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The appearance of atomic squeezing in a system of three-level atoms placed in a two-mode cavity, is
analyzed. The effects of effective dipole–dipole interactions between atoms are discussed. It is found that
these interactions washed-out the squeezing, while the increase in the mean number of photons, of the
initial coherent state, moderates this effect significatively.
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1. Introduction

In the last years, several proposals to build quantum infor-
mation devices have been made [1]. Among them, quantum-
computing devices with neutral atoms [2] seems particularly at-
tractive, because of the very large coherence times of the internal
atomic states and of the well developed techniques for cooling and
trapping atoms in optical lattices, far off-resonance light-traps, and
magnetic microtraps [3]. In particular, dipole–dipole coupling of
Rydberg states provides a strong interaction suitable for the im-
plementation of two-qubit quantum gate for neutral atoms (with
the gate operation time much faster than the time scales associ-
ated with the motion of the atoms in the trapping potential) [4].
A detailed analysis of a quantum logic device based on dipole–
dipole interactions of optically trapped Rydberg atoms was pre-
sented in [5]. More recently [6], some attention was devoted to
the so-called “dipole-blockade” phenomenon. When several atoms
are sufficiently close, the presence of an excited atom can cause
a shift in the energy of all atoms which is large enough to pre-
vent resonant excitation of more than one atom in the sample [6].
This “dipole-blockade” phenomenon has the potential for creating
strongly coupled ensembles with a moderate number of atoms [7].
Recent experiments have revealed signatures of the Rydberg in-
teractions needed for dipole-blockade at large principal quantum
number [8]. The authors of [9] have studied the Rabi oscillations
between ground and Rydberg states of 87Rb. They have observed
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coherent population oscillations for a single atom, while the pres-
ence of two or more atoms destroys the coherence of the oscil-
lations. The generation of an efficient multiparticle entanglement
via asymmetric Rydberg blockade is discussed in [10]. Among the
systems to study, ensembles of three-level atoms driven by laser
fields and interacting via dipole–dipole interactions are of inter-
est. See for instance [11,12] where the coherent manipulation of
three-level atoms interacting via dipole–dipole interactions is im-
plemented.

In this work, we are considering a system of three-level atoms
in a two-mode cavity [13,14]. We have adopted a coherent state
to model the initial condition of the photon field, and included
an effective dipole–dipole interaction between the atoms [15,16].
The appearance of atomic squeezing [17] is investigated upon the
asymmetry of the coupling constants in the photon–atom inter-
action sector of the proposed Hamiltonian, as well as upon the
inclusion of the dipole–dipole interaction [18].

The Letter is organized as follows. In Section 2 we present
the details of the formalism. The appearance of squeezing in a
system of N three-level atoms and photons is discussed in Sec-
tion 3, where we present the solutions of the model advanced in
Section 2. In performing the calculations we have used different
couplings between the atoms and the radiation field. The conclu-
sions are drawn in Section 4.

2. Formalism

We have considered a system which consists of N identical
three-level atoms in interaction with a radiation field [14,18,19].
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Fig. 1. Different configurations for the H ph−at interaction. Insets (a), (b), and (c)
correspond to the �-, ladder-, and V-configuration, respectively.

The atoms and the photons are placed in a cavity. The Hamilto-
nian proposed is of the form

H = H0,ph + H0,at + Hdd + Hph−at, (1)

with

H0,ph = ωaa†a + ωbb†b,

H0,at =
∑

i

Ei Sii . (2)

The effective dipole–dipole interaction between atoms is defined
as

Hdd = g
∑
γ ,γ ′

(
S01+ (γ ) + S12− (γ )

)(
S01−

(
γ ′) + S12+

(
γ ′)). (3)

In writing this interaction (3) we have neglected self-energy terms
and taken averages on the position of the atoms, absorbing the
interatomic distances in the effective coupling [20]. Because the
configurations we are dealing with include a relatively small num-
ber of atoms, this approximation should not affect the calculations,
though it should be not quite adequate for spatial arrays with
large number of atoms, where attenuation effects do indeed de-
pend upon the position of the atoms.

The atoms interact with two laser fields of frequencies ωa

and ωb , respectively. We shall study the behavior of the system
for different possible configurations. For the � configuration, see
Fig. 1(a), Hph−at reads

Hph−at = g1
(
aS01+ + a† S01−

) + g2
(
bS12− + b† S12+

)
. (4)

If the photons and the atoms interact via a ladder configuration,
see Fig. 1(b), the last term of the Hamiltonian reads

Hph−at = g1
(
aS01+ + a† S01−

) + g2
(
bS12+ + b† S12−

)
, (5)

see Fig. 1(c), and in the V-configuration it is given by

Hph,at = g1
(
aS01− + a† S01+

) + g2
(
bS12+ + b† S12−

)
. (6)

The operators Sij
+, Sij

−, Sij
z i �= j generate the (N + 1)(N + 2)/2-

dimensional symmetric representation of the su(3) algebra. This
can be shown easily by writing these operators in terms of cre-
ation (annihilation), b†

i (bi ), boson operators for the i-th atomic
level (i = 0,1,2). Thus, the operators
Sij = b†
jbi, i, j = 0,1,2, (7)

fulfill the commutation relations
[

Sij, Skm] = δim Skj − δ jk Sim. (8)

The atomic inversion operators

Sij
z = 1

2

(
S jj − Sii), (9)

and the transition operators Sij
±

Sij
+ = Sij, Sij

− = (
Sij

+
)† = S ji, i, j = 0,1,2, i < j, (10)

are defined in terms of the operators (7) and obey the same alge-
bra.

In the expression of H , of Eq. (2), a† (a) is the one photon-
creation (-annihilation) operator of the photon mode of energy ωa ,
while b† (b) correspond to the photon of energy ωb . Ei is the en-
ergy of the i-th atomic level. In Eqs. (3)–(6), g1 and g2 are coupling
constants describing the absorption (emission) of a photon in the
presence of an upward (downward) atomic excitation between lev-
els 0 and 1 (term proportional to g1), and between levels 1 and 2
(term proportional to g2), and g is the effective coupling constant
of the dipole atom–atom interaction.

2.1. The exact solution

The exact solution of the model can be obtained straightfor-
wardly. For details the reader is kindly referred to [18].

We consider the collective state with n1 atoms in the first ex-
cited state and n2 atoms in the second excited state ( n1 + n2 � N)

|n1n2〉 = N(n1,n2)
∑

P

∣∣nP
1 (1) · · ·nP

1 (N) nP
2 (1) · · ·nP

2 (N)
〉
,

N(n1,n2) =
((

N
n1

)(
N − n1
n2

))−1/2

(11)

with n1 = ∑N
j=1 nP

1 ( j), n2 = ∑N
j=1 nP

2 ( j) and nP
1 ( j) = nP

2 ( j) = 0,1.
Note that the internal degeneracy of each of the two avail-
able atomic states is included in the definition of the basis
|nP

1 (1) · · ·nP
1 (N)nP

2 (1) · · ·nP
2 (N)〉.

Since the Hamiltonian of Eq. (1), contains a bosonic degree of
freedom, the state which represents (na,nb) photons is written as
the number state

|nanb〉 = 1√
na!nb!

a†na
b†nb |0〉. (12)

We shall then express the wave function of the photons and atoms
as (dressed state)

|na,nb,n1,n2〉 = |na,nb〉 ⊗ |n1,n2〉. (13)

We shall diagonalize the Hamiltonian (1) in the basis (13) by
enforcing the constraints

n0 + n1 + n2 = N,

na − nb + n1 − N = L (ladder-configuration),

na + nb + n1 − N = L (�-configuration),

na + nb − n1 − N = L (V-configuration), (14)

where N is the number of atoms.
In the basis of states with good L, the exact solution is written

[18]

|Ψα〉 =
∑

η≡{na,nb,n1,n2}
cα(η)|η〉. (15)
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2.2. Time evolution

In the basis of eigenvectors of H , constructed as discussed be-
fore, the time evolution of a given operator O is expressed as

O (t) = U †(t)O U (t), U (t) = e−iHt/h̄. (16)

The expectation value 〈O (t)〉 is then written

〈
O (t)

〉 = Tr
(
ρ(t)O

)
=

∑
α,β

〈β|I〉〈I|α〉〈α|O |β〉e−i(Eα−Eβ )t/h̄,

ρ(t) = U †(t)ρ(0)U (t), ρ(0) = |I〉〈I|, (17)

|I〉 is the initial state of the system, {Eα} and {|α〉} are the α-th
eigenvalue and eigenvector of the Hamiltonian and ρ(t) is the den-
sity matrix.

The expression (17) can be written in a more compact form in
terms of the overlap of the initial state |I〉 with the eigenvectors
{|α〉}, that is

〈
O (t)

〉 = ∑
n,m

T ∗(n)〈n|O |m〉T (m),

T (m) =
∑
αn

c∗
αncαm〈n|I〉eiEαt/h̄. (18)

2.3. Squeezing parameter

The basic mechanism of spin squeezing, if appropriate quan-
tum mechanical correlations are established among the elementary
spins of a system, consists in partially canceling out the fluctuation
of spin in one direction at the expense of enhancement in other
direction, while preserving the minimum uncertainty product [21–
23].

Different definitions of spin squeezing can be used depending
on the context in which squeezing is considered.

For a given pair of operators, P and O , the quantity

Q (P , O ) = 2�2 P

|〈φ|[P , O ]|φ〉| ,
�2 P = 〈φ|P 2|φ〉 − 〈φ|P |φ〉2, (19)

is a standard measure of the squeezing of the operator P with
respect to the operator O [17].

With this definition, the field squeezing parameters are given
by

Q (q, p) = 2�2q,

Q (p,q) = 2�2 p. (20)

Thus, we aim at the identification of systems for which the
change in population of atomic levels can be determined accu-
rately. That is to say, the related quantum fluctuation should be
as small as possible. Particularly, we are interested in the study of
the inversion of the population from the ground state of the atoms
to the second excited level. As a measure of this, we shall analyze
the time evolution of the squeezing parameter [18,24]

Q (Sz, S+) = 2�2 Sz

|〈S+〉| . (21)

In the previous equation, Sz = S02
z and S+ = S02+ . In this scheme,

the optimal squeezing is achieved when the quantum fluctuations
of the z-component of the spin are minimal. Similar definition of
spin squeezing has been advanced in [22]. In [22], the authors
Fig. 2. Level scheme for a 87Rb atom.

have discussed the occurrence of simultaneous squeezing, of two
orthogonal spin components, in two level systems.

In Section 3 we shall present some exact results concerning the
behavior of the squeezing parameters for the system modeled by
the Hamiltonian of Eq. (1).

3. Results and discussion

In what follows, we present the results which we have obtained
in the study of the system described in Section 2. We have diag-
onalized the Hamiltonian of Eq. (1) and we have calculated the
time evolution of relevant operators. The adopted energy spacing
between the atomic levels corresponds to a system of Rb-atoms
[25], see Fig. 2. The energy of the photon sector of the Hamilto-
nian is fixed to the resonance case [25]. For the initial state, of the
photon sector, we have assumed a product coherent state

|za, zb〉 = Nezaa†
ezbb† |0〉, (22)

with |za|2 = 〈na〉 and |zb|2 = 〈nb〉, respectively.
We have considered, for the atom–photon sector of the Hamil-

tonian, the values g1 = 0.025 eV and g2 = 0.1 eV for the �- and
V-schemes, and g1 = 0.025 eV and g2 = 0.3 eV for the ladder case,
respectively [23]. The calculations has been performed for systems
with N = 2, 3, and 5 atoms.

In Figs. 3–5, we show the results of the present calculations for
the time evolution of the atomic squeezing parameter Q (Sz, S+),
for the different type of photon–atom interactions, with and with-
out the inclusion of the dipole–dipole term of the interaction (3).

Fig. 3 shows the results obtained for the �-interaction scheme
[26]. This configuration is realized in rubidium by adopting the lev-
els 5 S1/2 (F = 2), 5 S1/2 (F = 1), and 5 P3/2 (F = 2), of Fig. 2, as the
states |0〉, |2〉, and |1〉, of Fig. 1(a). Insets (a) and (b) correspond to
a system of N = 2 atoms, insets (c) and (d) correspond to a system
with N = 3 atoms, and inset (e) and (f) to N = 5 atoms, respec-
tively. The initial photon-state corresponds to 〈na〉 = 〈nb〉 = 2, for
the insets (a), (c), and (e), and 〈na〉 = 〈nb〉 = 6 for the insets (b),
(d), and (f). The curves shown in Fig. 3 are labeled by the dipole–
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Fig. 3. Squeezing parameters Q (Sz, S+) as a function of time. The photons and
atoms interact via a �-scheme. For the coupling constants of the photon–atom sec-
tor of the Hamiltonian, we have adopted the values g1 = 0.025 eV and g2 = 0.1 eV.
The value of the coupling constant for the dipole–dipole sector of the Hamiltonian,
g [MeV], is indicated in the figure. Insets (a) and (b) show the results for a system
of two atoms, insets (c) and (d) show results for a system of three atoms, and insets
(e) and (f) for five atoms. In all cases the atoms are initially in their ground state.
The mean value of photons in the initial state was fixed at 〈na〉 = 〈nb〉 = 2 (cases
(a), (c), and (e)) and 〈na〉 = 〈nb〉 = 6 (cases (b), (d), and (f)).

dipole strength g (g = 0.0 eV, and g = 0.05 eV). The inclusion of
the dipole–dipole interaction yields larger values of Q (Sz, S+). The
effect is relatively larger for smaller values of the average number
of photons.

Fig. 4 displays the results obtained when the ladder configura-
tion (see Fig. 1(b)) is considered [27]. The effective level scheme
includes the state 5 S1/2, as the lower state (|0〉), the state 5 P3/2 as
intermediate state (|1〉), and 5 D5/2 as upper state (|2〉). We have
assumed that, initially, all atoms are in their ground state. Notice
that, in order to obtain atomic squeezing, we have to increase the
asymmetry in the photon–atom interaction (g1 = 0.025 eV, g2 =
0.3 eV), as compared with the �-configuration (g1 = 0.025 eV,
g2 = 0.1 eV). It can be seen that the inclusion of the dipole–dipole
interaction, for this scheme, has a minor effect, while the increase
in the average number of photons, in the initial state, tends to
wash-out the effect of the dipole sector of the interaction, and im-
proves slightly the atomic squeezing.

In Fig. 5, we investigate the response in the V-scheme [16,28]
(see Fig. 1(c)). We have taken the 5 S1/2 as lower state, and the
states 5 P3/2 and 5 P5/2 as the upper ones [16]. We have assumed
that, initially, all atoms are in the 5 P3/2-state.1 Insets (a) → (f)
show the results obtained with the same set of parameters of the
previous Figs. 3–4. In this case the appearance of atomic squeez-
ing is restricted only to a short interval of time. The inclusion of
the dipole interaction produces the same effects that in the previ-

1 Noticed that, if the initial state consists of all atoms in the 5 S1/2-state, no
squeezing is obtained.
Fig. 4. Squeezing parameters Q (Sz, S+) as a function of time, for the ladder con-
figuration. The values of the coupling constants of the atom–photon sector of the
Hamiltonian were fixed at g1 = 0.025 eV and g2 = 0.3 eV. The results are presented
in the order explained in the captions to Fig. 3.

Fig. 5. Squeezing parameters Q (Sz, S+) as a function of time for a V-configuration.
The values for coupling constants were fixed at g1 = 0.025 eV and g2 = 0.1 eV. The
results are presented as in Fig. 3.
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ous configurations, so does the increase in the average number of
photons in the initial state.

The above results suggest that, for the considered three-level
configurations, the appearance of spin squeezing depends on sev-
eral physical conditions. To distinguish among them we can, as a
first instance, separate the configurations where squeezing does
indeed become evident: that is the case of the ladder- (or cas-
cade) and lambda-configurations. Spin-squeezing does not appear
so clearly in the V-configuration, regardless the choice of the cou-
plings, number of atoms and number of photons.

The gross features emerging from the � and ladder configu-
rations seemingly indicate that, in the absence of dipole–dipole
interactions, variations in the number of atoms may not affect the
spin observables. In the same condition (g = 0) the increase in
the number of photons tends to favor the appearance of squeez-
ing in the ladder-scheme, and it smears-out the time evolution of
the spin-observables in the �-scheme. Concerning the effect of the
dipole interaction, it definitely does not affect the squeezing in the
ladder-scheme but it become crucial in destroying the squeezing
pattern in the �-scheme.

To gain some physical insight into the situation, we may go
back to the analysis of the symmetry aspects involved in the cal-
culations. The conserved numbers in the basis are linear combina-
tions of the occupation of the atomic levels, the number of photons
and the number of atoms, as it was explained in Section 2.1. If
we restrict the analysis to the two cases where we find squeez-
ing, that is for the ladder and � schemes, it is somehow evident,
from the numerical analysis, that for the ladder configuration the
relation n0 > n1 � n2 changes to n0 > n2 � n1 when the number
of photons increases. For the �-scheme the relation n0 > n2 > n1
remains when the number of photons increases.

One can translate these relations between level-occupations in
terms of the time dependence of the expectation value of the z-
component of the spin and its fluctuations. For the ladder-scheme,
the increase in the number of photons produces an increase of the
absolute value of the z-component of the spin, independently of
dipole–dipole effects, and the spin-fluctuation decreases. For the
�-scheme, under the same conditions, the absolute value of the
z-component of the spin decreases, and its fluctuation increases
slightly.

Concerning the absolute value of the spin-raising operator, it in-
creases (ladder-scheme) or it remains nearly constant (�-scheme),
with and without turning on dipole–dipole interactions, but in-
creasing the number of photons. All of these reflects upon the
time dependence of the spin-squeezing factor displayed in Figs. 3
and 4. In each case, the trend is enhanced by the asymmetry of
the interaction between spin-components of the atomic levels. The
modifications of the initial conditions will then affect these fea-
tures in the way which has been explained at the beginning of
this section.

4. Conclusions

In this work we have studied the appearance of atomic squeez-
ing in a system of three-level atoms interacting with a radiation
field. We have considered as possible schemes �-, ladder- and V-
configurations. We have performed calculations, with and without,
including the dipole–dipole interaction between the atoms. From
the results, one may conclude that: (i) concerning the photon–
atom interaction, it seems that atomic squeezing is obtained for
the � and ladder schemes; (ii) the inclusion of dipole–dipole in-
teractions acts against the appearance of atomic squeezing; (iii) the
increase in the mean value of photons of the initial state smears
out the effect of the dipole–dipole interactions.
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