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Motivated by a canonical QCD Hamiltonian, we propose an effective Hamiltonian to represent an arbitrary
number of quarks in hadronic bags. The structure of the effective Hamiltonian is discussed and the BCS-type
solutions that may represent constituent quarks are presented. The single-particle orbitals are chosen as three-
dimensional harmonic oscillators, and we discuss a class of exact solutions that can be obtained when a subset of
single-particle basis states is restricted to include a certain number of orbital excitations. The general problem,
which includes all possible orbital states, can also be solved by combining analytical and numerical methods.
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I. INTRODUCTION

One of the main interests in hadronic physics is to construct
effective, low-energy approximations to QCD and to find
methods enabling a theoretical treatment in its nonperturbative
domain. Over the years, a number of nonrelativistic or
semi-relativistic models describing quarks in hadronic bound
states have been proposed. However, the full effect of quark-
antiquark pairs has never been considered because such effects
lead to a many-body problem that can only be treated in some
approximation. In hadronic models, such approximations are
typically driven by phenomenological considerations rather
then QCD itself. Examples include, but are not limited to, the
bag model [1,2], the constituent-quark model of Ref. [3], and
algebraic models [4]. Within these phenomenological models a
number of experimental data points have been considered (i.e.,
masses, form factors, structure functions, etc.), albeit models
typically require a large number of parameters to reproduced
them. Nevertheless, it is of interest to illuminate any possible
connection between phenomenological models and QCD.

In this article, we explore the possible emergence of the
constituent-quark picture from the many-body interactions
inherent to QCD. In particular, we construct a simple effective
quark Hamiltonian guided by QCD and examine various
classes of solutions that may represent hadronic states.
Because of the highly nonperturbative structure of QCD, we
do not pretend that a simple Hamiltonian will be able to replace
QCD. Nevertheless, it will exhibit the many-body aspects
of QCD that are absent in other constituent models, with
the advantage of leading to semi-analytic solutions (meaning
that it might require simple numerical solutions of algebraic
equations or diagonalization of a Hamiltonian matrix).

A possible connection between QCD and an effective
quark-model Hamiltonian was presented in Ref. [5]. A
confinement scenario and dynamical chiral symmetry breaking
were discussed, but even in the chiraly broken phase the
effective Hamiltonian remained complicated (i.e., it contains
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interactions among an infinite number of particles). Thus,
in Ref. [6] a much-simplified version of the Hamiltonian
was proposed and a solution for the SU(2)-color case was
presented. In particular, quarks were assumed to be confined
in single s-wave orbitals in a finite volume and no dynamical
contributions from gluons was considered. The resulting
effective Hamiltonian allows for analytic solutions with low
energies saturated by color-neutral physical states and colored
states shifted to arbitrarily high energies.

That study was followed by Ref. [7] where the limitation
on the number of quark orbitals was relaxed and more analytic
solutions were found.

In the present work, we extend the method of Refs. [6,7] to
include all orbital levels in the quark sector. The color part is
also extended to SU(3), whereas in the flavor sector, we keep
the approximately mass-degenerate u and d quarks.

As in Ref. [6], dynamical contributions of gluons are not
considered, and the system is confined to a finite volume.
Dynamical gluon degrees of freedom can be added by
expanding the model space. They will not be considered
here, just like their absence in constituent models does not
seem to spoil the successful phenomenology of the low mass
states generated by the valence-quark dynamics alone. Under
these approximations, we show how the QCD-motivated
Hamiltonian used in this publication can be solved nearly
analytically for a particular choice of the effective interaction
between color charges. The main aim of this work is to show
how to construct an algebraic model which potentially can
describe the main features of the hadron spectrum. This will
be shown in Sec. IV. The attractive feature of the model
comes from its algebraic nature that, coupled with standard
many-body techniques [8], makes it solvable. The rest of the
article is organized as follows: In Sec. II, the model space and
the Hamiltonian are defined. In Sec. III, we study the analytic
solutions for two- and three-orbital-level systems in the chiral
limit. This is followed by the consideration of an arbitrary
number of levels. We study the quark-mass dependence and
discuss why, in general, it is impossible to find simple analytic
solutions unless an orthogonal transformation and a BCS-type
of mean-field scheme is adopted. In Sec. IV we discuss the
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possible emergence of meson and baryon spectra that result
from the lowest s- and p-quark orbitals. Conclusions are drawn
in Sec. V.

II. THE HAMILTONIAN AND ITS MODEL SPACE

The construction of an effective QCD Hamiltonian that
approximates its low-energy spectrum is based on the fol-
lowing assumptions: Because of confinement, the domain of
fields is expected to be restricted to a finite volume in space,
where individual hadrons are located. This is achieved by
using the three-dimensional harmonic oscillator to describe
single-particle levels. The confinement scale is then related
to the width of the harmonic oscillator wave functions γ .
Deconfinement transitions can then be studied as a limit
when γ → 0 since, in this basis, for a quark to probe large
distances would require mixing with a large number of excited
states. Alternatively, one can use a three-dimensional box but,
as we shall show later, the oscillator representation is more
convenient. Gluons are not taken into account as dynamical
degrees of freedom; rather their affect is assumed to be
accounted for by a static potential. Finally, to take advantage of
algebraic techniques, the potential is smeared over the hadron
scale and effectively replaced by a constant.

Most of the restrictions imposed in the model space in
Refs. [6,7] are now removed. Therein we restricted quarks to
be in SU(2) color but, as we shall see here, this restriction can
be easily eliminated.

In Fig. 1, the model space for the quarks is schematically
presented. Only the orbital states at positive energy are
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FIG. 1. Illustration of the effect of the Hamiltonian on the basis
states. The operators, which appear in the kinetic energy, can be
divided into columns of operators related to a given spin j , and
which commute with those of different columns. Only the positive
energy states are plotted. The ellipses indicate which states are
connected through the interaction terms appearing in the kinetic
energy. Columns of different j are separated by a vertical dashed line.

depicted, while vertical dashed lines separate columns of
equal total spin j . As it will turn out, the Hamiltonian can be
written in terms of operators that act only within each column.
This will greatly simplify the task of finding an analytic
procedure.

The fermion creation operator for a quark in the level α

(α = ± 1
2 denotes the upper or lower Dirac level) with angular

momentum l coupled with quark spin- 1
2 to total spin j , is given

by

b†
α(N,l 1

2 )jλ,cf
=

∑
mσ

(
lm,

1

2
σ

∣∣∣∣jλ

)
b†αNlm,σcf . (1)

The remaining indices N , λ, c, and f refer to the oscillator
number, spin, color, and flavor indices, respectively. The factor
(lm, 1

2σ |jλ) is an SU(2) Clebsch-Gordan coefficient. The
quarks are in the fundamental representation of SU(2) in spin-
and flavor-spin and SU(3) for the color part representation.The
creation operator on the right-hand side corresponds to a
spin-orbit decoupled basis. The operator with upper-level
indices is defined in the standard way (see Eq. (1)):

b†α(N,l, 1
2 )jλ,cf ≡ (−1)

1
2 −α(−1)j−λ(−1)

YC
2 +TCz (−1)

1
2 −f

× b†−α(N,l, 1
2 )j−λ,c̄−f

. (2)

Here and in the following, the capital index C denotes globally
the color part. The phase convention is taken from Ref. [9]
(with a corrected sign in front of Tz). The lower-case c denotes
the magnetic quantum numbers of the color part and is a
short-hand notation for (YC , TC , TCz), with YC being the
color hypercharge, TC the color isospin, and TCz its third
component. The bar over the index c refers to change from c =
(YC, TC, TCz) to c̄ = (−YC, TC,−TCz) (the conjugate index).

In the following, we abbreviate (−1)
YC
2 +TC as (−1)χc .

When the index α has the value α = + 1
2 (upper level),

the operators b are replaced by a, and are referred to as
quark operators. In contrast, when α = − 1

2 we define the
operators as d and as antiquark operators. The b creation
and annihilation operators are then converted into the d
annihilation and creation operators. This notation exploits the
Dirac formulation for fermions, where a fermion in an upper
level is denoted as a particle while a fermion hole in the lower
level is denoted as an antiparticle. These and their conjugates
will be used to express the effective Hamiltonian. The kinetic
Dirac energy is originally given by

K =
∫

dxψ†(x) (−i∇ · α + βm0) ψ(x). (3)

A mass term has been included, in contrast with Ref. [7], and
the potential term is given by

V =
∫

dxd yψ†(x)T aψ(x)V (|x − y|)ψ†( y)T aψ( y). (4)

The static potential V (|x − y|) simulates the gluon-quark
interaction. The origin of this expression is the Faddeev-
Popov term of the QCD Hamiltonian [10]. It is essentially
a color-color Casimir interaction and when averaged over the
confined hadronic bag it is replaced by a constant V0 and
becomes exactly the total-color operator [6]. This can easily
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be seen by noting that
∫

dxψ†(x)T aψ(x) represents the color
charge and a constant potential separates the integrals over
x and y.

In what follows, we will first consider the potential
interaction, because it will result in a very simple spectrum
that can later be used to diagonalize the hopping interactions
brought by the kinetic energy.

To do so, we expand the fermion fields ψ† and ψ in a
complete particle basis in terms of the decoupled fermion
creation and annihilation operators:

ψ(x) =
(

ψ1(x, σ, c, f )

ψ2(x, σ, c, f )

)
,

with

ψ1(x, σ, c, f ) =
∑
Nlm

b
1
2 lm,σ,c,f

N RNl(|�x|)Ylm(�x)χσ ,

(5)
ψ2(x, σ, c, f ) =

∑
Nlm

b
− 1

2 lm,σ,c,f

N RNL(|�x|)Ylm(�x)χσ .

Here, �x denotes the angular components θx and φx of the
position vector x. The fields have components in spin, flavor,
and color. In Eqs. (3) and (4) for the kinetic and potential
energy, the sum over the spin, color, and flavor indices is
implicit.

A. The potential

By substituting Eq. (5) into Eq. (4), and transforming to the
coupled-fermion creation and annihilation operators as defined
in Eq. (1), we are led to the following form for the potential
interaction (see Appendix A for details):

V =
∑
X

√
(2j1 + 1)(2j3 + 1)V (Ni, li , ji, L)

× (−1)M (−1)
YC
2 +TCz

[
b†

α(N1,l1,
1
2 )j1λ1,c1f

bα,f

(N2,l2,
1
2 )j2λ2,c2

×〈j1λ1, j2λ2|LM〉〈(1, 0)c1, (0, 1)c2|(1, 1)C〉1
]

× [
b†

α′,(N3,l3,
1
2 )j3,λ3,c3f ′ b

α′,f ′

(N4,l4,
1
2 )j4λ4,c4

×〈j3λ3, j4λ4|L − M〉〈(1, 0)c3, (0, 1)c4|(1, 1)C̄〉1
]
, (6)

where X stands for the collection of quantum numbers Ni ,
ji , λi , li , ci , α, f , α′, f ′, L, M , and C. The SU(3) Clebsch-
Gordan coefficients carry a multiplicity subindex 1 because
the fermion creation and annihilation operators are coupled to
the generators of the color SU(3). The coupling corresponds
to the (1, 0) ⊗ (0, 1) = (0, 0) + (1, 1) decomposition of the
product of two quark representations in which no multiplicity
appears. The convention is taken from Refs. [9,11,12] [with a
corrected sign in the SU(3) phase]. As before, the indices α and
α′ are used to label pseudo spin components and li , f, ci, ji, λi

label orbital angular momentum, flavor, and color components,
total spin, and its projection, respectively. The quantities
V (Ni, li , ji, L) define the intensity of each component of the
interaction in Eq. (4) and are given (before space averaging)

by

V (Ni, li , ji, L)

= (−1)j2+ 1
2 +j4+ 1

2

(2L + 1)

(
3

2

) ∫
|x|2d|x|| y|2d| y|RN1l1 (|x|)

×RN2l2 (|x|)RN3l3 (| y|)RN4l4 (| y|)

×
∫ 1

−1
d(cosθ )PL(cosθ )V (|x|, | y|, cosθ )

×
∏4

i=1

√
(2li + 1)(2ji + 1)〈l10, l20|L0〉〈l30, l40|L0〉√

(2j1 + 1)(2j3 + 1)

×
{

j1 l1
1
2

l2 j2 L

} {
j3 l3

1
2

l4 j4 L

}
. (7)

The factor 3
2 originates in the triple-reduced matrix elements

of the color operator, as explained in Appendix A, and θ is the
polar angle between vectors x and y.

The expansion in partial waves simplifies considerably how
the two-body interaction kernel V (|x − y|) is approximated by
its spacial average over the hadronic bag, V (|x − y|) → V0.
Then, the only nonvanishing contribution comes from L = 0
which, as a consequence, separates the integral over x and y
and leads to V (Ni, li , ji, L) being

V (Ni, li , ji, L = 0) = V0

2
δL,0δN1N2δj1j2δl1l2δN3N4δj3j4δl3l4 .

(8)

Thus, for the potential term in the Hamiltonian we finally
have

V = V0

2
C2[SU (3)], (9)

where C2[SU (3)] is the second order Casimir operator of
SU(3) color and is given by

C2[SU (3)] = 3

2

∑
c1c2

Cc2
c1

Cc1
c2
,

Cc2
c1

= (b†c1
· bc2 ) − δc1c2

3
N,

(10)(
b†c1

· bc2
) =

∑
αNljλf

b†
α(Nl, 1

2 )jλc1f
bα(Nl, 1

2 )jλc2f ,

N =
∑

αNljλcf

b†
α(Nl, 1

2 )jλcf
bα(Nl, 1

2 )jλcf .

The Cc2
c1

are the generators of the SU(3)-color group. Its
eigenvalue is given by [9]

λ2
C + λCµC + µ2

C + 3λC + 3µC, (11)

with (λC,µC) defining the SU(3) irreducible representation
(irrep). Thus, in this approximation the effect of color-charge
interactions is to separate colored from non-colored states
without any regard to spacial distribution of color. The second-
order Casimir operator is equivalent to the color-spin in SU(2)
color discussed in Ref. [6].
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B. The kinetic energy

The spacial dependence on the quark distribution is brought
by the kinetic energy term. We first consider the mass term in
Eq. (3). It leads to an operator proportional to the sum of the
quark and antiquark number operators:

m0(nq + nq̄) + m0

∑
Nljf λcf

1

= m0

∑
Njλcf

[
b†1

2 (N,j+ 1
2 , 1

2 )jλcf
b

1
2 (N,j+ 1

2 , 1
2 )jλcf

− b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

]
+m0

∑
N ′jλcf

[
b†1

2 (N ′,j− 1
2 , 1

2 )jλcf
b

1
2 (N ′,j− 1

2 , 1
2 )jλcf

− b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

]
. (12)

The terms with α = 1
2 count the number of quarks in the upper

level, whereas the terms with α = − 1
2 together with the last

term count the number of holes, thus the number of antiquarks,
in the lower level. The last term on the left-hand side is a
constant and may be skipped if convenient. The expressions
nq = b†1

2 ν
b

1
2 ν = a†

ν aν and nq̄ = b− 1
2 ν b†− 1

2 ν
= d†ν dν are the quark

and antiquark number operators, respectively. The index ν is
a short-hand notation for all the indices that label individual
creation and annihilation operators.

The momentum-dependent part of the kinetic energy, when
expressed it in terms of the fermion creation and annihilation
operators, is given by (see Appendix for derivation)

K = (K̃+ + K̃−), (13)

where

K̃+ ≡ √
γ

∑
j

∞∑
N=j+ 1

2

∑
λcf

⎡⎣(
N − j + 3

2

2

) 1
2

× b†1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N+1,j− 1

2 , 1
2 )jλcf

+
(

N + j + 3
2

2

) 1
2

b†1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N−1,j− 1

2 , 1
2 )jλcf

+
(

N − j + 3
2

2

) 1
2

b†1
2 (N+1,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

+
(

N + j + 3
2

2

) 1
2

b†1
2 (N−1,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

⎤⎦,

K̃− ≡ √
γ

∑
j

∞∑
N=j+ 1

2

∑
λcf

⎡⎣(
N − j + 3

2

2

) 1
2

× b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N+1,j− 1

2 , 1
2 )jλcf

+
(

N + j + 3
2

2

) 1
2

b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N−1,j− 1

2 , 1
2 )jλcf

+
(

N − j + 3
2

2

) 1
2

b†− 1
2 (N+1,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

+
(

N + j + 3
2

2

) 1
2

b†− 1
2 (N−1,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

⎤⎦.

(14)

The K̃+ operator shifts quarks from the lower (α = − 1
2 )

to the upper (α = + 1
2 ) level, whereas K̃− does the opposite.

The tilde is used to distinguish the above operators from actual
generators of an SU(2) algebra.

The mass term will be skipped in most of the cases
discussed here for the reason that the kinetic energy part
without the mass term can be identified as being proportional
to a component of a generator on an SU(2) algebra. Thus, it
can be diagonalized exactly. The mass term, however, does
not commute with the K̃m operators, which determines the
momentum dependence of kinetic energy and destroys the
possibility of exact diagonalization. That they do not commute
can also be seen by noting that, for example, the K̃+ operator
creates a particle-hole pair that is equivalent, as just noted, to
raising the number of quarks and antiquarks. Nevertheless,
when we treat the complete problem, although the SU(2)
structure is lost, we can still diagonalize the kinetic energy
part by using the BCS formalism [8].

III. ANALYTIC AND SEMI-ANALYTIC SOLUTIONS

In what follows, we shall consider two, three, and finally
an arbitrary number of single-quark orbital levels. The reason
for choosing this path is to investigate the analytical properties
of the solutions and to see if any features in the small-basis
approximation can be generalized to the case when any number
of quark levels is allowed. In the two- and three-level case, the
mass term is neglected, otherwise no simple solution can be
obtained. The mass term will be included when all orbital
levels are taken into account because, as we show below, in
this limit the mass term can be treated together with kinetic
energy within the BCS formalism.

A. The two level-systems

This refers to the case when, for a given j , two orbital
levels are considered, one with N oscillator quanta and with
orbital angular momentum l = j + 1

2 and the other with either
N ′ = (N − 1) or N ′ = (N + 1) quanta and orbital angular
momentum l = j − 1

2 . For example, for N = 1 and j = 1
2 , this

corresponds to the lowest p- plus the lowest or next-to-lowest
s-orbital.

The momentum-dependent part of the kinetic energy can
be related to K± operators. These operators are proportional
to K̃m, when restricted to two orbital levels, and are of the
form

K jN
+ =

√
2 · 8

√
2j + 1

{[
b†1

2 (N,l+1, 1
2 )j

⊗ b 1
2 (N ′,l, 1

2 )j

]000
000

− [
b†1

2 (N ′,l, 1
2 )j

⊗ b 1
2 (N,l+1, 1

2 )j

]000
000

}
,
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K jN
− =

√
2 · 8

√
2j + 1

{ − [
b†− 1

2 (N,l+1, 1
2 )j

⊗ b− 1
2 (N ′,l, 1

2 )j

]000
000

+ [
b†− 1

2 (N ′,l, 1
2 )j

⊗ b− 1
2 (N,l+1, 1

2 )j

]000
000

}
. (15)

The spin-color-flavor coupling denoted by “⊗” is defined as

[a�1 ⊗ b�2 ]�µ =
∑
µ1µ2

〈�1µ1, �2µ2|�µ〉A�1
µ1

B�2
µ2

. (16)

Here, �k and � stand for the quantum numbers denoting
combined representation of the spin, color, and flavor, and
µk and µ are a compact notation for the magnetic quantum
numbers (e.g., µ = λcf ). The expression of Eq. (15) can be
easily derived from Eq. (14) by noting that the coupling to spin-
color-flavor singlet implies a contraction of all indices. The
factor

√
2 · 8 · (2j + 1) is the square root of the multiplicities

of the flavor, color, and spin representation, respectively, and
yields the correct normalization of the singlet representation.

The first index in the creation and annihilation operators
refers to the pseudo-spin component 1

2 for the upper level, and
− 1

2 for the lower level. Thus, when l = 1 the kinetic energy
couples quarks in the s level with quarks in the p level of
total spin j = 1

2 . When l = 2, quarks in the p level with total
spin j = 3

2 are coupled by the kinetic term to quarks in the d

level, also with total spin 3
2 . The orbital values l are given by

j ± 1
2 . The radial number N starts from j + 1

2 and acquires
odd (even) values, while N ′ has even (odd) values only and
satisfies N ′ = N − 1 or N + 1. This selection rule is strictly
obeyed only for the harmonic oscillator. Note that the Km

operators are coupled, for each given spin j , to total color
zero. Thus, they commute with the total color-spin operator of
each column j .

The K operators satisfy the commutation relations

[K jN
+ , K jN

− ] = 2K jN

0 , [K jN

0 , K jN
± ] = ±K jN

± , (17)

so that for each combination of N and j they form an SUjN (2)
pseudo-spin group. Furthermore, operators with different spins
commute. The operator K jN

0 is given by

K jN

0 = 1
2

[(
NjN

1
2

+ NjN ′
1
2

) − (
NjN

− 1
2
+ NjN ′

− 1
2

)]
, (18)

which is to say, by half of the difference between the number of
quarks in the upper and lower level. The quarks are coupled to
total spin j . Note that the pseudo-spin group SUjN (2) defined
by the Km operators is different from the pseudo-spin group
in the original definition, which has been given with reference
to lowering and raising operators within the same orbital. The
Km operators, defined here, raise and lower quarks from one
orbital to a different orbital.

The relation to the operators in Eq. (14) is obtained by either
(a) restricting to the combination of the orbital N , l = j + 1

2
with the orbital (N − 1), l = j − 1

2 , or (b) to the combination
of the orbital N , l = j + 1

2 and the orbital (N + 1), l = j − 1
2 .

The relation of the kinetic-energy term and the generators of
the SU(2) algebra is then given by

K̃
jN

± =
√

γ
(
N − j + 3

2

)
2

K jN
± ≡ AaNj K jN

± (19)

for the case (a), and

K̃
jN

± =
√

γ
(
N + j + 3

2

)
2

K jN
± ≡ AbNj K jN

± (20)

for the case (b).
The operators Km commute with the total-color operator

in each column j and, thus, also with the total-color operator.
This is because for each given j they are coupled to color
zero. As a consequence, the Hamiltonian can be diagonalized
analytically. It is given by

HjN = AκNj (K jN
+ + K jN

− ) + V0

2
C2[SU(3)], (21)

with AκNj (κ = a, b), defined in Eqs. (19) and (20). The
expression in the parentheses of the first term is just K jN

x ,
whose eigenvalues are known. The kinetic part is then just
2Kx . Thus, the eigenvalues of this Hamiltonian are

EjN = 2AκNjMJ + V0

2

(
λ2

C + λCµC + µ2
C + 3λC + 3µC

)
,

(22)

where MJ is the projection of the pseudo-spin operator within
the pseudo-spin J onto the x axis and (λC,µC) define the
irreducible representations (irreps) of the SU(3) color group
[9,11]. When color is zero, the irrep is given by (0, 0), whereas
for a color octet it is (1, 1), etc. We used the definition of the
second order Casimir operator as given in Refs. [9,11]. For
colorless states, this reduces to the simple formula 2AκNjMJ .

Figure 1 illustrates the effect of the kinetic term dis-
cussed above, without showing the negative-energy levels The
negative-energy levels are just a copy of the levels at positive
energy inverted to negative energy of what is shown in Fig. 1.
Each of the ellipses represents a combination of orbitals for
which the analytic solution given above in Eq. (22) applies.
The orbitals, which the ellipses connect, are not only the ones
at positive energy, as shown in the figure, but also represent
the connection to the negative-energy levels.

B. The three-level system

The three-level system consists of the following levels: We
add to each level, given by j, N , l = j + 1

2 , two levels with
l = j − 1

2 and (N − 1) and (N + 1) oscillator quanta. The
kinetic energy for this three-level system becomes

K̃ = K̃
jN

+ + K̃
jN

− , (23)

where

K̃
jN

+ = √
γ

∑
λcf

⎡⎣(
N − j + 3

2

2

) 1
2

× b†1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N+1,j− 1

2 , 1
2 )jλcf

+
(

N + j + 3
2

2

) 1
2

b†1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N−1,j− 1

2 , 1
2 )jλcf
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TOCHTLI YÉPEZ-MARTÍNEZ et al. PHYSICAL REVIEW C 81, 045204 (2010)

+
(

N − j + 3
2

2

) 1
2

b†1
2 (N+1,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

+
(
N + j + 3

2

2

) 1
2

b†1
2 (N−1,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

⎤⎦,

K̃
jN

− = √
γ

∑
λcf

⎡⎣(
N − j + 3

2

2

) 1
2

× b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N+1,j− 1

2 , 1
2 )jλcf

+
(

N + j + 3
2

2

) 1
2

b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N−1,j− 1

2 , 1
2 )jλcf

+
(

N − j + 3
2

2

) 1
2

b†− 1
2 (N+1,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

+
(
N + j + 3

2

2

) 1
2

b†− 1
2 (N−1,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

⎤⎦.

(24)

Note that this is exactly the same expression as in Eq. (14)
but without summations over j and N .

Defining

K jN
± = η K̃

jN

m , K jN

0 = η2 K̃
jN

0 , (25)

it can be verified that, by choosing the factor η appropriately,
the operators K jN

m , just as in the two-level case, show the
standard form of an SU(2) algebra, such that [K jN

+ , K jN
− ] =

K jN

0 and [K jN

0 , K jN
± ] = ±K jN

± (see Appendix D for details).
In the three-level case, the result then resembles the one in
Eq. (21), including the expression for the energy given by
Eq. (22). This comes as a complete surprise because it is
not obvious at all that an SU(2) structure is contained in the
relativistic kinetic term in this quasiparticle basis.

The fact that we found, even in such a complicated system,
an analytic solution is evidence that probably a complete
analytical treatment of the whole problem (i.e., including all
orbital levels), might be possible, excepting a simple numerical
solution of a set of equations. We discuss this case in the
following section.

C. An arbitrary number of levels

The kinetic energy that is not restricted to operate in
a specific subspace of single-particle orbitals is given by
Eq. (14). The two parts of this kinetic energy; the one that
moves quarks to the upper level and the one that moves
quarks to the lower level, no longer satisfy an SU(2) algebra.
We will also add a mass term, which by itself destroys any
SU(2) structure once present (see discussion in Sec. II B).
Nevertheless, we can exploit the structure encountered in the
two- and three-level case to simplify the problem.

By noting that the total kinetic energy is given by

K =
∑

j

K j , (26)

we can select one particular value j and solve the problem for
it. The complete solution is the sum of the solutions for all
j . We introduce a cutoff value n for N , which can be chosen
arbitrarily. Therefore,

K (j,n) =
n,�N=2∑
N=j+ 1

2

min(n,N+1)∑
N ′=N−1

∑
λcf

k
j

NN ′

× [
b†1

2 (N,j+ 1
2 , 1

2 )jλcf
b− 1

2 (N ′,j− 1
2 , 1

2 )jλcf

+ b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N ′,j− 1

2 , 1
2 )jλcf

]
+

n,�N=2∑
N=j+ 1

2

max(n,N+1)∑
N ′=N−1

∑
λcf

k
j∗
NN ′

× [
b†1

2 (N ′,j− 1
2 , 1

2 )jλcf
b− 1

2 (N,j+ 1
2 , 1

2 )λcf

+ b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

]
+m0

n∑
N=j+ 1

2

∑
λcf

[
b†1

2 (N,j+ 1
2 , 1

2 )jλcf
b

1
2 (N,j+ 1

2 , 1
2 )jλcf

− b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

]
+m0

n∑
N ′=j− 1

2

∑
λcf

[
b†1

2 (N ′,j− 1
2 , 1

2 )jλcf
b

1
2 (N ′,j− 1

2 , 1
2 )jλcf

− b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

]
. (27)

In the last two terms, the step size of N and N ′ is 2. We have
skipped a trivial constant at the end of Eq. (27), which will be
included in the BCS formalism that we treat later. The factors
k

j

NN ′ can be read from Eq. (14).
The kinetic energy can now be rewritten as

K (j,n) =
�N=2,n∑
N=j+ 1

2

min(n,N+1)∑
N ′=N−1

∑
λcf

|kj

NN ′ |

× [
b†1

2 (N,j+ 1
2 , 1

2 )jλcf
b− 1

2 (N ′,j− 1
2 , 1

2 )jλcf

+ b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N ′,j− 1

2 , 1
2 )jλcf

]
+

�N=2,n∑
N=j+ 1

2

min(n,N+1)∑
N ′=N−1

∑
λcf

∣∣kj

NN ′
∣∣

× [
b†1

2 (N ′,j− 1
2 , 1

2 )jλcf
b− 1

2 (N,j+ 1
2 , 1

2 )λcf

+ b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

]
+m0

�N=2,n∑
N=j+ 1

2

∑
λcf

[
b†1

2 (N,j+ 1
2 , 1

2 )jλcf
b

1
2 (N,j+ 1

2 , 1
2 )jλcf

− b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

]
045204-6



SOLVABLE MODEL FOR MANY-QUARK SYSTEMS IN QCD . . . PHYSICAL REVIEW C 81, 045204 (2010)

+m0

�N ′=2,n∑
N ′=j− 1

2

∑
λcf

[
b†1

2 (N ′,j− 1
2 , 1

2 )jλcf
b

1
2 (N ′,j− 1

2 , 1
2 )jλcf

− b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

]
, (28)

whereas the mass term is unaffected. Next, we apply a unitary
transformation

b†± 1
2 (N,j+ 1

2 , 1
2 )jλcf

=
∑

k

α∗
jNk b̂

†
± 1

2 (k,j+ 1
2 , 1

2 )jλcf
,

(29)
b†± 1

2 (N ′,j− 1
2 , 1

2 )jλcf
=

∑
q

β∗
jN ′q b̂

†
± 1

2 (q,j− 1
2 , 1

2 )jλcf
.

The new operators have to also satisfy the fermion anticom-
mutation rules, which impose a constriction on α and β. In
particular, for the operators with orbital spin l = j + 1

2 , we
have {

b†± 1
2 (N1,j+ 1

2 , 1
2 )jλcf

, b± 1
2 (N2,j+ 1

2 , 1
2 )jλcf

} = δN1N2

(30)
=⇒

∑
k

α∗
jN1k

αjN2k = δN1N2 .

whereas for l = j − 1
2 ,{

b†± 1
2 (N ′

1,j− 1
2 , 1

2 )jλcf
, b± 1

2 (N ′
2,j− 1

2 , 1
2 )jλcf

} = δN ′
1N

′
2

(31)
=⇒

∑
q

β∗
jN ′

1q
βjN ′

2q
= δN1N2 .

A few words are necessary concerning the variables αjNk

and βjN ′q . We cut the space at a given N = Nmax = n for
j + 1

2 such that the maximal N ′ equals Nmax − 1. Choosing
a given integer n as the maximal number for N , the range of
k and q is from 1 to nj (see Fig. 2), where nj is the number
of levels for l = j ± 1

2 . For example, in the two-level system
and j = 1

2 , we consider one p orbital (orbital spin j + 1
2 and

N = 1) and one s orbital (orbital spin j − 1
2 and N ′ = 0). In

this case, nj = 1 and k = q = 1. By using the symmetry of
the matrices, we get for αjNk a total of nj (nj + 1)/2 linear

N k=

N
k

n

nj

N′q=

N′
q

n-1

2
variables

j

j

nj

n ( )j n+1j

2
variables

n ( )j n+1j

FIG. 2. Structure of the matrices α and β. The nj give the
dimension of the matrices. Although N goes from j + 1

2 up to n

(i.e., the maximal number of N ), considering that N takes steps of
two, the number of rows is exactly nj . The relationship between nj

and n is given by nj = 1
2 [n − (j + 1

2 )] + 1.

independent elements, with the same result for β ′
jNq . In order

to determine all of them, we need nj (nj + 1) conditions, as we
shall explain later. Applying these transformations, the kinetic
energy reads

K j =
∑
kq

∑
λcf

k̃
j

kq

[
b̂
†
1
2 (k,j+ 1

2 , 1
2 )jλcf

b̂
− 1

2 (q,j− 1
2 , 1

2 )jλcf

+ b̂
†
− 1

2 (k,j+ 1
2 , 1

2 )jλcf
b̂

1
2 (q,j− 1

2 , 1
2 )jλcf ]

+
∑
kq

∑
λcf

k̃
j

kq

[
b̂
†
1
2 (q,j− 1

2 , 1
2 )jλcf

b̂
− 1

2 (k,j+ 1
2 , 1

2 )jλcf

+ b̂
†
− 1

2 (q,j− 1
2 , 1

2 )jλcf b̂
1
2 (k,j+ 1

2 , 1
2 )jλcf ]

+
∑

k

∑
λcf

m0,k,j+ 1
2

[
b̂
†
1
2 (k,j+ 1

2 , 1
2 )jλcf

b̂
1
2 (k,j+ 1

2 , 1
2 )jλcf

− b̂
†
− 1

2 (k,j+ 1
2 , 1

2 )jλcf
b̂

− 1
2 (k,j+ 1

2 , 1
2 )jλcf ]

+
∑

q

∑
λcf

m0,k,j− 1
2

[
b̂
†
1
2 (q,j− 1

2 , 1
2 )jλcf

b̂
1
2 (q,j− 1

2 , 1
2 )jλcf

− b̂
†
− 1

2 (q,j− 1
2 , 1

2 )jλcf
b̂

− 1
2 (q,j− 1

2 , 1
2 )jλcf ]

. (32)

with

m0,k,j− 1
2

=
n−1∑

N ′=0,2,4,...

m0|βjN ′k|2,
(33)

m0,k,j+ 1
2

=
n∑

N=1,3,5,...

m0|αjNk|2,

and the factors k̃
j

kq being given by

k̃
j

kq =
�N=2,n∑
N=j+ 1

2

min(n,N+1)∑
N ′=N−1

∣∣kj

NN ′
∣∣α∗

jNkβjN ′q . (34)

In order that, for a given j value, the kinetic energy be diagonal
in the orbital index, we require

k̃
j

kq = 0 for k �= q. (35)

These leads to nj (nj − 1) conditions that, together
with the 2nj normalization conditions

∑
k |αjNk|2 = 1 and∑

q |βjN ′q |2 = 1, leads to the nj (nj + 1) equations required
to determine all variables αjNk and βjN ′q .

It shows that, at the end, when all restrictions are fulfilled,
we arrive at new orbitals labeled by the index k = 1, 2, . . . , nj ,
which are divided into particles and antiparticles. Note that,
when only the diagonal components of k̃

j

kq are different from
zero, the kinetic energy contributes to nj new orbitals for
each orbital angular momentum l = j + 1

2 and l = j − 1
2 . By

introducing the index k, the final form of the kinetic energy
reads

K j =
∑

k

∑
λcf

k̃
j

kk

[
b̂
†
1
2 (k,j+ 1

2 , 1
2 )jλcf b̂

− 1
2 (k,j− 1

2 , 1
2 )jλcf

+ b̂
†
− 1

2 (k,j+ 1
2 , 1

2 )jλcf
b̂

1
2 (k,j− 1

2 , 1
2 )jλcf ]
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+
∑

k

∑
λcf

k̃
j

kk

[
b̂
†
1
2 (k,j− 1

2 , 1
2 )jλcf

b̂
− 1

2 (k,j+ 1
2 , 1

2 )jλcf

+ b̂
†
− 1

2 (k,j− 1
2 , 1

2 )jλcf
b̂

1
2 (k,j+ 1

2 , 1
2 )jλcf ]

+
∑

k

∑
λcf

m0,k,j+ 1
2

[
b̂
†
1
2 (k,j+ 1

2 , 1
2 )jλcf

b̂
1
2 (k,j+ 1

2 , 1
2 )jλcf

− b̂
†
− 1

2 (k,j+ 1
2 , 1

2 )jλcf b̂
− 1

2 (k,j+ 1
2 , 1

2 )jλcf ]
+

∑
k

∑
λcf

m0,k,j− 1
2

[
b̂
†
1
2 (k,j− 1

2 , 1
2 )jλcf

b̂
1
2 (k,j− 1

2 , 1
2 )jλcf

− b̂
†
− 1

2 (k,j− 1
2 , 1

2 )jλcf b̂
− 1

2 (k,j− 1
2 , 1

2 )jλcf ]
. (36)

The number operators of quarks and antiquarks (nq and
nq̄) are invariant under the unitary transformation described
above. They just transform into the new operators that also
represent number operators of quarks or antiquarks, the latter
represented by holes in the lower levels. The same is true for
the mass term—it does not change under this transformation.

Up to this point, however, fermions with the orbital angular
momentum l = j ± 1

2 are still mixed in by the kinetic energy.
The final diagonalization will be achieved by applying a BCS
transformation [8]. The transformation is given by

b̂
1
2 (k,j+ 1

2 , 1
2 )jλcf = cj− 1

2 ,kb(k,j )λcf

j+ 1
2

− sj− 1
2 ,kd†(k,j )λcf

j− 1
2

,

b̂
− 1

2 (k,j+ 1
2 , 1

2 )jλcf = sj+ 1
2 ,kb(k,j )λcf

j− 1
2

+ cj+ 1
2 ,kd

†(k,j )λcf

j+ 1
2

,

b̂
†
1
2 (k,j+ 1

2 , 1
2 )jλcf

= cj− 1
2 ,kb†

j+ 1
2 (k,j )λcf

− sj− 1
2 ,kdj− 1

2 (k,j )λcf ,

b̂
†
− 1

2 (k,j+ 1
2 , 1

2 )jλcf
= sj+ 1

2 ,kb†
j− 1

2 (k,j )λcf
+ cj+ 1

2 ,kdj+ 1
2 (k,j )λcf ,

b̂
1
2 (k,j− 1

2 , 1
2 )jλcf = cj+ 1

2 ,kb
(k,j )λcf

j− 1
2

− sj+ 1
2 ,kd†(k,j )λcf

j+ 1
2

,

b̂
− 1

2 (k,j− 1
2 , 1

2 )jλcf = sj− 1
2 ,kb(k,j )λcf

j+ 1
2

+ cj− 1
2 ,kd†(k,j )λcf

j− 1
2

,

b̂
†
1
2 (k,j− 1

2 , 1
2 )jλcf

= cj+ 1
2 ,kb†

j− 1
2 (k,j )λcf

− sj+ 1
2 ,kdj+ 1

2 (k,j )λcf ,

b̂
†
− 1

2 (k,j− 1
2 , 1

2 )jλcf
= sj− 1

2 ,kb†
j+ 1

2 (k,j )λcf
+ cj− 1

2 ,kdj− 1
2 (k,j )λcf .

(37)

with c ≡ cos θ and s ≡ sin θ , where θ is the Bogolubov angle.
Applying this rotation to the kinetic-energy term and including
the mass term leads to (from now on we skip the upper index
j in k

j

kk because, from the context, it is clear that we work in
a fixed column denoted by j )

K
j

BCS =
∫

dxψ†(x)(−iα · ∇ + βm0)ψ(x)

=
∑
λcf

∑
k

{(
2̃kkksj+ 1

2 ,kcj+ 1
2 ,k + m0,k,j− 1

2
c2
j+ 1

2 ,k

−m0,k,j+ 1
2
s2
j+ 1

2 ,k

)
b
†
j− 1

2 (kj )λcf
b

(kj )λcf

j− 1
2

+ (
2̃kkksj− 1

2 ,kcj− 1
2 ,k + m0,k,j− 1

2
c2
j− 1

2 ,k

−m0,k,j+ 1
2
s2
j− 1

2 ,k

)
d
†(kj )λcf

j− 1
2

dj− 1
2 (kj )λcf

+ [2̃kkksj− 1
2 ,kcj− 1

2 ,k + m0,k,j+ 1
2
c2
j− 1

2 ,k

−m0,k,j− 1
2
s2
j− 1

2 ,k

)
b
†
j+ 1

2 (kj )λcf
b

(kj )λcf

j+ 1
2

+ (
2̃kkksj+ 1

2 ,kcj+ 1
2 ,k + m0,k,j+ 1

2
c2
j+ 1

2 ,k

−m0,k,j− 1
2
s2
j+ 1

2 ,k

)
d
†(kj )λcf

j+ 1
2

dj+ 1
2 (kj )λcf

− (2 · 2 · 3)
[
m0,k,j− 1

2

(
c2
j− 1

2 ,k
− s2

j+ 1
2 ,k

)
+m0,k,j+ 1

2

(
c2
j+ 1

2 ,k
− s2

j− 1
2 ,k

)
+ 2̃kkk

(
sj− 1

2 ,kcj− 1
2 ,k + sj+ 1

2 ,kcj+ 1
2 ,k

)]
+ [̃

kkk

(
c2
j+ 1

2 ,k
− s2

j+ 1
2 ,k

)
− (

m0,k,j− 1
2
+ m0,k,j+ 1

2

)
sj+ 1

2 ,kcj+ 1
2 ,k

]
× [

b
†
j− 1

2 (kj )λcf
d
†(kj )λcf

j+ 1
2

+ dj+ 1
2 (kj )λcf b

(kj )λcf

j− 1
2

]
+ [̃

kkk

(
c2
j− 1

2 ,k
− s2

j− 1
2 ,k

)
− (

m0,k,j− 1
2
+ m0,k,j+ 1

2

)
sj− 1

2 ,kcj− 1
2 ,k

]
× [

b
†
j+ 1

2 (kj )λcf
d
†(kj )λcf

j− 1
2

+ dj− 1
2 (kj )λcf b

(kj )λcf

j+ 1
2

]}
. (38)

The kinetic energy operator is diagonalized, requiring that
the terms quadratic in the annihilation and creation operators
vanish, which leads to the gap equation that determines the
Bogolubov angle:[̃

kkk

(
c2
j− 1

2 ,k
− s2

j− 1
2 ,k

) − (
m0,k,j− 1

2
+ m0,k,j+ 1

2

)
sj− 1

2 ,kcj− 1
2 ,k

]
= 0,[̃

kkk

(
c2
j+ 1

2 ,k
− s2

j+ 1
2 ,k

) − (
m0,k,j− 1

2
+ m0,k,j+ 1

2

)
sj+ 1

2 ,kcj+ 1
2 ,k

]
= 0. (39)

The new diagonalized operator for a given column j is
finally given by

K j

BCS =
∫

dxψ†(x)(−iα · ∇ + βm0)ψ(x)

=
∑
λcf

∑
k

{(
2̃kkksj+ 1

2 ,kcj+ 1
2 ,k + m0,k,j− 1

2
c2
j+ 1

2 ,k

−m0,k,j+ 1
2
s2
j+ 1

2 ,k

)
b
†
j− 1

2 (kj )λcf
b

(kj )λcf

j− 1
2

+ (
2̃kkksj− 1

2 ,kcj− 1
2 ,k + m0,k,j− 1

2
c2
j− 1

2 ,k

−m0,k,j+ 1
2
s2
j− 1

2 ,k

)
d
†(kj )λcf

j− 1
2

dj− 1
2 (kj )λcf

+ (
2̃kkksj− 1

2 ,kcj− 1
2 ,k + m0,k,j+ 1

2
c2
j− 1

2 ,k

−m0,k,j− 1
2
s2
j− 1

2 ,k

)
b
†
j+ 1

2 (kj )λcf
b

(kj )λcf

j+ 1
2

+ (
2̃kkksj+ 1

2 ,kcj+ 1
2 ,k + m0,k,j+ 1

2
c2
j+ 1

2 ,k

−m0,k,j− 1
2
s2
j+ 1

2 ,k

)
d
†(kj )λcf

j+ 1
2

dj+ 1
2 (kj )λcf

− 12
[
m0,k,j− 1

2

(
c2
j− 1

2 ,k
− s2

j+ 1
2 ,k

)
+m0,k,j+ 1

2

(
c2
j+ 1

2 ,k
− s2

j− 1
2 ,k

)
+ 2̃kkk

(
sj− 1

2 ,kcj− 1
2 ,k + sj+ 1

2 ,kcj+ 1
2 ,k

)]}
. (40)
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Introducing a notation AB to represent the
∑

λcf Aλcf Aλcf ,
it can be rewritten as

K j

BCS =
∑

k

(
εbkj+ 1

2
b†

j+ 1
2 ,k

bj+ 1
2 ,k + εdkj+ 1

2
d†

j+ 1
2 ,k

dj+ 1
2 ,k

+ εbkj− 1
2
b†

j− 1
2 ,k

bj− 1
2 ,k+εdkj− 1

2
d†

j− 1
2 ,k

dj− 1
2 ,k

)
. (41)

This allows us to determine the spectrum of such a model
including excited states that are to be associated with hadrons.
In particular, meson states are constructed from[

b†
j± 1

2 ,k
⊗ d†

j± 1
2 ,k′

]j (0,0)CF

µ

[
b†

j± 1
2 ,k

⊗ d†
j∓ 1

2 ,k′
]j (0,0)CF

µ
, (42)

where the j refers to the total spin, (0, 0)C indicates the
overall color singlet, and F gives the total meson flavor. The
quantity µ is a short-hand notation for all magnetic quantum
numbers. The colored states are shifted to larger energies
due to the second-order color operator. The structure of the
meson spectrum is already quite involved. Examining (42)
and applying to these states the energy operator of Eq. (41), we
obtain the meson spectrum. In Eq. (41), no explicit dependence
on the coupling to spin and flavor appears—only on the new
orbital indices k and k′, so states with the same spin and flavor
are degenerate in energy, given fixed k and k′. Only when the
orbital indices k or k′ change does the energy changes. For
example, we can expect that the lowest states (k = k′ = 1)
with flavor-spin 1 and 0 multiplets with j = 0 and 1 are
degenerate.

For the baryon spectrum, the states that correspond to three
quark operators (b† or d†) should be coupled to the desired
flavor and spin. The nucleon is then described by the three
quark operators that correspond to the lowest energy. Also
here, the F = 1

2 , j = 1
2 multiplet, which contains the nucleons,

will be degenerate with the F = 3
2 , j = 3

2 multiplet, which
contains the � mesons.

Each quark operator is a complicated function of the bare
quark operators of Eq. (5). Thus, in terms of the bare operators,
hadrons states contain a sea of quark-antiquark pairs in the
background.

As it can be seen, the kinetic-energy operator, including the
mass term, can be diagonalized exactly. In the next subsection,
we apply the procedure to a four-level system and show how
the bilinear equations involving the α and β matrix elements
can be solved.

IV. A TEST CASE: THE TREATMENT OF FOUR LEVELS

We consider the four-level case with j = 1
2 , including the

mass term. We take the first two p- (N = 1, 3) and first two s-
(N ′ = 0, 2) orbital levels. The coefficients k̃

j

kq , αjNk , and βjN ′q

satisfy the relationships

k̃
j

kq = 0, k �= q, (43)∑
q

|βjN ′q |2 = 1, (44)

∑
k

|αjNk|2 = 1. (45)

where

k̃
j

kq =
∑

N=1,3

min(3,N+1)∑
N ′=N−1

|kj

NN ′ |α∗
NkβN ′q (46)

and the factors |kj

NN ′ | are given by

|kj

NN ′ = √
γ

⎛⎝√
N − j + 3

2

2
δN ′,N+1 +

√
N + j + 3

2

2
δN ′,N−1

⎞⎠.

(47)

This expression shows that N = 1 connects to N ′ = 0, 2
and N = 3 connects to N ′ = 2, which is due to the use of the
harmonic-oscillator basis. The scale

√
γ for this calculation is

chosen such that the energy of the lowest meson state will be
around 300 MeV, leading to γ = 1.29 fm−1. From here on we
drop the upper index j in k

j

NN ′ . The conditions that need to be
satisfied are

α2
11 + α2

12 = 1, α2
12 + α2

32 = 1,

β2
01 + β2

02 = 1, β2
02 + β2

22 = 1,
(48)

k10|α11β02 + |k12|α11β22 + |k32|α12β22 = 0,

k10|α12β01 + |k12|α12β02 + |k32|α32β02 = 0,

where the α and β are real. These equations are solved
according to Ref. [13]. The numerical solution of these
equations shows the existence of one solution of the set (α11,
α12, α32, β01, β02, β22). This set is listed in Table I.

In the transformed basis, the kinetic energy, including the
mass term, can be written as

K
1
2
BCS =

∑
λcf

∑
k

{(
2̃kkksP,kcP,k + m0,k,Sc

2
P,k

−m0,k,P s2
P,k

)
b
†
S(kj )λcf b

(kj )λcf

S

+ (
2̃kkksS,kcS,k + m0,k,Sc

2
S,k

−m0,k,P s2
S,k

)
d
†(kj )λcf

S dS(kj )λcf

+ (
2̃kkksS,kcS,k + m0,k,P c2

S,k

−m0,k,Ss
2
S,k

)
b
†
P (kj )λcf b

(kj )λcf

P

+ (
2̃kkksP,kcP,k + m0,k,P c2

P,k

TABLE I. Relevant solutions for tα and β for the the system of four levels. The total spin of the level
is j = 1

2 (i.e. the first two s and p orbitals are considered).

Solution α11 α12 α32 β01 β02 β22 k̃11 (GeV) k̃22 (GeV)

1 −0.707 107 0.707 107 0.707 107 −0.903 453 0.428 687 0.903 453 0.315 08 0.664 03
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TABLE II. Solutions of the BCS equation using the α and β values from Table I.

Sol. θ1 θ2 εS,11 εP,11 ε0,11 εS,22 εP,22 ε0,22

1 0.772 71 0.779 37 0.315 18 0.315 18 7.564 42 0.664 08 0.664 08 15.937 97

−m0,k,Ss
2
P,k

)
d
†(kj )λcf

P dP (kj )λcf

− 12
[
m0,k,S

(
c2
S,k − s2

P,k

) + m0,k,P

(
c2
P,k − s2

S,k

)
+ 2̃kkk

(
sS,kcS,k + sP,kcP,k

)]
+ [̃

kkk

(
c2
P,k − s2

P,k

) − (
m0,k,S + m0,k,P

)
sP,kcP,k

]
× [

b
†
S(kj )λcf d

†(kj )λcf

P + dP (kj )λcf b
(kj )λcf

S

]
+ [̃

kkk

(
c2
S,k − s2

S,k

) − (
m0,k,S + m0,k,P

)
sS,kcS,k

]
× [

b
†
P (kj )λcf d

†(kj )λcf

S + dS(kj )λcf b
(kj )λcf

P

]}
. (49)

Following the procedure described in Sec. III C, we
have to solve the gap equations for the mixing angles θS,k

and θP,k ,[̃
kkk

(
c2
S,k − s2

S,k

) − (
m0,k,S + m0,k,P

)
sS,kcS,k

] = 0
(50)[̃

kkk

(
c2
P,k − s2

P,k

) − (m0,k,S + m0,k,P )sP,kcP,k

] = 0,

respectively, and we find immediately that these equa-
tions imply θS,k = θP,k = θk . The θk values are listed in
Table II for the solution given in Table I. The masses are given
by m0,k,S = ∑

N ′ m0|βN ′k|2, m0,k,P = ∑
N m0|αNk|2. The bare

mass m0 = 0.008 GeV is chosen at the intermediate value
between the mass of the up and down quarks [14]. Finally,
with the values k̃11 and k̃22 obtained (see Table I), we can
calculate the pair energies εS,kk , εP,kk , and the ground state
energy ε0,kk:(

2̃kkksP,kcP,k + m0,Sc
2
P,k − m0,P s2

P,k

) = εS,kk(
2̃kkksS,kcS,k + m0,P c2

S,k − m0,Ss
2
S,k

) = εP,kk
(51)

12
[
m0,S

(
c2
S,k − s2

P,k

) + m0,P

(
c2
P,k − s2

S,k

)
+ 2̃kkk

(
sS,kcS,k + sP,kcP,k

)] = ε0,kk.

The results are shown in the Table II.
Taking the solution listed in Table II, we obtain for the

kinetic energy of the Hamiltonian

K
1
2
BCS =

∑
k

{
εS,kk

[
b†

S(k 1
2 )

bS(k 1
2 ) + d†

S(k 1
2 )

dS(k 1
2 )]

+ εP,kk

[
b†

P (k 1
2 )

bP (k 1
2 ) + d†

P (k 1
2 )

dP (k 1
2 )]}

. (52)

The energies of the lowest s and p orbitals are degenerate,
which is due to the structure of the kinetic energy. A
residual interaction in the potential term should remove it.
Single-particle states belong to the spin- 1

2 , color-(1, 0) and
flavor-spin- 1

2 representations. The antiparticles belong to the
conjugate representations. In order to build the low-lying
meson states, we have to put one particle and one antiparticle
in the lowest level, with energy 0.315 GeV. Thus, the energy

of the lightest mesons would be expected around 0.630 GeV,
in good agreement with the scale of excitations. Considering
that a baryon needs three quarks in order to be in a colorless
state, one obtains the first states around 0.945 GeV, which
is about the value expected. Note that we used only one
parameter (

√
γ ) in order to adjust the scale of the hadron

spectrum! The parameter V0 does not appear at all because it
serves only to shift the colored states to high energy. This
feature compares well to other phenomenological models
that have more parameters. That the state-splitting is not
reproduced is due to the fact that the residual interactions
are not yet included within our model. These interactions
are well-defined [5] and depend only on the strong coupling
constant.

As shown in Sec. II A, the potential term is proportional
to the second-order Casimir operator of SU(3) color. This
term commutes with the kinetic energy and, thus, one can
diagonalize the kinetic energy independently of the potential
term.

V. CONCLUSIONS

In this work we have analyzed a QCD-inspired Hamilto-
nian, considering a constant interaction between quarks. The
constant interaction represents an average over all residual
interactions. All orbital levels were taken into account in
the calculations. The color part was described by an SU(3)
group and the flavor part was described by an SU(2) group
(only up and down quarks have been included in the model).
Nevertheless, it can be easily extended to SU(3) flavor by
adding an additional mass term for strange quarks to the
kinetic energy. No gluons have been included dynamically.
The inclusion of gluons is not a conceptional problem. It will
be straight forward, although some work is still required, and
will also make use of many-body techniques and group theory.
We leave it for a later publication. In this contribution, the
system was confined to a finite volume, with the length of an
average harmonic oscillator.

The potential interaction resulted in the color-spin operator
[second order Casimir operator of the color-SU(3) group].
This interaction splits the colored states from the colorless
ones. It shifts the colored states toward higher energies, by
the amount proportional to V0, which is the strength of the
constant interaction.

The kinetic-energy operator could be written in terms of
the sum of the K̃

jN

± operators, restricted to two- and three-
level subsystems and excluding the mass term. We proved that
they satisfy an SU(2) algebra by adding a K jN

0 operator that
counts the difference between quarks in the upper and lower
orbital levels. This suggests that an analytic or quasi-analytic
solution may exists also for the general case. This solution
was found after introducing an unitary transformation to the
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quark creation and annihilation operators, followed by a simple
BCS-type of transformation.

The main features of the calculated spectrum are:

(i) Its structure is already quite rich and resembles in
average the physical meson and baryon spectrum. In
order to obtain a better agreement to the physical
spectrum, corrections still have to be applied, such as
the deviation of the average potential to the real one
and the lowest order quark-gluon interactions.

(ii) The mesons and baryons consist of two and three
partons, respectively, which, once transformed into the
original quark operators, correspond to a background
sea of many quark-antiquarks pairs.

As shown, although QCD is highly nonperturbative, there
is still a lot of room to find analytic solutions for specific
sectors of the theory, particularly by applying algebraic
and nonperturbative transformations based on many-body
techniques. As shown in this contribution, the use of hidden
symmetry properties of the QCD Hamiltonian can achieve
great simplifications.
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APPENDIX A: CONSTRUCTING THE POTENTIAL
INTERACTION

The potential term is given by the color-color interaction

V =
∫

dxd yψ†(x)T aψ(x)V (|x − y|)ψ†( y)T aψ( y),

(A1)

where the fermion operators ψ† and ψ have the following
structure:

ψ†(x) = (ψ†
1(x), ψ†

2 (x))

=
⎛⎝ ∑

Nlmσcf

b
†
1
2 Nlmσcf

R∗
Nl(x)Y ∗

lm(�x)χ †
σ ,

×
∑

Nlmσcf

b
†
− 1

2 Nlmσcf
R∗

Nl(x)Y ∗
lm(�x)χ †

σ

⎞⎠ ,

(A2)

ψ(x) =
⎛⎝ ∑

Nlmσcf b
1
2 Nlmσcf RNl(x)Ylm(�x)χσ∑

Nlmσcf b− 1
2 Nlmσcf RNl(x)Ylm(�x)χσ

⎞⎠ .

Thus, the potential term becomes

V =
∑

αiNi ,limijiλiσifi ciLM

∫
dxd yV (|x − y|)

× {[
b
†
α1(N1,l1,

1
2 )j1λ1c1f1

〈
l1m1,

1
2σ1

∣∣j1λ1
〉

×R∗
N1l1

(x)Y ∗
l1m1

(�x)χ †
σ1

(T a)c1
c2

× bα2(N2,l2,
1
2 )j2λ2c2f2

〈
l2m2,

1
2σ2

∣∣j2λ2
〉

×RN2l2 (x)Yl2m2 (�x)χσ2δf1f2δα1α2δσ1σ2

]
× [

b
†
α3(N3,l3,

1
2 )j3λ3c3f3

〈
l3m3,

1
2σ3

∣∣j3λ3
〉

×R∗
N3l3

( y)Y ∗
l3m3

(�y)χ †
σ3

(T a)c3
c4

× bα4(N4,l4,
1
2 )j4λ4c4f4

〈
l4m4,

1
2σ4

∣∣j4λ4
〉

×RN4l4 ( y)Yl4m4 (�y)χσ4δf3f4δα3α4δσ3σ4

]}
. (A3)

The angular part of the double integral is given by the
following expression:∫∫

d�xd�yY
∗
l1m1

(�x)Yl2m2 (�x)

×V (|x − y|)Y ∗
l3m3

(�y)Yl4m4 (�4), (A4)

where the residual interaction can be written as

V (|x − y|) =
∑
L

ALPL cos θ,

⇒ AL =
(

2L + 1

2

) ∫ 1

−1
d(cos θ )PL(cos θ )V (|x − y|),

PL(cos θ ) =
(

4π

2L + 1

) ∑
M

Y ∗
LM (�x)YLM (�y). (A5)

The second expression comes from the orthogonality of the
Legendre polynomials and the third is a useful relation for the
Legendre Polynomials. Therefore, the double angular integral
can be separated into two single angular integrals:

∫∫
d�xd�yY

∗
l1m1

(�x)Yl2m2 (�x)V (|x − y|)Y ∗
l3m3

(�y)Yl4m4 (�y)

=
∑
LM

AL

(
4π

2L + 1

)
(−1)m1+M+m3

×
[∫

d�xYl1−m1(�x )Yl2m2(�x )YL−M (�x)

]
×

[∫
d�yYl3−m3(�y )Yl4m4(�y )YLM (�y)

]
=

∑
LM

AL

(
4π

2L + 1

)
(−1)m1+M+m3

×
[

(2l1 + 1)(2l2 + 1)(2L + 1)

4π

] 1
2

×
[

(2l3 + 1)(2l4 + 1)(2L + 1)

4π

] 1
2

×
(

l1 l2 L

0 0 0

) (
l1 l2 L

−m1 m2 −M

)

×
(

l3 l4 L

0 0 0

) (
l3 l4 L

−m3 m4 M

)
. (A6)

With the above expressions, the potential term takes the
form
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V =
∑

αiNi ,limijiλiσificiLM

[
b
†
α1(N1,l1,

1
2 )j1λ1c1f1

(T a)c1
c2
bα2(N2,l2,

1
2 )j2λ2c2f2χ †

σ1
χσ2δf1f2δα1α2δσ1σ2

]
× [

b
†
α3(N3,l3,

1
2 )j3λ3c3f3

(T a)c3
c4
bα4(N4,l4,

1
2 )j4λ4c4f4χ †

σ3
χσ4δf3f4δα3α4δσ3σ4

]
×

∫
|x|2d|x|| y|2d| y|R∗

N1l1
(|x|)RN2l2 (|x|)R∗

N3l3
(| y|)RN4l4 (| y|)

×
∫ 1

−1
d(cos θ )PL(cos θ )V (|x − y|)

(
2L + 1

2

) 4∏
i=1

√
(2li + 1)(2ji + 1)

1√
2L + 1

1√
2L + 1

× (−1)m1+M+m3+l1−l2+l3−l4+l1− 1
2 −λ1+l2− 1

2 −λ2+l3− 1
2 −λ3+l4− 1

2 −λ4〈l10, l20|L0〉〈l30, l40|L0〉

×
(

l1
1
2 j1

m1 σ1 −λ1

)(
l2

1
2 j2

m2 σ2 −λ2

)(
l1 l2 L

−m1 m2 −M

)(
l3

1
2 j3

m3 σ3 −λ3

)(
l4

1
2 j4

m4 σ4 −λ4

)(
l3 l4 L

−m3 m4 M

)
,

(A7)

→
∑

m1σ1m2

(−1)−σ1− 1
2 −σ3− 1

2 +M−λ2− 1
2 −λ4− 1

2

(
l1

1
2 j1

m1 σ1 −λ1

) (
l2

1
2 j2

m2 σ1 −λ2

) (
l1 l2 L

−m1 m2 −M

)

=
∑

m1σ1m2

(
j1 l1

1
2

−λ1 m1 σ1

) (
l2 j2

1
2

−m2 λ2 −σ1

) (
l2 l1 L

m2 −m1 −M

)
(−1)l2+l1+ 1

2 +m2+m1−σ1

× (−1)−σ1− 1
2 −σ3− 1

2 +M−λ2− 1
2 −λ4− 1

2 −l1−l2− 1
2 −m2−m1+σ1+l2+l1+L

=
(

j1 j2 L

−λ1 λ2 −M

) {
j1 j2 L

l2 l1
1
2

}
(−1)L− 1

2 −σ3− 1
2 −λ2− 1

2 −λ4−1. (A8)

Joining the resulting phase with the last three 3-J coeffi-
cients of Eq. (A7), the following structure is obtained:

⇒
∑

m3σ3m4

(−1)L− 1
2 −σ3− 1

2 −λ2− 1
2 −λ4−1

(
l3

1
2 j3

m3 σ3 −λ3

)

×
(

l4
1
2 j4

m4 σ3 −λ4

) (
l3 l4 L

−m3 m4 M

)

=
∑

m3σ3m4

(
j3 l3

1
2

−λ3 m3 σ3

) (
l4 j4

1
2

−m4 λ4 −σ3

)

×
(

l4 l3 L

m4 −m3 M

)
(−1)l3+

1
2 +l4+m4+m3−σ3

× (−1)L− 1
2 −σ3− 1

2 −λ2− 1
2 −λ4−1+l4+l3+L−l3− 1

2 −l4−m4−m3+σ3

=
(

j3 j4 L

−λ3 λ4 M

) {
j3 j4 L

l4 l3
1
2

}
(−1)M (−1)

1
2 +λ2+ 1

2 +λ4 ,

(A9)

where the 3-J coefficients can be written as(
j1 j2 L

−λ1 λ2 −M

)

= (−1)j1−j2+M+j1+j2−L

√
2L + 1

〈j1λ1, j2 − λ2|L − M〉,

(
j3 j4 L

−λ3 λ4

)

= (−1)j3−j4−M+j3+j4−L

√
2L + 1

〈j3λ3, j4 − λ4|LM〉. (A10)

Another contribution to the general phase comes from
lowering the spin and color indices of the annihilation
operators, which gives the additional phases

(−1)j2−λ2+χ2 (−1)j4−λ4+χ4 . (A11)

With this, the general phase is given by

(−1)M (−1)
1
2 +λ2+ 1

2 +λ4 (−1)j2−λ2+χ2 (−1)j4−λ4+χ4

× (−1)j1−j2+M+j1+j2−L(−1)j3−j4−M+j3+j4−L

= (−1)
1
2 +j2+ 1

2 +j4 (−1)M (−1)χ2+χ4 , (A12)

where (−1)χk are the SU(3) phases of color, as defined in
Ref. [9].

Finally, the product of the SU(3) color generators can be
written as follows:

(T a)c1
c2

(T a)c3
c4

= 〈(1, 0)c2, (1, 1)a|(1, 0)c1〉1(−1)χa

×〈(1, 0)c4, (1, 1)ā|(1, 0)c3〉1〈(1, 0)|||T |||(1, 0)〉2.

(A13)

The factor 〈(1, 0)|||T |||(1, 0)〉 is a triple-reduced matrix
element and its value is given by twice the second order
Casimir operator of SU(3) [9], which is equal to

√
8. The bar
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over an index refers to the conjugate component. The index
1 at the end of an SU(3) Clebsch-Gordan coefficient is the
multiplicity of the coupling. Using the symmetry properties of
the SU(3) Clebsch-Gordan coefficients [9] and changing the
index a by C, we arrive at the expression

(TC)c1
c2

(TC)c3
c4

= 3(−1)χc2 +χc4 +χC 〈(1, 0)c1, (0.1)c̄2|(1, 1)C〉1

×〈(1, 0)c3, (0.1)c̄4|(1, 1)C̄〉1. (A14)

Finally, the potential term is given by

V =
∑

Ni,ji ,λi ,li ,ci ,α,f,α′,f ′,L,M,C

[
b
†
α1(N1,l1,

1
2 )j1λ1c1f

b
α2,f

(N2,l2,
1
2 )j2−λ2 c̄2

×〈j1λ1, j2 − λ2|L − M〉〈(1, 0)c1, (0, 1)c̄2|(1, 1)C〉]
× [

b
†
α3(N3,l3,

1
2 )j3λ3c3f ′b

α4,f
′

(N4,l4,
1
2 )j4−λ4 c̄4

〈j3λ3, j4 − λ4|LM〉
× 〈(1, 0)c3, (0, 1)c̄4|(1, 1)C̄〉](−1)M+χC

× (−1)
1
2 +j2+ 1

2 +j4

(
3

2

)
1

2L + 1

∫
|x|2d|x|| y|2d| y|R∗

N1l1

× (|x|)RN2l2 (|x|)R∗
N3l3

(| y|)RN4l4 (| y|)

×
∫ 1

−1
d(cos θ )PL(cos θ )V (|x − y|)

×
4∏

i=1

√
(2li + 1)(2ji + 1)〈l10, l20|L0〉〈l30, l40|L0〉

×
{

j1 l1
1
2

l2 j2 L

} {
j3 l3

1
2

l4 j4 L

}
. (A15)

The Clebsch-Gordan and all recoupling coefficients are
calculated numerically [11,12]. In Ref. [9], a useful col-
lection of formulas is given that comprises all symmetry
relations known for these coefficients. In Refs. [15,16], more
recent versions of the computer routines for calculating
the SU(3) Clebsch-Gordan and recoupling coefficients are
available.

As mentioned before, the potential term has the following
form:

V =
∑

Ni,ji ,λi ,li ,ci ,α,f,α′,f ′,L,M,C

(−1)M (−1)χC

× [
b†

α(N1,l1,
1
2 )j1λ1,c1f

bα,f

(N2,l2,
1
2 )j2λ2,c2

〈j1λ1, j2λ2|LM〉
× 〈(1, 0)c1, (0, 1)c2|(1, 1)C〉]
× [

b†
α′,(N3,l3,

1
2 )j3,λ3,c3f ′ b

α′,f ′

(N4,l4,
1
2 )j4λ4,c4

〈j3λ3, j4λ4|L − M〉
× 〈(1, 0)c3, (0, 1)c4|(1, 1)C̄〉]
×

√
(2j1 + 1)(2j3 + 1)V (Ni, li , ji, L). (A16)

The creation operator is in a (1,0) SU(3)-color irrep and
the annihilation operator with a lower index is in a (0,1)
SU(3)-color irrep. A creation operator is coupled with the

annihilation operator to a (1,1) SU(3)-color irrep, denoting the
color generator. The quantity V (Ni, li , ji, L) is the intensity
of each component of the interaction, and it reads

V (Ni, li , ji, L)

=
(

3

2

)
1

(2L + 1)
(−1)j2+ 1

2 +j4+ 1
2

×
∫

|x|2d|x|| y|2d| y|R∗
N1l1

(|x|)RN2l2 (|x|)

×R∗
N3l3

(| y|)RN4l4 (| y|)

×
∫ 1

−1
d(cosθ )PL(cosθ )V (|x|, | y|, cosθ )

×
∏4

i=1

√
(2li + 1)(2ji + 1)〈l10, l20|L0〉〈l30, l40|L0〉√

(2j1 + 1)(2j3 + 1)

×
{

j1 l1
1
2

l2 j2 L

} {
j3 l3

1
2

l4 j4 L

}
. (A17)

By taking into account that the only allowed value of L is
L = 0 and using a constant potential V0 as residual interaction,
the following simplifications are implied:∫ 1

−1
d(cosθ )PL(cosθ )V (|x|, | y|, cosθ )

= 2V0

∫
|x|2d|x|| y|2d| y|R∗

N1l1
(|x|)RN2l2 (|x|),

R∗
N3l3

(| y|)RN4l4 (| y|) =
∫

|x|2d|x|R∗
N1l1

(|x|)RN2l2 (|x|),∫
| y|2d| y|R∗

N3l3
(| y|)RN4l4 (| y|) = δN1N2δN3N4δl1l2δl3l4 ,

〈l10, l20|L0〉 = (−1)l1√
2l1 + 1

,

〈l30, l40|L0〉 = (−1)l3√
2l3 + 1

,{
j1 j2 0

l1 l2
1
2

}
= (−1)j1+l1+ 1

2√
(2j1 + 1)(2l1 + 1)

,

{
j3 j4 0

l3 l4
1
2

}
= (−1)j3+l3+ 1

2√
(2j3 + 1)(2l3 + 1)

.

Therefore, the intensities V (Ni, li , ji, L) are given by

V (Ni, li , ji, L) = V0

2
δL0δl1l2δl3l4δj1j2δj3j4δN1N2δN3N4 .

(A18)

APPENDIX B: CONSTRUCTING THE KINETIC
ENERGY OPERATOR

We start from the expression of the kinetic-energy term
obtained in Sec. II, but without the mass term. The contribution
of the mass term will be considered Appendix C.
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K̃ j =
∞∑

N=j+ 1
2

N+1∑
N ′=N−1

∑
λcf

kjNN ′
[
b†1

2 (N,j+ 1
2 , 1

2 )jλcf
b− 1

2 (N ′,j− 1
2 , 1

2 )jλcf + b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N ′,j− 1

2 , 1
2 )jλcf

]

+
∞∑

N=j+ 1
2

N+1∑
N ′=N−1

∑
λcf

k∗
jNN ′

[
b†1

2 (N ′,j− 1
2 , 1

2 )jλcf
b− 1

2 (N,j+ 1
2 , 1

2 )jλcf + b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

]
(B1)

where N varies in steps of 2 and the kjNN ′ constant is given
by

kjNN ′ = i

∫
r2dr

[
R∗

N(j+ 1
2 )(r)

(
d

dr
− j − 1

2

r

)
RN ′(j− 1

2 )(r)

]
.

(B2)

We use the three-dimensional harmonic oscillator (i.e.,

Rn′l(r) = Nn′l exp(− γ r2

2 )rlL
l+ 1

2
n′ (γ r2)] as radial functions and

the convention N ′ = n′−l
2 , which is the conventional notation

for the harmonic oscillator (at the end we will come back to
the Nj notation, where l = j − 1

2 and l′ = j + 1
2 ). The factors

kjNN ′ can be written now as

Klnn′ = i

∫
r2dr

[
R∗

nl′(r)

(
d

dr
− l

r

)
Rn′l(r)

]
. (B3)

The result of applying of the operator ( d
dr

− l
r
) on the radial

function is(
d

dr
− l

r

)
Rn′l(r) = Nn′l

[
rl exp

(
−γ r2

2

)
d

dr
L

l+ 1
2

n′ (γ r2)

− γ rl+1 exp

(
−γ r2

2

)
L

l+ 1
2

n′ (γ r2)

]
.

(B4)

From the recurrence relations of the Laguerre polynomials

Lα
n(x) = Lα+1

n (x) − Lα+1
n−1(x),

d

dx
Lα

n = −Lα+1
n−1(x),

(B5)

the first relation of Eq. (B4) can be written as(
d

dr
− l

r

)
Rn′l(r) = Nn′l

{
rl exp

(
−γ r2

2

)
d

dr
L

l+ 1
2

n′ (γ r2)

− γ rl+1 exp

(
−γ r2

2

)
× [

L
l+1+ 1

2
n′ (γ r2) − L

l+1+ 1
2

n′−1 (γ r2)
]}
(B6)

and

rl exp

(
−γ r2

2

)
d

dr
L

l+ 1
2

n′ (γ r2)

= rl exp

(
−γ r2

2

)
(−2γ r)L

l+1+ 1
2

n′−1 (x). (B7)

We obtain the final expression(
d

dr
− l

r

)
Rn′l(r)

= Nn′l

[
−2γ rl+1 exp

(
−γ r2

2

)
L

l+1+ 1
2

n′−1 (γ r2)

− γ rl+1 exp

(
−γ r2

2

)
L

l+1+ 1
2

n′ (γ r2)

+ γ rl+1 exp

(
−γ r2

2

)
L

l+1+ 1
2

n′−1 (γ r2)

]
= Nn′l

[
−γ

Rn′−1,l+1(r)

Nn′−1,l+1
− γ

Rn′,l+1(r)

Nn′,l+1

]
. (B8)

Therefore, the connections for the harmonic oscillator are
given by

klnn′ = −iγ
Nn′,l

Nn′−1,l+1
δn,n′−1δl′,l+1 − iγ

Nn′,l

Nn′,l+1
δn,n′δl′,l+1.

(B9)

In order to translate this expressions into the original
notation, we write n′ = N ′−l

2 and n = N−l′
2 , so for the first and

second terms of Eq. (B9) one has the following selection rules:

n = n′ − 1 ⇒ N ′ = N + 1, n = n′ ⇒ N ′ = N − 1.

(B10)

The quotient to the normalization constants is given by

Nn′,l

Nn′−1,l+1
δn,n′−1δl′,l+1

=
[

2(n′)!
�

(
n′ + l + 3

2

)] 1
2

γ
3
4 + l

2

[
�

(
n′ − 1 + l + 1 + 3

2

)
2(n′ − 1)!

] 1
2

× 1

γ
3
4 + l+1

2

=
√

N − j + 3
2

2γ
δN ′,N+1 (B11)

and
Nn′,l

Nn′,l+1
δn,n′δl′,l+1

=
[

2
(
n′)!

�(n′ + l + 3
2

)] 1
2

γ
3
4 + l

2

[
�

(
n′ + l + 1 + 3

2

)
2(n′)!

] 1
2 1

γ
3
4 + l+1

2

=
√

N + j + 3
2

2γ
δN ′,N−1. (B12)
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The kinetic-energy term is written as K = K (1+2) + K (3+4),
with

K (1+2) =
∑

j

∞∑
N=j+ 1

2

N+1∑
N ′=N−1

∑
λcf

⎡⎣−i
√

γ

√
N − j + 3

2

2
δN ′,N+1

− i
√

γ

√
N + j + 3

2

2
δN ′,N−1

⎤⎦
× [

b†1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

+ b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N ′,j− 1

2 , 1
2 )jλcf

]
, (B13)

K (3+4) =
∑

j

∞∑
N=j+ 1

2

N+1∑
N ′=N−1

∑
λcf

⎡⎣i
√

γ

√
N − j + 3

2

2
δN ′,N+1

+ i
√

γ

√
N + j + 3

2

2
δN ′,N−1

⎤⎦
× [

b†1
2 (N ′,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

+ b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

]
. (B14)

Finally, the operators K̃+ = K (1) + K (3) and K̃− = K (2) +
K (4) have the structure

K̃+ = (−i
√

γ )
∑

j

∞∑
N=j+ 1

2

N−1∑
N ′=N+1

∑
λcf

×
⎛⎝√

N − j + 3
2

2
δN ′,N+1 +

√
N + j + 3

2

2
δN ′,N−1

⎞⎠
× [

b†1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

− b†1
2 (N ′,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

]
,

K̃− = (−i
√

γ )
∑

j

∞∑
N=j+ 1

2

N+1∑
N ′=N−1

∑
λcf

×
⎛⎝√

N − j + 3
2

2
δN ′,N+1 +

√
N + j + 3

2

2
δN ′,N−1

⎞⎠
× [

b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N ′,j− 1

2 , 1
2 )jλcf

− b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

]
. (B15)

Now, for each set N, j with l = j + 1
2 , we redefine the

fermion creation operators by multiplying them by −i and
the corresponding annihilation operator by +i. In this way,
the anticommutation relations are preserved. Explicitly, the

mapping is given by

(−i)b†± 1
2 (N,j+ 1

2 , 1
2 )jλcf

→ b†± 1
2 (N,j+ 1

2 , 1
2 )jλcf

,

(B16)
(i)b± 1

2 (N,j+ 1
2 , 1

2 )jλcf → b± 1
2 (N,j+ 1

2 , 1
2 )jλcf .

With this the kinetic energy parts acquire the form

K̃+ = (
√

γ )
∑

j

∞∑
N=j+ 1

2

N+1∑
N ′=N−1

∑
λcf

×
⎛⎝√

N − j + 3
2

2
δN ′,N+1 +

√
N + j + 3

2

2
δN ′,N−1

⎞⎠
× [

b†1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

+ b†1
2 (N ′,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

]
,

K̃− = (
√

γ )
∑

j

∞∑
N=j+ 1

2

N+1∑
N ′=N−1

∑
λcf

×
⎛⎝√

N − j + 3
2

2
δN ′,N+1 +

√
N + j + 3

2

2
δN ′,N−1

⎞⎠
× [

b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b
1
2 (N ′,j− 1

2 , 1
2 )jλcf

+ b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b
1
2 (N,j+ 1

2 , 1
2 )jλcf

]
. (B17)

APPENDIX C: CONTRIBUTION OF THE MASS TERM

Substituting the fermion fields into the expression of the
mass term, we obtain∫

dxψ†(x)βm0ψ(x)

=
∫

dx(ψ†
1(x),ψ†

2(x))

(
m01 0

0 −m01

) (
ψ1(x)

ψ2(x)

)

= m0

∫
dx(ψ†

1(x)ψ1(x) − ψ
†
2(x)ψ2(x))

= m0

∫
dx

∑
N1N3l1l3m1m3j1j3λ1λ3σ1σ3cf

〈
l1m1,

1

2
σ1

∣∣∣∣j1λ1

〉

×
〈
l3m3,

1

2
σ3

∣∣∣∣j3λ3

〉
R∗

N1l1
(|x|)RN3l3 (|x|)Y ∗

l1m1
(�x)

×Yl3m3 (�x)χ∗
σ1

χσ3 b†1
2 (N1l1

1
2 )j1λ1cf

b
1
2 (N3l3

1
2 )j3λ3cf

−
∫

dx
∑

N2N4l2l4m2m4j2j4λ2λ4σ2σ4cf

〈
l2m2,

1

2
σ2

∣∣∣∣j2λ2

〉

×
〈
l4m4,

1

2
σ4

∣∣∣∣j4λ4

〉
R∗

N2l2
(|x|)RN4l4 (|x|)Y ∗

l2m2
(�x)Yl4m4

× (�x)χ∗
σ2

χσ4 b†− 1
2 (N2l2

1
2 )j2λ2cf

b− 1
2 (N4l4

1
2 )j4λ4cf . (C1)
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The radial and the angular integral leads to the restric-
tion δN1N3δl1l3δm1m3δσ1σ3 and δN2N4δl2l4δm2m4δσ2σ4 , respectively.
Thus, the mass term can be written as [applying also the
mapping of the fermion creation and annihilation operators,
as given in Eq. (B16)]∫

dxψ†(x)βm0ψ(x)

= m0

∑
Nljλcf

[
b†1

2 (Nl 1
2 )jλcf

b
1
2 (Nl 1

2 )jλcf

− b†− 1
2 N(l 1

2 )jλcf
b− 1

2 N(l 1
2 )jλcf

]
= m0

∑
j

∑
λcf

∞∑
N ′=j− 1

2

[
b†1

2 (N ′,j− 1
2 , 1

2 )jλcf
b

1
2 (N ′,j− 1

2 , 1
2 )jλcf

− b†− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

b− 1
2 (N ′,j− 1

2 , 1
2 )jλcf

]
+m0

∑
j

∑
λcf

∞∑
N=j+ 1

2

[
b†1

2 (N,j+ 1
2 , 1

2 )jλcf
b

1
2 (N,j+ 1

2 , 1
2 )jλcf

− b†− 1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

]
, (C2)

where N and N ′ vary in steps of 2. Now, we apply the same
unitary transformation as described in the text; that is,∫

dxψ†(x)βm0ψ(x)

=
∑

j

∑
λcf

∑
q

{
m0,q,j− 1

2

[
b̂
†
1
2 (q,j− 1

2 , 1
2 )jλcf

b̂
1
2 (q,j− 1

2 , 1
2 )jλcf

− b̂
†
− 1

2 (q,j− 1
2 , 1

2 )jλcf
b̂

− 1
2 (q,j− 1

2 , 1
2 )jλcf ]}

+
∑

j

∑
λcf

∑
k

{
m0,k,j+ 1

2

[̂
b
†
1
2 (k,j+ 1

2 , 1
2 )jλcf

b̂
1
2 (k,j+ 1

2 , 1
2 )jλcf

− b̂
†
− 1

2 (k,j+ 1
2 , 1

2 )jλcf b̂
− 1

2 (k,j+ 1
2 , 1

2 )jλcf ]}
. (C3)

By applying the method described in Sec. III, the only
remaining terms correspond to k = q. With this, the masses
become

m0,k,j− 1
2

=
n−1∑

N ′=j− 1
2

m0|βjN ′k|2,

(C4)

m0,k,j+ 1
2

=
n∑

N=j+ 1
2

m0|αjNk|2.

Finally, the mass contribution to the BCS kinetic energy is
given by

K BCS
mass

=
∑
λcf

∑
kj

{(
m0,k,j− 1

2
c2
j+ 1

2 ,k
− m0,k,j+ 1

2
s2
j+ 1

2 ,k

)
b
†
j− 1

2 (kj )λcf

× b
(kj )λcf

j− 1
2

+ (
m0,k,j− 1

2
c2
j− 1

2 ,k
− m0,k,j+ 1

2
s2
j− 1

2 ,k

)
d
†(kj )λcf

j− 1
2

× dj− 1
2 (kj )λcf + (

m0,k,j+ 1
2
c2
j− 1

2 ,k
− m0,k,j− 1

2
s2
j− 1

2 ,k

)
× b

†
j+ 1

2 (kj )λcf
b

(kj )λcf

j+ 1
2

+ (
m0,k,j+ 1

2
c2
j+ 1

2 ,k
−m0,k,j− 1

2
s2
j+ 1

2 ,k

)
× d

†(kj )λcf

j+ 1
2

dj+ 1
2 (kj )λcf + 12

[
m0,k,j− 1

2

(
s2
j+ 1

2 ,k
− c2

j− 1
2 ,k

)
+m0,k,j+ 1

2

(
s2
j− 1

2 ,k
− c2

j+ 1
2 ,k

)] − [(
m0,k,j− 1

2
+ m0,k,j+ 1

2

)
× sj+ 1

2 ,kcj+ 1
2 ,k

][
b
†
j− 1

2 (kj )λcf
d
†(kj )λcf

j+ 1
2

+ dj+ 1
2 (kj )λcf b

(kj )λcf

j− 1
2

]
− [(

m0,k,j− 1
2
+ m0,k,j+ 1

2

)
sj− 1

2 ,kcj− 1
2 ,k

]
× [

b
†
j+ 1

2 (kj )λcf
d
†(kj )λcf

j− 1
2

+ dj− 1
2 (kj )λcf b

(kj )λcf

j+ 1
2

]}
. (C5)

APPENDIX D: THE KINETIC ENERGY TERM FOR THREE
LEVELS AND A FIXED N AND j

The Dirac picture of the three-energy levels implies six
states, three with positive energy and three with negative
energy. Fixing j and N , we are working in a determined
column with total spin j and the possible connections (N −
1, j − 1

2 ) ←→ (N, j + 1
2 ) and (N, j + 1

2 ) ←→ (N + 1, j −
1
2 ). The operators K+ and K− of this case have the following
structure, respectively:

K̃+ = √
γ

⎡⎣(
N−j+ 3

2

2

) 1
2

b
†
1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N+1,j− 1

2 , 1
2 )jλcf

+
(
N + j + 3

2

2

) 1
2

b
†
1
2 (N,j+ 1

2 , 1
2 )jλcf

b− 1
2 (N−1,j− 1

2 , 1
2 )jλcf

+
(
N − j + 3

2

2

) 1
2

b
†
1
2 (N+1,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

+
(
N+j+ 3

2

2

) 1
2

b
†
1
2 (N−1,j− 1

2 , 1
2 )jλcf

b− 1
2 (N,j+ 1

2 , 1
2 )jλcf

⎤⎦,

(D1)

K̃− = √
γ

⎡⎣(
N−j+ 3

2

2

) 1
2

b
†
− 1

2 (N,j+ 1
2 , 1

2 )jλcf
b

1
2 (N+1,j− 1

2 , 1
2 )jλcf

+
(

N + j + 3
2

2

) 1
2

b
†
− 1

2 (N,j+ 1
2 , 1

2 )jλcf
b

1
2 (N−1,j− 1

2 , 1
2 )jλcf

+
(

N − j + 3
2

2

) 1
2

b
†
− 1

2 (N+1,j− 1
2 , 1

2 )jλcf
b

1
2 (N,j+ 1

2 , 1
2 )jλcf

+
(

N+j+ 3
2

2

) 1
2

b
†
− 1

2 (N−1,j− 1
2 , 1

2 )jλcf
b

1
2 (N,j+ 1

2 , 1
2 )jλcf

⎤⎦ .

(D2)
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The commutation relation of these operators is given by
(omitting the subindices jλcf for simplicity)

[K̃+, K̃−] = γ

⎧⎨⎩
(

N − j + 3
2

2

) [
N 1

2 (N,j+ 1
2 , 1

2 ) − N− 1
2 (N+1,j− 1

2 , 1
2 )

] −
(

N − j + 3
2

2

) 1
2

(
N + j + 3

2

2

) 1
2

b†− 1
2 (N−1,j− 1

2 , 1
2 )

× b− 1
2 (N+1,j− 1

2 , 1
2 ) −

(
N − j + 3

2

2

) 1
2

(
N + j + 3

2

2

) 1
2

b†− 1
2 (N+1,j− 1

2 , 1
2 )

b− 1
2 (N−1,j− 1

2 , 1
2 )

+
(

N + j + 3
2

2

) [
N 1

2 (N,j+ 1
2 , 1

2 ) − N− 1
2 (N−1,j− 1

2 , 1
2 )

] +
(

N − j + 3
2

2

) [
N 1

2 (N+1,j− 1
2 , 1

2 ) − N− 1
2 (N,j+ 1

2 , 1
2 )

]
+

(
N − j + 3

2

2

) 1
2

(
N + j + 3

2

2

) 1
2

b†1
2 (N+1,j− 1

2 , 1
2 )

b
1
2 (N−1,j− 1

2 , 1
2 ) +

(
N − j + 3

2

2

) 1
2

(
N + j + 3

2

2

) 1
2

× b†1
2 (N−1,j− 1

2 , 1
2 )

b
1
2 (N+1,j− 1

2 , 1
2 ) +

(
N + j + 3

2

2

) [
N 1

2 (N−1,j− 1
2 , 1

2 ) − N− 1
2 (N,j+ 1

2 , 1
2 )

]⎫⎬⎭
= 2K̃ 0, (D3)

[K̃ 0, K̃+] =
(

γ
3
2

2

) ⎧⎨⎩
(

N − j + 3
2

2

) 3
2

b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N+1,j− 1

2 , 1
2 ) +

(
N − j + 3

2

2

) (
N + j + 3

2

2

) 1
2

b†1
2 (N,j+ 1

2 , 1
2 )

× b− 1
2 (N−1,j− 1

2 , 1
2 ) +

(
N − j + 3

2

2

) 3
2

b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N+1,j− 1

2 , 1
2 ) +

(
N + j + 3

2

2

) (
N − j + 3

2

2

) 1
2

× b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N+1,j− 1

2 , 1
2 ) +

(
N − j + 3

2

2

) (
N + j + 3

2

2

) 1
2

b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N−1,j− 1

2 , 1
2 )

+
(

N + j + 3
2

2

) (
N − j + 3

2

2

) 1
2

b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N+1,j− 1

2 , 1
2 ) +

(
N + j + 3

2

2

) 3
2

b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N−1,j− 1

2 , 1
2 )

+
(

N + j + 3
2

2

) 3
2

b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N−1,j− 1

2 , 1
2 ) +

(
N − j + 3

2

2

) 3
2

b†1
2 (N+1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 )

+
(

N − j + 3
2

2

) 3
2

b†1
2 (N+1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 ) +

(
N − j + 3

2

2

) (
N + j + 3

2

2

) 1
2

b†1
2 (N−1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 )

+
(

N + j + 3
2

2

) (
N − j + 3

2

2

) 1
2

b†1
2 (N+1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 ) +

(
N − j + 3

2

2

) (
N + j + 3

2

2

) 1
2

b†1
2 (N−1,j− 1

2 , 1
2 )

× b− 1
2 (N,j+ 1

2 , 1
2 ) +

(
N + j + 3

2

2

) 3
2

b†1
2 (N−1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 ) +

(
N + j + 3

2

2

) (
N − j + 3

2

2

) 1
2

b†1
2 (N+1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 ) +

(
N + j + 3

2

2

) 3
2

b†1
2 (N−1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 )

⎫⎬⎭
= γ

2
√

γ

⎧⎨⎩
[

2

(
N − j + 3

2

2

)
+ 2

(
N + j + 3

2

2

)] (
N − j + 3

2

2

) 1
2

b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N+1,j− 1

2 , 1
2 )

+
[

2

(
N − j + 3

2

2

)
+ 2

(
N + j + 3

2

2

)] (
N + j + 3

2

2

) 1
2

b†1
2 (N,j+ 1

2 , 1
2 )

b− 1
2 (N−1,j− 1

2 , 1
2 )
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+
[

2

(
N − j + 3

2

2

)
+ 2

(
N + j + 3

2

2

)] (
N − j + 3

2

2

) 1
2

b†1
2 (N+1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 )

+
[

2

(
N − j + 3

2

2

)
+ 2

(
N + j + 3

2

2

)] (
N + j + 3

2

2

) 1
2

b†1
2 (N−1,j− 1

2 , 1
2 )

b− 1
2 (N,j+ 1

2 , 1
2 )

⎫⎬⎭
= γ

2
[2N + 3]K̃+. (D4)

Defining

K± = η K̃±,
(D5)

K 0 = η2 K̃ 0,

we arrive at the relation

[K 0, K+] = γ

2
(2N + 3) η2 K+. (D6)

Choosing

η =
[√

γ

2
(2N + 3)

]−1

(D7)

we arrive at the well-known SU(2) algebra. Of course, this has
to be repeated for K−, which is easily obtained by taking the
adjoint of K+.

[1] T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev.
D 12, 2060 (1975).

[2] W. Greiner, S. Schramm, and E. Stein, Quantum Chromodynam-
cis (Spı̈riner, Heidelberg, 2002).

[3] N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978).
[4] R. Bijker, F. Iachello, and A. Leviatan, Ann. Phys. (NY) 236, 69

(1994).
[5] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 65, 025012

(2001).
[6] P. O. Hess and A. P. Szczepaniak, Phys. Rev. C 73, 025201

(2006).
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