 2nV2A
and & = 0 so that
=
2, 1 BN
2=y =1 == }— 23.31
o=y 2 a7 )2a ( )

implying that the ray will always be at a constant distance from the axis; this is
the helical ray, which we discussed in Section 22.4.2.

23.4 Classification of rays

We now discuss the different types of rays that can propagate through an optical
fiber. Our starting point will be the equation determining the ray path (see
equation (23.11)).

- [ dr 5 ‘
ﬁ] o :fdz (23.32)

where

D I?
Fory — () — B2 — 33
f(ry=n“(ry—p ja)? (23.33)

Obviously, for a ray path to be allowed, f(r) should be positive. The forbidden
regions correspond to f(r) being negative.
We assume the refractive index variation to be of the form

=ni=ni(1-24A), r=>u (23.34)

which is known as the power law profile (see Figure 5.1). Most multimode fibers
can be approximately characterized by a power law profile. We first consider
the case I = 0, which will be followed by the case [ > 0.
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Fig. 23.4: Variation of 0.02
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23.4.1 I =0 meridional rays
From equation (23.33) we have
7 _—
Fry=n*(r)—p~ fori =0 (23.35)

The f(r) variations for BZ > n?, n% < [3’2 < n% and Bz < n% are shown in
Figures 23.4(a), 23.4(b), and 23.4(c), respectively. Although the figures corre-
spond to the parabolic index profile, the general behavior will be the same for
an arbitrary power law variation. As can be seen, for 32 > n%, fir)is every-
where negative and no ray path is possible. This is also obvious from the fact
that

ﬁ = n{r)cos (r)

and since the maximum values of n(r) and cos @ are n; and 1, B can never be
greater than n1; — that is,

B # n (23.36)
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£(r) is positive in the domain 0 < r < r» (see Figure 23.4(b)) and r = r; 18 80
that

5

]”Zl()“z) = fﬂ_ (2337)

These are the bound meridional rays andr = r2 is known as the turning point,
which is given by

~7
”g — B 1/q
= al ———
2An7

For a step index fiber, (g = 00) and r» = a; the rays undergo total internal
reflection at the core—cladding interface.

(23.38)

- %2 - . . o . -
Finally, for B~ < n3. f(r)is everywhere positive (see Figure 23.4(c)) and
the ray just refracts away at the core—cladding interface.

23.4.2 1> 0skew rays

We next consider the case [ > 0, which corresponds 1o skew rays where the
rays are not confined to a single plane. Once again, for BQ > nf‘ f(r) will be
everywhere negative, implying that no ray paths are possible.

For n%_ < fﬁz < n%, the variations of n*(r) — 52 and ?2/(1'/(1‘)2 for g = 2 are
shown in Figure 23.5(a). The points of intersection of the two curves determine
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Fig. 23.6:  The step
function shows the variation
of n*tr) — fi2 with r fora
step index fiber; the values
of various parameters are
ny = 1.47. A = 0.001,
a=25um, and f = 1.46.
The two curves represent
the variation of I2/(r/a)
for? =1, = 0.17117 and
[= LI, = 0.0855.
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the domain of the ray path. When the value of 7 is such that the two curves
touch at one point, we have a helical ray (I = [,); the value of 7, will depend on
the value of B. In Figure 23.5(b) we have plotted the corresponding variation
of f(r). Figure 23.5 corresponds to ¢ = 2 with

m =147, a=25um, A =10.01 (23.39)
and

B =146 (23.40)
Thus, from equation (23.30) we find

I, = 0.07047 (2341

For = I;, we will have two values of r (equal to r| and ry), where f(r) = ;
the points r; and r, at which f(r) = 0 (inside the core) are known as the turning
points, and the cylindrical surfaces r = ry and r = r» are known as the inner
and outer caustic, respectively. For ¢ = 2, the projection of a bound skew ray
path on the x—y plane is an ellipse as shown m Figure 23.3.

For a step index fiber (¢ = oc)r; = « — that is, the outer caustic 1§ at the
core—cladding interface. Figure 23.6 corresponds to a step index fiber (¢ = o)
with the same values of ny, ¢, A, and S as given by equations (23.39) and
(23.40). Obviously,

L= (=B =017117 (23.42)
and the helical ray slides along the core-cladding interface. For [ > [, [(r)
will be negative everywhere and there will be no ray path possible.

For g = 2 and == 00, the projection of the bound skew ray on the x—v plane
is qualitatively shown in Figure 23.7; for meridional rays (/ = 0). the curve
will degenerate into a straight line.

We finally consider the case when Bz < n%. Corresponding to different values
of I, four different situations may arise. For small values of /, there is only one
point of intersection between the two curves and we have a refracting (skew)
ray as shown in Figure 23.8(a). As we increase the value of /, we obtain three
values of r where f(r) = 0 and we have the tunneling leaky rays, where we
have a guided ray inside the core of the fiber, and since the ray path is also
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0.06

0.04

0.02

0
(a)
0.03 T T T T 7 T T
= Refracting ray .
0.02 N i
0.01} Tunnelling ray
i =
OF
-0.01
- Tunuelling helical ray
.02 1 1 I 1 ; :
0.0 0 10 20 30 40
{b) r{pm)

allowed for r > r3 (see Figure 23.8(b)), a part of the energy will tunnel out
at the outer surface caustic. This tunneling of power is entirely a wave optic
phenomenon, with the tunneling probability at each caustic approximately given
by the following expression:

B . Pa? 1/2
T ~ exp[—Zkg[ (nL(r) - B - — ) dr}
ry r-

where ky = 2 /Ay and r = r> represents the outer caustic.

As we further increase the value of 7, we get a tunneling helical ray (7 = /).
Forl > I, f(r) will not be positive inside the core and no ray path {inside the
core) will be possible.

(23.43)

Fig. 23.7: Projection of
the ray path onto the fiber
cross section for g £ 2,

I #0.For! =0, the ray is
meridional with r{ = 0 and
the projection is a straight
line. For a parabolic index
fiber (g = 2), the projection
is a closed ellipse. [Adapted
from Ankiewicz and Pask
(1977).]

Fig. 23.8: (a)For
B(=1.452) < ny, variations
of n2(ry — 52 and I° f(r/a)
for! =1, = 0.1265
(tunneling helical ray),

T = 0.11 (unneling skew
ray), and [ = 0.08
(refracting ray) in a
parabolic index fiber

(n = 1.47, A = 0.0,

a = 25 pum). (b) The
corresponding variations of
foryl=n*0r)

B P
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Problems

23.1 (a) Solve equation (23.11) for a step index optical fiber to obtain

I’a® n% - B

(z—z1)% O<r<a (23.44)

where we have assumed that 72(z) is a minimum at z = z; and

%a?
s s (23.45)
min ny = B
Show also that the ray will hit the core—cladding interface at
7 =171 %270 {(23.46)

where

72 72 12
70 = —(1 - - a (23.47)
|5 )

(b) Solve equation (23.14) to obtain

. (23.48)

ar

(23.49)

showing that the projection of the ray on the x~v plane is a straight line.
23.2 Consider again a step index fiber.

(a) Show that no ray paths are possible for 8 > nj.
(b) Forny < B < n| show that guided skew rays correspond to 0 < 1 < [,
where

S oy 12

I=ly=(n}—3) (23.50)
For the helical ray (I = {;), show that

riz)y =ua

and

{
Yyiz) = i}?— z + constant (23.5hH

(¢) For B < ny, show that we will have tunneling leaky rays for 7} < [ < .
where

- A 1/2
I, = (n?, - 52) (23.52)
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23.3  Carry out the integration in equation (23.17) and derive equation (23.18)

Solation:

3“3‘:i3/ S T
[rz% — g2p2 g ﬁz}

2

Making the substitution ¢ = =, we readily obtain

| d¢
7—17y = E£—f — —
L ﬁ[ o2 = (¢ = P12

1 . -
=F—p cos™! (i_l/.)
2g o

where o and y are defined through equations (23.19) and (23.20). From the
above equation one readily obtains equation (23.18).

[
oY)
N

{a) For n2(r) = rzf — gzrl, carry out the integration in equation (23.24) to
derive equation (23.25) and
(b) show that it represents an ellipse.

Solution:

(a) If we use the transformation

dr_ 1y 2353
'):—‘Zf-m‘"*z\/glg (--~,)

in equation (23.24) we obtain

l
E:—;f?
re

dE
VEFE)

where 1/ is the constant of integration and

1.
W o— = :gila (23.54)

= Pa*(u? — & = v)*)
and v and p have been defined through equations (23.26) and (23.27).
Thus
dE G {E-v
20— = = F €08
(W — ¥ :F[[fiz—(é-—v)zll/z as ( H- )
or

£ == = v+ pcos[2( — )] (23.55)

~
u. _

(b) Without any loss of generally we may assume yr; = /2 (which essentially
represents a reorientation of the axes). Elementary manipulations give us
1

2

= v(oosz v+ sin” ¥y~ ,u(cosz Y- sin” W) (23.56)
-
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or
2 2
X y
=+ == | (23.57)
3 i
where
! d ! (23.58)
ry = meeeeeesand ory o= 23.5
! SV = ] VYV

Equation (23.57) represents an ellipse with ry and »» representing the minor
and major axes (see Figure 23.3).

23.5 Show that

|
JY A+

Fi

=i a

and

1

AT

Fa Yy + oo

which represent the radii of inner and outer caustic, respectively.

236
Solution:
I > ]
_|re 1
v 2 42
5 -1
[ !
4 ye
Thus, as| — 0
5 1 I
ry = o
v 2y
and
5 ] ne — g2
ry = ~ 2y = i P
V= L ¢
which is consistent with equation (23.29).
23.7

B[ ,.dy

=5 [X(z)m - v(z)
a dz

dx
dz

}

Solution: Since tan ¢ = y/x, we have

d 1 dy
sec” Y Ld - -4
dz xdz
But
- 2
sec ¢ =1 +tan" ¥ =1+
Thus
S dyr dy dx
" _ X
dz dz Y dz

v dx

x2dz

Hi%ﬁ
[

ted

Show that in the limit of B — 0, the ellipse degenerates to a straight line.

Using the Cartesian system of coordinates, show that the invariant [ is given by

(23.60)

i\‘.
[

b
[

a2
i
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If we now use equation (23.10) we obtain equation (23.60). We may point out
that if we replace z by the time coordinate, then the invariant I is directly related
to the z component of angular momentum in classical mechanics.

738 In Section 22.4 we showed that the general ray path in a square law medium
can be written in the form

x(z) = Asin(l'z + 1)

y(z) = Bsin(l'z + &)

where
r— mv2a g
p p
Using the results of the previous problem, show that
- AB .
[ =nv2A — sinffy — 67) (23.61)
a2

1
EiS
o

For a helical ray we may write

B=A. 6 -6 =

o A

so that x2 + y? is independent of z. Thus, for the helical ray

-

s

I =nv2A = (23.62)
a

Fora = 25 um, ny = 1.45, A = 0.01 calculate the values of { for helical rays
taunched at distances of 10, 15, and 20 pxm from the axis.

[ANSWER: == 0.0328, 0.0738,0.1312 ]

Note that the axial ray (A = 0) is a helical ray with I=0.
23.10 Consider a parabolic core profile (g = 2) with ny = 1.5, A = 0.01, and a =
< 40 pum. Assume [ = 0 and plot f(r) for B = 1.6, 1.49, and 1.46. Show that no
ray path is possible for B = 1.6 and that B = 1.49 and B = 1.46 correspond to
a bound ray and a refracting ray, respectively.
23.11 (a) For askew ray inside a step index fiber, show that the radii of the inner and
outer caustics are given by

]
r=rp={=}a and r=r =a (23.63)
I
where
I = Jni - B2 (23.64)

represents the value of | corresponding to the helical ray.

(by Consider a step index fiber with n} = 1.5, A = 001, and a = 30 um.
Calculate the cladding refractive index and ry and r for A = 1.49 and
[ = 0.06. Repeat the calculations forl =0.2.

[ANSWER: np = 14849, ) = 10.4 um, ry 2 30 um. For [ = 0.2,
ray paths cannot exist in the core.]
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23.12  Determine the conditions for launching of a helical ray in a parabolic index fiber
and show that if the helical ray is launched at r = r;, < a/+/2, we will have a
bound helical ray, and if the helical ray is launched at r = rj, > a/+/2, we will
have a tunneling helical ray.

Selution: Inside the core of a parabolic index fiber we have

fory=n?l1—2a(% 2 - B - r forr <a
o a (r/a)? N

or
22
flp)y= (n% o ,32) — (ZA)n?p2 - ;5 forp < 1
where p = r/a. The value of p (=pq) at which f{p) attains its maximum value
will satisfy the equation

% =0=—@Aamip+ %2

or
72 1/4

oy = [211%AJ (23.65)
Thus

fipoy = (n} = B%) = 2T V2R
Obviously

I ?:ﬁ_—BZ (g=2) 23.66)

<1y VTN q , (23.66)

The distance at which the helical ray occurs is given by

"_h:ph:[ i TM (23.67)

a 203 A N
or

a n% — p? i ,
ry = = (T) (g =2) (23.68)

Thus, for a ray to be helical at a distance of 7, from the axis, the value of
should be given by

R HE
B:nl[i w4A('—’i) } (23.69)
o

From the above equation it readily follows that

a -
r;,<?$ng<ﬁ<n;
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and we have a bound helical ray. On the other hand
L= p
b > —= < 13
i \/ﬁ = 2
and we have a tunneling helical ray.

2313 Consider a paraboelic index fiber (¢ = 2) with n) = 1.47, A = 0.01, and
a = 25 um. Determine the value of I, for § = 1.46 and 1.44 which would
correspond, respectively, to a bound helical ray and a skew helical ray.

[ANSWER: 0.07047,0.21.]
23.14 (a) Por a skew ray inside a parabolic index fiber, show that the radii of the
inner and outer caustics are given by
I 1/4 : . 1/2
F=r = I — il —1 :| a (23.70)
n%(ZA) [ \/ h
and
| 4 I
Fr=ry = l +\/i“~1~:1 a (23.71)
nl(2A) [ A
where I, is given by equation (23.30).
(by Consider a parabolic index fiber with ny = 147. A = 00l and a =
25 pum. Calculate ry and o for B = 1.46and{ = 0.035.
[ANSWER: ry = 20 um, rh = 5.29 um.|

23.15  Consider a power law profile with § < no. Show thatif 77 < n;-_ — B2 fla) =0
and we have a refractive ray. On the other hand, if 7* > n% — B2, fla) < Oand
we have a tunneling ray.

23.16  In Section 22.4.2, using Cartesian coordinates, we derived the condition for a

helical ray in a parabolic index fiber. For a ray launched in the y-z plane at
x = rpy. v = 0, a helical ray is described by the equations

reosyr =x =rpcosiz (23.72)
and

rsiny =v=rysinlz (23.73)
where

2 VIA
P (23.74)

ap

Show that the above equations are consistent with the results derived in Prob-
lem 23.12.

Solution: At 7 = 0, if the ray makes angle 6" with the z-axis, then

dy

tanf’ = =,

dz o=

Now

B = n(r = f';;)COS(),
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implying

or

Thus

sec’’ = f—(—r:ﬂ = Z’— 1—2A (%)2
B? B2 La

=20 [1 —2A (r—”)J

ni — p? e a [ '
T f ; .
rp = = = f=n|1-4A
1 ;’[i‘ [ / | (

where we have used equation (23.74). The above equation is consisteni with

equation (23.68). From equations (23.72) and (23.73) we readily get

or

It we now use equations (23.10) and (23.74) we obtain for the helical ray

or

23.17 Consider

Solution:

Thus

Y(z)=Tz74+2mn

=T

aly niV2A

— =1 = =
Bry ap
N -
7, - ny — p*
=
2riv/2A

(23.75)

{23.76)

a parabolic index fiber with n] = 1.46,a = 25 um, and A = 0.01.
Al what angle should a ray be launched (at x = a/2, v = () so that the ray s
helical? Will the ray be bound or tunneling?

ny =no(1 —2A)" 1% ~ 1.4748

1/2
i 1/2\°
B=n l~4A(E—/—)} ~ 1.4674

o«

=0 =cos '(B/n) = 4.06

Thus, the ray should be launched in the y~z plane making an angle of about 4°
1o the z-axis.
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23.18

In the Lagrangian formulation, choose » as the independent co-ordinate and

derive equations (23.7) and (23.10).

Solution:

ds = [(dr)® + (rdy)* + (d2)%]/?

= [L+ 797 + 271 dr

where dots now represent differentiation with respect to the r coordinate. The

optical Lagrangian is thus given by

L =n(r[l +riy* + 27172

and the Lagrange’s equations give us

d (0L oL 0o dz 5
— e T3 H— =
dr \ 07 dz ds
and
d /oL 9L 0
dr \avr ) dy
implying
oL P’H"zk}f
N N R
or

S d S dz
=Nt — —
ds dz ds

If we now use equation (23.78), we get

prd?

dz

= an invariant of the ray path

= an invariant of the ray path

= an invariant of the ray path

(23.77)

(23.78)
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24.1 Introduction

In any optical waveguide such as a planar waveguide or an optical fiber, guidance
of light takes place through the phenomenon of total internal reflection. For this
to happen, the guiding region has to have a refractive index larger than the
surrounding regions. In a class of waveguides called leaky waveguides, the low
index surrounding region has a finite thickness comparable to the penetration
depth of the guided field, and beyond this distance the medium has an index
equal to or greater than that of the guiding region. In such a case, the waves do
not undergo total internal reflection and, thus, the reflection coefficient 1s less
than unity. Such a phenomenon is known as frustrated total internal reflection
(FTIR). Hence, in such waveguides, there are no perfectly guided modes. On
the other hand, such waveguides have leaky modes that are characterized by a
finite loss coefficient. Such leaky modes find applications in the realization of
many devices such as in-line fiber polarizers (see Section 17.5.1). We also see
in Section 24.5 that a bent waveguide is a leaky waveguide, and the loss due to
bending can be understood as due to a leakage mechanism.

In Section 24.2 we discuss the leakage loss calculations using the ray picture,
and in Section 24.3 we discuss the concept of quasimodes. In Section 24.4 we
discuss the matrix method to numerically obtain leakage loss. Finally, in Section
24.5 we discuss the bending loss in optical waveguides.

24.2  Leakage loss calculations: approximate theory

We first consider the transmission of a (y-polarized) plane wave propagating
in a medium of refractive index ny and incident on a layer of refractive index
ny and of thickness £ (see Figure 24.1). The electric field (assumed t0 be in the
y-direction) is given by
SIZ[ET«EME(M COs ¢y )x + E;{H‘(k, cmq‘;])‘\'jl e{({u[mﬁ:) <0
“2:[E;-€A—i{kg COS g dx + Egeﬂ(kg cmd)g),\'] ei(mr-»ff:) 0« x < h

ggz[g-’?‘e’—[{fﬂ(‘thbE )(.r-wh)] gi(tulfﬁf.) x = h
(24.1)
where

ky =niko, k&
B =kising =k

o K=t (24.2)

=R

[}
(0]

sin ¢y

[
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Fig. 24.1: A medium of
refractive index ny (of
thickness k) sandwiched
between two media of
refractive index n.

giving

kﬁ = 71y 8in ¢y = n; singy (24.3)
0

In equation (24.1), Ef and £ (i =1, 2, 3) represent the amplitudes of the

plane waves propagating in the +x and —x directions, respectively. When ¢,
is greater than the critical angle, sin¢, > | and cos ¢ will be imaginary.

ka cos ¢r = ko

n% - il% sin“ g =iy (24.4)

where

y =/ B —kin3 (24.5)

The fields can therefore be written as

& = [E?'()“fﬂ'.\’ + Elfeﬂkik‘x] {)i(mt—ﬂﬂ ¥ <0
& = {E,_Tey"' -+ E;e‘”} el =Bo) O<x<h (24.6)

Ey = Efe et gllar=p2) x > h

where

ik = kycos ¢y = \/kini — B> (24.7)

Continuity of £, and 0&,/dx at x = 0 and at x = h readily yield

o 1+ %) (1= (ES
A I R TAY
and
+ | — Eyemvh +
E; 2 (l -+ %’})ew 0 0
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Fig. 24.2:

A simple leaky
structure.

X

Elementary calculations would give us the following expression for the tunnel-
ing probability

E+ 2 }/ZKQ
T=|—] ~16 et (24.10)
Ef &
where
3=« +y =ki(n} ~ n3) (24.11)

and we have assumed ¢?"" > 1.

We next consider a leaky waveguide shown in Figure 24.2. A beam will
lose power by tunneling whenever it undergoes FTIR and this will happen after
traversing a distance zq along the waveguide

/
0=dtang, = ¢ (24.12)
K

where d is the thickness of the guiding layer (see Figure 24.2). Thus

AP PT

(24.13)

dz ey
giving

P = pye2 (24.14)
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where

T 8y kie= "

N=—= (24.15)
220 §*B(yd)
The above equation can be put in the form
8b*/2(1 - by V7
= ( ) e 2vh (24.16)
d(Bd)(yd)
where
2 kz 2
p= Pl (24.17)
ny — n;
and

V = kod/n? —n3 (24.18)

representing the normalized propagation constant and the dimensionless
waveguide parameter, respectively. Equations (24.14) and (24.16) approxi-
mately describe the loss of power (associated with a particular mode) as it
propagates through the (leaky) waveguide.

24.3 Leaky structures and quasimodes

In the previous section we gave a simple ray picture for understanding the power
loss in a leaky structure. For a more rigorous analysis, we must understand the
concept of quasimodes, which is discussed in this section; this will be followed
by an analysis of leakage loss calculations.

24.3.1 Quasimodes

We first consider the guiding structure shown in Figure 24.3. We consider
only the antisymmetric modes; the symmetric modes can be considered in an
identical manner. For TE modes, we write

Eox. 2, 1) = Pe(x) el @ (24.19)
where
Yo(x)=Ag sinkgx 0 < |x} < d/2}
=LA sin (ed /2) e YD x| > d /2
(24.20)
with

ke = JKanT — BE ve =B} —kom (24.21)



24.3 Leaky structures and quasimodes 511

Fig. 24.3: A simple planar ¥
waveguide.

and f, represents the propagation constant, which is determined from the tran-
scendental equation (see Section 7.3)

L=sin (i, 2) + % =0 (24.22)
= sin | K, — ~2 o8 f k= | = 22
2 Ve © 2
Obviously, ¥, (—x) = —,(x). The normalization condition
+00
f [V ()P dx = 1 (24.23)
—00

readily gives

A, = (mlé’__)w (24.24)
: 1+ y,d/2

We next consider the leaky structure shown in Figure 24.2. Obviously, there
are no guided modes and all values of 82 < k2n? are allowed; these form the
continuum radiation modes of the system, The solutions for the (antisymmetric)
TE modes are given by

Yg(x) = Asinkx O0<|xl<d/2
— BetrG—id) 4 Comrtimydy % <X < % +h

=D, gik(.xfédfh) +D e_i}c(x~%df}1) > 4 +h
(24.25)

with x and y defined through equations (24.7) and (24.5). Continuity of ¥4(x)
and its derivative at x = d/2 and at x = d/2 + h give us

B = %A[Siﬂ(!{d/Z) + geos(xci/Z)} (24.26)
C= %Al:sin(xd/Z) K cos(Kd/Z)} (24.27)
y

| 1
DI =D, = *B{E + %:I e’ ;C(E — 1) o Vh (24.28)

2 ix
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The orthonormality condition of radiation modes

+ 0
/ W) Ya(x) dx = 8(8 — B) (24.29)
gives us
1Ds] = 22 (24.30)

Now, if we assume y/ > 1, then the exponentially decaying term in equation
(24.28) can be neglected, and in this approximation

* 1 )j i - .
DY =D, = ~-LA[1+4+ = )¢ (24.31)
4 i
where
L = sin(ed/2) + = costid /2) (24.32)
Y
It is readily seen that since y A >» 1, unless L ~ 0,

Dy
e | 55| (24.33)

A

implying that the amplitude of the field is large in the region x > (£ + h).
However, for g values such that L = 0 (1.e., when the condition for-guided
modes are satisfied — see equation (24.22)), then B = 0 and we have only the
exponentially decaying solution in the region % < x < h+ % (see equation
(24.25)) and the oscillatory field in the region x > (% + h)is very weak. Thus,
when

L=0=8B

the field has the properties of a guided mode in regions I and Il becoming
oscillatory in region HI. We refer to the modes corresponding to B = 0 as the
quasimodes.

24.3.2 Leakage of power

We next consider the incidence of a guided mode of the structure shown in
Figure 24.3 on a leaky structure as shown in Figure 24 .4, Thus

Wi, = 0) = P(x) (24.34)

Such an incident field would excite a packet of radiation modes and we may
write

Yix,z=10)=Y,(x) = f(b{ﬁ)wﬁ(x)dﬁ (24.35)
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Fig.24.4: A guiding  For 7 > 0, the field will be given by
structure followed by a
leaky structure.

Yr(x,z) = f H(B)Ys(x) e P dp (24.36)

To determine ¢(f), we multiply equation (24.35) by w;.(x) and integrate over
X 10 obtain

[ v = [apow [acpicon

_ f dB (B S(B — B') = (B

where use has been made of equation (24.29). Thus

P(B) = / O dx (24.37)
0

As discussed earlier, it is only around 8 ~ B, that ¥3(x) has almost the same
spatial dependence as ,(x) in regions 1 and II (see Figure 24.2) and therefore
in equation (24.37) ¢(B) will be appreciable only around 8 ~ g,; this we will
explicitly find later. Thus, we may write

Yp(x) = (A/Ag ), (x) regions I and I (24.3%8)

For convenience we write
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XB—_d—‘f‘h
. P

Since in region HI (x > x2)(x) has a negligible value, we may neglect the
contribution from region III to the integral in equation (24.37) to write

P(p) ~ f U d

0

X2

~(AJA) | I (x))Pdx
1]

~ (AJAL) Ve () 2dx = A/A, (24.39)
J
where x; = i + -‘21 In Appendix G we show that around 8 ~ 8,
AP 1 r
BB = l— =— (24.40)
¢’)8 Ag ﬂ(ﬁ_ﬁé)2+rz
where
By licte vk
_ 4}’ 2 (24.41)
3B, (2 + y,d)
By = By + AB (24.42)
(k2 — 2
ap = =) (24.43)

2y

The fractional power W (z) that remains inside the core at z is approximately
given by

o] 2

Wi(z) =~ i Y, OWr(x, z)dx (24.44)

0
which can be evaluated to give (see Appendix G)

W(z) = e 2'¢ (24.45)

The above equation shows how the power inside the core “leaks” into region 11
Equation (24.41) gives an analytical expression for the attenuation coefficient
of the quasimodes. Note that as x» — oo, I’ — 0 and there is no leakage of
power.

Equation (24.41) may be compared with the approximate expression given
by equation (24.15). If we replace d by (d + 2/y,) in equation (24.15), we
get equation (24.41). Since 1/y, represents the penetration depth of the mode
field in the lower refractive index region, ¢ + 2/y, can be interpreted as the
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effective waveguide thickness. The approximate ray analysis will be accurate
when yd 3> 1. We may rewrite equation (24.41) as (cf. equation (24.16))

8b7/2(1 — by /2v?
= e
d(Bed)(2 + yed)

—2nh (24.46)

Now, in Appendix G we also show that

: 8y 1

T Bl + yxy) (B — B+ T

Dy

A
| (24.47)

Thus, if we are able to calculate |A /D |* as a function of B (i.e., as a function
of the angle of incidence in Figure 24.2), we would get a series of Lorentzians,
each Lorentzian corresponding to a quasimode of the structure. By fitting each
peak to a Lorentzian, we would be able to get B, and I'.

In the next section we develop a matrix method to calculate |[A/D.|* as a
function of £, from which we will be able to get the propagation characteristics
(including leakage/absorption losses) even in graded/absorbing structures.

24.4 The matrix method

In this section we develop the matrix method for determining the propagation
characteristics of a leaky (as well as a guiding) structure. The matrix method
can be used to solve the general scalar wave equation

2
v + k2 OY(x) =0 (24.48)
dx?

For example, for the TE modes in a slab waveguide, v(x) would represent
E,(x) and

K2(x) = kP (x) — B2 (24.49)
(see equation (7.23)). To solve equation (24.48), we consider an arbitrary vari-
ation of «(x), which we replace by discrete steps as shown in Figure 24.5. The
solution in the jth region is given by

Yi(x) = AT 4 BreTiumAn (24.50)

where «; is the value of x(x) at the middle of each region with

Ar=0; Ary=0; As;=D
Ay =Dy 4+ D3; As = Dy + D3+ Dy, and so forth
(24.51)
Obviously, if «2 is a negative quantity, « will be imaginary, and the first and the

second term on the RHS of equation (24.50) represent exponentially decaying
and amplifying solutions, respectively. Now, if «2(x) does not have an infinite
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Fig. 24.5:  An arbitrary
variation of x2(x) is
replaced by a large number
of steps.
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discontinuity at any point, then ¥r(x) and d v /d x will be continuous everywhere.
The continuity conditions at the interface of the jth and (j + 1)th regions will

give
, ) ol
(A/’): Snt Sn (Af+1) (24.52)
)" \sp s/ e

¥ I Kj+l iiD, ] 1 Kjti i
S;;) = {1+ AN (?WM‘}DJ; S;g) B Al e*ihjl)J;
2 K 2 Kj

‘ 1 Kivt \ iep, ‘ 1 Kiv1\ oD
S’();) - (1= ezkjl)J; Sg,g) =1 = 2 GM’D";
- 2 K - 2 Kj

(24.53)

where

With the help of the above equations one can determine all A; and B; in
terms of only two unknowns (say, A,, and B,,). Thus

A] ol (2) {(m—1) ‘Am . Am
(BI)WS S o 8 B, = (7 B, (24.54)

where
G=SsVs®. ... s (24.55)
If k2 is negative in the right-most or left-most region, then in a physical problem

the coefficient of the exponentially amplifying solution in that region should be
Zero.
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Fig. 24.6: A symmetric
waveguide characterized by
equation (24.58) with

ny = 1.503, n, = 1.300,

d =4 um, and

dy =24 um,.
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Assuming that x? is negative in the right-most region (say, mth), we may
g g g g b y

write
A _ Gy Gy A, -
(Bi) B (Gzl Gzz)( 0 ) (24.56)
and
ol -w (24.57)
A G ? 24

Thus, ¥ (x) is known in the entire region of x apart from a multiplying constant.
The only approximation in the above procedure is that x2(x) has been assumed
to be constant (:/{}) in each region. By choosing sufficiently small values of
D, one can obtain extremely accurate variation of ¥ (x). If equation (24 .48) is
an eigenvalue equation so that x2(x) contains an eigenvalue parameter, then one
may use a method similar to that described in the following simple example,

Example 24.1: We first consider a (symmetric) waveguide character-
ized by (see Figure 24.6)

nr, dy <x <d +d .
nixy = (24.5%)
n7, x<d & x>d +d

Actually, the value of ¢, can be arbitrary; it just shifts the origin. If
we assume 1y = 1.503, ny, = 1.500, d = 4pum, and 1, = 1 gom,
then elementary algebra shows that the waveguide will support one
TE mode with 8/ko = 1.50159 (see Example 7.1); the corresponding
value of b >~ 0.531223,

To solve this problem by the matrix method we first note that,
corresponding to a guided mode, both «{ and «7 should be negative.
Considering region I1I we therefore must have

By =0
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n(x) & THE QUASIMODE
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x/d

so that there is only an exponentially decaying solution in this region
(x > di + d). One can now determine A, with the help of equation
(24.56) as a function of b, which we vary from 0O to 1. Since Klz 18 also
negative, A represents the coefficient of the exponentially amplifying
term in region [, and therefore we must have

A =0

One then finds out the value of b so that the above equation is satisfied.
The value of b so obtained is 0.531223 (8/ k¢ = 1.50159).

Example 24.2: We next consider the waveguide of Example 24.1 and
make it leaky by introducing an infinitely extended layer of refractive
index n;(=1.503). Thus

ny, x<d—d & dy<x<di+d
nix) = (24.59)
ny, di—di<x<d & x>d +d

Figure 24.7 shows the above refractive index distribution with
di/d = 2 and d>/d = 2. The above structure is no more a guid-
ing structure and, as such, no guided mode will exist. All values of g
(and therefore b) are allowed and the modes are called the radiation
modes. As discussed earlier by taking

By=20

one can determine the field in the entire region apart from a multiply-
ing constant. Figures 24.7 and 24.8 represent the radiation modes for
B/ ko = 1.50159 (which is the quasimode) and for 8/ky = 1.50156,
respectively. We see from the two figures that the field pattern for the
quasimode is almost the same as that of the guided mode (shown in
Figure 24.6) (except for the weak oscillatory behavior in the leaky re-
gion); however, if we go slightly away from the quasimode, the nature
of the field pattern changes drastically.

Fig. 24.7:  The refractive
index distributicn of the
leaky structare given by
equation (24.59) and the
field distribution of its
quasimode.
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Fig. 24.8: A typical
radiation mode of the leaky
structure given by equation

(24.59) with 8/ ko =
1.50156, which is only very

slightly different from that
of the quasimode
(=1.50159).

n (x) & THE RADIATION MODE

1.503 |
1.50156

1.5¢

x/d

Following the analysis given in Section 24.3.2, if we plot [A4/A,|* as a
function of B (or &), we will obtain a sharply peaked Lorentzian very close to
B of the guided structure. Since the structure is leaky, there will be a loss of
power from the core, which is given by

P(z) = Pye** (24.60)

where 21" is the FWHM of the 1A4/AEE2 versus B curve. If |A4/A % is plotted
as a function of b, then the quantity " is directly related to the FWHM of the
corresponding Lorentzian, 2Ab.

2

2
ny —ns 2w

- (24.61)
2(B/ ko) ro ) '

As we increase the value of d», the Lorentzians become more sharply peaked
and the peaks occur at values of & closer to the value of b for the corresponding
guided structure. As d» — 00, ' — 0 and the peak occurs at the value of b for
the guided mode. We explain the above concept through Example 24.3.

Example 24.3: We consider the leaky waveguide represented by equa-
tion (24.58) with the following values of various parameters (see Fig-
ure 24.9(a))

ny = 1.503; ny=1500; d=—4um 4
(24.62)
dy=4um and ig=1pum
As discussed earlier, we plot |A4/A,|* as a function of b, which is
shown in Figure 24.9(b). The shape of the curve is Lorentzian and
the peak occurs at b = b, = 0.531776. This may be compared with
borae: (=0.531223), the value of b for the corresponding guided mode.
The value of I" comes out to be =1.528 cm™', which means that half
of the power from the core leaks into the cladding in distance 7y =
0.227 cm.
If we now increase the value of @, to 12 pm and repeat the above
calculations, we will obtain the |A4/A | versus & curve as shown
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in Figure 24.10. The peak now occurs at b = b, = 0.531223 — that
is, almost at b = b,ur — and T comes out to be =0.00149 em™!,
which gives zy = 232.6 cm. This shows that increasing the separation
between the leaky layer and the core results in the decrease of the value
of I and, hence, of the leakage loss.

Example 24.4: We repeat the above example with 4y = 0.5 um
and d» = 4 pm (see Figure 24.11). Simple calculations will show
that the corresponding guiding structure (dy = o0) will support two
guided modes with b ., = 0.789584 and 0.238762 for the first and
second modes, respectively. The A4/ A | versus b curve for the leaky
structure (d» = 4 ;zm) has been shown in Figure 24.12. It may be seen
that the peak corresponding to the first quasimode is much narrower
than the peak for the second quasimode. This is expected because the
first mode will be more tightly bound to the core than the higher order
mode. Thus, I" and, hence, the leakage loss for the second quasimode
will be much higher than the first mode.

Example 24.5: We next consider an example of an inhomogeneous
refractive index profile. Let the refractive index profile be given by
(see Figure 24.13(a))

1.0 x <0

A 24.63
n% + (n‘f — n%) e x>0 ( )

n(x) =

Fig. 24.9:  The lower part
of the figure shows the
variation of [A4/A | with
b corresponding to the
leaky waveguide whose
refractive index variation is
shown in (a).
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Fig. 24.10: The lower part
of the figure shows the
variation of |Ag/A|* with
b corresponding to the
leaky waveguide whose
refractive index variation is
shown in (a). [After Gharak
and Goyal (1994)].

Fig.24.11: A leaky
structure with two
quasimodes. The dashed
horizontal lines represent
the propagation constants of
the corresponding guiding
structure.
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To apply the matrix method, the inhomogeneous region is replaced
by a number of slabs of homogeneous refractive indices as shown
in Figure 24.13(b). We also make it leaky by introducing an infinitely
extended layer of refractive index n beyond a certain value of x, which
we choose as x = 2d. Following the procedure of previous examples,
we calculate |A7/A|* as a function of b, which would nearly be a
Lorentzian; the FWHM of the Lorentzian would give the leakage loss.
If one puts the leaky layer at a larger distance from the core, the
peak will come closer to the value of b corresponding to the guided
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15! mode 6093.7 ; Fig. 24.12: In(a) and (b)
we have plotted |A4/ Ay Ez
& versus b for the two
quasimodes of the
waveguide shown in Figure
24.11. Note the difference
in the scales of the two
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mode. Increasing the number of steps will improve the accuracy of
calculations.

24.4.1 The general procedure

What we describe now is a general procedure applicable to structures that could
be either leaky or nonleaky with or without absorption.

(1)

2

(3)

4)

If x2(x) in equation (24.48) is completely known — that is, it does not
contain any eigenvalue parameter — then the procedure described in
Section 24.4 1s followed and one can determine v (x) in the entire
region apart from a multiplying constant. If, however, an eigenvalue
parameter exists in K°(x) (see, e.g., equation (24.49)), we proceed as
follows.

If the structure is nonleaky, then we artificially introduce an infinite
leaky layer (see Figures 24.7 and 24.13(b)) of refractive index equal to
the largest value of the real part of the refractive index in the guiding
region.

Following the procedure discussed earlier, one plots |A,,/A;|* as a
function of 8, where m refers either to a layer in the guiding region
or to the region where there exists only an exponentially decaying
solution. The plot will be nearly a Lorentzian peaked at § = §,, the
real part of the propagation constant of the quasimode of the structure.
The FWHM of the Lorentizian will give 2T".

If the given structure to be analyzed is leaky as well as absorbing, then
its propagation constant g will be given by

=8 — il (24.64)

The accuracy of calculations may be increased by increasing the num-
ber of steps in the inhomogeneous region of the refractive index.

The following particular cases may arise.

()

(i1)

If the structure to be analyzed is nonabsorbing but leaky, then 5,
represents the propagation constant of the quasimode and power from
the core leaks into cladding as given by equation (24.60).

If the structure is nonleaky, then by increasing the separation between
the guiding layer and the artificially introduced leaky layer, the position
of the peak and the width of the Lorentzian will approach to certain
fixed values. If the structure is nonabsorbing, I" will converge to 0 and
B, will tend to the propagation constant of the given guided structure.
Thus, there will be no loss of power as the mode propagates. On the
other hand, if the structure is absorbing (i.e., it n(x) is complex},
then I” will converge to a finite value [see, e.g., Ghatak, Thyagarajan,
and Shenoy (1987) where an air-polymer-metal waveguide has been
analyzed]. In this case also the loss of power will again be given by
equation (24.60), but now the energy does not leak from the core; it is
being absorbed in the structure as it propagates in the z-direction.
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We should mention here that even for an optical fiber characterized by the
(cylindrically symmetric) refractive index variation n(r), the radial part of the
wave equation (see equation (8.11)).

;dr

1 d dR
dr

’._,il -+ [ké nz(r) _ ﬁz _ %}R(r) = {) (24‘65)

can be transformed to

1? 5 ‘
P ury =0 (24.66)
dr?
where
w(r) = rR(r) (24.67)
and
2 1
) = kinr) - —= (24.68)
r

Equation (24.66) is of the same form as equation (24.48) and the matrix method
can easily be applied for the analysis of leaky as well as nonleaky structures
[Shenoy, Thyagarajan, and Ghatak (1988)]. The matrix method has also been
applied to absorbing waveguides [Ramadas et al. (1989a)], to study whisper-
ing gallery modes [Goyal, Gallawa and Ghatak (1990)], nonlinear waveguides
{Ramadas et al. (1989b)], ARROW waveguides [Pal (1993)], DIC fibers, and
also quantum well structures [ Ghatak, Thyagarajan, and Shenoy (1988), Ghatak,
Goyal, and Gallawa (1990)]. The technique, for example, when applied to quan-
tum well structures, not only yields the energy eigenvalues and the wave func-
tions but also makes an accurate prediction of lifetimes of quasi-bound states.

24.5 Calculation of bending loss in optical waveguides

Bending loss calculation is a topic of great interest in optical waveguides. We
show that a bent waveguide is essentially a leaky structure and therefore the
theory developed in the previous section can be used 1o calculate the bending
loss. We follow the analysis given by Thyagarajan et al. (1987a, 1987b).

We consider a planar waveguide that is bent along the arc of a circle of radius
p as shown in Figure 24.14. We assume the validity of the scalar wave equation

Vi +kinty =0 (24.69)
We use a cylindrical system of coordinates (r, ¢, z) whose origin is at the center
of the arc. The refractive index depends only on r and, since the waveguide is

of infinite extent in the z direction, we may neglect the z dependence of the
fields. Thus, we assume a solution of the form

W = R(rye 'Pr? (24.70)
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Fig. 24.14: The ¥
coordinate system for a
bent planar waveguide.
Fig. 24.15:  (a) The solid
line gives the effective
refractive index profile
corresponding to a bent slab
waveguide. The dashed line
gives the corresponding
profile when the waveguide
is straight. (b) The effective g
profile replaced by a large
number of homogeneous
fayers.
a) Ay B Ay Ay 7y
A\
{b) n
and substitute in equation (24.69) to obtain
L d [ dR 2 2 B
——r— )V + |t kin(r)— R(ry=0 (2471
rdr\ dr v r?

Obviously, inthe limitof p — oo, g will correspond to the propagation constant
of the straight guide. If we write

R(r) = u(r)/\/r (24.72)
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equation (24.71) becomes
d*u/de? + [kgi* (&) — B2 lu€) =0 (24.73)

where £ = r — p and

Y g Pt :
) _ o L . 2474
ANE) =n (’"”{kg[ (p+g)2}+4kg(p+§)2} R

We should point out that the only assumption made in obtaining equation
{24.73) is the validity of the scalar wave equation. Equation (24.73) repre-
sents a one-dimensional wave equation and, because of the form of A%(£) (see
Figure 24.15(a)), it cannot support a guided mode. The waveguide is therefore
leaky and we may use the matrix method to determine the bending loss. We
replace the effective refractive index profile 71(§) by a series of step variations
as shown in Figure 24.15(b) and consider the incidence of a plane wave from
medium 1 (as shown in Figure 24.15(b)), which is given by E, &6 =87 where
kie = kofi1cos @, B = koit; sind, and n = p¢. We next calculate the quantity
|E;"/Ef”iz as a function of f; here E is the amplitude of the downward trav-
eling plane wave in the jth medium which, in this case, is taken as one of the
layers lying inside the core of the waveguide. The quantity |E7 /E|"|* will be
sharply peaked around each quasimode and will be a Lorentzian function given
by

E P2

Ef

I
~ (24.75)

(B-p) +12

where f, is the propagation constant of the quasimode and 2I" (which represents
the FWHM of the Lorentzian) represents the leakage loss of the mode — that is,

160175

Fig. 24.16:  Typical
variation of [E}L/Efr 12 asa
function of B for p = | cm
corresponding to the
waveguide defined by
equation (24.74), The peak
corresponds to ﬁ;, and the
FWHM, 2I" gives the loss
coetficient of the bent
waveguide; j corresponds
to a layer inside the core of
the waveguide.
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Fig. 24.17:  The effective
refractive index profile of
the planar waveguide
defined by e¢quation (24.75)
and the corresponding field
distribution of the
quasimode for a bend
radius of p = 0.5 cm.

Fig. 24.18: Variation of
bend loss with radius of
curvature for a planar
wavegnide defined by
equation (24.76). [Adapted
from Thyagarajan et al.
(1987b).]

we)
Yinan

1

J(} W

0.5 % 107

1.5 108

1.0x 10
p/a

the power inside the core would decrease as P(¢p) = P(0)e™>"*%_Since A2 also
appears in the expression for A%(£), one can use the following iterative method.

We first substitute the value of B corresponding to the straight waveguide in
equation (24.73), calculate ﬁé and I' using equation (24.75), then replace B in
equation (24.74) by the obtained value of B, and iterate until the value of B,
converges. The iterated values of ,6‘; and I" will give us the propagation constant
and loss of the quasimode of the bent waveguide.

As an example, we consider a step index slab waveguide with [Thyagarajan,

et al. (1987b)]

13
n(x) =

Hy
d=4um

= 1.503;
= 1.500;

x| < d/2

(24.76)
x| > d/2

and ;t() = | Mm

sothat V. = (27 /g )d(nf —n%)‘/2 ~2.385 and therefore the straight waveguide
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will support only one guided mode. Figure 24.16 shows a typical variation of
|EF/E[|?asafunction of B for p = 1 em. In the calculation /i (£ ) was replaced
by 100 layers, which gave a convergence of one part in a million. Figure 24.17
shows the calculated field distribution for the quasimode, which clearly shows
the shift in the peak of the modal field as well as the oscillatory behavior from
the value of & at which (&) > fB/ky. Figure 24.18 gives the corresponding
bend loss variation with bend radius.



Appendix A

Solution of the scalar wave equation
for an infinite square law medium

For an infinitely extended square law medium

n’(x) = ni[l — 2A(x/a)’] (A1)
the scalar wave equation

d*yrjdx® + [kgn(x) — B2 g(x) =0 (A2)

can be written in the form

d*yr/dE? + (A = & Y(E) =0 (A3)
where
E=yx, y=[Knlernya]" (A.4)
and
L T "
y? (kony fa)2A)1/z

Equation (A.3) is the same as one obtains in the linear harmonic oscillator
problem in quantum mechanics [see, e.g., Ghatak (1996), Chapter 7]. To solve
equation (A.3) we write

Y(E) = e F P uE) (A.6)

Elementary manipulations give us

L2 (A DuEr =0 AT
dé‘z - dé uigj) = ( . )

We solve the above equation by the power series method.

() = Zflré'vﬂ = &ap + a1 +argt + -] (A.8)

¥

Substituting in equation (A.7) we get

s —1)ay =0 (A.9)

sts+Da, =0 (A1)
and

arpy 2+ 2s+1-—A AL

a. (s +Dr+s+1)
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According to one of the theorems in the theory of differential equations, since
the root s = 0 (of equation (A.10)) makes @ indeterminate, it should determine
both the solutions. Further, in the limit of r — ©0; d@y42/a, tends to 2/r and
therefore it behaves (for large r) as ¢t Thus, for 1 — 0as x — oo (the
condition for a mode to be guided), the infinite series in equation (A.8) should
become a polynomial and therefore we must have

A=2m+1 m=0,1,2,... (A.12)

Form = 0, 2.4, .. .the series involving even powers of £ becomes a polynomial
and we must set a, = 0. Similarly, for m = 1, 3,5, ... the series involving odd
powers of & becomes a polynomial and we must set ap = 0. These polynomials
are the Hermite polynomials (see equation (7.122)) and because of equation
(A.6) the field patterns are the Hermite—Gauss functions. If we normalize these
functions we obtain equations (7.118)—(7.122). Substituting equation (A.12) in
equation (A.5) we obtain

5 k
B2 = kind — LA P@m 1) m=0.1,2,... (A13)

m
a

which represents the allowed values of the propagation constant.



Appendix B
The far-field pattern

For anear-field pattern v/ (x, y), the far-field pattern is given by [see, e.g., Ghatak
and Thyagarajan (1989), Chapter 5]

+00
u= cff Y€, e ETT gg dn (B.1)
— 00

where

X y
[=— and m= =
r/ r/

represent the x- and y-direction cosines of the observation direction and kg, is the
free space wave number. Since the fundamental mode distribution of a circular
core optical fiber is cylindrically symmetric, the far-field pattern will also be
cylindrically symmetric and we may calculate the field distribution along the
x-axis for which m = 0 and [ = sin 6. Thus

+00
U= C/f Wik n) et de dn (B.2)

—00

Since ¥ depends only on the cylindrical r coordinate, we change over to the
cylindrical system of coordinates.

E=rcosp, n=rsing (B.3)

and obtain

o0 2m ) )
u=C / rdr [ dep Yr(r) eforsinficose (B.4)
0 0

Now

1 2n o
Jo(g) = 5}-{/ €' dg (B.5)
0

and equation (B.4) becomes

u(@y=2nC Y (r)Jolkorsin @y dr {B.6)
0

which represents the far-field pattern. The above equation can also be written
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n the form
o
u(g) = 271'Cf Wirylolgr)rdr (B.71)
0
where
2
g = kysinf = i sin @ (B.8)

Ag

The field pattern for a step index fiber is given by

Jo(5)
’ i O<r<a |
Yir) = () (B.9)
3] e
oo > a

Substituting from equation (B.9) into equation (B.6) we get

) 2nC [/“J (Ur)j( rd
i == r— ryyar
T Jo \a )M

JoUy [~ Wr ' ‘
+m ) K()(ng—)j“(q}”)r di:f (Bl(})
or
) Q”Cf‘"z“l I U Jo@t)E dg
u g o
J()(U) 0 (J 4] 5
TlU) [ Wy (@{)C dc] (B.11)
K()(W) | 0 ¢ 0 ¢ . ;
where

. ¥
o =qga =kpasingd and ¢ = —

The field amplitude along the axis — that is, # = 0 —1is

0) Z”C“z[ f o de + 29 %K(Wz)cdc}
i p— e
gy Ll T T keowy o R0
(B.12)

Using the relations

d o

Ew[xf, ()] = x Jy(x)

1 x (B.13)

d ]
' [xK ()] = —xKo(x)
dx
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the integrals in equation (B.12) can be evaluated to give

1 () =

27 Ca? [J](U) N J(}(U)KI(W):I
J(}(U) U WKO(W)

B 20 Ca® ()

= U?+ w? B.14
7o) UWQ( + W) ( )

where we have used the relation (see equation (8.34))

Sy W Ky(W)
JoU) Ko(W)

(B.15)

which determines the propagation constant. Hence, the relative far-field pattern
is given by

[ o JoU O olet)t dt + 290 [ Ko(W o) o(wt )t dt |

H)err2
L2 + W?)

(B.16)

The integrals appearing in equation (B.15) can be solved by using the following
standard integrals

/ 2 plaz) ) (B2)dz = -rz—j[ﬁl,f(am-/p—g(ﬁz}
ac — B*
— o dp(wz) Jp(B2)] (B.17)
/zJ[l(aZ)Kp(ﬁZ)(]Z = MI(XK;)(ﬁZ>J])+-}(aZ}
- ﬁjp(aZ)K1>+X(ﬁZ)] (B.18)
2,
/zj(f(az)dz = —2—[.15(013) + le(az)] (B.19)

Thus

aJo(U) /i) = UJ_((U)Jp(a)
2z
‘-

1
/ R Iet)e d; = TR
4] -

_ VLU Joa) — ado(U)J (@)
U2 — @2
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For U = o we have

I 2 2
f R dy = 20200 (B.21)
0
Similarly
f Ko(WE)Jolad)t de
1
z >
= M[HKO(WC)Jl(@C) = Wlh(af)K (W) 1
_ W) K1(W) — aKo(W) () (B.22)
W2+ a?
Hence
1 X0
Jo(U)
JoU ) J dt + Ko(We)J, d
L o(UE)olag)s dE KoW) /. oW Jolal) deg
(W2 UHU ) Jott)
= U W @) [Jg(a) - aj}(a)UJI(U)] (B.23)
where we have used the eigenvalue equation
S (U) :WKE(W) (B.24)
Jo(U) Ko(W)
Hence, we obtain fora # U
| Urw? Jo) 717
16 = {(U2 — o) (W2 +a2}[JO(a) —od (Q)U.II(U)H
(B.25)

For ¢ = U, the first integral in the numerator of equation (B.16) is given by
equation (B.19) and the second integral becomes zero on using equation (B.24).
Thus

Uw? o1 2

10) = {\—— [T S for o = 26
(¢) X Ujl(U}[JO(U)JrJ,(U)] ore=1U  (B.26)

where

VIi= U+ W2 =kja*(n] — n3) (B.27)
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WKB analysis of multimode fibers
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C1.2 Group velocity and group delay per unit length 538

The WKB method is applicable to multimode fibers that have profiles so that the
wave equation is separable to one-dimensional equations and when the varia-
tion of the refractive index is small in distances ~ . In this appendix we use the
WKB method to study the propagation characteristics of multimode fibers and
determine the time taken by the various modes to propagate through a certain
distance of the fiber. We follow the analysis of Gloge and Marcatili (1973).

C1.1 The propagation constants

We start with the scalar wave equation (see equation (7.23))
d*rfdx? + [kin*(x) — B*]¥(x) =0 (C.1)

In the WKB approximation, the propagation constants ,, are determined from
the relation

2 2 2 2 1
[ [kgn‘(x)—ﬁf‘,ﬂ]/ dx = (m+ 5) 7, m=0,1,2,... (C2)

Now, for a cylindrically symmetric profile (i.e., for n depending on the cylindri-
cal coordinate r only), the propagation constants are determined by solving the
radial part of the scalar wave equation (see equation (8.11)), which, on making
the transformation

Fo=e" (C3
takes the form
d°Rjdx* + ({[n*COk] — p*]} e — )R =0 (C4)

Observe that even though r goes from 0 to oo, x goes from —oo to +00. Equa-
tion (C.4) resembles the one-dimensional wave equation, and the quantization
condition is

f 2 {[nz()f)k{:; . ﬁZ] €2x‘ . 12}!/2 dx = (m + %) T (CS)

where x, and x; are the turning points where the quantity in brace-style brackets
vanishes. Using the transformation in equation (C.3), we can write equation
(C.5) as

f ) [rzz(r)k(z) - B - 12/1”2]1/2 dr = mm (C.6)
1
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where r; and r» are the turning points and we have assumed m 3> 1 so that on
the RHS we replace m + % by m; only then is it possible to obtain an analytical
expression for the propagation constant for a power law profile. Further, the
assumption of / > | and m > 1 implies that we are dealing with highly
multimoded fibers.

For a smooth profile of the type shown in Figure 5.1, the discrete values of
B will lie between kgn and kon, — that is

k()m = ﬁ = kong (C7)

In Figure C.1, we have given qualitative plots of kin*(ry — B% and [?/r?; the
points of intersection are the turning points r; and ry. Now, for a given value of
/. the number of modes will be equal to the maximum value of m (which we
denote by m’) and the value m’ will correspond to the minimum value of B2

" 2 2 2, 271/2 .
m'(l) = (1/;7)[ [k%n“(r} — Brnin — l‘/r“]i/ dr (C.8)
y
Obviously,
ﬁrm‘n " kO”Z (Cg)

The number of modes whose propagation constants are greater than a certain
value of § (say, equal to 8) will be the value of m corresponding to '. Thus,
if the number of modes is designated as m’(I, ), then

m'(, B) (’1/n)f ka2 — B2 =) dr (C.10)
r

The total number of modes (whose propagation constants are greater than ')
will be given by

v(B) =2m'(l =0,8)+4m'(l =1,8)

+ 4”3’([ = 2> )6/) +oee 4‘”1/('!111(1,x’v IBI) (CI I)

Fig. C.1:  Qualitative plots
of k(z,nz(r’) — Brand?/?
versus 7. The points of
intersection give the turning
points.
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Fig. C.2:  The domain of

&
integration appearing in
equation (C.12).

where /,,, denotes the maximum value of / corresponding to a given value of
p'. In writing the above equation, we have used the fact that the / = 0 mode is
two-fold degenerate and / = 1 modes are four-fold degenerate. Replacing the
sum in equation (C.11) by an integral we get

4 imu.\'
v(p) == -—/ m'(l, B)dl
T

()

&

4 Imax pra Y 2 3, 211/2
- [kan—(f) - B — /“/f“] dr dl (C.12)
T Jo 8]

To evaluate the above integral we interchange the order of integration. The
domain of integration is shown in Figure C.2. Obviously, for a given value of
r. 1 goes from O to r(k5n* — B2)V/2; further, the value of » goes from 0 to 7,
where

k(z)’lz(’~rrzzf.x’) - 62 =0 (C t3)

Thus

4 Tmiex 1'[/4}2,’?:(")‘}82]1': 5 R 5 5
v(f}) ~= “"/ f [/{()nz(r) — B = l'/r“}l/2 dldr
T Jo 0

The integration over [ is very easy to carry out and gives
4 Frrax I =
v(f)y = — f [/\-‘51’1“(;') — ,8‘] rdr (C.14)
T Jo

We now consider the power law profile (see equation (9.45)), so that

*Vmax ) .
V(B) %] [(kinT — B*) — kgni2A(r/a) | rdr
0
with
2p? - B2 /g
Fonar = a [M—J (C.15)

2Ak§n%

On evaluating the integral we obtain

B) = a*kinin—1 (""5"% - 52)5{”2)//{/ (C.16)
VD) =da Kyhy —
‘ 0T g+?2 ZA}(@n%
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Since the minimum value of 8 is kyno, the fotal number of guided modes will
approximately be

~ |
A IV (C.17)
g+2 2qg+42

T4 2
N =akgniA

where we have used equation (9.48) and the fact that

2.2 2 20,2 2
1!{iﬂnl - ﬁmin _ A() (H 1 ”’2) _

Zkf’;iﬁ A Zk(z)n? A

For a typical multimode graded index fiber we have ¢ ~ 2, V =~ 50, and the
total number of guided modes will be approximately 600. Equation (C.17) also
tells us that for a given value of the waveguide parameter V, the total number of
guided modes in a step index (¢ = oo) fiber is twice as many as in a parabolic
index (¢ = 2) fiber.

Now, if we label the propagation constants as f;, 8, .. .() corresponding
to the maximum value of §), then equation (C.16) gives us

po=k|1-2A g+2 v g/lg+2) !
. i g akiA

y q/ig+2} %
o ;-m(?v—) (C.18)

where & = kon ;. We should mention here that the label v stands for the com-
posite pair ([, m). The above equation can be rewritten in the form

ﬁf - kZ o TAQ/(Q%Z)kL?/(q—FQ) — k?. o 2}(.28 (Clg)

where

b I:[[ 42 L:|q/(q'~%"2)

g o
g (€20)
S =1 — —_ ([‘Al/iff+2)k4/(¢i+2))
' N 2k?
Since v < N, the value of 4 lies between O and A
0<d<A (C.2hH

C1.2 Group velocity and group delay per unit length

To evaluate the group velocity, we evaluate dB/dk.

Qﬁvd_ﬁii = 2 — 4 (1~~A2/(q%z)k4/(q+2))
dk (g + 2)k
2 1dA

_ o= (FAZ/(cjaLZ)le/(qﬁivl))
g+2Adk
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539
or
dag, 4
by _ (1—=25""2 (1 —_5__€ 5) (C.22)
dk q+2 qg+2
where
_2kdA 2y [N ©23)
‘Tauw T w A ‘
Nl ="y — )L()(l'l’ll/d)\,() = Ky — }\()72/] (C24)

and primes denote differentiation with res

pect to the free spece wavelength A;.
In writing the last step of equation (C.23)

,» we have made use of the relation

dk d 27[) 277[ hon' ] 27 N, (C.25)
= — == (ny — dan = — .
diy  dhg 'XO A I . A '

Thus

kdA 27 1 /dA dk)“] ny o hgA
——— == — | — — = ——
A dk "o & \any ) \ang

mUa
Making the binomial ex

pansion in equation (C.22) and retaining terms up to
O(A%) we get
dp, -2 3g —2 - 2¢ ‘
b [y 4 €54+ 557+ 0(5Y) (C.26)
dk qg+?2 2(g +2)
Now the group delay per unit length (which is the inverse of the group velocity)
1s given by
1 dB, A5 dB,
Ty = — =2 o — Y
v, dew 2rnedig
_ M db ke Nidp, .
2re dk dhg ¢ dk
Thus, the time taken for the vth mode to propagate through distance z of the
fiber will be given by
Z Nz g—2-—¢ 3g—-2—-2¢ , .
L= —=-—1 8 ; 87+ 08
vy ¢ [ + g+2 20 +2) o

(C.28)
The above equation is in a form identical

to the one given by Olshansky and
Keck (1976).




Appendix D

Gaussian envelope approximation

For a step index fiber, the modal intensity patterns are analytically known (see
Chapter 8) and for the LPy; mode are given by

L(Ur
s =2 () <
[l

207 Wr
— Az J()Q(U> K(%(—i—); o> (D.l)
Kiw) "\ a

where A is a normalization constant so that
27{[ frirdr =1 (D.2)
0
Here
U = a(ké ny — ﬁz)m (D.3)
W = ar(ﬁ2 - /{5 nf,)l/Z

2m
ko = — (D.4)
A

where X is the free space wavelength, £ 1s the propagation constant of the
mode, and #; and n, are the core and cladding indices. We also have

U+ W>=v" (D.5)

For a given V, W can be obiained with reasonable accuracy by using the
following empirical relationship (see Chapter §)

W = 1.1428V — 0.996 (D.6)
which is valid for V lying in the range 1.5 < V < 2.5, Also
U= (V?. _ W/Z)!/Z (D7)

Using the relationship satistied by Bessel functions, one can show that (see
Problem D.1)

| Ul KW

A2 — . .
' rat V2IJHU) KHW)

(D.8)
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Since the peak intensity value at r = 0 is A%, we define the mode radius € by
the relation

TQAT =1 (D.9)
Using equation (ID.8), we get

VoKW
QL =ual —_
a O(U)U Ko(W)

(D.10)

Since the mode intensity patterns at the pump and signal wavelengths re-
semble a Gaussian distribution (see Section 14.5), we approximate Jp (r) and
/s (r) by Gaussian distributions with spot sizes €2, and €2, respectively

i

for) = ﬂ—gzm%e"“/ 2 (D.11)
N 1 ,,2/9‘2 5
fsr) = —3 ; (D.12)

&

where €2, and §2 correspond to the pump and signal wavelengths, respectively.
and can be obtained from equation (D.10).

Problem

D.1  Show that for f(r) given by equation {DD.1), to satisfy the normalization condition
(equation (D.2)), A? should be given by equation (D.8).

Solution: Substituting for f(r) from equation (D.1) in equation (D.2) we obtain

a Ur JAUY S Wr
2 A° / ./()2 (*fw) rdr+ “,{ )‘ K(i (~L rdr | =1
0 a KWy Jy d

Substituting ¢ = Urja, & = Wr/a. we obtain

2
5
2

K

2072

I 4 ’ '
2r AT a* [Zﬁ /“ -/()Z(C)C dg +

oo
0 ’ 4

Using the following identities

"o o
/Jg’(g“)cdc: [UZJF(UH%/LJO‘(U)}
0

o

3

S (J(?(U)nL JE(U))

2

'xkz PP RO 2 e 2064]
| Kiwgds = 5 & Ko & K@)

il
we
- [K3ow) + &2ow]
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Gaussian envelope approximation

we obtain

.. KHW)
A2 G2 |y + R U) — Py + ——— 12Uy | =1
TA,a [0( )+ W) = Jy( )+K§(W) o)

or

TA> aQJnQ(U) l:le(U) KJQ(W):{
p )

JRW)  Kj(W)

Using the eigenvalue equation for LPg; mode (see Chapter 8), the above equation
reduces to

5 UPKZ(W)
A= Tovi el 2
ma?V2KH(W)IG(U)




Appendix E

Coupled-mode equations

In this appendix we derive the coupled-mode equations, which describe the vari-
ation in the amplitude of the waves propagating in each individual waveguide
of a directional coupler. Let ny(x. y) and na(x, ¥) represent the refractive index
variation in the transverse plane of waveguide 1 in the absence of waveguide
2 and that of waveguide 2 in the absence of waveguide 1. Let n(x, y) repre-
sent the refractive index variation of the directional coupler consisting of the
waveguides 1 and 2. For example, for a directional coupler consisting of two
step index planar waveguides, n{(x), n,{x), and n(x) are shown in Figure E. 1.

If 8, and f; represent the propagation constants of the modes of waveguides
1 and 2 in the absence of the other then we may write

Vi + [kgaie, v) = Biln =0 (E.1)

Vi + [konatx. y) = BilYa = 0 (E.2)
where

v2:v2—i—~ v + i (E.3)

! 9z 0x?  9y?

and ) (x, y)and ¥ (x, v) represent the transverse mode field patterns of wave-
guides 1 and 2, respectively, in the absence of the other.

If W(x, y, 7) represents the total field of the directional coupler structure,
then we have

2

2 9w 2,2, -

\71 \p —}_ 87 -+ /C()l? (,X, y)\-}} = O (E4)
We now approximate ¥ as follows

W,y 2= A O vy e P 4 Bloa(x, yye (E.5)
which is valid when the two waveguides are not very strongly interacting. In
equation (E.5) we have written the total field as a superposition of the fields
in the first and second waveguides with amplitudes A(z) and B(z), which are
functions of z. For infinite separation between the two waveguides, obviously
the waveguides are noninteracting, and A and B would then be independent of

7. The coupling between the two waveguides leads to z-dependent amplitudes.
Substituting for W in equation (E.4) we obtain

Ae P (Vi) — Bl + kanP )+ Be P (Vi — v + kin'yn)
~2iB(dAJd)re P — 2iBr(dB/dz e M =0 (E.6)

where we have neglected terms proportional to d* A /dz* and d° B /dz*, which is
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my(x)

ta) x
(x)

(b) .
néx)

(c) x

justified when A(z) and B(z) are slowly varying functions of z

(E.1) and (E.2), equation (E.6) becomes
kAT AY + kA By ¢ — 2iB(d B /dz)
—2iBx(dAJdz)m e AP =0
where
Ant = n(x, y) — nj(x, y)
Any = n*(x, y) = ni(x, y)

AB =p— B

. Using equations

(E.7)

(E.8)
(E.9)

(E.10)

Multiplying equation (E.7) by ¥ and integrating over the whole cross section,

we obtain

dA/d_- = —iKk;A(Z) — l‘K.wB(jiAﬁ:

(E.11)

Fig. E.1:  (a)and {(b) The
refractive index profiles
corresponding to two
isolated step index plapar
wavegutdes. (¢} The
refractive index profile
corresponding to a
directional coupler formed
by the two waveguides.
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where

K S i Antndx dy
280 [[0 Wi dxdy

K11

R SIS vl Andyadxdy

- 5 (E.13)
260 [T _wiwidxdy

K12

In writing equation (E.11) we have neglected the overlap integral of the modes —
that 1s, we assume

[/ Yindxdy <€ ff Yl dxdy (E.14)

which is valid for weak coupling between the waveguides.
Similarly, if we multiply equation (E.7) by v/ and integrate, we obtain

dB/dz = —iKk3nB — iky A e 8 (E.15)

where
K [IT w3 Aniyndxdy
28 [[T ¥iyndxdy

(E.16)

. .
- L
We can write equations (E.11) and (E.15) in a different form if we define
a(z) = A(z)e P+ (E.18)
b(z) = B(z)e P (E.19)

Substituiing from equations (E.18) and (E.19) in equations (E.11} and (E.15),
we have

dafdz = —i(Bi + 1) a —ikizb (E.20)
db/dz = —i(f; + kn)b — ikya (E.2D)

The above two equations represent the coupled-mode equations. It follows from
equations (E.20) and (E.21) that x;; and x2; represent the corrections to the
propagation constants of each individual waveguide mode due to the presence
of the other waveguide. These correction factors are normally neglected in the
analysis, although one can very easily incorporate them. Thus, the coupled
equations may be written as

dajdz = —ipia —iy1b (E22)

dbjdz = —ifab — ikna (E.23)
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These are the coupled-mode equations that have been used in Chapter 14.

The quantities «1; and xp» in equations (E.12) and (E.16) represent correc-
tions to the propagation constants of each individual waveguide mode due to
the presence of the other waveguide and are normally neglected in the analysis,
although they can be incorporated easily. Thus, we write equations (E.11) and
(E.15) as

1A Ag-

‘ _ mik“lgBelAﬁ” (E.24)
dz

1B .

([ = ““l.f(zlAé_!Aﬁ: (EZS)
az

Differentiating equation (E.24) with respect to z and eliminating B-dependent
terms, we obtain

A dA 5
= —IAf— +k"A=0 (E.26)
dz? dz

whose general solution is

A(z) = "2 (a1 e7 A+ ape ) (E.27)
where
y? o=t 4 Aﬁ2/4. K? = JK12K21 (E.28)

Substituting the value of A(z) in equation (E.24), we obtain

| apen| [ AP e A e
B(Z) — __€~1A/ﬁ../~[:(_f + )/)(116!%' + (_ﬂ _ '}/)(lzé’-l%’]
K2 2 2

(E.29)

If at 7 = 0, power is incident only in waveguide 1, then
ADy= Ay, BWO)=0 (E.30)
Using these initial conditions in equations (E.27) and (E.29), the constants a,

and a» can be determined.
Finally, the power in each waveguide at any value of z is given by

Pi(z) i’ .2
— =1 - —35 Z E.31
P(0) o (3D
P _ K7 (E.32)
= — SN~ ¥z o
POy "y |

where P(0) is the power launched into waveguide 1. In obtaining the final
equations, we have assumed k2 2 K31,



Appendix F

Derivation of coupled-mode equation
for periodic coupling

Let us consider an optical fiber with a refractive index profile n%(x, y) in which
there is a periodic z-dependent perturbation given by An?(x. v, z). This pertur-
bation could correspond to periodic index variation as in a fiber Bragg grating
(see Chapter 17) or it could be a periodic stress or a periodic undulation of the
fiber axis.

If ¥r1(x, y) and ¥»(x, y) are two modes of the fiber, then the periodic pertur-
bation can, under certain conditions (to be derived), couple power among the
modes. Thus, we write for the total field at any value of z as

Yix.y, 2) = A@n(x, yye P+ Blapn(x, y)ye 7 (F.1)

Here §, and 8, are the absence of perturbation and A(z) and B(z) are their
corresponding amplitudes. In the absence of the perturbation A and B would
be constants; the perturbation couples power among the modes and, hence, A
and B are z-dependent.

Since ¥y and ¥, are the modes of the fiber in the absence of any perturbation,
they satisfy the following equations.

Vi + (k' (e y) = B =0 (F2)
Vi + (kin*(x, y) = B3)vr = 0 (F3)
where
aZ
2 2 :
Vi= V- oy (F.4)

They also satisty the orthogonality condition

/ / Vi (x, y)a(x, y)dxedy =0 (F.5)
—o¢ J -0
The wave equation to be satisfied by ¥(x, v, z) is

Vw+ l/ +L()[f; L)+ Ant(x, vy, Dy =0 (F.6)

Substituting for ¥ from equation (F.1), neglecting the second derivatives of A(z)
and B(z) with z (also referred to as the slowly varying envelope approximation),
and using equations (F.2) and (F.3), we obtain

dA
—2ip —L!ft - 21,51

Jemﬁ:
2 ll/z

+ kAR (x, y, DIAY) + Byn M7 =0 (F.7)
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where
AB=p— P (F.8)

Multiplying equation (F.7) by ¥ and integrating we get after some simplifica-
tions

dA A
= —ic) A — icpBe' ™
adz

(F.9)
where we have used the orthogonality condition (see equation (F.5)) and

ki [l viantydxdy

cniz)y = ‘ F.10
n{z) 260 [[ iy dxdy (F10)
, kX [[yrAn*yadxdy ,
Cp(z) = —2 I RS (F.11)
280 [[ Y vidxdy
Similarly, multiplying equation (F.7) by 47 and integrating, we get
B .
2 = CicnB — iy Al (F.12)
where
k2 [ wian*yrdxdy
o) = Ko L VEAnadxdy (F.13)
262 ] wivadydy
k2 ([ rAn*y dxdy
() = m&jf L id : (F.14)

26 [ ¥3vadxdy

Equations (F.9) and (F.12) together represent the coupled-mode equations and
describe the z-dependence ot A and B.
In the presence of a periodic z-dependent perturbation, we may write

A”;’(xq v, Z) — Ai’?z(.x, V) sin Kz (FIS)

where K = 27/A, and A represents the spatial period of the perturbation.
Equation (F.15) very well represents the refractive index perturbation in a Bragg
fiber (see Chapter 17). For An“(x. y, z) given by equation (F.15), we have

k(T wran’(x,y {xd
LTI
28 j] 1[’1 Yy dxdy

= 2xpsm Kz (F.16)

12

where

2 [[wranix, ywndxdy
12

= F.17
T8 [[vrvidady E17)



Derivation of coupled-mode equation for periodic coupling 549

is z-independent. Similarly, we have

ey =2 s Kz, ¢ = 2k sinKz
(F.18)
cyy = 260y sin Kz

with k1, k22, and &2, being z-independent and given by equations of the type
equation (F.17).
Substituting from equations (F.16) and (F.18) in equation (F.9) we have

dA

—— = —2ikn Asin Kz - K12 Be PRI 4y Bl (AP (F.19)
Zz

For weak perturbations, k13 and «»; are small and, hence, the typical length
scale over which the mode amplitudes change appreciably ~ 1/k12 = 1/k3;,
which is large. It we integrate equation (F.19) over distance L, small compared
with the distance over which A and B change appreciably, then we obtain

sinK L/2

= +4dix; 1 Acos Kz IR

sin(AS + KL /2

—21 KlzB(?[(ﬁﬁ+K>: {

(AB+K)
iK1y Be’ AR Siﬂ((i}i:i))[«/z (F.20)
Now,
Ap = gﬁ&f‘zéﬁs (F.21)

0

where Any is the effective index difference between the modes. As a typical
value, An,y is approximately the index difference between core and cladding,
which if assumed to be about 0.005, gives for g = | um

AB ~3x 10°m™

Thus, if K is chosen so that K =~ Ap and L =~ 2 x 10" m, then

Sin(Ap — K)L/Z} L 3
- >~ — = 107" m
(A —K) 2
sin{Afg + K)L/2 1 1

~1.7% 107 m

(AB+K) T(AB+K)  2AB
sinkL/2 < 1 ~ — ~3x 107 m
K K AP



350 Derivation of coupled-mode equation for periodic coupling

Hence, we note that for K >~ Ap, the contributions from the first and the second
terms in the RHS of equation (F.20) are negligible compared with the last term
and, hence, can be neglected. The second term would have made significant
contribution if Af = ) — B = —K ~thatis, if § >~ £ + K.

Thus, in the presence of a periodic perturbation, coupling takes place mainly
among modes for which Af is close to either K orto — K. This justifies the two-
term expansion of equation (F.1). The approximation retaining either e!(3#+5)z
or ¢'*~K) term in equation (F.19) is called the synchronous approximation
and corresponds to the rotating wave approximation used in time-dependent
perturbation theory in quantum mechanics.

Thus, if we choose

2
Kmxiﬂﬁﬂﬁl—ﬁz (F.22)

then equation (F.19) can be approximated by

dA r
— =k Beé (F.23)
dz
where I' = A — K. Similarly, equation (F.12) leads to
dB irs ,
= —kyAe 7 (F.24)
dz

If the modes i, and v, are normalized to carry unit power, then under the
weakly guiding approximation we may write

B
2w

/ 1//1*1#1 dx dy =1 (FZS)

and a similar equation for ¥, then |A|? and | B|? would directly give the power
carried by both modes. Using equation (F.25) in equation (F.17) we obtain

(€]

i = 2 f f AR, Y)W di dy (F.26)

By using the orthonormality relation for y,, one can show that
K2 = K2 =K (F27)

Thus, the two coupled equations become

dA iT> )
= kBe''? (F.28)
dB . |
7 = —KkAe " (F.29)

with « given by equation (F.26).
Equations (F.28) and (F.29) describe coupling among two modes propagating
along the same direction — that is, with §; and 5, both positive or both negative.
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This 1s referred to as codirectional coupling. Another very important coupling is
referred to as contradirectional coupling, wherein coupling takes place between
two modes propagating in opposite directions. Insuch a case, instead of equation
(F.1), we have

Wx, v, 2) = A (x, vie P 4 Bona(x, y) el (F.30)

Thus, the mode with propagation constant £, 1s propagating in the +z-direction
and that with propagation constant 8, is propagating in —z-directions. If they
correspond to the same mode, then f; = f; = fA. Following a procedure
identical to the one described earlier, we obtain the following two coupled-
mode equations

dA

= kBe'l? (F31)
dz
dB .
= kAe” T2 (F32)
dz
with
D=p+p~K (£33)

Note that the signs on the RHS of equations (F.31) and (F.32) are the same, which
is opposite the case of codirectional coupling. Because of this, the solutions for
the contradirectional case are not oscillatory.

Equations (F.31) and (F.32) have been solved in Section 21.7 for the case
r=0.

Example F.1: For contradirectional coupling between two LPy modes
propagating in opposite directions, ¥; = i and equation (F.26) be-
comes

wey 2, 3 .
K o= e // Ant(x, iyl dxdy (F.34)

[f we use the Gaussian approximation for ¢ (see Chapter 8), then

2 WLy 2 fan2
K/f - -—7-6’7’ Jw

F.35
wo\ 7p (3

where the multiplying constant will satisty equation (F.25).

For fiber Bragg grating, we may assume that the periodic refractive
index perturbation is uniform inside the core and zero outside — that
is,

Anz{x, V) = An® Xt 4+ ;yz <a’

= {0; otherwise (F.36)
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and equation (F.34) becomes

, 4
. = CUE() LUHU/ dr f dpe ~2r2 f10d
8 wo b

koAn? 2y
_ Z n (E _g—?_u /wﬂ) (F37)
Hoff

where we have used the relationship f = kong. It we write An? =~
2nAn and assume n 2 n,.5, we obtain

TAR
Ao

(1 — e 2/m) (F.38)

K =

which is the same relation as equation (17.44) with / given by
(1 — e~ /%) under the Gaussian approximation.

One can, in general, evaluate equation (F.26) for « for any given
perturbation An?(x, y) and modal field profiles v (x, y) and ¥, (x, v).
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Leakage loss in optical waveguides

The fractional power that remains inside the core at z is approximately given
by the overlap integral
2

Wi(z) ~ f Y (x, 0Or(x, 2)dx (G.1)
0

Now

Yix,z) = f dBe(B)ra(x)e'* (G.2)

(see equation (24.36)). Thus

W) ~ 1 / dx[ / d6¢’*(ﬁ)¢f§(.x)M / dﬁ’¢(ﬁ')\/fﬁ’(/\:')e"ﬁ'f:|

2

2

~ l [aso e [ apoue [avu oo G.3)
The last integral is 8(8 — B'). Since
f dp'p(B) e’ 8B — B1) = p(p) e (G4)
we obtain |
Wi(z) = | [ lp(B)I* e dp 2 (G.5)

To evaluate the above integral we must evaluate |¢()|%, which is given by (see
equation (24.39))

(B ~ |A/ A, (G.6)

We know A, (see equation (24.24)). To evaluate A, we express it in terms of
D and then use equation (24.30). Since the wave packet is a superposition of
radiation modes around the “quasimode,” |¢(8))? is very sharply peaked around
B~ B, (see also Figures 24.9 and 24.10) and therefore all calculations will be
carried out near f§ = f,.

We begin with the calculation of ¢ around g = 8,.

I
C = —2—A[sin kxy — (k/y)coswxg] (see equation (24.27))

KR Ky
# = Be

b
Az —Alsinkgxy — (K /Ve) COS KXy ]

NEA ’{g+""g)/g
270 Ty 8

2
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where x; = d/2 and subscript g refers to the “guided mode™ and use has been

made of the relations

sink, X = Ky/8,

8 =a’ +y? :k(‘?j(n'? —

Thus
C~(A/8)a,
Since

Bls—p, =0

COSKyX| = —V, /8

)

we must make a Taylor series expansion of B around § = §,.

dB
;l“B“ ﬁ:ﬁg (/3

&

&

]
-+ — COS KX
%

KZ — k(z 2 ﬁl
we obtain

d K

Yo' und

dr y

‘ dB d ,
- ﬁg) = I:—_ai] (48 - )Bg)

da dp
ﬂzﬁu

1 K
—A{(x; COSKkX; — — x| singx,
2 Y

K dy

dx
e COS KX (B —
y2 dic )dﬁ} =

On substitution in the expression for B and simplifying, we obtain

PR

}/g‘ KH

Bw

(1 + yex)(B — B;)

Substituting for B and C in equation (24.28), we get

86y

| D] ~ mlAI

VeKe

X {ﬂ—ﬁg)+

zﬁg

% 2

»IAI

- H+nm4%%

yL {x7—x()

7 2 _ . -
“Yek, I — (e /iKy) p2retr =)

2
g
ﬁg‘sz(] + Vgxl) 1+ (}’g/i’(g)

(14 yox) POTVUB = B)* + T2

(G.7

(G.8)

(G.9)

(G.10)

(G.11)

(G.12)

(G.13)

(G.14)
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where I" and ,6;, are given by equations (24.41) and (24.42). Equating the RHS
of the above equation to the RHS of equation (24.30) we get

43/;;2"7;3 e Vexa=x1)

Al “ :
Al 822k o) (1 + yex)I(B — B)? + T2/

(G.15)

Using equation (24.24) and simplifying, we get

3

A T i

ol G.16
BOF =\ ~ TG (G.16)

Thus, equation (G.5) becomes

W(z) ~ a J%—— (G.17)
w ) (B-py T

We may evaluate the integral from —o0 to +oc since most of the contribution
will come from the region near resonance (f = §,). We introduce the variable

E=p-B, (G.18)

to write

2

r +00 ()iéz
W(z) =~ 1*[ (G.19)
YA

o (& +iD)E —iT)

For z > 0, the integral may be evaluated by using complex variable techniques
and Jordan's lemma. In the complex & plane we choose a contour that consists
of the real axis and a semicircle in the upper half plane where the integral
vanishes, There is a simple pole within the contour at

£=il

so that

2 -~
=e 2" (G.20)

ol -z

— 2mi——

Wiz) =~
(2) 27 2ill

which shows how the power inside the “core™ decays exponentially. Further,
use of equations (G.14) and (24.41) gives us equation (24.47).
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