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Implementation of Dyson boson mapping is discussed in connection with effective Hamiltonians. A feature of
the mapping technique, when implemented in an ideal boson basis, is the possible appearance of spurious states.
These spurious states typically signal the overcompleteness of the basis. Without truncation, no contamination
of the physical states and spectrum takes place. However, in practice one may be required to select from the ideal
boson basis the dominant components for a given interaction. It is shown that the correspondence between a
perturbative expansion, á la Bloch-Horowitz, and Dyson boson mapping allows for the identification of spurious
states. The proposed method is applied to the mapping of a bi-fermionic Hamiltonian.
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I. INTRODUCTION

Dyson boson mapping (DBM) [1] is a powerful tool that
has been used to explore several aspects of the solution of
fermionic Hamiltonians. The DBM has proved its utility,
particularly, in dealing with nuclear many-body Hamiltonians
[2].

The microscopic foundation of the DBM has been discussed
in the literature [2,3]. The technique, which has been applied
mostly in connection with the algebraic structure of phe-
nomenological nuclear Hamiltonians [4], was extended to the
treatment of effective Hamiltonians in Ref. [5]. More recently,
DBM was used in the study of bi-fermionic Hamiltonians [6].
Also, it was used in connection with QCD-inspired algebraic
models [7]. In this context, the adequacy of the boson basis
and the identification of spurious states has been discussed in
Refs. [8–10]. As an alternative to the similarity transformation
introduced in Ref. [10], which may be limited by dimensional
reasons, we rephrase the method of Ref. [10] in terms of
a perturbative approach [11]. Thus, in the present work, we
focus on the correspondence existing between a perturbative
approach and an effective operator theory when applied to a
boson expansion.

The Bloch-Horowitz perturbative expansion [11] provides
a convenient framework to treat non-Hermitian Hamiltonians,
as well as to handle overcomplete bases. The consequences of
the use of the effective operator theory in boson mappings,
have been discussed in Ref. [10]. The role of spurious
states in connection with approximate diagonalization and/or
truncation of the basis was illustrated in Ref. [10] for the cases
of schematic SDI and QQ interactions. Spurious effects also
arise from the use of physically inspired and complementary
spaces in conjunction with the boson mapping. This feature,
which should not be confused with the class of spurious
states discussed in Ref. [10], is typical of situations where

a basis and space are constructed with direct reference to
degrees of freedom linked to dominance anticipated from
interactions. In other words, we discuss the effects associated
to the introduction of physical bosons, e.g., such as monopole-
pairing or multipole one phonon excitations, which are coupled
with fermions at minimal order. Because we are replacing pair
of fermions, e.g., particle-hole or two-particle (two-hole) con-
figurations (generally speaking: bi-fermions), by bosons using
truncated boson expansions, spurious effects will therefore
appear. The fact that one can start from a physical inspired
interaction determines the identification of the fermion content
of the proposed bosons with particle-hole or two-particle (or
two-hole) states. Then, because the Hamiltonian is a scalar
concerning the particle content of the bosons and bi-fermion
operators, the spurious effects will indeed depend on the
strength of the interactions that represent their couplings.

The Dyson boson mapping technique, which has been
shown to be extremely useful to treat many-body Hamiltonians
[5], may require, for practical applications, the definition of
a physically inspired subspace, that is to say the subspace of
bosons that are in direct correspondence with fermion pair
operators. The chosen subspace is contained in the space of
ideal bosons and it defines the basis where the Hamiltonian
can be diagonalized, at the cost of potentially introducing
spurious states. It is clear that the solutions of a fully mapped
(i.e., without any truncation) Hamiltonian expressed in the
(sometimes overcomplete) ideal boson space, do not exhibit
spurious components, but this representation is not always
feasible. Solutions of the Hamiltonian in a physically inspired
boson subspace requires the consideration of spurious effects,
as pointed out in Ref. [12]. In the spirit of the work of Ref. [12]
we show in this work that the results of effective operator
theory of Ref. [10] can be reinterpreted in a perturbative
framework. We shall compare the results of the use of truncated
ideal boson basis with the ones obtained from a microscopic
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boson representation defined by the underlying fermionic
structure. As we have said before, this comparison is needed
to estimate the adequacy of the approximation based on
physically inspired boson subspaces. In doing this we aim
at establishing a connection between algebraic and physically
inspired boson representations. As a first step we have taken a
minimal bi-fermion Hamiltonian and explored the regime of
couplings where any one of the interactions dominates, that is,
one of the combinations of bi-fermion operators and bosons
that are allowed by particle-number conservation.

The article is organized as follows. Section II is devoted
to the introduction of the formalism, starting with the boson
representation of bi-fermion Hamiltonians (II A). In Sec. II B
we demonstrate the analogy existing between the theory of
effective operators of Ref. [10] and the perturbative treatment
of Ref. [11], and in Sec. II C we perform the boson mapping
of bi-fermion Hamiltonians, exploring the dependence of the
solutions on the coupling constants. In Sec. III we present and
discuss the results of the perturbative procedure in connection
with the identification of spurious states. Finally, we present
our conclusions in Sec. IV.

II. FORMALISM

A. Bosonization of bilinear Hamiltonians

The bosonization of bilinear Hamiltonians [8,13] can be
performed by using the DBM method. There are three types
of objects for which bosonlike algebras play a role: bi-fermion
forms, the ideal bosons, and the boson images used to map
fermion forms. We discuss the bosons of the mapping as
those that transform the Hamiltonian in an algebra-preserving
form. It means that a given Hamiltonian, written in terms
of fermionic variables and its solutions, can be cast in a
completely equivalent form by using boson variables. Thus,
the relations between the generators of the algebra are fully
preserved. The same is true for the matrix elements of the
Hamiltonian, if it is transformed by using the bosons of the
mapping. The ideal bosons belong to a subspace, chosen by
convenience as a suitable basis to represent physical states.
The transformation properties of the Hamiltonian are affected
by this choice of the basis and spurious states may appear in
the formalism.

Hereafter we distinguish between physical states, which are
the states belonging to the physical subspace, and spurious
states, which belong to the complement of the physical
subspace. Both physical and spurious states are eigenstates
of the Hamiltonian matrix in the complete space. However,
after adopting a given subspace (inspired by physical consid-
erations), spurious and physical states should ideally remain
decoupled from each other. Although it may appear to be a
trivial criterium, in realistic calculations the exact (complete
space) solution is unknown and the use of a physical subspace
is very convenient. In these cases, the identification of spurious
states may be difficult. In this work we are discussing it from
the point of view of the effective theories.

A possible way to identify spurious states, resulting from
the use of ideal bosons, has been discussed in Refs. [8,10]. For
the sake of completeness we summarize here the arguments of

Ref. [8]. In Ref. [8] it was suggested that spurious states can
be identified: (a) by constructing a matrix with the different
terms of the interaction evaluated in a basis spanned by
the eigenstates of the complete Hamiltonian calculated in
the (possibly overcomplete) ideal boson basis and (b) by
searching for vanishing blocks of this matrix. One feature of
the formalism of Ref. [8] is that the eigenvalues associated
with spurious states were obtained at both perturbed and
unperturbed energies. Accidental cancellations can produce
unperturbed eigenvalues even for nonvanishing interactions,
as shown later.

B. Theory of effective operators

In this subsection we discuss the analogy existing between
the theory of effective operators of Ref. [10] and the perturba-
tive treatment of Ref. [11]. Let us begin with the discussion of
the results presented in Ref. [10]. Let H be the Hamiltonian,
|�〉 the state vector and E the corresponding eigenvalue. The
Hilbert space is constructed by defining the subspaces of
the projection operators P (physical subspace) and Q (the
complement of the physical subspace), such that P+Q = 1
and 〈�|PQ|�〉 = 〈�|QP |�〉 = 0. After some algebra one
can show that the effective Hamiltonian

Heff = PHP + PHQ
1

E − QHQ
QHP, (1)

satisfies the equation

Heff|�〉 = EP |�〉. (2)

Clearly, the expression of Heff depends on the eigenvalue E.
This dependence can be absorbed in an arbitrary operator ω,
which is taken as the generator of the similarity transformation

H = κHκ−1. (3)

At lower order in ω one has

κ = e−ω ≈ 1 − ω. (4)

The transformed eigenstate |�κ〉 = κ|�〉 obeys the equation

Heff|�κ〉 = EP |�κ〉. (5)

We shall restrict Heff by the constraint QHP = 0. With the
choice

ω = Q
1

E − QHQ
QHP,

= (1 − P )
1

E − QHQ
QHP,

= 1

E − QHQ
QHP, (6)

Eq. (5) is satisfied. In this way the original problem of Eq. (2)
can be expressed as an eigenvalue problem in the subspace P,
with energy-dependent norms. The factorization of the Hilbert
space in the subspaces P and Q is driven by simplicity and it is
constrained by the structure of Heff . In the present context we
define P as the subspace that contains physical states (the states
that can be written as linear combinations of the ideal bosons),
whereas Q corresponds to spurious states. These partitions are
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not directly coupled, as required by the constraint QHP =
0 [10]. The presence of spurious states, in this theory, can
be detected by the occurrence of eigenvectors with zero or
imaginary norms. In the following, we show that this criteria
can be met if the above formalism of effective operators is
rephrased as a Bloch-Horowitz perturbative theory. If |αi〉 and
|ai〉 belong to the subspaces {P } and {Q}, respectively, and |n〉
is an eigenstate of H, then

|n〉 =
∑

i

〈αi |n〉|αi〉 +
∑

i

〈ai |n〉|ai〉. (7)

We can write, for the n-th eigenvalue En, the matrix equation

h
(n)
eff ξ

(n) = Enξ
(n),

(8)
ξ

(n)
i = 〈αi |n〉,

where

h
(n)
eff = h(1) + h(12) 1

En − h(2)
h(21). (9)

The block matrices h(k) are defined by

h
(1)
ij = 〈αi |H |αj 〉,

h
(12)
ij = 〈αi |H |aj 〉,

(10)
h

(21)
ij = 〈ai |H |αj 〉,
h

(2)
ij = 〈ai |H |aj 〉.

The amplitudes {ξ (n)
i } are normalized in terms of the norm

matrix [10]

M (n) = 1

En − h(2)
h(21). (11)

Any eigenstate of the non-Hermitian Hamiltonian h
(n)
eff is

normalized by means of the relationship

〈n|n′〉 =
∑
ij

(
δij +

∑
k

Mn
ki

∗
Mn′

kj

)
ξ

(n)
i

∗
ξ

(n′)
j . (12)

For a physical eigenstate, the norm 〈n|n〉 is positive defined.
This is a condition on Eq. (12). By using the similarity
transformation of Eq. (3) and the decomposition in the
subspaces {P } and {Q} one can write a similar expression
in the effective operator theory. It reads

〈n|n′〉 = 〈n|P (1 + ω†Qω)P |n′〉. (13)

This result implies that the operator P (1 + ω†Qω)P must be
positive definite.

C. Bi-fermion Hamiltonians

To illustrate the above presented formalism let us consider
the bi-fermion Hamiltonian of Refs. [8,13]. The configuration
space consists of two levels, each of them with 2� substates.
Bi-fermion operators can connect states in the same level or
in different levels. The minimal form of the Hamiltonian is
Refs. [8,13,16]

H = εn + ε̄ n̄ − V S+S− − λL+L− − µK+K−, (14)

where the operators that appear in H are defined by

S+ = (S−)† =
∑
m

cmcm,

Sz = 1
2 (n + n − 2�),

L+ = (L−)† =
∑
m>0

cmc−m,

Lz = 1
2 (n − �),

(15)
K+ = (K−)† =

∑
m

cmc−m,

Kz = 1
2 (n̄ − �),

T+ = (T−)† =
∑
m

c−mcmsgn(m),

Tz = Lz − Kz.

These products of fermion creation (cm) and annihilation (cm)
operators are the generators of Sp(4) [14]. Exact solutions of
the Hamiltonian of Eq. (14) are expressed in the basis [15]

|mpk〉 = N (m,p, k)Lm
+K

p
+Ok

+|φ〉, (16)

where

O+ = K+(L+S− + T+(2L0 − 1))

+ [L+T− − S+(2L0 − 1)](2K0 − 1) (17)

and L−|φ〉 = K−|φ〉 = 0. The factor N (m,p, k) is a normal-
ization factor [15]. The matrix elements of the Hamiltonian
[Eq. (14)] in the Eq. (16) are straightforwardly calculated,
owned to the rules of the Sp(4) generators of Eq. (15).

The boson image of the bi-fermion Hamiltonian (14) is
constructed by writing the operators of Eq. (15) as linear
combinations of particle-hole, hole-hole, and particle-particle
like-bosons and their products [8,13]. If B

†
f , B

†
h, and B

†
p, and

their Hermitian conjugates, represent particle-hole, hole-hole,
and particle-particle bosons, the DBM images of the operators
of Eq. (15) are written

S+ → B
†
f (2� − Nf − 2Np − 2Nh) − B†

pB
†
hBf ,

S− → Bf , Sz → Nf + Np + Nh − �,

L+ → B†
p(� − Np − Nf ) − B

†
f B

†
f Bh,

L− → Bp, Lz → Np + 1
2Nf − 1

2�,
(18)

K+ → B
†
h(� − Nh − Nf ) − B

†
f B

†
f Bp,

K− → Bh, Kz → Nh + 1
2Nf − 1

2�,

T+ → 2B
†
f Bh + B†

pBf ,

T− → 2B
†
f Bp + B

†
hBf , Tz → Np − Nh,

in a similar way one can define boson number operators

Nf = B
†
f Bf , Np = B†

pBp, Nh = B
†
hBh, (19)
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and with them, the boson image of the Hamiltonian of Eq. (14)
is given by

HB = ωf Nf + ωpNp + ωhNh

+V (B†
f

2
B2

f + 2Nf (Np + Nh) + B†
pB

†
hB

2
f )

+ λ(B†
p

2
B2

p + Nf Np + B
†
f

2
BhBp)

+µ(B†
h

2
B2

h + Nf Nh + B
†
f

2
BhBp). (20)

The quantities ωi (i = f, p, h) are defined by

ωf = ε + ε̄ − 2�V, ωp = 2ε − �λ, ωh = 2ε̄ − �µ.

(21)

The boson image of H, Eq. (20), and the operators of
Eq. (18) obey the original Sp(4) algebra, of Eq. (15). Working
in the subspace of 2p-2h excitations one can introduced, as
ideal basis, the states |1〉 and |2〉

|1〉 = 1√
2
B

†
f

2|0〉,
(22)

|2〉 = B†
pB

†
h|0〉,

where 〈1|2〉 = 0 holds by construction.
This choice of the ideal basis is arbitrary, because, depend-

ing on the relative magnitude of the couplings V, λ, and µ, the
meaning of the {P } and {Q} subspaces can be interchanged.
To fix the ideas, let us mention that the arbitrariness, in
the choice of the ideal basis, is a direct consequence of
the fact that although the Hamiltonian [Eq. (20)] has been
Dyson mapped without truncation, the ideal basis [Eq. (22)]
has been constructed without exact mapping. This basis is
at least complete, but possibly overcomplete, because the
boson images of the operators in Eq. (18) are expressed at
the lowest order. This is easily seen by noticing that the
state |m = 1, p = 1, k = 0〉, of Eq. (16), coincides with |2〉,
up to a normalization factor and at dominant order in 1/�,
whereas |1〉 cannot be expressed in a similar manner if terms
proportional to the number operators are neglected in S+
of Eq. (18). In other words, some of the states that belong
to the ideal boson basis may not be expressed in terms of
the exact basis and/or may overlap only partially with the
states of the exact basis. It means that the orthogonality
and completeness of the exact basis are not obeyed when
the states are written in the ideal boson basis rather than in
terms of the generators of the algebra. Therefore, the obtained
eigenvectors may indeed be nonorthogonal, as we shall see
below. Therefore, the matrix equation that is Hermitian (if
the mapping is performed for both the Hamiltonian and a
chosen complete fermion basis) becomes non-Hermitian in
general.

At this point, we can advance the notion that spurious
states could appear as a consequence of truncation. Formally
speaking, the boson image of the Hamiltonian, given by
Eq. (20) is the result of the complete mapping [Eq. (18)],
whereas in defining the ideal basis [Eq. (22)] one keeps
dominant components of S2

+ and L+K+. It is easy to see that
the algebraic structure of H is preserved by the mapping but
only some subalgebras are obeyed by the operators entering in
the definition of the ideal states.

The matrix elements of HB , in this basis, are given by(
2ωf + 2V

√
2(λ + µ)√

2V ωp + ωh

)
, (23)

and the eigenvectors are written as

|n〉 = N (n)(|1〉 + x(n)|2〉), (24)

where N (n) is a normalization factor and x(n) is the ratio
between the amplitudes. In the following, we shall discuss
two trivial model situations, namely λ = µ = 0, V �= 0, and
vice versa.

For the case λ = µ = 0, the solutions of the eigenvalue
equation are

En=1 = 2E0 − 2V (2� − 1),
(25)

En=2 = 2E0,

where

E0 = ε + ε, (26)

with eigenvectors

|n = 1〉 = N (1)(|1〉 − 1√
2(2� − 1)

|2〉),
(27)

|n = 2〉 = |2〉,
respectively. These two solutions are not orthogonal. We can
show their linear dependence by choosing, in Eqs. (8)–(10),
the block structure

h(1) = 2E0 − 2V (2� − 1),

h(12) = 0,
(28)

h(21) =
√

2V,

h(2) = 2E0.

Therefore, for the eigenvalue En=1, one obtains

En=1I − HB =
(

0 0
−√

2V −2V (2� − 1)

)
. (29)

The eigenvector corresponding to this solution has the ampli-
tude

x(1) = − 1√
2(2� − 1)

. (30)

For the eigenvalue En=2 one gets

En=2I − HB =
(

2V (2� − 1) 0
−√

2V 0

)
, (31)

and x(2) remains undefined, which means that |n = 2〉 is an
spurious state. This is a case where one gets a solution at the
unperturbed energy even for nonvanishing interactions.

For the case V = 0, the structure of the states |1〉 and |2〉,
of Eq. (22), is exchanged and the solutions can be written as
in the previous case. It is then clear that, with the construction
[Eq. (22)], only one of the eigenstates belongs to the physical
sector, whereas the other is fully spurious. This is a common
feature of the mapping procedure, and it is independent of the
coupling, of course. Now, let us consider the general case with
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the couplings V, λ, and µ different from zero. The eigenvalues
of HB are

E1 = 2E0 − �

2
− r

2
,

(32)
E2 = 2E0 − �

2
+ r

2
,

where

� = (4� − 2)V + �L (33)

and

r =
√

�2 − 8(2� + 1)(� − 1)V L, (34)

with L = λ + µ. For this case, Eqs. (8)–(10) leads to the
amplitudes:

x(1) =
√

2V

�L − �+r
2

,

(35)

x(2) =
√

2V

�L − �−r
2

.

To understand the structure of the solutions given above
we shall consider the nontrivial case � 	 1 (because the
geometrical restrictions are self-evident for � = 1). In this
limit one gets

� = �(4V + L)

r = �(4V − L)
(36)

E1 = 2E0 − 4�V

E2 = 2E0 − �L

and, in consequence,

x(1) = −
√

2V

�(4V − L)
→ 0

(37)
x(2) → ∞

because h(2) − E2 = 0 for 4V > L. Notice that if 4V < L

the first and second states of the ideal basis, Eq. (22), are
interchanged, as well as the eigenvalues and eigenvectors. At
the point 4V = L the solutions display an avoided crossing.
It is then obvious that for the case � 	 1 and 4V > L the
eigenstates in the ideal space are normalized like N (1) → 1 and
N (2) → 0, as � → ∞. (and the other way around if 4V < L).
These features are confirmed by the exact solutions, as we
shall show in the following.

For the case of 2p-2h the exact basis is given by [see
Eq. (16)]

|φ1〉 = 1

�
L+K+|φ〉,

(38)
|φ2〉 = 1

2
√

(� − 1)(2� + 1)

(
S2

+ + 2

�
L+K+

)
|φ〉,

and the Hamiltonian matrix of Eq. (14) reads(
2E0 − �L − 2V

�
2V
�

√
(� − 1)(2� + 1)

2V
�

√
(� − 1)(2� + 1) 2E0 − 2V

�
(� − 1)(2� + 1)

)
. (39)

Note that the basis of Eq. (22) may be viewed as the
lowest-order terms (in powers of 1/�) of the one obtained

by mapping from the complete fermion basis, Eq. (38).
However, one should be cautious in writing the correspondence
between both basis, because of the appearance of divergent
normalization factors. This is the case of the state |φ2〉 of
Eq. (38), which is nonrenormalizable if � = 1. One may also
think of this as a result of the violation of the occupation
number symmetry.

The eigenvalues corresponding to the complete Hamilto-
nian matrix above are

E1 = 2E0 − V (2� − 1) − 1
2L�

−
√

2LV + (
1
2L� − V (2� − 1)

)2
, (40)

E2 = 2E0 − V (2� − 1) − 1
2L�

+
√

2LV + (
1
2L� − V (2� − 1)

)2
, (41)

which for � = 1 reduces to

E1 = 2E0 − 2V − L,
(42)

E2 = 2E0.

These exact eigenstates coincide with the results [Eq. (32)].
Note that they are finite even for � = 1, although there
is a nonrenormalizable vector in Eq. (38). Naturally, one
should choose only one state of Eq. (38) for the definition
of the collective subspace, because the other belongs to the
(unperturbed) complement subspace.

Another good example of the geometric restriction is given
by the case of 4p-4h states. The exact basis is spanned by the
states

|φ1〉 = 1

2�(� − 1)
L2

+K2
+|φ〉,

|φ2〉 = 1

2(� − 2)
√

(� − 1)(2� + 1)

× (
L+K+S2

+|φ〉 + 4(� − 1)|φ1〉
)
, (43)

|φ3〉 = 1

4
√

6�(� − 3)(2� − 1)(2� + 1)

×(S4
+|φ〉 + 24

√
(� − 1)(2� + 1)|φ2〉 − 24|φ1〉).

The matrix elements of the Hamiltonian of Eq. (14) are the
following:

h11 = 4E0 − 2(� − 1)L − 8V

�
,

h12 = h21 = 4V (� − 2)(2� + 1)

�
√

(� − 1)(2� + 1)
,

h13 = h31 = 0,
(44)

h22 = 4E0 − (� − 2)L − 2V (2� − 5) − 4V (� + 4)

�(� − 2)
,

h23 = h32 = V
√

24�(� − 3)(2� − 1)√
(� − 1)(� − 2)

,

h33 = 4E0 − 4V

(
2� − 3 − 3

� − 2

)
.
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As shown in Eq. (43), the geometric restrictions are evident
for � � 3. Moreover, for the case � � 2 the determinant of the
matrix in Eq. (44) is undetermined. For � = 3, that matrix has
one eigenvalue En = 4E0, which is the unperturbed energy of
the 4p-4h configuration. These features have been interpreted
earlier in connection with spurious states [8]. In the context of
the present work, we refer to them as geometric restrictions.
Notice that the leading-order terms of Eq. (43) are the three
vectors that appear in Ref. [8] for the 4p-4h case.

As done in the previous example of the 2p-2h case, these
spurious states can be isolated by an adequate definition of the
collective space.

III. DISCUSSION OF RESULTS

In this section we discuss the results of the calculations
we have performed by using the formalism of the previous
sections.

To start with we have diagonalized the Hamiltonian of
Eq. (20) in the ideal basis of Eq. (22). We have followed
the dependence of the solutions on �,V , and L. Next, we
have compared the solutions of the Eqs. (6) and (13) with
the amplitudes x(j ) of Eq. (35). The results are shown in
Figs. 1 and 2. In these figures we show the functional
structure of the eigenvalues En=1 and En=2 and the values of
h(2) for different values of �,V , and L = λ + µ. Following
the arguments of Sec. II B, the normalization factor of
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FIG. 1. Eigenvalues En=1 and En=2, solid lines, and expectation
values of h(2), dotted lines. The values are display as a functions of
the strength V, for different values of L = λ + µ. Cases (a), (b), and
(c) correspond to L = 0, 1, and 2 MeV, respectively. All results
correspond to � = 5, the value of E0 of Eq. (26) is fixed at E0 = 1,
and all values are given in units of mega-electron volts.
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FIG. 2. Same as Fig. 1 for � = 10.

Eq. (12) vanishes or becomes negative if En is the eigenvalue
corresponding to a spurious state (i.e., a state belonging to
the complementary space Q). This condition is met when the
denominator E − h(2) vanishes. Figure 1 shows the results
corresponding to � = 5. Except for the trivial singularity at
V = L = 0, the branch E2, at L = 0, represents a spurious
state for all values of V. This identifies En=1 as the eigenvalue
of the collective subspace and En=2 as the eigenvalue of the
unphysical subspace. Both solutions are, nevertheless, present
in the exact diagonalization.

The same feature appears by changing � and V, for L = 0,
as shown in Fig. 2. The results of both figures (cases with
different values of L) exhibit an avoided crossing between
levels at 4V = L. As stated previously (see Sec. II C), if 4V <

L the first and second states of the ideal basis, Eq. (22), are
exchanged, with N (1) → 0 and N (2) → 1, as � → ∞. If 4V >

L the eigenstates in the ideal space are normalized like N (1) →
1 and N (2) → 0, in the same limit � → ∞.

The distance between levels at the crossing point, which is
a function of V decreases as � increases. Also the crossing
point shifts to higher values of V as � and L increase. In
all cases the crossing indicates the point where the collective
and complement spaces are exchanged. This is a well-known
fact of perturbative treatments and it appears also here in
the DBM bosonization. To be more precise, in performing
the Dyson boson expansion and choosing a certain physical
space (of boson operators) one is splitting the Hilbert space
in the subspaces P and Q of Eq. (1). The degree of mixing
between the physical and spurious states will certainly depend
on the chosen subspaces. Alternatively, the same mixing can be
view as a result of the renormalization of the interactions in the
physical space, as done in Eq. (7), an effect that is achieved by
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working in the subspace of h(1). Thus, the normalization factor
in Eq. (12) will indicate the effect because of the configurations
removed from the physical space.

IV. CONCLUSIONS

We have discussed the appearance of spurious states in the
treatment of bi-fermion boson Hamiltonians in ideal terms.
Particularly, we have focused on the effect of truncation of
the basis. We have compared the formalism obtained by using
similarity transformations with the one obtained from the use
of a perturbative scheme.

The above results indicate that, as a general prescription
to isolate spurious states, one can search for singularities of
the similarity transformation, after performing Dyson boson
mapping.

In situations where the symmetries of the Hamiltonian are
preserved by boson mapping, the ideal basis can be labeled
by the quantum numbers of the symmetry operators, and
spurious states can approximately be removed by performing
variations around values fixed by the symmetry. Examples of
this procedure can be found in Ref. [7].
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