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Atomic squeezing in three level atoms
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Abstract

The conditions under which squeezing occurs, in a system of atoms and photons, are modelled by describing atom–photon interactions in three
atomic levels. The time evolution of the spin population is calculated for different initial conditions. The effect of the use of coherent states, in the
photon sector of the initial condition, is discussed. It is found that (i) the use of coherent states does not suffice for the transfer of spin between the
atoms and the laser field, (ii) the interactions between the atomic levels and the radiation field must be non-symmetric, and (iii) that the squeezing
is washed-out if the number of atoms is increased.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The conditions under which squeezing may take place, e.g.
the transfer of quantum information between atomic states and
laser fields, are currently under theoretical and experimental
investigations. The following is an overview of the pertinent
literature. For a general review see Ref. [1]. Squeezing in quan-
tized electromagnetic fields has received continuous attention,
since the first publications appeared more than twenty years
ago [2,3]. Ref. [4] describes squeezing generation and revivals
in a cavity-ion system in contact with a reservoir. The system
consists of a single two-level ion in a harmonic trap, at zero tem-
perature and exposed to the action of two external lasers. The
authors of [4] have obtained an analytical solution for the total
density operator of the system and shown that squeezing in the
motion of the ion and in the cavity field is generated. They have
also shown that complete revivals of the states of motion of the
ion and of the cavity field occur periodically. Ref. [5] proposes
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a simple scheme to measure squeezing and phase properties of
a harmonic oscillator field to which atoms are exposed. It is
shown that by measuring atomic polarizations it may be possi-
ble to measure properties of the field. In Ref. [6], the transfer
of quantum correlations from atoms to light, by Raman scatter-
ing of a strong laser pulse on a spin-squeezed atomic sample,
is proposed. It is shown [6] that under adequate conditions the
quantum information of collective states of atoms may be trans-
ferred to a pulse of light. Atomic squeezing under collective
emission was studied in Ref. [7], where a method of governing
the temporal behavior of the squeezing factor was developed
and the influence of a squeezed effective vacuum on the char-
acteristic of collective emission was investigated. Entanglement
and spin squeezing properties for three bosons in two modes
were presented in Ref. [8]. The theoretical and experimental
aspects of entanglement and squeezing in a two-mode system
have been presented in [9]. The study of spin squeezing in non-
linear spin-coherent states is found in [10]. Optimally squeezed
spin states have been considered in Ref. [11]. In Ref. [12] the re-
lations between bosonic quadrature and atomic spin squeezing
was studied. The spin transfer between photons and atoms was
examined by using the Dicke Hamiltonian [13]. Spin squeezing
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via atom–field interactions was considered within the frame-
work of the Tavis–Cummings model [14] in Ref. [15]. The work
of Genes et al. [15] describes an ensemble of N two level atoms
interacting with a quantized cavity field. There it is shown that
spin squeezing of both the atoms and the field can be achieved
provided the initial state of the cavity field has coherence be-
tween number states differing by two. Also in this reference an
analytic solution was found that is valid in the limit that the
number of atoms is greater than the average number of photons
in the coherent state of the cavity field. In this limit the degree
of spin squeezing increases with increasing values of the aver-
age number of photons.

A common feature shared by the theoretical models, in-
troduced in the references given above, is the interaction be-
tween atomic levels and photons. The general structure of the
Hamiltonians which include such type of interactions belongs
to the family of couplings presented in Marshalek and Klein
in Ref. [16]. These forms are amenable to boson expansions
and/or exact boson mappings [17,18]. Boson mapping tech-
niques allow for the generalization of the simple forms of in-
teractions, which have been used so far, like the Dicke Hamil-
tonian [13] or the Tavis–Cummings Hamiltonian [14], for in-
stance. The adopted scheme of two level atoms interacting with
the radiation field was extended to consider squeezing in three
level atoms Wodkiewicz et al. [19], by Ficek and Drummond
[20,21] and by Javanainen and Gould [22]. In [21], it was found
that a significant reduction in the population of the first excite
state and a population larger than 0.5 in the second excited state
may appear. In [22], the population of three level atoms interact-
ing with two photons is calculated by using correlation function
techniques.

In this Letter we investigate the dependence of squeezing
with respect to the model parametrization of the interactions
between atoms and photons, and with respect to the initial con-
dition imposed to the radiation field. We are considering: (a)
three-level atoms, and (b) coherent states of photons to model
the initial condition. Concerning point (a) we shall present
the algebraic details needed to construct the exact solution of
a Hamiltonian describing atomic excitations of A three-level
atoms induced by the exchange of photons. Relative to point
(b), we shall study the dependence of the solutions upon the
average number of photons in the initial state. The details of
the formalism are presented in Section 2. The occurrence of
squeezing in a system of A three-level atoms and photons is nu-
merically modelled in Section 3, where we present and discuss
the solutions for different parameters of the model and differ-
ent initial conditions. The time evolution of atomic and field
squeezing is shown also in Section 3. Conclusions are drawn in
Section 4.

2. Formalism

The system consists of A identical three-level atoms in inter-
action with a radiation field [19]. The atoms and the photons are
placed in a cavity. The creation (annihilation) operator for the
ith atomic level (i = 0,1,2), is denoted by b

†
i (bi ), and oper-

ators referring to different atomic levels commute. The Hamil-
tonian of the system reads

H = ωa†a +
∑

i

EiS
ii + g1

(
aS01+ + a†S01−

)

(1)+ g2
(
aS12+ + a†S12−

)
.

Here ω is the energy of the photon, a† (a) is the one photon-
creation (annihilation) operator, Ei is the energy of the ith
atomic level, and g1 and g2 are coupling constants describ-
ing the absorption (emission) of a photon in the presence of
an upward (downward) atomic excitation between levels 0 and
1 (term proportional to g1), and between levels 1 and 2 (term
proportional to g2). The operators

(2)Sij = b
†
j bi, i, j = 0,1,2,

satisfy the commutation relations

(3)
[
Sij , Skm

] = δimSkj − δjkS
im.

They are used to define the atomic inversion operators

(4)S
ij
z = 1

2

(
Sjj − Sii

)
,

and the transition operators S
ij
±

(5)S
ij
+ = Sij , S

ij
− = (

S
ij
+

)† = Sji, i, j = 0,1,2, i < j.

The two-photon resonance condition [23] is satisfied by fixing
the energies of the atomic levels Ei at the values

(6)E2 − E0 = 2ω, E1 − E0 = ω − Δ.

2.1. The exact solution

The operator

(7)L̂ = a†a + 2S02
z ,

commutes with the Hamiltonian of Eq. (1), which, therefore,
can be diagonalized in the basis of states

(8)| nbn0n1n2〉 = 1√
nb!n0!n1!n2!a

†nb
b

†
0
n0

b
†
1
n1

b
†
2
n2 |0〉.

Let N0 be the number of photons when all the atoms are in the
ground state. To create n1 atoms in level 1 and n2 atoms in level
2 one uses n1 +2n2 photons, then nb +n1 +2n2 = N0. Subtract
n0 + n1 + n2 = A, which is the number of atoms, to obtain

(9)nb + n2 − n0 = N0 − A ≡ N

which tell us that N , which is the sum of the number of photons,
nb , and the difference n2 − n0 between the population of the
atomic states i = 2 and i = 0, is an eigenvalue of L̂ in the basis
(8). Having established the invariance of N = nb + n2 − n0 it
follows that L̂ is a constant of the motion, as can be verified
directly by establishing its commutation with the Hamiltonian
(1).

The diagonalization yields the set of eigenvalues, Eα , and
eigenvectors

(10)|Ψα〉 =
∑

cα(a)|a〉.

a≡{nb,n0,n1,n2}
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The actual dimension of the configuration space, that is the
largest possible value of N for which the exact diagonalization
is still feasibly, is fixed by analyzing the stability of the wave
function for increasing values of N . The adopted procedure will
be discussed in Section 3.

2.2. Relative squeezing of two operators

For a given pair of operators, R and S, the quantity

Q(R,S) = 2(ΔR)2

|〈φ(t)|[R,S]|φ(t)〉| ,
(11)(ΔR)2 = 〈φ(t)|R2|φ(t)〉 − 〈φ(t)|R|φ(t)〉2,

measures the squeezing of the operator R with respect to
S [1,7,9]. Squeezing means that Q(R,S) < 1. The time de-
pendent state |φ(t)〉 is obtained by writing the initial state
|φ(t = 0)〉 as a linear combination of eigenstates of the Hamil-
tonian and introducing the suitable exponential time dependent
factor for each eigenstate. In general,

(12)〈φ(t)|Ô|φ(t)〉 =
∑

α,β

Dα,β(t)〈Ψα|Ô|Ψβ〉

with

(13)Dα,β(t) = 〈φ(t)|Ψα〉〈Ψβ |φ(t)〉,
which depends on the initial condition, |φ(0)〉, since

(14)|φ(t)〉 = e
− iH t

h̄ |φ(0)〉,
and O is either R, S or [R,S]. In the following, we shall write,
explicitly, the results for the squeezing Q(R,S) for different
initial conditions.

2.3. One atom case

In this section we present the analytic results for the case
A = 1. The diagonalization of the Hamiltonian of Eq. (1),
within the three-dimensional space spanned by the states

|a〉 = |nb,1,0,0〉,
|b〉 = |nb − 1,0,1,0〉,

(15)|c〉 = |nb − 2,0,0,1〉,
yields the eigenvalues λα and eigenvectors |Ψα〉, with α =
1,2,3, for each of the subspaces labelled by a fixed value of
N = nb + n2 − n0. The basis (15) includes up to three states
depending on the values of nb,n2 and n0. For a variable num-
ber of photons each subspace of the solutions is labelled by the
value N . The matrix of Eq. (13) is determined by the initial con-
dition |φ(0)〉. As limiting cases we shall consider two types of
initial states: (a) a Fock state of a fixed number of photons and
a given initial population of the atomic levels, and (b) a product
of a coherent state of photons and a given initial atomic state.

The initial condition (a) is written

(16)|φ(0)〉 = |nb,1,0,0〉,
and it represents the product state on nb photons and one atom
in the lower state. Then, if N = nb − 1

Dα,β = d∗
αdβ,

(17)dα = e−iλα(N)t/h̄.

With this we shall calculate the time evolution of the operator
of atomic inversion, S02

z ; that is the time evolution of the dif-
ference between the occupations of the upper and lower atomic
states. To compute the atomic squeezing, of Eq. (11), one needs
also to calculate the time evolution of the ladder operator S02+ .
After a rather straightforward calculation one finds that for this
initial condition (e.g; a given number of photons in the initial
state) atomic squeezing does not appear, no matter how many
photons or atomic levels are included in the initial condition.

For the case of condition (b), the calculation leads to the
expression

Dα,β = d∗
αdβ,

(18)dα = e− |z|2
2

∞∑

k=0

zk

√
k!c

∗
α(k,1,0,0)e−iλα(k−1)t/h̄,

where |z|2 = nb is the mean value of the number of photons in
the coherent state. In this case

〈
Sz(t)

〉 = e−nb

∞∑

k=0

nk
b

k!
〈
Sz(k, t)

〉
,

〈
S2

z (t)
〉 = e−nb

∞∑

k=0

nk
b

k!
〈
S2

z (k, t)
〉
,

(19)
〈
S+(t)

〉 = e−nb

∞∑

k=0

nk+1
b

k! f0(k)
(
a(k) + ib(k)

)
,

where the quantities f0(k), a(k), and b(k), are straightfor-
wardly obtained from the definition of the Hamiltonian and of
the exact eigenvectors. The contribution of states with different
values of N is a necessary condition for coherence [15]. The
time evolution of the ladder operator (19) does not vanish and
expression Eq. (11) admits non-diagonal terms in the denomi-
nator. It means that, depending on the coupling constants of H ,
squeezing may appear, that is Q(Sz,S+) � 1.

3. Results and discussion

The energy spacing between the atomic levels is fixed by
Eq. (6), with Δ = 0, thus E0 = −ω, E1 = 0, E2 = ω. In
all cases we have taken a coherent state in the photon sector.
We have considered symmetric, g1 = g2, and non-symmetric,
g1 �= g2, couplings in the Hamiltonian. The mean value of the
number of photons in the coherent state has been taken as an
external variable, and the calculations have been performed for
different number of atoms. In Figs. 1–3, we show the results of
the present calculations for the time evolution of the atomic in-
version, 〈Sz(t)〉, the atomic squeezing, Q(Sz,S+), and the field
squeezing, Q(x,p) [15]. The atomic initial condition consists
of n0 = A atoms in the ground state, while the parameter z of
the photon coherent state is fixed at the value |z|2 = nb . With
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Fig. 1. Mean value of the inversion operator, 〈Sz(t)〉, atomic squeezing,
Q(Sz,S+), and field squeezing, Q(x,p), as a function of time. The system
consists of one atom, initially in its ground state, and a coherent photon field,
with mean value of the number of photons nb = 10. The coupling constants are
fixed at the values g1 = 1 and g2 = 4.

these parameters the Hamiltonian of Eq. (1) was diagonalized
and the density matrix of Eq. (13) was obtained for each sub-
space, A,N . Fig. 1 shows the results for A = 1, g1 = 1, g2 = 4
and nb = 10. This case does exhibit squeezing. The actual cen-
tral value of the atomic squeezing, Q(Sz,S+), is of the order of
0.75–0.80. The time evolution of the atomic inversion 〈Sz(t)〉
is consistent with the central value 〈Sz(t)〉 = −0.4. The cou-
plings have been chosen in this manner because no signal of
squeezing was obtained, in spite of the use of a coherent state
in the photon sector, when g1 = g2. This feature persists if the
number of atoms is increased. Fig. 2 shows the results corre-
sponding to A = 3,6,15,18, g1 = 1, g2 = 6, and nb = 21. It is
seen that the atomic squeezing is washed out when the num-
ber of atoms is increased. This is understood in terms of the
definition of N , see Eq. (9), since for increasing values of the
number of atoms and fixed values of N0 one gets smaller val-
ues of N , that is n2 ≈ n0, for a given value of nb . These results
seems to indicate the strong dependence of the atomic squeez-
ing upon the number of atoms. In fact, as it can be deduced from
Eq. (9), if one increases the value of A and keeps the value of
N0, the value of N will decrease. It necessarily implies that
the difference n2 − n0 decreases. This change reflects upon the
expectation value of S+, which will decrease. The comparison
between the results which we have obtained by using symmetric
and non-symmetric couplings points out to the critical depen-
Fig. 2. Atomic squeezing, Q(Sz,S+), as a function of time. The interaction
coupling constants are fixed at the values g1 = 1, g2 = 6. The initial state con-
sists of A atoms in their ground state, and of a coherent state with mean value
of the number of photons nb = 21. Insets (a), (b), (c) and (d), correspond to a
system with A = 3, A = 6, A = 15 and A = 18 atoms, respectively.

dence of squeezing upon the relative strength of the emission
and absorption of photons in transitions involving the ground
state, n0, and the excited state n2. This is independent of the
mean value of the number of photons, see Fig. 3, where the time
evolution of squeezing is depicted for nb = 400, g1 = 1, g2 = 6
and A = 3 (inset 3.a), A = 6 (inset 3.b), A = 15 (inset 3.c), and
A = 18 (inset 3.d). The population of the atomic level 1 works
as a gate for the population of the atomic level 2, since g1 < g2.
The opposite condition, g1 > g2, does not result in squeezing,
as we have verified in our calculations. As shown by the cases
considered in Fig. 3, revivals may indeed occur. Concerning the
choice of Δ of Eq. (6), we have verified that using Δ �= 0 does
not affect the value of Q(Sz,S+). However, the exchange of
the role of g1 and g2, that is by setting g1 > g2, suppresses the
squeezing, as we have mentioned before.

4. Conclusions

In this work we have studied the occurrence of squeezing
in systems composed of three level atoms and a radiation field.
It is found that: (i) the use of initial conditions consisting of a
fixed number of photons does not lead to squeezing; instead,
it appears if coherent states are considered in the photon sec-
tor of the initial condition, (ii) the transfer of spin between the
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Fig. 3. Idem as Fig. 2, for nb = 400.

atoms and the photons is enhanced if the interactions between
the atomic levels and the photons are non-symmetric (g2 > g1
since the choice g1 > g2 does not lead to squeezing); the use
of coherent states does not lead to squeezing unless the interac-
tions are non-symmetric, and, (iii) the squeezing is washed-out
if the number of atoms is increased.
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