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The interactions between atomic spin-states, and between them and an external radiation field, can be
described in terms of quantum algebras by a trade-off of bosonic and fermionic degrees of freedom and
q-deformed schemes. In this Letter we discuss the use of this concept concerning the calculation of a
spin observable, like the spin squeezing.
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1. Introduction

Recent developments in quantum optics and in quantum com-
puting have motivated several studies of spin systems and their
interactions [1,2]. The interest in these systems is linked to poten-
tial applications to the field of quantum devices [3,4]. In previous
publications we have addressed some questions concerning the re-
sponse of spin systems to the interaction with radiation [5–7], as
well as the response of spin-interacting arrays, like spin chains
[8,9]. As discussed there, one of the main difficulties associated
to the calculation of spin-squeezing [10,11] is the large dimen-
sionality of the space of configurations needed to built up the
spin density matrix. Among different algebraic methods, quantum
groups have been, successfully, applied to the study of spin-chains,
for a review see, for instance [12]. Also, the use of quantum al-
gebras to treat fermion and boson systems was presented in [13],
in dealing with the Dicke model [14]. In this Letter we conjecture
about the equivalence of a Hamiltonian which describes spin–spin
and spin–radiation interactions [16,15,17,18], and an effective q-
deformed Hamiltonian which contains only spin–spin interactions.
The conjecture is based on the replacement of the spin–radiation
interaction-term by a linear term which is written as a function of
the generators of the suq(2) or suq(3) algebras. This replacement
leads to a purely fermion Hamiltonian with almost the same spec-
trum and eigenfunctions of the initial fermion–boson Hamiltonian
[19]. Here, we shall extend on this notion by exploring the con-
sequences of our conjecture when applied to a system of atoms
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with two and three levels interacting with a radiation field. The
notion that a class of Hamiltonian, with interaction terms between
fermions and bosons, may be reduced to effective forms with sim-
pler interactions was explored in Ref. [20]. Therein, the method
of small rotations, which may eliminate sectors of the Hamilto-
nian which commute with the generators of the rotations, was
discussed, particularly, for Hamiltonians describing atomic levels
interacting with boson modes. The method of Klimov and Sanchez-
Soto [20] is making use of the separation of sectors of a given
Hamiltonian by projecting them into the subspaces of adequate in-
tegrals of motion. Then, by the proper choice of rotation operators
one may transform sectors of the Hamiltonian and replace terms
of it by effective ones where the absorption of some degrees of
freedom is realized by the rotations. The method is mathemati-
cally sound and it offers a valid alternative to the path which we
are proposing here, that is to elaborate on the deformation of the
algebras as a way to eliminate boson degrees of freedom from the
original fermion–boson Hamiltonians. In this Letter we concentrate
on this procedure as a conjecture and explore its consequences.
Further developments will certainly be devoted to establish the
link with the method of Klimov and Sanchez-Soto [21]. The formal-
ism is presented in Section 2, where we introduce the essentials of
the proposed mapping and elaborate on the relevant symmetries.
In Section 3 we show the results of the calculations which we have
performed to support the conjecture. The conclusions are drawn in
Section 4.

2. Formalism

In this section we shall present the essentials of the formalism
for two leading cases, that is two- and three-level atoms interact-
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ing with radiation. As it will be explained below, these two cases
involve the deformation of the su(2) and su(3) algebras, respec-
tively, and they have been taken as test-cases.

2.1. Two-level atoms

We shall consider a system of N atoms, each of them having
two spin-states and interacting with photons. A physical realiza-
tion of this system would be the excitation of two-level atoms in
a cavity by an incoming photon [18,22].

We write the Hamiltonian of the system as

H = ω f Sz + λ

N∑
i, j=1
i �= j

(
S( j)

+ S(i)
− + S(i)

+ S( j)
−

)

+ ωb

(
a†a + 1

2

)
+ η

(
a† S− + S+a

)
≈ λ

N

2
(N − 1) + (ω f − λ)Sz − 2λS2

z

+ ωb

(
a†a + 1

2

)
+ η

(
a† S− + S+a

)
, (1)

where

S+ =
N∑

j=1

S( j)
+ ,

S− = S†
+,

Sz =
N∑

j=1

S( j)
z (2)

are the ladder operators which rise (S+), or lower (S−) the states
of the atoms, Sz is the number operator; the energy gap between
the states of a given atom is ω f (h̄ = 1), and ωb is the energy of
the external boson field (photons). The third term of the Hamilto-
nian is the free-photon field, and the last term is the interaction of
the photons with the atoms. The operators S+ , S− and Sz obey the
commutation rules of the su(2) algebra. The operators S( j)

± and S( j)
z

are the generators of the j-th copy su(2) j of the algebra, where j
is the atomic index.1 The excitations of k � N atoms is described
by Dicke states [14]

|k〉at =
√

(N − k)!
N!k! (S+)k|0〉. (3)

Since the Hamiltonian of Eq. (1) contains boson degrees of free-
dom, the state which represents l photons is written as the num-
ber state

|l〉ph = 1√
l!a†l|0〉. (4)

The Hamiltonian of Eq. (1) commutes with the operator

L̂ = a†a + Sz + N

2
. (5)

In terms of L̂, the Hamiltonian of Eq. (1) is written as

H = λ
N

2
(N − 1) + ωb L̂ − ωb

1

2
(N − 1)

+ (ω f − ωb − λ) S̃ z − 2λ S̃2
z

+ η
(
a† S− + S+a

)
. (6)

1 The tensor product
∏N

j=1 su(2) j is the carrier space for the representations of
the fermion (atomic) sector of the Hamiltonian.
The basis of Eq. (5) may be labeled by the eigenvalues L̂ of the
operator L, such that

L̂|L,k〉 = L|L,k〉, (7)

where L = l + k. We shall then express the wave function of the
photons and atoms as

|L,k〉 = |L − k〉ph ⊗ |k〉at . (8)

In each L-subspace, the eigenvalues and eigenvectors of H , of
Eq. (1), can readily be obtained. With the set of these exact solu-
tions of H , the time evolution of the expectation value of a given
operator O is written〈
O (t)

〉 = Tr
(
ρ(t)O

)
=

∑
α,β

〈β|I〉〈I|α〉〈α|O |β〉e−i(Eα−Eβ )t . (9)

In the above equation ρ(t) is the density operator ρ(t) =
U †(t)ρ(0)U (t), being ρ(0) = |I〉〈I|; the state |I〉 is the initial state
of the system, {Eα} and {|α〉} are the α-th eigenvalue and eigen-
vector of the Hamiltonian, and U (t) = exp (−iHt) is the evolution
operator.

2.1.1. The conjecture about an effective suq(2) Hamiltonian
The quantum algebra suq(2) is a Hopf algebra deformation of

su(2) [23,24] whose generators are S̃± and S̃ z , which obey the
commutation rules

[ S̃ z, S̃±] = ± S̃±, [S̃+, S̃−] = [2 S̃ z]q. (10)

The q-analogue [x]q of a given object x (a c-number or an operator)
is defined by2

[x]q = qx − q−x

q − q−1
. (11)

The su(2) algebra is recovered from Eq. (10) in the limit q → 1.
When q is not a root of unity, the irreducible representations of
suq(2) are obtained as a straightforward generalization of those of
su(2) [24].

To the starting Hamiltonian (1) we assign, by construction, the
effective Hamiltonian

H(L,q) = λ
N

2
(N − 1) + ωb L − ωb

1

2
(N − 1)

+ (ω f − ωb − λ) S̃ z − 2λ S̃2
z

+ χ(L,q)( S̃+ + S̃−) (12)

where χ(L,q) is a scalar function

χ(L,q) = η

√
(L − km)(km + 1)(N − km)

[km + 1]q[N − km]q
,

km = 1

3
(−1 + L + N)

− 1

3

√
1 + L + L2 + N − N L + N2, (13)

and H(L,q) will be realized in an suq(2) irreducible representa-
tion with the same dimension as the L-subspace (7). Note that,
the Hamiltonians H of Eq. (1) and H(L,q) of Eq. (12) are different,
since the latter does not have boson degrees of freedom, and in
the limit q → 1 H(L,q) �= H . The main result of this procedure is

2 We shall use q or z (q = ez ) as the deformation parameter, and we shall assume
that q is real.
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that the boson degrees of freedom of Eq. (1) may be absorbed by
the q-deformation in Eq. (12), provided that q is defined as an ap-
propriate function of both N and L. This is the trade-off leading
to the purely fermionic structure of Eq. (12). In this way it is pos-
sible to think of H(L,q) as an effective Hamiltonian with physical
properties similar to those of H . In particular, we shall determine,
numerically, the optimal values of the deformation parameter q
by imposing that the spectrum of the Hamiltonian of Eq. (12) be
as close as possible to that of Eq. (1). In so doing, the function
χ(L,q) is fixed to ensure that the maximum values of the inter-
action terms of the Hamiltonians H and H(L,q) do coincide (see
[19]).

2.2. Three-level atoms

The system consists of A identical three-levels atoms interact-
ing with a radiation field [5,16,17]. The atoms and the photons are
placed in a cavity.

The creation (annihilation) operator for the i-th atomic level
(i = 0,1,2), is denoted by b†

i (bi). The operators b†
i and bi obey

boson commutation relations.
The Hamiltonian of the system reads

H = ωa†a +
∑

i

Ei Sii

+ g1
(
aS01+ + a† S01−

) + g2
(
aS12+ + a† S12−

)
. (14)

The operators Sij
+, Sij

−, Sij
z i �= j generate the (A + 1)(A + 2)/2-dimen-

sional symmetric representation of the su(3) algebra. This can be
demonstrated easily, since the operators

Sij = b†
jbi, i, j = 0,1,2, (15)

fulfill the commutation relations[
Sij, Skm] = δim Skj − δ jk Sim. (16)

They are the starting operators which are used to define the atomic
inversion operators

Sij
z = 1

2

(
S jj − Sii) (17)

and the transition operators Sij
±

Sij
+ = Sij, Sij

− = (
Sij

+
)† = S ji, i, j = 0,1,2, i < j. (18)

In the expression of H of Eq. (14), ω is the energy of the pho-
ton, a†(a) is the one photon-creation (-annihilation) operator, Ei is
the energy of the i-th atomic level, and g1 and g2 are coupling
constants describing the absorption (emission) of a photon in the
presence of an upward (downward) atomic excitation between lev-
els 0 and 1 (term proportional to g1), and between levels 1 and 2
(term proportional to g2).

The two-photon resonance condition [16] is satisfied by fixing
the energies of the atomic levels Ei at the values

E2 − E0 = 2ω, E1 − E0 = ω − 
. (19)

The operator

L̂ = a†a + 2S02
z (20)

commutes with the Hamiltonian of Eq. (14), which, therefore, can
be diagonalized in the basis of states

|nbn0n1n2〉 = Nnbn0n1n2a†nb b†
0

n0
b†

1

n1
b†

2

n2 |0〉, (21)

and by enforcing the constraints
n0 + n1 + n2 = A,

n2 − n0 + nb = L, (22)

where A is the number of atoms, and L is the sum of the number
of photons, nb , and the difference n2 − n0 between the population
of the atomic states i = 2 and i = 0. Nnb,n0n1n2 is a normalization
constant.

In terms of the symmetry operator, the Hamiltonian reads

H = ωL̂ + (E0 + ω)A − 
S11

+ g1
(
aS01+ + a† S01−

) + g2
(
aS12+ + a† S12−

)
. (23)

In the basis of states with good L, which is the eigenvalue of L̂,
the exact solution is written

|Ψα〉 =
∑

a≡{nb,n0,n1,n2}
cα(a)|a〉. (24)

2.2.1. The conjecture about an effective suq(3) Hamiltonian
The quantum algebra suq(3) is a Hopf algebra deformation of

su(3) whose generators are [25]

S̃01 = b̃†
1b̃0,

S̃10 = b̃†
0b̃1,

S̃12 = b̃†
2b̃1,

S̃21 = b̃†
1b̃2,

S̃02 = b̃†
2b̃0qÑ1 ,

S̃20 = b̃†
0b̃2q−Ñ1 ,

S̃ ii = Ni, i = 0,1,2, (25)

with[
Ñi, b̃†

j

] = δi j b̃
†
i ,

[Ñi, b̃ j] = −δi j b̃i,[
b̃i, b̃†

j

]
q = δi jq

−Ñi ,[
b̃i, b̃†

j

]
q−1 = δi jq

Ñi . (26)

The su(3) algebra is recovered from Eq. (25) in the limit q → 1.
To the starting Hamiltonian (23) we assign, by construction, the

effective Hamiltonian

Heff (L,q) = ωL + (E0 + ω)A − 
Ñ1

+ χ1(L,q, g1)
(

S̃01+ + S̃01−
)

+ χ2(L,q, g2)
(

S̃12+ + S̃12−
)
, (27)

where χi(L,q, gi) is a scalar function and Heff (L,q) will be realized
in an suq(3) irreducible representation with the same dimension as
the L-subspace (21),

χ1(L,q, g1) = g1

√
(L + n0m)(A − n0m)n0m

[n0m]q[A − n0m]q
,

n0m = 1

3

(
A − L +

√
L2 + AL + A2

)
,

χ2(L,q, g2) = g2

√
(L + n0m − n2m)(A − n0m − n2m)(n2m + 1)

[n2m + 1]q[A − n0m − n2m]q
,

n0m =
{

1
2 (A − L), L � A,
0, L � A,
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Fig. 1. Integrated density of states, as a function of the energy, corresponding to
the Hamiltonians of Eq. (1) (solid line) and of Eq. (12) (dashed line). Both results
coincide in the curve shown in the figure. The calculations were performed for N =
100, ω = 1, λ = 0.1, and η = 0.05. The value L = 150 was used. The spectrum of
the effective suq(2) Hamiltonian of Eq. (12) was calculated with z = 0.08.

n2m =

⎧⎪⎪⎨
⎪⎪⎩

1
6 (A + L − 4), L � A, 0 < A + L − 4 � A,

0, L � A, A + L − 4 � 0,

1
3 (2 + L + A) − 1

3

√
1 + L + L2 + N − N L + N2,

L > 0.

(28)

The Hamiltonian can be diagonalized in the basis of states

|n0n1n2〉 = Nn0n1n2 b̃†n0
0 b̃†n1

1 b̃†n2
2 |0〉, (29)

with n1 = A − n0 − n2, and

Ñi|ni〉 = ni |ni〉,
b̃†

i |ni〉 = √[ni + 1]q|ni〉,
b̃i|ni〉 = √[ni]q|ni〉. (30)

3. Results and discussion

3.1. Comparison of exact and q-deformed solutions

In this section we shall explore the consequences of our con-
jecture by solving, numerically, the eigenvalue problem of H and
H(L,q) , for the systems discussed in the previous section. To start
with we shall demonstrate that our conjecture is indeed supported
by the results, that is, we shall calculate the exact solutions and
the q-deformed ones, for both the cases of two- and three-level
atoms. In Figs. 1–4 we show the results corresponding to the inte-
grated density of states (Figs. 1 and 2) and to the energy spectrum
(Figs. 3 and 4), obtained by the exact diagonalization, and by the
q-deformed replacement of the interaction terms, of the Hamilto-
nians describing two- and three-level atoms. In doing so we have
chosen some rather large values of L, in order to work in large, but
still manageable, spaces. Also, we have calculated states with very
large eigenvalues. The results shown in the figures are very illus-
trative of the situation, although the parameters of the Hamiltoni-
ans have been chosen arbitrary, and except for the relative values
of the coupling they are not representative of a specific physical
system. Both the integrated density of states and the spectra are
rather similar and they demonstrate in a self-explanatory manner
the validity of our conjecture. Naturally, one may think that, per-
haps, the conjecture about the equivalence of the fermion–boson
→ q-deformed-purely-fermionic Hamiltonians may show up in the
eigenvalues but with non-comparable eigenfunction (as it should
Fig. 2. Integrated density of states, as a function of the energy, corresponding to
the Hamiltonians of Eq. (14) (solid line) and of Eq. (27) (dashed line). Both results
coincide in the curve shown in the figure. The calculations were performed for N =
50, ω = 1, g1 = 0.1, and g2 = 0.6. The value L = 100 was used. The spectrum of the
effective suq(3) Hamiltonian of Eq. (27) was calculated with z = 0.025.

Fig. 3. The spectrum for the su(2) model of Eq. (1) and for the suq(2) Hamiltonian
of Eq. (12). The system consists of N = 5 atoms, for ω = 1, λ = 0.1 and η = 0.05.
The spectrum denoted by (a) corresponds to the one obtained from the Hamilto-
nian of Eq. (1). The spectrum denoted by (b) is obtained from the effective suq(2)

Hamiltonian of Eq. (12), with z = 0.29.

be the case if we would work in a sort of variational scheme).
Thus, we test it by looking at spin observables. This is done in the
next section, for the case of the spin-squeezing factor for two-level
atoms, which is a simple but non-trivial test-case.

3.2. Application to the calculation of the spin-squeezing factor for
two-level atoms

With the corresponding eigenvalues and eigenfunctions, both of
the exact and q-deformed cases, we have calculated, by applying
Eq. (9), the time-dependent expectation value of the components
of the total atomic spin, and their deviations, as required by the
definition of the spin-squeezing factor [10]

ζ 2 = 2
(
Sn)

2

, (31)
|〈S〉|
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Fig. 4. The spectrum for the su(3) model of Eq. (14) and for the suq(3) Hamiltonian
of Eq. (27), for N = 10, ω = 1, g1 = 0.1, and g2 = 0.6. The spectrum denoted by (a)
corresponds to the one obtained from the Hamiltonian of Eq. (14). The spectrum
denoted by (b) is obtained from the effective suq(3) Hamiltonian of Eq. (27), with
z = 0.125.

where N is the number of atoms in the system, and Sn is the
component of the total spin in a direction perpendicular to the
expectation value 〈S〉. Therefore, Sn is oriented in the direction de-
fined by the unitary vector

n̆ = (sin θn cosφn, sin θn sinφn, cos θn), (32)

such that n̆ · 〈S〉 = 0.
In the present calculations we have considered the coherent

state |I〉 as the initial condition appearing in Eq. (9). This state
is not an eigenstate of H , and it is defined by [10]

|I〉 = N
∑
L,k

αk
f

α
(L−k)

b√
(L − k)!

(
N

k

)1/2

|L,k〉, (33)

where N is a normalization factor; αb = √
nb , being nb the (ex-

ternally fixed) mean value of the number of photons in the state,
is the factor which characterizes the boson sector of the coherent
state, and α f is the factor corresponding to the atomic sector of
the coherent state. The explicit expressions of these factors are the
following:

N = (
1 + |α f |2

)−N/2
e−αb/2,

α f = e−i(φ0−π) tan(θ0/2), (34)

φ0 and θ0 are the orientation angles of the atomic sector of the
coherent state.

3.2.1. Exact results
The Hamiltonian of Eq. (1) was diagonalized in the basis (8),

making use of the block-symmetry, Eq. (5), with L � 80. The initial
state |I〉 was constructed (see Eq. (33)) with nb = 20 (average num-
ber of photons), and with the orientation angles θ0 = φ0 = π

4 . The
value of the coupling constants λ and η, and the energies ω f and
ωb were fixed at 0.1, 0.05, 1.0, and 1.0, respectively (in arbitrary en-
ergy units). These values are arbitrary values, as said before. With
the exact eigenvalues and eigenfunctions we have calculated the
time-dependent expectation values appearing in the definition of
the squeezing factor ζ 2. The results are shown in Fig. 5 (inset (a))
and Fig. 6 (insets (a), (c) and (e)).
Fig. 5. Time dependence of the squeezing parameter ζ 2, for a system of N = 5
two-level atoms. The results have been obtained with the couplings λ = 0.1 and
η = 0.05 (exact solutions, (a)). The initial state consists of an atomic coherent state
(33) with θ0 = φ0 = π/4, and of a coherent photon state with an 〈na〉 = 20. The
time is given in arbitrary units. (b) shows the results corresponding to the effective
Hamiltonian of Eq. (12), with a deformation parameter z = 0.29. In both figures, the
horizontal solid line (ζ 2 ≈ 1.8) is the mean value of the squeezing.

Fig. 6. Mean value of the components of the total atomic spin as a function of time,
for the exact solution of H , Eq. (1) (insets (a), (c), (e)), and for the effective Hamil-
tonian, Eq. (12) (insets (b), (d) and (f)). The calculations have been performed using
the parameters given in the captions to Fig. 5.

3.2.2. Results of the q-deformed Hamiltonian
As explained in the text, we have gauged the function χ(L,q),

so that the maximum of the matrix elements of H(L,q) and H be-
come comparable for a fixed value of q [19], and within the same
subspace L. In this procedure the value of q is the same for all sub-
spaces. For the present calculations the conditions are fulfilled for
q = 1.336. With this value of q the diagonalization of H(L,q) yields
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Fig. 7. Dependence of the function χ(L,q) with L, for the value q = 1.336 used in
the present calculations.

a spectrum comparable to the one of H . The results, for ζ 2, ob-
tained with H(L,q) , are shown in Fig. 5 (inset (b)) and Fig. 6 (insets
(b), (d) and (f)).

The similarities between both sets of results are notorious. Not
only the values of the squeezing factor ζ 2 agree reasonable for
both H and H(L,q) , but also the structure of the time dependence
of it shows similar features.

In constructing H(L,q) , by fixing the scale factor χ(L,q), we
have applied a very crude approach, that is to adjust it to the
larger values of the matrix elements of the complete Hamilto-
nian H , without performing further adjustments. In spite of this,
the agreement between both sets of results seemingly confirm the
replacement advocated by our conjecture. This is particularly sig-
nificant for the case of the present calculations, where not only
mean values of the spin components are needed but also their
fluctuations.

Finally, we have verified that the same similarities appear for
different sets of couplings and for different number of atoms. Con-
cerning the function χ(L,q), it is a smooth function of L, as it is
shown in Fig. 7.

4. Conclusions

We have presented two non-trivial cases supporting a conjec-
ture based on the use of quantum algebras, of the class of Hoft
algebra, to absorb boson degrees of freedom in an effective, q-
deformed, scheme where the fermion–boson interactions are re-
placed by q-deformed fermion operators. To support this procedure
we have compared the density of states and the eigenvalues of the
Hamiltonian of two- and three-level atoms interacting with pho-
tons. We have shown that the calculation of spin observables, like
the squeezing factor, may be greatly simplified by the type of re-
placement resulting from the application of the conjecture. Work is
in progress concerning further applications of the method, as well
as on the formal aspects of the conjecture.
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