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1. Introduction

Recent developments in quantum computation and quantum
optics have renewed the interest in the study of spin systems
and their interactions [1,2]. In particular, the problem of the spin
reconstruction in quantum non-demolition measurements [3] is
closely related to spin-squeezing observables [4]. However, there
are some questions about the modelling and physical properties
of spin systems which must be answered in order to support the
claim that spin chains are suitable devices to transmit quantum
information. Among them we have selected, for this work, the
question about the persistency of spin orientation in presence of
spin–spin interactions [5–9]. One may then investigate, as a con-
venient tool, the spin response of a Heisenberg spin-chain with
different interactions [10–13]. Based on our previous experience
[14–16] we shall consider anisotropic Heisenberg spin-chains, be-
cause the anisotropy of the spin-chain interactions do play a role in
building the balance between the components of the total spin. To
accomplish this goal we have selected, from the literature, periodic,
Gaussian and periodic long-range spin–spin interactions [10–12].
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In the present work we calculate spin-squeezing observables
[17], in a system of interacting two-level atoms distributed in the
sites of an open chain. The calculation of spin expectation values
proceeds via the use of a density matrix formalism developed pre-
viously [14].

The Letter is organized as follows. The formalism is described
in Section 2, results and discussions are presented in Section 3.
Conclusions are drawn in Section 4.

2. Formalism

The frame of reference, for the formalism which is presented
below, is the treatment of spin-1/2 anti-ferromagnetic (or ferro-
magnetic) chains with site–site interactions [10,11]. Formal aspects
of the solution are well known [12] and we shall omit them here,
for the sake of brevity. Essentially, one must define the Hamilto-
nian of the spin-chain, the basis, and, by diagonalization, obtain
the exact solution for a reasonable number of atoms [16]. In the
next subsections we shall focus on specific details of the solu-
tion for different interactions. Concerning the time evolution of the
observables, we use the density-matrix-formalism which we have
developed in [14]. For the spin-squeezing factor, we have adopted
the definition of Refs. [8,9].
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2.1. Asymmetric spin-chains

In the following we shall discuss few examples of spin sys-
tems which are exactly solvable by diagonalization. The spectrum
of each atom consists of two levels of spin s = 1

2 . We refer to the
system as a spin- 1

2 chain, for simplicity. However, since we are
talking about two-level atoms, the term pseudo-spin- 1

2 -chain may
be more appropriate. The atoms interact by their spins, and the
spin–spin interaction is decomposed in spin components with, in
general, different strengths. We write the Hamiltonian of the sys-
tem as

H =
N∑

i �= j=1

g(i, j)(λxsx,i sx, j + λysy,i sy, j + λzsz,i sz, j). (1)

The interaction (1) is a generalization of the interaction be-
tween spin sites S̄ i · S̄ j weighted by directional couplings

gγ (i, j) = λγ g(i, j), γ = x, y, z, i = 1,2, . . . , N. (2)

The spin raising and lowering operators s±,i = sx,i ± isy,i , and the
spin-z operator sz,i , obey su(2)-commutation rules, and the Hamil-
tonian of Eq. (1) may be written as

H =
N∑

i �= j=1

g(i, j)
(
λ−(s+,i s+, j + s−,i s−, j)

+ λ+(s+,i s−, j + s−,i s+, j) + λzsz,i sz, j
)
, (3)

with λ± = 1
4 (λx ± λy). The product states

|m〉 = |k1,k2, . . . ,ki, . . . ,kN 〉 =
N∏

i=1

ski
+,i |0〉, ki = 0,1, (4)

define a basis where the Hamiltonian (3) can be diagonalized; the
index ki labels the state of the i-th atom, and the values ki = 0
and 1 are associated with the ground state (sz = −1/2) and first
excited state (sz = 1/2) of each atom, respectively. The state |0〉
is the vacuum, and by definition in |0〉 all atoms are in the lowest
(sz = −1/2) atomic level. The matrix elements of H (3) in the basis
(4) are given by the expression〈
m′∣∣H|m〉 =

∑
i �= j

g(i, j)
(
λ−δ

(
ki + 1,k′

i

)
δ
(
k j + 1,k′

j

)
+ λ−δ

(
ki − 1,k′

i

)
δ
(
k j − 1,k′

j

)
+ λ+δ

(
ki + 1,k′

i

)
δ
(
k j − 1,k′

j

)
+ λ+δ

(
ki − 1,k′

i

)
δ
(
k j + 1,k′

j

)
+ λz(ki − 1/2)(k j − 1/2)δ

(
ki,k′

i

)
δ
(
k j,k′

j

))
. (5)

The non-diagonal elements of the matrix (5) connect states with
�k = 0 and ±2, where k = ∑

i ki − N/2 is the projection of the
total spin in the z direction. In particular, for the choice λx = λy =
λ⊥ , the operator Sz = ∑N

i=1 sz,i commutes with the Hamiltonian
(3), and the matrix elements (5) are written

〈
m′∣∣H|m〉 =

∑
i �= j

g(i, j)

(
λ⊥
2

(
δ
(
ki + 1,k′

i

)
δ
(
k j − 1,k′

j

)
+ δ

(
ki − 1,k′

i

)
δ
(
k j + 1,k′

j

))
+ λzδ

(
ki,k′

i

)
δ
(
k j,k′

j

)(
ki − 1

2

)(
k j − 1

2

))
. (6)

These are the elements needed to calculate, exactly, the eigenval-
ues and eigenvectors, and with them the corresponding density
matrix [14].
In the basis of eigenvectors of H , constructed as discussed be-
fore, the time evolution of a given operator O is expressed as

O (t) = U †(t)O U (t), U (t) = e−iHt/h̄. (7)

The expectation value 〈O (t)〉 is then written

〈
O (t)

〉 = Tr
(
ρ(t)O

)
=

∑
α,β

〈β|I〉〈I|α〉〈α|O |β〉e−i(Eα−Eβ )t/h̄, (8)

where we have defined the density operator ρ(t) = U †(t)ρ(0)U (t),
being ρ(0) = |I〉〈I|; the state |I〉 is the initial state of the system,
while {Eα} and {|α〉} are the α-th eigenvalue and eigenvector of
the Hamiltonian.

The expression (8) can be written in a more compact form in
terms of the overlap of the initial state |I〉 with the eigenvectors
{|α〉}, that is [14]

〈
O (t)

〉 = ∑
n,m

T ∗(n)〈n|O |m〉T (m),

T (m) =
∑
αn

c∗
αncαm〈n|I〉eiEαt/h̄. (9)

In the above equation |n〉 is an element of the basis (4), and the
coefficient cαn is the amplitude of |n〉 in the eigenstate |α〉 of the
Hamiltonian of Eq. (3).

2.2. The squeezing factor

We have adopted, for the squeezing factor, the definition [8]

ζ 2 = N(�Sn)
2

|〈S〉|2 , (10)

where N is the number of atoms in the chain, and Sn is the com-
ponent of the total spin in a direction perpendicular to 〈S〉, that is
the direction defined by the unitary vector

n̆ = (sin θn cosφn, sin θn sinφn, cos θn),

n̆ · 〈�S〉 = 0. (11)

2.3. The initial state

In all of the present calculations we have considered the state

|I〉 = (
1 + |z|2)−N/2

N∑
m=0

zm

m! Sm+|0〉,

z = e−i(φ0−π) tan(θ0/2), (12)

as the initial condition. This state is not eigenstate of H , and it is
defined by the orientation angles φ0 and θ0 [17]. The operator S+
is the total spin-raising operator S+ = ∑N

i=1 s+,i .

2.4. Some analytically solvable cases

We shall begin with the case with N = 2 atoms, and consider
different interactions between the sites of the chain, which is an
open chain as determined by the definition of the above intro-
duced Hamiltonian.
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2.4.1. Harmonic interaction
We write the interaction between atoms with g(i, j) = sin(|i −

j|π2 ) and λz = 2λ⊥ . This choice of the couplings may be arbi-
trary, but it is supported by the fact that unless the symmetry of
the interaction (1) is broken, there will not be a net gain in the
squeezing (10), as we shall discuss in the subsection below. The
diagonalization of the Hamiltonian yields the eigenvalues εα and
eigenvectors Ψα (with α = 1,2,3,4)

ε1 = λ⊥, |Ψ1〉 = |0,0〉,
ε2 = 0, |Ψ2〉 = 1√

2

(|1,0〉 + |0,1〉),
ε3 = −2λ⊥, |Ψ3〉 = 1√

2

(|1,0〉 − |0,1〉),
ε4 = λ⊥, |Ψ4〉 = |1,1〉. (13)

With these eigenvalues and eigenvectors we can calculate the time
evolution of the spin observables, starting from the initial condi-
tion (12). One obtains〈
Sz(t)

〉 = − cos θ0,〈
S2

z (t)
〉 = 1

2
+ 1

2
cos2 θ0. (14)

This calculation can be repeated for different orientations of the
initial condition, like: θ0 = π

2 and φ0 = 0. For this choice the ex-
pectation value of the z-component of the total spin vanishes,
〈Sz〉 = 0, and

〈�S〉 = (〈Sx〉,0,0
)
,

〈Sx〉 = − cos

(
λ⊥t

h̄

)
. (15)

The unitary vector which defines the direction normal to 〈�S〉 is
n̆ = (0,± sin θn, cos θn). The positive sign corresponds to the choice
φn = π

2 and the minus sign to φn = 3π
2 . With these elements, the

formal expression for the squeezing factor ζ 2 reads

ζ 2 = 1 ± 2 sin θn cos θn sin( λ⊥t
h̄ )

cos2( λ⊥t
h̄ )

. (16)

Analogously, the choice θ0 = 0 and φ0 = 0 yields ζ 2 = 1 (no
squeezing). The case with θ0 = π

2 , φ0 = π
2 is similar to case θ0 = π

2 ,
φ0 = 0, and it yields the same expression for ζ 2 (16).

2.4.2. Gaussian interaction
The interaction between spin sites may be modelled by a Gaus-

sian form-factor

g(i, j) = e− 1
2 (i− j)2

. (17)

The solutions of the eigenvalue problem, for this interaction, are
written

ε1 = λz

2
e−1/2, |Ψ1〉 = |0,0〉,

ε2 =
(

λ⊥ − λz

2

)
e−1/2, |Ψ2〉 = 1√

2

(|1,0〉 + |0,1〉),
ε3 = −

(
λ⊥ + λz

2

)
e−1/2, |Ψ3〉 = 1√

2

(|1,0〉 − |0,1〉),
ε4 = λz

2
e−1/2, |Ψ4〉 = |1,1〉. (18)

With the choice λz = 2λ⊥ the above expressions reduce to the so-
lutions (13), but for the factor e−1/2, and for the orientation angles
θ0 = π , φ0 = 0 one obtains
2
ζ 2 = 1 ± 2 sin θn cos θn sin( λ⊥t
h̄ e−1/2)

cos2( λ⊥t
h̄ e−1/2)

, (19)

and the same expression holds for θ0 = π
2 , φ0 = π

2 . A similar analy-
sis may be performed for the case with N = 3 atoms. The solution,
for both interactions, is also analytical, and it leads to results which
are similar to Eqs. (16) and (19) (see the discussion presented in
the following subsection).

2.4.3. The case of N = 3 atoms with non-symmetric interactions
In this subsection we shall discuss, by solving analytically the

case of three atoms, the effect of the asymmetry of the interaction
upon the spin-squeezing factor ζ 2. The main notion behind this is
the symmetry-breaking mechanism induced by the couplings λi of
Eq. (3). In this example, the diagonalization of (3) is performed in
the basis of eight states which results from the enumeration of the
three sites (atoms) of the chain and two states (spin states in each
site). The eigenvalues of the corresponding secular equation are

ε1 = ε8 = λz/2,

ε2 = ε5 = 0,

ε3 = ε6 = −λz/4 − �,

ε4 = ε7 = −λz/4 + � (20)

with

� =
√

λ2
z + 8λ2⊥

4
.

The time dependent expectation value of the spin components can
be calculated explicitly, and their expressions read

〈Sz〉 = −3

2
c0,

〈
S2

z

〉 = 3

4
+ 3

2
c2

0,

〈
S2+

〉 = e−2i(φ0−π) 1

2
s2

0(A − iBc0),

〈S+〉 = e−i(φ0−π) 1

2
s0

[
1

2
s2

0C +
(

1 − 1

2
s2

0

)
A − iBc0

]
,

〈{S+, S−}〉 = 3 + s2
0C,

〈{S+, Sz}
〉 = e−i(φ0−π)s0

[
−c0 A + i

(
1 − 1

2
s2

0

)
B

]
, (21)

and

〈Sx〉 = Re〈S+〉,
〈S y〉 = Im〈S+〉,〈
S2

x

〉 = 1

2
Re

〈
S2+

〉 + 1

4

〈{S+, S−}〉,
〈
S2

y

〉 = −1

2
Re

〈
S2+

〉 + 1

4

〈{S+, S−}〉 (22)

with

c0 = cos(θ0),

s0 = sin(θ0),

in correspondence with the definition of the orientation angles of
the initial state (12). The other quantities entering the definition of
the spin expectation values are
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A =
[

3

2
+ 1

2
(α − 2β)

]
cos

(
� + 3

4
λzt

)

+
[

3

2
− 1

2
(α − 2β)

]
cos

(
� − 3

4
λz

)
t,

B =
[

3

2
+ 1

2
(α − 2β)

]
sin

(
� + 3

4
λz

)
t

−
[

3

2
− 1

2
(α − 2β)

]
sin

(
� − 3

4
λz

)
t,

C = 3 − (α + β)2 sin2(�t) (23)

with

α = λz − 4λ⊥
4�

,

β = λz + 2λ⊥
4�

,

3 = α2 + 2β2. (24)

It is then straightforward to show that for a symmetric interaction
(λz = λ⊥) one obtains

� = 3

4
λz,

α = −1,

β = 1,

A = 3,

B = 0,

C = 3. (25)

With these results, the expectation values (21) are written

〈Sz〉 = −3

2
c0,

〈
S2

z

〉 = 3

4
+ 3

2
c2

0,〈
S2+

〉 = e−2i(φ0−π) 3

2
s2

0,

〈S+〉 = e−i(φ0−π) 3

2
s0,〈{S+, S−}〉 = 3

(
1 + s2

0

)
,〈{S+, Sz}

〉 = −3e−i(φ0−π)s0c0. (26)

The direction of the total spin is determined by the ratios

〈Sx〉
|〈S〉| = −s0 cos(φ0),

〈S y〉
|〈S〉| = s0 sin(φ0),

〈Sz〉
|〈S〉| = −c0. (27)

Therefore, from these relations, one obtains

(�Sn)
2 = 3

4
,

∣∣〈S〉∣∣ = 3

2
, (28)

and, consequently1

ζ 2 = N
(�Sn)

2

|〈S〉|2 = 1. (29)

1 These results hold independently of the value of the angle φ0.
It means that, in order to obtain values of ζ 2 < 1, the symmetry of
the Hamiltonian must be broken (see also [14–16]). We shall make
use of Eqs. (16) and (19) in order to gain some insight about the
results for cases which cannot be solved analytically.

2.4.4. The TDA framework for a large number of atoms
The Tamm–Dancoff Approximation (TDA) may be used to cal-

culate spin observables in the limit of a large number of atoms.
The TDA is based on the boson expansion of the spin operators
and upon a subsequent mapping onto the one-phonon basis. This
is done by applying the following steps:

(a) Boson expansion of the spin operators: The spin operators
are expressed in terms of boson operators associated to each site
of the chain, to read [18]

S+ =
∑

i

b+
i ,

S− =
∑

i

bi,

Sz =
∑

i

b+
i bi − N

2
. (30)

The vacuum state |0〉 is defined as the state with all atoms in their
lower level, such that for bosons which lift the spin of the i-th site,
it follows that bi |0〉 = 0.2 Clearly, the operators (30) obey a SU(2)
algebra.

(b) One-phonon basis: The boson operators b+
i (the subindex

i indicates the site) can be transformed to a new basis of boson
operators Γn by the linear combinations

Γ +
n =

∑
i

Xn(i)b+
i . (31)

The new operators are acting on the same vacuum |0〉, thus

Γn|0〉 = 0 (32)

and the set of states generated by them are written

|n〉 = Γ +
n |0〉. (33)

Eq. (31) is inverted, leading to the inverse transformation

b+
i =

∑
n

X∗
n(i)Γ +

n (34)

since the transformation (31) preserves the commutation relation
of the original boson operators.

(c) TDA diagonalization: The Hamiltonian of Eq. (3) is trans-
formed to the boson basis of the b+

i (and bi ) operators and ul-
timately to the basis of the one-phonon operators (31). The TDA
image of the Hamiltonian reads

HTDA =
∑

i

εi

(
n̂i − 1

4

)
+

∑
i �= j

λ⊥gijb
+
i b j

=
∑

n

EnΓ
+

n Γn (35)

with

εi =
∑
j �=i

λz gi j. (36)

2 If one represents atomic levels of a given site by the action of creation and anni-
hilation operators c+

i,± and ci,± , the boson creation operator is defined as b+
i =

c+
i,+ci,− and the vacuum state is of the form |0〉 = Π j c

+
j,−| 〉, such that bi |0〉 =

c+
i,−ci,+Π j c

+
j,−| 〉 = 0.



428 O. Civitarese et al. / Physics Letters A 374 (2010) 424–430
In the spirit of the TDA approximation [18] the Hamiltonian is lin-
earized by the equation of motion[

HTDA,Γ +
n

] = EnΓ
+

n (37)

which leads to the secular eigenvalue equation

εl Xn(l) +
∑
k �=l

λ⊥glk Xn(k) = En Xn(l). (38)

Therefore, by replacing the amplitude

Xn(l) = 1

En − εl

∑
k �=l

λ⊥glk Xn(k) = Λn(l)

En − εl
(39)

in Eq. (38) one obtains the dispersion relation for the TDA ener-
gies En . The TDA amplitudes are normalized∑

l

∣∣Xn(l)
∣∣2 = 1. (40)

(d) Initial condition: Once the TDA boson transformation is per-
formed, the initial condition may be written in terms of the TDA
phonons as

|I〉 = N exp

(
z

N∑
n=1

λnΓ
†

n

)
|0〉, (41)

where N is the norm of the state |I〉.
(e) Spin operators in the TDA basis: As we have done before for

the initial condition and the Hamiltonian, the spin operators can
be written in the TDA basis:

Sz =
∑

n

Γ
†

n Γn − N

2
,

S+ =
∑

n

λnΓ
+

n (42)

with

λn =
∑

k

Xn(k). (43)

The spin squeezing factor is readily obtained after a straight-
forward algebraic operation which yields, at leading order, the ex-
pressions

〈Sz〉 = − N

2
+ |z|2N

1 + |z|2N
,

〈
S2

z

〉 = N2

4
− (N − 1)

N|z|2
1 + |z|2N

,

〈S+〉 = z∗

1 + |z|2N

N∑
n=1

|λn|2ei(En−E0)t,

〈
S2+

〉 = 0,

〈{S+, S−}〉 = N + 2|z|2
1 + N|z|2

∑
n

|λn|4,
〈{S+, Sz}

〉 = −(N − 1)〈S+〉, (44)

for the spin expectation values. In the limit of large values of N
one obtains

〈Sz〉 = − N

2
,

〈
S2

z

〉 = N2

4
,

〈S+〉 = 〈
S2+

〉 = 0,〈{S+, S−}〉 = N,〈{S+, Sz}
〉 = 0, (45)
Fig. 1. Time dependence of the squeezing parameter, ζ 2, for different interactions.
Insets (a)–(d) show the results corresponding to the factors g(i, j) of Eq. (47). The
strength λ⊥ and λz are fixed at the values λ⊥ = 1 and λz = 2, respectively. The
initial state is a coherent state (12) with θ0 = π/2 and φ0 = 0. The time is given in
arbitrary units. The results correspond to the case with N = 5 atoms.

therefore, with the definition of the squeezing factor (10), it reads

ζ 2
large N → (N2/4)|n̆|2

(N2/4)
= 1 (46)

since the vector n̆ is a unitary vector. The above results seem-
ingly indicate that, at least in the TDA subspace, the saturation
of the spin squeezing factor may be expected for a large number
of atoms. Naturally, for a complete proof of the statement, an ex-
act diagonalization for a large value of N is needed, but this task
is limited for the fast growing dimensionality (2N ) as N increases.

3. Results and discussion

In this section we shall present and discuss the results of the
above introduced formalism, for the squeezing factor ζ 2, for vari-
ous interactions between the spin sites. In all cases we have con-
sidered two-level atoms, the spin of each level being s = 1/2. The
factors g(i, j) of the interactions, which we have diagonalized for
N � 11, are the following

g(i, j) =
∣∣∣∣sin

(
π

2
(i − j)

)∣∣∣∣, (a)

g(i, j) = sin

(
π

2
|i − j|

)
, (b)

g(i, j) = e− 1
2 (i− j)2

, (c)

g(i, j) =
(

sin

(
π

N
(i − j)

))−2

. (d) (47)

The associated interactions are either periodic or long-range in-
teractions, which have been discussed in the literature, like in
Refs. [10–13].

The factors λ⊥ and λz of Eq. (6), are fixed at the values λ⊥ = 1
and λz = 2, for all cases, to enforce the asymmetry of the interac-
tions [14–16], as explained in the previous subsections. As initial
condition we have chosen the state (12) with θ0 = π/2, π/4 and
π/8, and φ0 = 0.

In Figs. 1–3 we show the time dependence of the squeezing
parameter ζ 2 for a chain with N = 5 atoms. The procedure con-
sists of: (i) diagonalization of the Hamiltonian (3) in the basis (4);
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Fig. 2. The same as Fig. 1, for an initial coherent state with θ0 = π/4 and φ0 = 0.

Fig. 3. The same as Fig. 1, for the initial state (12) with θ0 = π/8 and φ0 = 0.

(ii) calculation, with the corresponding eigenvalues and eigenvec-
tors, of the time dependent density matrix of Eqs. (7)–(9); (iii)
calculation of the expectation value of the components of the total
spin entering the definition of the squeezing parameter (10).

Fig. 1 displays the results obtained for the different factors
g(i, j) of Eq. (47) and for an initial coherent state with θ0 = π/2
and φ0 = 0. Although for practically all cases the results for ζ 2

are close to the canonical limit (ζ 2 = 1/2), one sees fast oscilla-
tion of the actual values. It means that the time averaged value is
much larger than the canonical limit. This behavior is easily un-
derstood because for θ0 = π/2, the averaged spin is perpendicular
to the z direction. To investigate the sensitivity of the time de-
pendence of ζ 2 upon the initial condition we have repeated the
calculations for θ0 = π/4 and θ0 = π/8. The results are shown in
Figs. 2 and 3, respectively. It is seen that, for smaller values of θ0,
the oscillations of ζ 2 are confined to a relatively narrow region,
that is 0.7 < ζ 2 < 1 (see Fig. 3). For the limiting case θ0 = 0, one
gets ζ 2 = 1, as expected. From these results we can conclude that
the time dependence of ζ 2 may be controlled by the spin–spin in-
teractions as well as by the choice of the initial coherent state.
At first glance, a proper choice of the coherent state may, indeed,
minimize the time averaged value of ζ 2. The optimal values of ζ 2

are of the order of 0.7. From the results shown in Figs. 1–3 we can
Fig. 4. Squeezing parameter, ζ 2, of Eq. (16) (inset (a)) and Eq. (19) (inset (b)). The
curves have been obtained with the eigenvalues and eigenvector given in Eqs. (13)
and (18), respectively for N = 2. The initial state is a coherent state (12) with θ0 =
π/2 and φ0 = 0.

Fig. 5. Minimum value of the squeezing parameter, ζ 2, as a function of the num-
ber of atoms N , for different spin–spin interactions. Insets (a)–(d) show the results
corresponding to the interactions of Eq. (47). We have chosen λ⊥ = 1, λz = 2, and
the initial state is the coherent state of Eq. (12) with θ0 = π/8 and φ0 = 0. As ex-
plained in the text, to find the minima, we have studied the time evolution of ζ 2

in the interval 0 < t < 200.

conclude that a spin chain with spin–spin interactions modulated
by factors g(i, j), like the ones of Eq. (47), may be regarded as an
efficient device to keep information about the spin orientation and
the relative strength of the total spin components.

For the sake of comparison, we show in Fig. 4 the results cor-
responding to Eqs. (16) and (19). While the results obtained with
g(i, j) = sin |π2 (i − j)| (case (a)), show oscillations around the min-

ima at ζ 2 = 1/2, the ones obtained with g(i, j) = e− 1
2 (i− j)2

(case
(b)) show, in addition, a modulation larger than in the previous
case. A comparison with the curves displayed in Figs. 1(b) and 1(c)
indicates that by increasing the number of atoms the oscillations
are faster and minimum values of ζ 2 increase significantly.

We shall comment on the dependence of the squeezing param-
eter with N . Figs. 5–6 show the results for the squeezing parame-
ter, ζ 2, as a function of the number of spin sites. The results shown
in Fig. 5 are local minima, that is each of the points is the smallest
value of ζ 2 calculated at a fixed value of N and in the same time
interval of Figs. 1–3. The results shown in Fig. 6 are average values,
over the time intervals, for the same interactions. To calculate the
averages we have increased the time interval of Figs. 1–3 to max-
imum value t = 1000. As a general feature we observed that, rela-
tively, smallest local and average minima in ζ 2 are obtained with
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Fig. 6. Average (points) and their mean value (lines), of the squeezing factor ζ 2 as a
function of the number of atoms, and for each of the interactions discussed in the
text. The parameters used in the calculations are given in the captions to Fig. 5.

the interaction g(i, j) = (sin( π
N (i − j)))−2 [10–12]. This interaction,

which represents a 1/r2-exchange, being r the distance between
sites, has been proposed by Shastry [10] and by Haldane [11],
in the study of a spin-1/2 anti-ferromagnetic Heisenberg chain.
Lately, the spectrum of an isotropic s-1/2 Heisenberg chain was
exactly solved using the same long-range interaction [12]. Consid-
ering the physical significance of Shastry and Haldane-interaction,
the present results seemingly (but not conclusively) show that
long-range interactions may optimize spin-squeezing devices.

4. Conclusions

To summarize, in this Letter we are reporting on the results of
calculations of the spin-squeezing factor, ζ 2, in open s-1/2 pseudo-
spin-chains with periodic and long-range interactions. We have
investigated the dependence of ζ 2 on: (i) the interactions, (ii) the
number of atoms, and (iii) the initial condition. The results, in gen-
eral, are dependent also on the initial conditions, which in this
work have been represented by spin coherent states. Although the
number of atoms included in the calculations is relatively small
(N � 11) the size of the configuration space was large enough to
grasp the main tendency of the results. For the situation with a
large number of atoms, we have discussed the use of the TDA ap-
proximation, which is exact in the subspace of spin up–spin down
pairs. For this subspace, the results suggest the saturation of ζ 2.
With all these limitations in mind, we may conclude by saying that
pseudo-spin chains with long-range interactions may be optimal
spin devices concerning the persistency of the squeezing factor ζ 2.
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