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Isospin-spin excitations in the A = 58 mass region: The 58Ni(3He,t)58Cu reaction
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The experimental information on isospin-spin excitations around 58Ni is analyzed by using isoscalar and
isovector pairing vibrations, Gamow-Teller (GT) modes, and their couplings. It is found that the proposed
coupling scheme accounts for a sizable amount of the strength associated with isospin-spin excitations, which
include transitions to both one- and two-phonon states. The calculations are performed within the framework of
perturbation theory, accounting for the renormalization of the charge by the collective GT excitations.
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I. INTRODUCTION

The experimental study of nuclear isospin-spin responses to
charge-exchange reactions has received considerable attention
during recent years [1]. These experiments are particularly
relevant to studies of specific nuclear isospin-spin dependent
processes, such as neutrino-induced reactions and exotic
electroweak decays. The (3He,t) and (p, n) reactions are
the obvious choices for exploring isospin-spin dependent
excitations, and they have been used as experimental tools
for large-scale nuclear structure studies [1,2].

A typical energy spectrum of tritons from (3He,t) reactions
on medium-heavy nuclei displays the narrow peak corre-
sponding to the isobaric analog state (IAS) and the broad
strength distribution of the Gamow-Teller resonance (GTR).
Studies on 58Cu [3,4] show, in addition, the existence of four
T = 1, I = 1 states and a high-energy spin-dipole resonance.
In this paper, we take the results of Ref. [3] as our main
motivation. In the case of (p, n) reactions, the energy spec-
trum also shows the presence of spin-dipole resonances. All
these excitations participate in low-energy charge-exchange,
β-decay, and electron-capture processes [1,5,6].

From the point of view of nuclear structure models, the
collectivity of spin dependent modes was studied in the
framework of nuclear vibrations [7]. This description is similar
to the one applied to electric multipole excitations. In this
context, isospin-spin dependent excitations are described as
the linear superposition of particle-hole (two quasiparticles)
proton-neutron configurations. Some features of the experi-
mental spectra, such as energy centroids, are well reproduced
by the vibrational model; but some others, such as the strength
distributions, are predicted with less accuracy. Particularly,
the strength of the Gamow-Teller (GT) transitions is not
reproduced unless the operator responsible for the transitions
is renormalized [8,9]. Moreover, the detailed identification of
the excitations in terms of their spin-isospin structure turns
out to be rather difficult. Similar problems are encountered
in shell model calculations, which are unable to reach the
high-energy region of the charge-exchange and (3He,t) spectra
[10], although recent improvements have extended the range
of applicability of the shell model [11].

This paper analyzes the available experimental information
for small spin S and isospin T states in nuclei near closed

shells. A fairly successful analysis of the isovector pairing
(IVP) degree of freedom has been made already for the region
around 56Ni [12]. In the present work, we review the evidence
concerning this coupling scheme, including odd-A nuclei,
and we extend this analysis to Iπ = 1+ states. Therefore,
in Sec. II and in Appendix A, we study those states which
may be interpreted either as members of isoscalar pairing
(ISP) multiplets or as GT excitations of closed shells. This
is in contrast to the usual treatments of isoscalar pairing as an
extension of the BCS formalism, which are handicapped due
to the vicinity of the phase transition.

The main part of the paper is focused on GT transitions in
58Ni. Use is made of the rules of the nuclear field theory (NFT)
of Refs. [13,14]. In this perturbation framework, diagrams are
ordered according to the power of a parameter ξ−1 which
measures the number of pairs of single-particle excitations
contributing to the collective modes.1 The calculation is carried
out to the lowest order of the parameter yielding a nonvanishing
contribution. Since ξ is rather small in the region around 56Ni,
we cannot expect a very good convergence of the perturbative
calculation. Moreover, the accuracy of the expansion may
also be marred by accidental degeneracies. Nevertheless, we
consider it worthwhile to analyze the empirical evidence in
terms of the present point of view, since this is a difficult region
for the theoretical analysis, where every treatment presents its
own shortcomings.

Renormalization diagrams are obtained by replacing the
GT vertices by particle-phonon vertices, the GT phonon being
created (destroyed) at an earlier (later) time. It turns out that
they are essential in order to preserve the Ikeda sum rule, which
is necessarily violated by using the same effective charge for
all GT transitions within a given shell. In the present paper,
we develop the necessary formalism in order to account for
renormalization effects.

The microscopic formalism is presented in Sec. III and
Appendix B, where we review the essentials of the IVP,
ISP, and GT excitations and their couplings. In Sec. IV,
we apply the formalism to GT transitions. The calculation
of renormalization diagrams is treated in Appendix C, with

1The simultaneous treatment of pairing and particle-hole phonons
has been performed in Ref. [14] for a schematic model.
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special care for transitions to the giant GT resonance (Sec. V
and Appendix D). In Sec. VI, we predict the population of final
states in the reaction 58Ni(3He,t)58Cu. Conclusions are drawn
in Sec. VII.

II. MACROSCOPIC FRAMEWORK

We identify the vacuum state | 〉 as the double-closed shell
nucleus 56Ni with spin I = 0 and isospin T = 0. Fermion
excitations are created either by application of proton (neutron)
annihilation operators bhm (chm) or by creation operators
b+

km(c+
km). The labels h, k denote the quantum numbers specify-

ing the single-particle states, including the angular momentum
but excluding the magnetic quantum number.

We also take into account three boson degrees of freedom,
labeled by the angular momentum quantum numbers I,M , the
isospin T , Tz, and the pair-transfer number α = 0,±1. The
quantum number ν orders the states with the previous labels
in common. Thus, phonon creation operators are denoted by
�+

IM,T Tz,α,ν and the corresponding energies by ωIT α
ν .

As in Ref. [12], we have collected the empirical evidence
concerning the energies for the IVP coupling scheme. Figure 1
displays the values of the energies

K(i, A, T ) = E(i, A, T ) + Be(56, 0)

−Bw(56, 0) − Be(A, T ) + Bw(A, T ). (1)

The quantity E(i, A, T ) is the “true” excitation energy relative
to the ground state (g.s.) of the nucleus with isospin quantum
numbers T , Tz = −T , while K(i, A, T ) is the “model” energy
representing excitation energies relative to the ground state of
56Ni that are deprived from alien contributions to the model. In
Eq. (1), Be(A, T ) is the experimental binding energy of the g.s.
of the nucleus with A, T . The quantity Bw(A, T ) is defined
through the Weizsäcker mass formula

Bw(A, T ) = bvA − 17A2/3 − 2bsT (T + 1)/A

−0.7 Z(Z − 1)(1 − 0.76/Z2/3)/A1/3, (2)
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FIG. 1. Even-mass states around A = 56. The transfer quantum
number of the phonons is indicated in parenthesis. The total isospin
of the states is given in the upper right-hand corner of the parenthesis
of each configuration.

where Z = 1
2A − T . All terms are given in units of MeV.

The parameter bv is chosen to be 15.5 MeV, thus ensuring
that the energies of the first excited isovector pairing modes
�+

00,1(−1)±1,1 satisfy ω
01(−1)
1 ≈ ω011

1 . It constitutes a small
departure from the traditional value bv = 16 MeV. This
difference has no physical consequences.

The symmetry term contains a potential and a kinetic
contribution. Of the two, only the potential term should be
subtracted from the experimental energy, since it is associated
with features of the nuclear interaction not connected with the
present model space. Since both potential and kinetic terms
are of similar size, we use bs ≈ 25 MeV, as in Ref. [12].

It turns out that the most abundant information concerns
IVP phonons (I = 0, T = 1, α = ±1). The previous evi-
dence on the vibrational character of this collective motion
is further confirmed through its application to odd-mass
nuclei (see Appendix A). On top of this basic structure we
locate the I = 1 phonons, either ISP (T = 0, α = ±1) or GT
(T = 1, α = 0). The available evidence on two-phonon states
also supports the vibrational interpretation for the ISP modes
(Appendix A).

III. MICROSCOPIC PHONON STRUCTURE

We define the following pairs of single-particle operators
coupled to good angular momentum I and isospin T

[a+
j1
a+

j2
]
I=0 T =1

0Tz

; [a+
j1
a+

j2
]10
M0; [a+

j1
aj2 ]11

MTz
. (3)

Here a+
j is either = b+

j or c+
j and j = k, h. We construct the

operators P +
IM,T Tz,α

P +
IM,T Tz,1

= f IT 1
j1j2

[
a+

j1
a+

j2

]I T

MTz
,

P +
1M,1Tz,0

= f 110
j1j2

[
a+

j1
aj2

]1 1
MTz

, (4)

P +
IM,T Tz,−1 = (−1)I+T +M+TzPI (−M),T (−Tz),1,

where

f
01(±1)
j1j2

= δj1j2 ĵ1; f
10(±1)
j1j2

= f 110
j1j2

= 〈j1||σ ||j2〉√
3

. (5)

We assume separable residual interactions of the form

HIT α = − gIT α

1 + δα0
P +

IM,T Tz,α
PIM,T Tz,α. (6)

A subset of the paired operators in Eq. (3) have a boson-
like behavior, giving rise to the (normalized) coupled boson
creation operators γ +

IM,T Tz,α;j1j2
(see Table I). We transform as

usual to uncoupled bosons

�+
IM,T Tz,α;ν = λIT α

ν;j1j2
γ +

IM,T Tz,α;j1j2

− (−1)I+M+T +Tz µIT α
ν;j1j2

γI (−M),T (−Tz);−α;j1j2 .

(7)

The P +
IM,T Tz,α

operators in Eq. (4) have a collective version,
which is obtained through the inversion of Eq. (7) and its
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TABLE I. Coupled phonons used in the present work.

γ +
00,11,1;kk = [b+

k b+
k ]0 γ +

00,11,−1;hh = −[chch]0

γ +
00,10,1;kk = [b+

k c+
k ]0 γ +

00,10;−1;hh = [bhch]0

γ +
00;1(−1),1;kk = [c+

k c+
k ]0 γ +

00,1(−1),−1;hh = −[bhbh]0

γ +
1M,00,1;k1k2

= [b+
k1

c+
k2

]1
M γ +

1M,00,−1;h1h2
= −[bh1ch2 ]1

M

γ +
1M,11,0;kh = −[b+

k ch]1
M γ +

1M,10,0;kh = 1√
2
([b+

k bh]1
M − [c+

k ch]1
M )

γ +
1M,1(−1),0;kh = [c+

k bh]1
M

insertion into Eq. (4),

(P +
IM,T Tz,α

)coll = �IT α
ν

gIT α
�+

IM,T Tz,α;ν

+�IT (−α)
ν

gIT (−α)
(−1)I+M+T +Tz �I (−M),T (−Tz),−α;ν .

(8)

The pairing strengths gIT (±1) are determined from the
lowest state of the systems with A = 54 and 58, and with
I = 0 and 1. Using these strengths, we obtain the parameters
corresponding to the different roots of the random-phase
approximation (RPA) equations (B1). They are listed in
Table II. We fix ω110

1 = 7.00 MeV, a value that is about
20% higher than the lowest [c+

5/2c7/2]1
M particle-hole state and

consistent with the systematics of GT resonances. See also
Appendix A. The corresponding collective parameter �110

1 is
also given in Table II.

As a consequence of the simultaneous existence of particle
and phonon subspaces, there appear particle-vibration cou-
pling terms

Hpv = − gIT α

1 + δα0
((P +

IM,T Tz,α
)collPIM,T Tz,α

+P +
IM,T Tz,α

(PIM,T Tz,α)coll). (9)

TABLE II. Parameters of the phonons entering in the calculation.
Energies ωIT α

ν , coupling strengths gIT α
ν , and vertex factors �IT α

ν are
in MeV.

I T α ν gIT α ωIT α
ν �IT α

ν

0 1 1 1 0.387 2.34 1.42
2 5.61 0.38
3 6.83 0.077

0 1 −1 1 0.402 2.42 1.52
2 15.38 0.69
3 18.55 0.33
4 23.32 0.55

1 0 1 1 0.171 3.84 .50
2 5.32 0.21
3 6.38 0.092
4 6.89 0.036

1 0 −1 1 0.212 4.17 0.58
2 16.02 0.39
3 17.94 0.52
4 19.51 0.26
5 23.92 0.24

1 1 0 1 −0.272 7.00 0.53

FIG. 2. Elementary processes accounted for in the perturbative
treatment of GT transitions. From left to right, upper row: diagrams
0, A, B, C and F, D and G; lower row: E and H, I and J. Lines represent
particles or holes (single lines), particle-hole phonons (arrowed wavy
lines), and two-particle phonons (arrowed double lines). Open circles
represent the action of the transition operator Q; solid dots represent
the interactions between particles and phonons.

They give rise to the particle-vibration vertices appearing in
the diagrammatic treatment [13].

Within the NFT [13], the magnitude of the diagrams is
fixed by the fact that each particle-vibration factor �IT α

ν is of
order O(ξ−1/2); each strength parameter gIT α , of O(ξ−1); and
a factor O(ξ ) is present for each fermion loop. For diagrams
yielding transition amplitudes, an insertion of the GT operator
of Eq. (10) is of O(ξ 0), while the creation or annihilation of
the collective phonon in Eq. (8) introduces a factor O(ξ 1/2).

IV. GAMOW-TELLER TRANSITIONS

In the following we describe the matrix elements of the
GT operator in the presence of pairing and GT vibrations. We
consider the operator

Q1M ≡ P +
1M,11,0 = −〈j ′||σ ||j 〉√

3
[b+

j ′cj ]1
M . (10)

The simpler diagrammatic contributions to GT transitions
are represented in Fig. 2. All final states have Tz = 0. The
matrix elements of the GT operator to final states with good
isospin are

κT =0
Aν = 〈�+

1M,00,1;ν |Q1M |0〉, (11)

κT =1
B = 1√

2

〈[
b+

3
2 −c+

1
2 −

]1
M

− [
b+

1
2 −c+

3
2 −

]1
M

∣∣Q1M

∣∣0〉
,

(12)

κT =1
Cν , κT =1

Dν , κT =1
Eν = 〈

[�+
1,00,1;ν�

+
1,10,0;1]1

M

∣∣Q1M

∣∣0〉
C,D,E

.

(13)
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TABLE III. Expressions for the numerators of the graphs represented in Fig. 2.

Graph Final state Value of numerator

A �1M,00,1;ν |〉 (f 101
j1j2

)2�101
ν �011

1

B 1√
2

(
[b+

k c+
k2

]1
M − [b+

k2
c+
k ]1

M

) |〉 1
2 f 101

j1j2
�011

1

C,D,E [�+
1,10,0;1�

+
1,00,1;ν]1

M
|〉 ρ = 3√

2
f 101

j1j3
f 101

j3j2
f 101

j2j1

{
1 j3 j2
j1 1 1

}
�011

1 �110
1 �101

ν

F,G,H �+
1M,11,0;1 �+

00,1(−1),1;ν |〉 η = (f 101
j1j2

)2�110
1 �011

ν �011
1

I �+
00,11,−1;ν�

+
1M,00,1;ν′ |0〉 (f 101

j1j2
)2 �01(−1)

ν �101
ν′

J �+
00,11,1;ν�

+
1M,00,−1;ν′ |0〉 (f 101

j1j2
)2 �011

ν �
10(−1)
ν′

If, in addition to the GT phonon, the final pairing phonon is
isovector instead of isoscalar, diagrams F, G, H allow us to
calculate the following amplitudes:

κFν = 〈�+
1M,11,0;1�

+
00,1(−1),1;ν |Q1M |0〉F

= −2 〈�+
1M,10,0;1�

+
00,10,1;ν |Q1M |0〉F ,

κGν = 2 〈�+
1M,10,0;1�

+
00,10,1;ν |Q1M |0〉G, (14)

κHν = 〈�+
1M,1(−1),0;1�

+
00,11,1;ν |Q1M |0〉H

= −2〈�+
1M,10,0;1�

+
00,10,1;ν |Q1M |0〉H .

Thus, the amplitudes for populating states with good isospin
may be expressed as

κT
ν = 〈[�+

1M,1,0;1�
+
00,1,1;ν]T |Q1M |0〉

= 〈11; 1(−1); T 0〉[(1 − rT ) (κFν + (−1)T κHν) + rT κGν],

(15)

where

rT ≡ 〈10; 10; T 0〉
2〈11; 1(−1); T 0〉 . (16)

However, if the final IVP state is the same as the initial
one (ν = 1), we must include also the amplitude due to the
collective excitation of the GTR through Eq. (8) (diagram 0 in
Fig. 2)

〈[�+
1M,1,0;1�

+
00,1,1;1]T |Q1M |0〉

= 〈11; 1(−1); T 0〉�
110
1

g110
+ κT

1

= 〈11; 1(−1); T 0〉

×
(

�110
1

g110
+ (1 − rT ) (κF1 + (−1)T κH1) + rT κG1

)
.

(17)

FIG. 3. Renormalization diagrams, numbered 1, 2, 3, and 4 from
left to right.

Transitions to a final state composed of two addition and
one removal pairing phonon (Fig. 2, diagrams I, J) are given
by the matrix elements

κI = 〈(�+
1M,00,1;ν�

+
00,11,−1;1)|Q1M |0〉

(18)
κJ = 〈(�+

1M,00,−1;1�
+
00,11,1;ν)|Q1M |0〉.

In both cases, the matrix elements to states with good isospin
are obtained by multiplying them by the proper Clebsch-
Gordan coefficient

κT
I,J = 〈11; 1(−1); T 0〉 κI,J . (19)

According to the NFT ordering of the diagrams,
the amplitudes κA, κB, κI , κJ are of O(ξ 0), while
κC, κD, κE, κF , κG, κH are smaller, of O(ξ−1/2). However,
for transitions to the GTR, the interference between the
collective amplitude O(ξ 1/2) and the second term O(ξ−1/2) in
Eq. (17) acts as an amplifier. Therefore, the intensity due to
the diagrammatic contributions of Eq. (14) to the excitation of
the resonance becomes of O(ξ 0)

|〈[�+
1M,1,0;1�

+
00,1,1;1]T |Q1M |0〉|2

= 〈11; 1(−1); T 0〉2

((
�110

1

g110

)2

+ 2�110
1

g110

× [(1 − rT )(κF1 + (−1)T κH1) + rT κG1]

)
, (20)

where we neglect terms of O(ξ−1). Moreover, because of the
orthogonality between Clebsch-Gordan coefficients, the total

FIG. 4. Diagrams illustrating the action of the collective operator
(open circles).
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TABLE IV. Model energies and GT matrix elements to
excited states with good isospin projection Tz, for the diagrams
represented in Fig. 2. Only amplitudes yielding intensities larger
than 0.01 are included.

Graph ν K(i, A, T ) (κi)bare (κi)ren

A 1 3.84 1.21 0.83
2 5.32 0.35 0.22

B 5.81 0.27 0.16
C 1 10.84 0.016 0.026
D 1 10.84 0.172 0.280
E 1 10.84 0.158 0.257
F 1 9.34 −0.281 −0.204
G 1 9.34 −0.725 0.020
H 1 9.34 0.021 −0.105

intensity of transitions (20) become

∑
T

|〈[�+
1M,1,0;1�

+
00,1,1;1]T |Q1M |0〉|2

=
(

�110
1

g110

)2

+ 2�110
1

g110
κF1. (21)

The previous expressions are insufficient to account for
the intensities to a given order. This is because we must also
include renormalization diagrams. They are obtained from an
original diagram, of Fig. 3, by replacing a GT vertex [Eq. (10)]
with the insertion of a GT phonon created or destroyed at other
times through the collective operator of Eq. (8) (Fig. 4). Thus,
renormalization diagrams are of the same order as the original
one. They are discussed with detail in Appendix C. The final
result is that expressions (20) and (21) are still valid, provided
we replace the bare amplitudes κi1 obtained from Eq. (14) by
their renormalized values in Eq. (C20).

The effect of renormalization diagrams is usually taken
into account by using an effective charge, but this is justified
only for low-lying states. In particular, this replacement is
completely unjustified for transitions to states close to and
above the GTR (see Appendix C).

V. IKEDA SUM RULE

As mentioned in the Introduction, one main difficulty with
the use of a renormalized Gamow-Teller charge is the missing
of a sizable fraction of the Ikeda sum rule2∑

i

|〈i,M|Q1M |0〉|2 −
∑

i

|〈i,M|Q̄1M |0〉|2 = N − Z,

(22)

where Q1M is given in Eq. (10) and

Q̄1M ≡ P +
1M,1(−1),0 = 〈j ′||σ ||j 〉√

3
[c+

j ′bj ]1
M. (23)

A collective phonon of Eq. (8) is also associated with
the operator Q̄1M . The treatment of transitions from the
initial state |0〉 is simpler than those due to Eq. (10), since
Eq. (23) carries Tz = −1 and thus all states Q̄1M |0〉 carry T =
2. In fact, the only contribution is obtained from diagram G in
Fig. 2 and its renormalizations.

Using Eq. (21), and its analog for Q̄1M , we note that the
(large) term (�110

1 /g110)2 cancels in Eq. (22), and one is left
with the contribution [O(ξ 0)]

2�110
1

g110
1

(κF1 − κG1) , (24)

where the renormalized values of κF1, κG1 are given in
Eq. (C20). The calculation of the sum rule requires the addition
to Eq. (24) of intensities recorded in Table V populating states
other than the GTR.

Applications to relevant schematic models are made in
Appendix D. They verify the conservation of the Ikeda sum
rule by the NFT treatment.

VI. RESULTS AND DISCUSSIONS

We apply the present treatment to the reaction
58Ni(3He,t)58Cu. States populated through the GT operator of
Eq. (10) may be described as single ISP states, a two-particle
state with I = 1, T = 0, one ISP and one GT phonon, one IVP

2We appreciate the comments of one of the referees on this subject,
which motivated the addition of the herein considerations and of
Appendix D.

TABLE V. Predicted population of final states in 58Cu through the reaction (3He, t) on 58Ni. The
predicted “true” excitation energies E(i, A, T ) [see Eq. (1)] are in MeV. Only contributions larger than
0.01 are considered.

Final state |u〉 ν T E(i, A, T ) |〈u|Q1M |0〉bare|2 |〈u|Q1M |0〉ren|2

�+
1M,00,1;ν | 〉 1 0 0.0 1.47 0.69

2 0 1.48 0.12 0.05
1√
2
([b+

3
2 −c+

1
2 −]1

M − [b+
1
2 −c+

3
2 −]1

M )|〉 1 3.69 0.07 0.03

[�+
1,1,0;1 �+

1,0,1;ν]1
M | 〉 1 1 8.72 0.12 0.32

[�+
1M,1,0;1 �+

00,1,1;ν]T | 〉 1 0 7.20 1.30 1.88
1 1 8.92 2.49 2.09
1 2 12.36 1.10 0.42
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TABLE VI. Single-particle model energies K(i, A, T )
[Eq. (1)] used in the calculation. The energies (in MeV) are
average values resulting from the analysis of different isotopes.

Hole (jπ ) K(i, 55, 1
2 ) Particle(jπ ) K(i, 57, 1

2 )

7
2

−
2.62 3

2

−
2.35

3
2

+
8.19 5

2

−
3.24

1
2

+
9.45 1

2

−
3.46

5
2

+
12.16

and one GT phonon, and two-addition–one-removal phonons.
The calculated values of the matrix elements connecting the
ground state |0〉 with these states are given in Table IV. The
definitions of the matrix elements κi are given in Eqs. (13)–(16)
and (18) for unrenormalized estimations and in Eqs. (C6) and
(C20) for the estimations including renormalizations.

The intensities of transitions populating states of 58Ni are
calculated using the matrix elements listed in Table IV. The
results are shown in Table V. To facilitate the comparison with
experiments, true excitation energies E(i, A, T ) are used in
this table. The last two columns in Table V are obtained by
squaring the corresponding matrix elements of Table IV for
transitions to a single ISP phonon or to the two-particle state
with I = 1, T = 0. The square of the sum κC + κD + κE is
used for the population of a state composed of the ISP and the
GTR. For the population of the IVP plus GTR states, we use
expressions (20).

The renormalization yields sizable reductions to predictions
for populating states lying below the GTR and correspond-
ing increases in the predictions for states lying above the
resonance. The amount of reduction for low-lying states is
consistent with the empirical value eeff ≈ 0.8 used in the
literature. However, no single effective charge could have been
used for the comparison between transitions populating states
within a broader range of energies.

The predicted values corresponding to Eq. (24) are −1.73
and 0.87 for the bare and renormalized calculations, respec-
tively. By adding these contributions to the first four lines of
Table V, one obtains the values of the Ikeda sum rule 0.05
(unrenormalized) and 1.96 (renormalized).

In addition to the population of states listed in Tables VI and
VII, the model predicts strong excitations of the three-phonon
states

�+
1M,00,1;ν [�+

00,1,−1;1 �+
00,1,1;1]T |〉

TABLE VII. Predicted and experimental model energies of one-
particle (hole)–one-phonon states.

A Configuration K(i, A, T )pred K
exp
T = 1

2
K

exp
T = 3

2

53 [a 7
2

− �+
0,1,−1;1]T 5.03 4.00 5.36

55 [a+
3
2

− �+
0,1,−1;1]T 4.78 5.23 4.73

57 [a 7
2

− �+
0,1,1;1]T 4.99 4.86 4.88

59 [a+
3
2

− �+
0,1,1;1]T 4.74 3.74 4.94

and

�+
1M,00,−1;1 [�+

00,1,1;ν �+
00,1,1;1]T | 〉 (25)

at 6.46 and 6.71 MeV, respectively. Unfortunately, it is not
possible to calculate the magnitude of the relative intensities
because of accidental degeneracies in the denominators, a fatal
flaw of perturbation theory.

From the results in Table V, the calculated distribution of
intensities shows isolated states below 5 MeV and a broad
distribution from 7 to 12 MeV. The appearance of the broad
distribution can therefore be explained as the result of the
excitation of two-phonon states. The relative intensities of
transitions to states belonging to these two energy regions are,
roughly, in a ratio of 1:3 (unrenormalized matrix elements)
or 1:6 (renormalized matrix elements). These features are
consistent with the available data below 12 MeV. Above this
energy, there are spin-dipole, negative parity excitations, which
are not considered in the present calculation.

Since ours is a first nonvanishing order calculation we do
not attempt to obtain the spreading width of each peak, which
may be accounted for by four-particle two-hole admixtures
to the GTR. We thus ensure that the first momentum of
the strength distribution is accurately predicted (within the
model). This is not the case of the spreading width, which is
related to the second moment [15]. These effects could account
for the population of the higher energy states experimentally
observed.

Concerning the comparison between present and shell
model calculations, it is worth mentioning that the two peaks
found in the experiments, at 3.5 and 5.0 MeV, could correspond
to the two predicted states in Eq. (25). These peaks were absent
from shell model results [10]; however, the intensity around
6–7 MeV is predicted by the new shell model results [11].

VII. CONCLUSIONS

In this paper we have studied the response of 58Cu to
spin-isospin probes. The validity of the ISP and IVP vibrational
model was tested against the low-lying spectrum of even
and odd-mass nuclei around the double-closed shell, for one-
and two-phonon states (even-mass nuclei) and one and two
phonons coupled to active single-particle states. To this picture
we added GT excitations.

The ground state of 58Ni was interpreted as the low-lying
one-phonon IVP excitation of the double-closed shell nucleus
56Ni. Final 1+ states in 58Cu included both one ISP phonon and
a superposition of GTR and pairing phonons. The calculation
of transitions induced by the action of the isospin-spin
probe was performed perturbatively within the framework
of the RPA + NFT. Since vertices were extracted from the
phenomenological analysis, the calculation was essentially
parameter free.

We have developed the procedure to calculate renormaliza-
tion diagrams, including those cases in which the GTR was
populated. As a consequence of these diagrams, an effective
charge was obtained for each transition. The departure from a
single effective charge for all the shell is essential to preserve

014317-6



ISOSPIN-SPIN EXCITATIONS IN THE A = 58 MASS . . . PHYSICAL REVIEW C 78, 014317 (2008)

the Ikeda sum rule, as was shown exactly for schematic models.
It also was a satisfactory outcome of the realistic calculation.

Although the detailed comparison with data may be ham-
pered by accidental numerical instabilities in the perturbative
calculation of some of the states belonging to the high-energy
portion of the spectrum, we are confident about the importance
of the inclusion of pairing degrees of freedom in conjunction
with GT excitations.
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APPENDIX A: EMPIRICAL EVIDENCE FOR PAIRING
COUPLING SCHEMES

1. Elementary excitations

The “model” energies of the single-hole a 7
2
|〉 and single-

particle a+
3
2

|〉 states have been calculated using Eq. (1) and

averaging over different isotopes (Table VI). The distances
e 5

2
− − e 3

2
− = 0.88 and e 1

2
− − e 3

2
− = 1.11 MeV are obtained

as an average of the excitation spectra in 57Ni and 57Cu.
The distance between negative and positive parity, single-
hole states is an educated guess, with very little physical
consequences within the present calculation.

The one-phonon states �+
00,1(−1),−1;1 and �+

00,1(−1),1;1 have
similar energies, 2.34 and 2.42 MeV, respectively, by con-
struction. The adopted values quoted in Table II represent an
average over the values corresponding to different isotopes.
Since the GT interaction is repulsive, the energy ω110

1 ≥
e 5

2
− + e 7

2
− = 5.86 MeV. The closest empirical candidate is

the 1+ state in 56Co, at an energy of 6.34 MeV. However, the
model predicts two additional I = 1, T = 1 states at similar
energies: the two-phonon states �+

1M,00,−1;1 �+
00,1(−1),1;1 |〉 and

�+
00,1(−1),−1;1 �+

1M,00,1;1 |〉, at energies 6.50 and 6.25 MeV,
respectively. It is difficult to distinguish between these possible
interpretations through the population of the states, since the
1+ state in 56Co is populated by electron capture from 56Ni
or by charge-exchange reactions from 56Fe (thus favoring
the GTR assignment), but also by means of (3He, p) and
(α, d) transfer reactions on 54Fe and (d, α) reactions on 58Ni
(favoring the two-pairing phonon interpretation). In view
of these ambiguities, we have assigned the value ω110

1 =
7.00 MeV, which is consistent with GTR systematics.

2. Energies of two-phonon and particle-phonon states

The positions of two-phonon and particle-phonon states test
the vibrational description. The former lower states have the
structure

[�+
00,1,−1;1 �+

00,1,−1;1]
T =0,2| 〉 (A = 52),

[�+
00,1,−1;1 �+

00,1,1;1]
T =0,1,2| 〉 (A = 56), (A1)

[�+
00,1,1;1 �+

00,1,1;1]
T =0,2| 〉 (A = 60).

FIG. 5. Diagrammatic corrections to the energy of the two-
phonon state. From left to right: unperturbed energy and diagrams
F, G, and H.

The evidence supports the vibrational description for the
three isospin states constructed with nonidentical phonons in
the A = 56 system and for the states T = 2 built up with
two identical phonons, in A = 52 and A = 60. However, the
attractive interaction between proton and neutron particles
(holes) lowers the energy for T = 0 states in the A = 52, 60
systems. The picture is quite symmetrical around A = 56.

The coupling scheme may be further tested through the
inclusion of odd-mass nuclei.

Only states constructed with one particle (hole) and one
phonon appear in Table VII. The model reproduces, within
expectations, the experimental values of the energies, their
smooth mass dependence, the alternate sequence of the angular
momenta I = 7

2 , 3
2 , and the symmetry relative to A = 56. As

for the case of T = 0, two-phonon states, there is a decrease
in energy for the lowest value of T (T = 1

2 ) if the odd hole is
coupled to the removal phonon (A = 53) or if the odd particle
is coupled to the addition phonon (A = 59).

Figure 6 displays the states obtained by coupling either a
hole or a particle to the two-phonon states that were discussed

48 50 52 54 56 58 60 62 64
2

3

4

5

6

7

8

[h,(11)2]3/2

[h,(11)2]5/2

[k,(-1-1)2]5/2

[k,(-1-1)2]3/2

[h,(-1-1)2]5/2

[k,(1-1)2]5/2

[k,(1-1)1,2]3/2

[k,(11)2]5/2

[h,(-1-1)2]3/2

[k,(-1-1)0]1/2

[h,1]3/2

[h,1]1/2

[h,(1-1)2]5/2

[h,(1-1)1,2]3/2

[h,(11)0]1/2[h,-1]3/2

[h,(-1-1)0]1/2

[h,-1]1/2

h

[k,(11)2]3/2

[k,(11)0]1/2

E
ne

rg
y[

M
eV

]

MASS

[k,-1]3/2

[k,-1]1/2
[k,1]3/2

[k,1]1/2

k

FIG. 6. Odd-mass states around A = 58. The depicted states are
constructed by coupling one- and two-phonon states to k = 3p3/2

and h = 3f7/2 single-particle states. The total isospin of the states is
given in the upper right-hand corner of the square bracket of each
configuration.
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above for A = 52, 56, 60. The T = 5
2 states display a fairly

constant energy, close to the theoretical value ej + ω01α
1 +

ω
01β

1 . This is also the case for T = 3
2 states obtained by

coupling a particle creation operator to two removal phonons or
a hole annihilation operator to two addition bosons. However,
the energies of the T = 1

2 states in which the annihilation
operator a 7

2
− is coupled with the two removal bosons, or

the creation operator a+
3
2

− with the two addition phonons, are

systematically lowered presumably because of the same reason
as for the T = 0 states in A = 52, 60 nuclei and for the T = 1

2
particle-vibration states in Table VII for A = 53, 59 nuclei.
The evidence is again completely symmetrical with respect to
A = 56. The alternate between the ground state spins 7

2 and 3
2

in odd nuclei is also consistent with the coupling scheme.
The model allows us to identify a number of states

belonging to the same IAS sequences with T = 1
2 , 1, 3

2 , 2, 5
2 .

Their excitation energy is reproduced within 40 keV. This is a
test for the coefficient of the Coulomb term in Eq. (2).

Figure 7 shows the experimental information on two-
phonon states with Iπ = 1+. The data support the vibrational
picture described previously. The energies of the states that
we identified as two phonons in A = 52, 56, 60 are indeed
similar to the ones given by the sum of IVP and ISP phonons
in A = 54 and A = 58.

APPENDIX B: EQUATIONS DETERMINING RPA
ENERGIES AND AMPLITUDES

In this Appendix we summarize the conventional RPA
equations that are used in the calculation. Assuming the
interactions in Eq. (6), the frequencies and amplitudes are

50 52 54 56 58 60 62
0

1

2

3

4

5

6

7

8

(η-,ρ-)

(η-,ρ+)

(η+,ρ-)

(η+,ρ+)
exp.

exp.

exp.

ρ- ρ+

η- η+

Mass

E
ne

rg
y 

[M
eV

]

FIG. 7. Iπ = 1+ states around A = 56. The set of quantum
numbers of each phonon is given by the short notation, η =
�+(IM, T Tz, α, ν), ρ = �+(IM, T Tz, α, ν).

obtained from the equations

1

gIT α
=

( (
f IT α

j1j2

)2

ej1 + ej2 − ωIT α
ν

+
(
f IT α

j1j2

)2

ej1 + ej2 + ωIT α
ν

)
, (B1)

λIT α
ν;j1j2

= �IT α
ν f IT α

j1j2

ej1 + ej2 − ωIT α
ν

; µIT α
ν;j1j2

= �IT α
ν f IT α

j1j2

ej1 + ej2 + ωIT α
ν

,

(B2)

while the vertex factors are given by

�IT α
ν =

( (
f IT α

j1j2

)2

(
ej1 + ej2 − ωIT α

ν

)2 −
(
f IT α

j1j2

)2

(
ej1 + ej2 + ωIT α

ν

)2

)−1/2

.

(B3)

APPENDIX C: RENORMALIZATION OF THE
GT TRANSITIONS

Renormalization diagrams (Fig. 3) are of the same order as
the original ones. In this Appendix we show how to calculate
them. The procedure is not restricted to cases in which the
energies of the initial and final states are much smaller than
the frequency of the giant resonance, for which the notion of
a fixed effective charge may be applicable.

1. Bare matrix elements

Let us consider a diagram in which the successive states are
labeled by the integer i(i = 0, 1, 2, . . . , m, n, . . . , u). Thus
|0〉 and |u〉 represent initial and final states, respectively. A
neutron particle line is transformed into a proton one through
the GT operator Q1M between the |m〉 = |[c+

k Xk]0〉 and the
|n〉 = |[b+

k′ Xk]1
M〉 states (Fig. 3, diagram 1). The results will be

independent of the nature of the intermediate state |Xk〉. All
states labeled by 0 � i � m carry I = 0, T = 1, MT = −1;
while those with n � i � u carry I = 1, 0 � T � 2 MT = 0. For
each time permutation, the bare matrix element reads

〈u|Q1M |0〉bare = W
〈
[b+

k′ Xk]1
q

∣∣Q1M

∣∣[c+
k Xk]0

〉
Du D0

= −W
〈k′||σ ||k〉√

6k̂
Du D0, (C1)

where

W = 〈u|V |u − 1〉 · · · 〈n + 1|V |n〉〈m|V |m − 1〉 · · · 〈1|V |0〉,
D0 = �i=m

i=1
1

e0 − ei

, Du = �i=u−1
i=n

1

eu − ei

. (C2)

2. Renormalized matrix elements

The collective form of the GT operator is given in Eq. (8). In
the first place we calculate the contributions through which the
phonon is created before the state |m〉 and annihilated through
a particle-vibration vertex at the point at which the bare GT
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vertex was previously inserted (see Fig. 3, diagram 2)

〈u| (Q1M )coll |0〉 = W 〈n|Hpv|m �+
1M,11,0;1〉

× 〈�+
1M,11,0;1| (Q1M )coll | 〉Du �(0)

= −W

(
�110

1

)2

g110

〈k′||σ ||k〉
2 k̂

Du �(0), (C3)

where

�(0) ≡ 1(
eu − em − ω110

1

)
(e0 − em)(e0 − em−1) · · · (e0 − e1)

+ 1(
eu − em − ω110

1

)(
eu − em−1 − ω110

1

)
(e0 − em−1) · · · (e0 − e1)

+ · · · + 1(
eu − em − ω110

1

)(
eu − em−1 − ω110

1

) · · · (eu − e0 − ω110
1

)
= D0

1

eu − e0 − ω110
1

. (C4)

Similarly, we calculate the contributions due to the creation of
the �+

1(−M),1(−1),0;1 phonon between the m and n states, and its
annihilation at later times (Fig. 3, diagram 3). Proceeding as
in Eq. (C4), we obtain

〈u| (Q1M )coll |0〉 = W 〈n|Hpv|m �+
1M,11,0;1〉

× 〈 | (Q1M ) |�+
1(−M),1(−1),0;1〉D0 �(u)

= −W
(�110)2

g110

〈k′||σ ||k〉
2k̂

D0 �(u),

�(u) = Du

1

e0 − eu − ω110
1

. (C5)

Addition of Eqs. (C3) and (C5) yields the total renormalized
value of the GT matrix element

〈u|Q1M |0〉ren = 〈u|Q1M |0〉bare

×
(

1 −
(
�110

1

)2

g110

2ω110
1

(eu − e0)2 − (
ω110

1

)2

)
,

(C6)

where the bare matrix element is given in Eq. (C1). In the
limit ω110 � |eu − e0|, the usual constant effective charge is
reproduced. In Eq. (C6) the effective charge depends on the
relative value of the phonon energy and the transition energy,
since the factor multiplying the bare matrix element is less
than unity for low-lying transitions but greater than unity for
transitions populating states higher than the giant resonance.
If |eu − e0| ≈ ω110

1 , perturbation theory is not applicable.

3. Special case: Population of the GTR

Here we deal with the final state

|u〉 = [�+
1M,1,0;1�

+
00,1,1;1]T |〉, (C7)

with one GT phonon more than the initial state. In such a case,
Eq. (C6) is not valid since, according to Fig. 3, diagram 4, the
first intermediate state is the same as the final state. In this

case, the rules for calculating perturbatively the amplitudes of
initial and final states are different from those used in Eq. (C6).
Therefore we must (i) eliminate from Eq. (C4) the contribution
corresponding to this particular time ordering and (ii) replace
it by a calculation using the appropriate amplitude of the final
state |u〉.

The first step is accomplished through the substitution

�(0) → �(0)′ = �(0) − �0� i � m

1

eu − ei − ω110
1

= D0 − C0

eu − e0 − ω110
1

= D0 S0, (C8)

where

C0 ≡ �i=m
i=1

1

eu − ei − ω110
1

= D0 + (
eu − e0 − ω110

1

) d C0

d eu

∣∣∣∣
eu=e0+ω110

1

+ · · ·

= D0
[
1 − (

eu − e0 − ω110
1

)
S0 + · · ·] ,

S0 ≡
i=m∑
i=1

1

e0 − ei

, (C9)

while Eq. (C5) reads

�(u) = − 1

2ω110
1

Du . (C10)

Therefore, Eq. (C6) should be substituted by

〈u|Q1M |0〉(1)
ren = 〈u|Q1M |0〉′bare

×
[

1 +
(
�110

1

)2

g110

(
S0 − 1

2ω110
1

)]
. (C11)

Note that unlike the case of Eq. (C6), the renormalization factor
in Eq. (C11) changes with the time permutations of the bare
diagram, since S0 depends on it. This is indicated by primes
in Eq. (C11). Note also that the population of a final state |u〉
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with a definite isospin value requires the linear combination in
Eq. (15).

To accomplish the second step, we must add to Eq. (C11)
the contribution due to the creation of the GT phonon during
the initial state |0〉 (Fig. 3, diagram 4). The amplitude of the
final unperturbed state is modified as [16]

|u〉ren = |u〉bare

(
1 + 1

2

d�

deu

)
, (C12)

where � is the contribution to the energy of the final state,
obtained from the section of Fig. 3 diagram 4 between the two
identical states. The energies � are obtained as follows:

We first perform the calculation between projected states

|utz〉 ≡ �+
1M,1tz,0;1�

+
00,1(−tz),1;1] |〉 . (C13)

We obtain the energy matrix elements �i(tz, t ′z), where tz (t ′z)
is the isospin projection of the initial (final) GT phonon. The
corresponding energy diagrams are represented in Fig. 5 for
the three cases of interest F,G,H . Since the states |utz〉 have
total isospin projection Tz = 0, the isospin projection of the
pairing phonon is also determined.

We note the following symmetries

�i(tz, t
′
z) = �i(−tz,−t ′z) = �i(t

′
z, tz), (C14)

and we define

�F ≡ �F (1, 1) = 2�F (0, 0) = −2�F (1, 0),

�G = 2�G(0, 0) = �G(1, 0), (C15)

�H = �H (1,−1) = 2�H (0, 0) = −2�H (1, 0).

All other �i(tz, t ′z) vanish.
The energy matrix element between states with good T

reads

�T
Tz=0 = 2〈11; 1(−1); T 0〉2�i(1, 1)

+ 4〈11; 1(−1); T 0〉〈10; 10; T 0〉�i(1, 0)

+〈10; 10; T 0〉2�i(0, 0) + 2 (−1)T

×〈11; 1(−1); T 0〉2�i(1,−1)

= (1 − rT )
(
�F + (−1)T �H

) + rT �G, (C16)

where we have used Eqs. (C14) and (C15) and rT is defined
in Eq. (16). We have thus shown that the renormalization
contribution to the amplitude of the state |u〉 undergoes the
same isospin transformation as the bare matrix element in
order to populate two phonon states with definite isospin.

Let us calculate now the expression for 1
2

d�T

deu
. The diagram-

matic calculation of �i(tz, t ′z) yields

�i(tz, t
′
z) = W 〈n|Hpv|m �+(1q, 11, 0)〉Du C0

= W
〈k′||σ ||k〉√

6k̂
�110

1 Du C0. (C17)

Therefore

1

2

d �i(tz, t ′z)
d eu

= 1

2
W �110

1
〈k′||σ ||k〉√

6k̂

(
d Du

d eu

C0+Du

d C0

d eu

)

= −1

2
W �110

1
〈k′||σ ||k〉√

6k̂
Du D0 (Su + S0)

= −1

2
�110

1 〈u|Q1,M |0〉′bare (Su + S0) , (C18)

where Eq. (C1) is used with primes [defined as in Eq. (C11)],
S0 is defined in Eq. (C9), and

Su ≡
i=u−1∑
i=n

1

eu − ei

. (C19)

We are now in the position to calculate the renormalized values
of κi [Eq. (14)]. Using Eqs. (C11) and (C18)

(κi)ren = 〈u|Q1M |0〉(1)
ren + 〈�+

1M,11,0;1|Q1M |〉 1

2

d�i

deu

= 〈u|Q1M |0〉′bare

[
1 + (�110)2

2g110

(
Su − S0 + 1

ω110

)]
.

(C20)

The value of these expressions is given in Table VI (rows F,
G, and H). Therefore, expression (20) for the intensity of the
transition to the resonant state with a definite value of T and
expression (21) for the sum of these intensities over all values
of T are still valid, provided we replace the bare amplitudes
κi1 by the renormalized ones Eq. (C20).

APPENDIX D: IKEDA SUM RULE REVISITED

In this Appendix we study the extent to which Eq. (22)
is satisfied in schematic models treated within the NFT
framework. Let us consider first the simple case of a single
l shell and assume that there are two neutrons coupled
to zero angular momentum in the (lowest) single-particle
state with h = k + 1 = l + 1

2 (|0〉 = [c+
h c+

h ]0|〉). There are no
states excited by the operator Q̄1,M , while the population
of the states |a〉 = |[c+

h b+
h ]1

M〉 and |b±〉 = 1√
2
(|[c+

k b+
h ]1

M〉 ±
|[b+

k c+
h ]1

M〉) through the operator Q1M satisfies the sum rule

|〈a|Q1M |0〉|2 + |〈b+|Q1M |0〉|2 + |〈b−|Q1M |0〉|2
= 1.13 + 0.44 + 0.44 = 2. (D1)

At least as relevant to the study of 58Ni is to assume that
states h are filled and that there are two coupled k neutrons
in the ground state (|0〉 = |[c+

k c+
k ]0|〉). Since a Gamow-Teller

interaction is included, we may apply expressions given in
Appendix B for the GT phonons. We obtain

g = 3(ε2 − ω2)

8
k̂2ε, � =

√
3(ω2 − ε2)

4k̂
√

εω
,

�2

g
= ε2 − ω2

2ω
,

(D2)

where we have dropped the indices I, T , α, and ν from g, �,

and ω. Moreover, since ours will be a first-order calculation in
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TABLE VIII. Values of the amplitudes used in Eqs. (D6) and (D8). Here αren = αbare× fac.

αk αh βk βh

Bare −g/3ω −4g/3(ε + ω) g/3ω 4g/3(ω − ε)
Fac 1 + ε2/ω2 1 + (ε − ω)(2ω + ε)/4ω2 1 + ε2/ω2 1 − (ε + ω)(2ω − ε)/4ω2

the NFT expansion parameter 1/k, we use the leading values
〈k||σ ||k〉2 = 2k̂2 and 〈k||σ ||h〉2 = 4k̂2(k̂ = √

k + 1/2).
The first diagrammatic contribution O(k0) is represented in

Fig. 2, diagram A. The bare and renormalized matrix elements
are

〈[c+
k b+

k ]1
M |Q1M |0〉bare = 〈k||σ ||k〉/k̂

√
3,〈

[c+
k b+

k ]1
M |Q1M |0〉

ren = 〈
[c+

k b+
k ]1

M |Q1M |0〉
bare

(
1 + 2�2

gω

)
,

(D3)

|〈[c+
k b+

k ]1
M |Q1M |0〉|2 = 2

3
(bare) or

= 2ε4

3ω4
(renormalized). (D4)

Use has been made of Eq. (C6) with εu = ε0 for the calculation
of the renormalization factor.

There are no more diagrams of O(k0) corresponding to
the GT transition. However, as indicated in Eq. (20), the
collective operator may act as an amplifier for diagrams of
O(k−1) populating the GTR.

〈�+
1M [c+

k c+
k ]0|Q1M |0〉F

= �

g

(
1 + 1

2

∂�F

∂eu

)
+ 〈�+

1M [c+
k c+

k ]0|Q1|0〉F

= �

g
(1 + αk + αh) , (D5)

|〈�+
1M [c+

k c+
k ]0|Q1M |0〉F |2 − �2

g2

= 2�2

g2
(αk + αh) = 1

3

(
5 − 4

ε

ω
− ε2

ω2

)
(bare) or

= 1 − 1

3

(
ε

ω
+ ε3

ω3
+ ε4

ω4

)
(renormalized), (D6)

where the subindex F indicates those diagrams included in
Fig. 5. The subindex k indicates time-ordering for which all
fermion lines represent particles; the subindex h those for
which there is a hole line. They yield the values listed in
Table VIII. Similar calculations hold for the operator Q̄1M .

〈�̄+
1M [c+

k c+
k ]0|Q̄1M |0〉G = �

g
(1 + βk + βh) , (D7)

−|〈�̄+
1M [c+

k c+
k ]0|Q̄1M |0〉G|2 + �2

g2

= −2�2

g2
(βk + βh) = 1

3

(
5 + 4

ε

ω
− ε2

ω2

)
(bare) or

= 1 + 1

3

(
ε

ω
+ ε3

ω3
− ε4

ω4

)
(renormalized). (D8)

Therefore the contribution of Eq. (D6) plus Eq. (D8) to the
sum rule (22) is

2

3

(
5 − ε2

ω2

)
(bare) or 2

(
1 − ε4

3ω4

)
(renormalized).

(D9)

Addition of Eqs. (D4) and (D9) yields the values

2

3
+ 2

3

(
5 − ε2

ω2

)
= 4 − 2ε2

3ω2
(bare),

2ε4

3ω4
+ 2

(
1 − ε4

3ω4

)
= 2 ( renormalized). (D10)

The above contributions are displayed in Fig. 8 as functions
of ε/ω. The calculation takes care of the blocking effects in
the creation of the GT phonon in the presence of the two
k particles through the term βh, which becomes dominant
at least in the limit ω → ε. We also notice the importance

1.0 0.8 0.6 0.4 0.2 0.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

e/ω

Total

(Eq.57)

(Eq.55)

(Eq.53)

Bare

C
on

tr
ib

ut
io

ns
 to

 th
e 

S
um

 R
ul

e

1.0 0.8 0.6 0.4 0.2 0.0

(Eq.57)

(Eq.55)

(Eq.53)

Total

Renormalized

FIG. 8. Bare and renormalized contributions to the Ikeda sum
rule. The contributions are displayed as functions of the variable
ε/ω. The corresponding expressions are quoted on each curve. The
sum of contributions is the curve labeled total. The values of αk(h)

and βk(h), which appear in these equations, are taken from Table VIII.
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of the renormalization diagrams. The curves of Fig. 8 are
self-explanatory of the relevance of the renormalization and of

the subtle competition between the processes included in the
diagrammatic treatment.
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