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Nonstandard q-deformed realizations of the harmonic oscillator
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The boson expansion method is applied to find the spectrum of a q-deformed harmonic oscillator. We use two
different boson expansions, each of them including a deformation parameter, defined in terms of exponential and
logarithmic functionals. The resulting Hamiltonians are bilinear forms of the transformed operators. Physical
effects resulting from the deformation of the generators of the algebra are studied by comparing known finite-range
potentials and the effective potentials obtained for each of the considered Hamiltonians.
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I. INTRODUCTION

Mathematical aspects of the so-called quantum-deformed
(q-deformed) algebras have been studied intensively in the past
[1,2]. The search for physically inspired Hamiltonians, which
may display definite features about q-deformation effects,
is still open. Concrete applications of the formalism have
been explored more recently [3–8] and these complement
previous mathematical efforts, such as studies of generalized
q-deformed oscillators [9,10]. In a series of papers, Wess
and coworkers [11–15] and Zhang and coworkers [16–18]
have studied different nonstandard q-deformation schemes and
obtained the corresponding Hamiltonians. Previously, we have
applied these ideas to study fermion-boson couplings [19],
and the possible correspondence between q-deformations and
boundary conditions [20], by comparing the spectrum of a
q-deformed harmonic oscillator with that of a finite-range
potential.

In this work, we continue the study presented in [20],
by applying nonstandard realizations of quantum deformed
algebras [21–28], in conjunction with boson expansions.
We have calculated the eigenvalues of Hamiltonians that
include bilinear and quadratic forms of the generators of
the algebra. We have chosen exponential and logarithmic
functionals of the deformation parameter and of the bosons
to deform the generators of the algebra. The comparison
between different realizations is done by diagonalizing the
corresponding Hamiltonians in the basis of states generated
by the bosons introduced by the mapping procedure. Also, we
have constructed, for each of the considered Hamiltonioans,
effective potentials. This was done by applying to the Hamilto-
nians suitable gauge transformations, as was explained in [20].

In Sec. II we present the nonstandard realizations we have
used, as well as the corresponding Hamiltonians. Numerical
results are presented in Sec. III. Conclusions are drawn in
Sec. IV.

II. FORMALISM

A. Nonstandard q deformations

To fix the concept of a deformed algebra [25], let us
introduce the commutation relations between the generators

N,A+, A− of a standard oscillator algebra:

[N,A±] = ±A±, [A−, A+] = 1. (1)

If λ is taken as a deformation parameter, one may introduce
the following commutation relations:

[N,A+] = eλA+ − 1

λ
,

[N,A−] = −A−, (2)

[A−, A+] = eλA+ ,

which in the limit λ → 0 yields Eqs. (1). This set of
equations (2) is an example of a nonstandard deformed algebra
[21–28], in contrast to the standard one [6–8], which can be
defined by the following commutation relations:

[N,A±] = ±A±,
(3)

[A−, A+]q = qN .

The q-deformed Casimir operator Cλ, corresponding to the
nonstandard algebra (2), is defined by

Cλ = N − 1

2

{
1 − e−λA+

λ
A− + A−

1 − e−λA+

λ

}
. (4)

In the limit λ = 0 it reduces to the form

C = N − 1
2 {A+, A−}, (5)

or, in a more familiar way,

N = 1
2 {A+, A−} + C. (6)

These are the elements needed to complete the definition of
a nonstandard q-deformed algebra and we shall use them to
construct a boson picture of the involved operators.

B. Boson mapping

Let us introduce the boson creation and annihilation oper-
ators a† and a, respectively. Then, following the techniques
of [29], we can construct the boson pictures of the generators
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A+, A−, and N,

A+ = a†,

A− = a, (7)

N = a† a,

where [a, a†] = 1. This mapping can be deformed, as we are
going to show next, by replacing the right-hand side of each
of the equalities of (7) by functionals of the boson operators
weighted by the deformation parameter λ. Among the possible
realizations we have selected exponential and logarithmic
forms.

1. q-deformed exponential boson mapping

The exponential boson mapping is defined as

A+ = a†,

A− = eλa†
a, (8)

N = eλa† − 1

λ
a,

which reduces to (7) for λ = 0.

2. q-deformed logarithmic boson mapping

Another boson mapping is the logarithmic transformation

A+ = 1

λ
ln

(
1

1 − λ a†

)
,

A− = a, (9)

N = a† a,

which also reduces to (7) in the limit λ = 0.

C. q-deformed Hamiltonians

In this subsection we analyze the structure of the
q-deformed boson operators, both for the exponential and
logarithmic mappings, by expanding them as power series of
the deformation parameter λ. Next, we transform symmetric
and asymmetric quadratic Hamiltonians to these q-deformed
boson basis. This will allow us to establish a connection
between q-deformed Hamiltonians and the ones we have
chosen for comparison, namely, the Woods-Saxon (WS) and
Poeschl-Teller (PT) potentials. We shall perform an analysis
similar to the one presented in our previous work [20].

The procedure we have adopted consists of the following
steps:

(a) the expansion of the q-deformed boson operators at
leading order in λ;

(b) the use of a gauge transformation, constructed with the
deformed boson operators, to write the eigenvalue equation
for the Hamiltonians.

Step (b) will allow us to write the associated Schrödinger
equations, and, in turn, to extract the potentials induced by the
deformation of the algebra. At this point we shall then be able
to compare the obtained potentials with the WS and PT ones.

1. q-deformed generalized momentum and coordinate operators

The momentum and coordinate operators can be
written [29] as linear combinations of the operators A+ and
A−, as is usually done in the harmonic oscillator representa-
tion, namely,

P = i

√
mωh̄

2
(A+ − A−),

(10)

X =
√

h̄

2mω
(A+ + A−).

Both expressions can be transformed to the boson basis, using
the boson mappings (8) and (9), leading to the equations

P = p − imω�λ,
(11)

X = x + �λ,

with

p = i

√
mωh̄

2
(a† − a),

(12)

x =
√

h̄

2mω
(a† + a),

and

�λ =
√

h̄

2mω

∞∑
k=1

λk

k!
a†ka (13)

for the exponential form of the boson mapping (8) and

P = p + imω�λ,
(14)

X = x + �λ,

where

�λ =
√

h̄

2mω

∞∑
k=2

λk−1

k
a†k, (15)

for the logarithmic form (9).
With these definitions, we can construct the q-deformed

boson pictures of the Hamiltonian

H = P 2

2m

= h̄ω

4
(A+A− + A−A+ − A2

+ − A2
−). (16)

This Hamiltonian, using the mapping (8), has the boson image

Hexp = p2

2m
− 1

2
mω2�2

λ − i
ω

2
{p,�λ}, (17)

and, for the logarithmic mapping (9), it has the form

Hlog = p2

2m
− 1

2
mω2�2

λ + i
ω

2
{p,�λ}. (18)

The Hamiltonian

H ′ = h̄ω

4
[ηA+A− + ζ (A2

+ + A2
−)] (19)
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is a generalization of (16). The factors η and ζ have been
introduced to allow for different situations, one of which is
the pure harmonic oscillator h̄ωa†a (for η = 4, ζ = 0). The
q-deformed boson images of H ′ are written as

H ′
exp = f1(η, ζ )

p2

2m
+ ζ

1

2
mω2�2

λ − if1(η, ζ )
ω

2
{p,�λ}

+ f2(η, ζ )
mω2

2
(x2 + {x,�λ})

− ωη

8
(h̄ − mω[x,�λ] + i[p,�λ]) (20)

and

H ′
log = f1(η, ζ )

p2

2m
+ ζ

1

2
mω2�2

λ + if1(η, ζ )
ω

2
{p,�λ}

+ f2(η, ζ )
mω2

2
(x2 + {x,�λ})

− ωη

8
(h̄ + mω[x,�λ] + i[p,�λ]), (21)

for the exponential and logarithmic mappings, respectively.
The factors f1 = η−2ζ

4 and f2 = η+2ζ

4 of these equations
reduce to f1 = 1 and f2 = 0, for η = 2 and ζ = −1, for which
(16) and (19) coincide, up to a term of the form h̄ω

4 ηeλA+ , since
A−A+ = A+A− + eλA+[see (2)]. Notice that the last term of
both (20) and (21) appears because we have written A+A−
instead of {A−, A+} in (19).

D. Leading order expressions

In this section we analyze the structure of the q-deformed
boson operators, both for the exponential and logarithmic map-
pings, by expanding them at leading order in the deformation
parameter λ. The resulting expressions may then allow us
to compare the effects produced on the Hamiltonians by the
deformation of the algebra, which we would like to describe
as added potentials.

1. Exponential mapping

To leading order in λ the operators of Eq. (8) are written as

A+ = a†,
(22)

A− ≈ a + λa†a + λ2

2
a†2

a.

By keeping terms of the order λ2, the Hamiltonian (16)
reads

Hexp ≈ h̄ω

2

{
p2 + λ√

2
[ip + q − ip(p2 + q2)]

+ λ2

2

[
p2 + 5

4
(p2 + q2) − p2q2 − 3

4
p4

− 1

4
q4 − i

1

2
p(p2 + q2 + 2)q

] }
. (23)

Notice that in these equations the position q and the momentum
p are dimensionless variables.

At this point we may establish the relationship between
the deformed Hamiltonian (23) and equivalent forms that

originate in true interactions. This can be done by following
the procedure of [20]. It is a straightforward procedure,
albeit cumbersome from the point of view of the algebraic
manipulations, which we shall avoid repeating here. The basic
notion is to introduce a local gauge transformation, which
depends only on position, to cast the Hamiltonian as a kinetic
(second derivative) term plus potentials where the deformation
parameters enter as a coupling strength.

The gauge transformation

�(q) = eiα(q)ϕ(q), (24)

with the local phase factor

α(q) = −i
λ

6
√

2
q(3 − q2), (25)

is used to transform the Hamiltonian (23). By keeping terms
up to λ2, the corresponding Schrödinger equation for the
eigenfunction ϕ(q) of Hexp is written as

− h̄2

2m
ϕ′′(q) + h̄ω

16
λ2(1 − q2)2ϕ(q) = Eϕ(q). (26)

This means that the deformation of the algebra is seen as
a potential that contains a constant term and q2 and q4 terms.
This form is indeed similar to the one corresponding to the PT
potential, as was the case of our previous study [20].

For completeness we have applied the same procedure to
the leading order expansion of (19). As in the previous case,
we introduce a local gauge transformation (24), with

α(q) = −i
λ

6
√

2
q

(
3

(34ζ − η)

(2ζ − η)
− q2

)
, (27)

to obtain the equation of motion; the result is

− h̄2

8m
(η − 2ζ )ϕ′′(q) + h̄ω

4

(
−η

2
− (4ζ − η)2λ2

16(2ζ − η)

− (ζ + η)√
2

λq + q2

8
[4(η + ζ ) + λ2(4ζ − η)]

+ 2ζ + η

2
√

2
λq3 − (2ζ − η)

16
λ2q4

)
ϕ(q) = Eϕ(q). (28)

This time, the leading order differential form includes
all powers (even and odd powers) up to q4. Naturally, the
interesting feature is now that odd powers of the position are
obtained.

2. Logarithmic mapping

We proceed in a manner similar to that of the previous
subsection, expanding the boson operators in the q-deformed
logarithmic mapping. By keeping terms up to the order λ2 one
obtains

A+ ≈ a† + λ

2
a†2 + λ2

3
a†3

,

(29)
A− = a.

014305-3



A. BALLESTEROS, O. CIVITARESE, AND M. REBOIRO PHYSICAL REVIEW C 72, 014305 (2005)

0,0 0,2 0,4 0,6 0,8 1,0 1,2

-45

-40

-35

-30

-25

-20

-15

-10

V
WS

V
PT

V
exp

V'
exp

V'
log

V
log

V
(q

)

q
1,4

FIG. 1. The curves show the results for the potentials correspond-
ing to the deformed Hamiltonians Hexp(dotted line), Hlog(dashed-
dotted line), H ′

exp (short-dashed line), and H ′
log(dashed-dotted-dotted

line) and for the PT (dashed line) and WS potentials (solid line). For
the case of Hexp, we have taken h̄ω

16 λ2 = −20.0; for Hlog, we have
taken h̄ω

64 λ2 = −9.0. For the potentials associated with H ′
exp and H ′

log,
we have adopted the parameters h̄ω = 20.0, η = 1.0, and ζ = 1.1.
The parameters adopted for VPT are V0 = −45 and R = 1.1, whereas
for VWS we have taken V0 = −50.0, R = 1.1, and a0 = 0.5. The units
are arbitrary units of energy, for h̄ω and V0, and length, for q, R, and
a0, respectively.

This expansion yields, for the leading order terms of
Hamiltonian (16) and for the gauge transformation

α(q) = i
λ

12
√

2
q(6 + q2), (30)

the effective potential

− h̄2

2m
ϕ′′(q) + h̄ω

64
λ2(2 − q2)2ϕ(q) = Eϕ(q). (31)

For the Hamiltonian (19), the expression in terms of the leading
order contributions (29) and for the transformation with

α(q) = −i
(η + 6ζ )λ

12
√

2(2ζ − η)
q(3 − q2) (32)

leads to the effective potential

− h̄2

8m
(η − 2ζ )ϕ′′(q) + h̄ω

4

{
−η

2
− (6ζ + η)2

64(2ζ − η)
λ2

− η

2
√

2
λq +

[
(ζ + η

2
+ (6ζ + η)2

32(2ζ − η)
λ2

]
q2

+ 2ζ + η

4
√

2
λq3 − (6ζ + η)2

64(2ζ − η)
λ2q4

}
ϕ(q) = Eϕ(q). (33)
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FIG. 2. The curves show the results for the potentials correspond-
ing to the leading order expressions of the deformed Hamiltonians
Hexp(dotted line), Hlog(dashed-dotted line), H ′

exp (short-dashed line),
and H ′

log(dashed-dotted-dotted line) of Sec. II D and for the PT
potential to order (q6) (dashed line) and the WS potential to order
(q5) (solid line). The parameters adopted are those of Fig. 1.

We may then conclude that the deformation of the algebra
leads to effects that can be viewed as effective potentials. To
compute them we need to calculate the matrix elements of the
Hamiltonians we have considered in a given basis. This is done
in the next subsection.

E. Matrix elements in the harmonic oscillator basis

The matrix elements of the Hamiltonian of Sec. II C are
calculated in the harmonic oscillator basis; their expressions,
in units of h̄ω/4, are

〈l|Hexp|n〉 = (2n + 1)δ(l, n) −
√

n(n − 1)δ(l, n − 2)

−
√

(n + 1)(n + 2)δ(l, n + 2)

+ (2n + 1)λl−n

(l − n)!

√
l!

n!
h(l − n)

− λl−n+2

(l − n + 2)!

√
l!

n!

n

2
(n + l)

×h(l − n + 1), (34)

〈l|Hlog|n〉 = (2n + 1) δ(l, n) −
√

(n + 1)(n + 2)δ(l, n + 2)

−
√

(n)(n − 1)δ(l, n − 2)

−
√

l!

n!
λl−n

{
λ−2

l−n−2∑
k=2

h(l − n − 4)

k(l − n − k)
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+ 2λ−2 h(l − n − 3)

(l − n − 1)
−

[
l + n + 3

l − n + 1

]

×h(l − n − 1)

}
, (35)

〈l|H ′
exp|n〉 = η

nλl−n

(l − n)!

√
l!

n!
h(l − n)

+ ζ
√

n(n − 1)δ(l, n − 2)

+ ζ
√

(n + 1)(n + 2)δ(l, n + 2)

+ ζ
λl−n+2

(l − n + 2)!

√
l!

n!

n

2
(n + l)h(l − n + 1),

(36)

and

〈l|H ′
log|n〉 = η

√
l!

n!

nλl−n

(l − n + 1)
h(l − n)

+ ζ
√

(n)(n − 1) δ(l, n − 2)

+ ζ

√
l!

n!
λn−l−2

l−n−1∑
k=1

h(l − n − 2)

k(l − n − k)
, (37)

respectively. In these equations h(x) is the step function
[h(x < 0) = 0]. In the next section, we shall compare the
solutions for definite values of the deformation parameter λ

and for fixed values of the asymmetry parameters η and ζ .

III. RESULTS AND DISCUSSIONS

In this section we present the results of our calculations,
which have been performed in the configuration space consist-
ing of fifty harmonic oscillator shells. The general structure
of the four Hamiltonians, Hexp,Hlog,H

′
exp,H

′
log, consists of

quadratic terms, p2, q2,�2
λ, or �2

λ, and extra terms that are
proportional to product of p and q with �λ and �λ. Based
on previous experience [20], one may expect that these extra
terms would give rise to finite-range effects. To establish a
comparison between q deformations and finite-range effects,
for the nonstandard q-deformed realizations described here, we
have chosen the WS and PT potentials as reference potentials
[20]. The WS potential is a finite-range potential of the form

VWS(r) = V0

1 + e
r−R
a0

, (38)

whereas the PT potential is of the form

VPT(r) = V0[
cosh

(
r
R

)]2 . (39)

We may then compare the dependence of these potentials on
position, with the corresponding ones of the Hamiltonians of
Secs. II C and II D. In the calculation of the potentials of
Sec. II C we have kept contributions up to the sixth power
of q. The calculation of the leading order forms, of Sec. II D
is restricted to the powers obtained in each case, after the
application of the gauge transformations. The results are shown
in Figs. 1 and 2.

The results shown in both figures support our claim about
the effects induced by the deformation of the algebra on the
harmonic oscillator. The effects may be represented by qn

potentials. The agreement between the WS and PT potentials
with the one extracted from the q-deformed logarithmic boson
expansion is rather acceptable (see Fig. 1) up to distances of
the order of 1.4 times the size of the potentials. In Fig. 2, the
leading order expressions of the deformed Hamiltonians of
Sec. II D are compared to the truncated expressions of the WS
and PT potentials, up to powers of the order of the sixth power
of q, the dimensionless position variable. It is seen that the
deformed Hamiltonians are better at reproducing the shape of
the WS potential.

In parallel we have performed other calculations, by
diagonalizing the expressions for the WS and PT potentials as
well as the expression shown in Sec. II E, and we have observed
that, depending on the adopted q-deformation scheme, the
eigenvalues of the q-deformed harmonic oscillator may acquire
complex eigenvalues. The imaginary part of these energies
may also exhibit a revival pattern, in addition to the expected
oscillatory behavior. However, the fact that the WS potential
has only a finite number of bound states, with real energies,
may not allow for a direct comparison of the eigenvalues, and
for this reason we have restricted our comparison to the actual
shape of the potentials. A direct comparison is indeed possible
by setting up a cutoff energy.

IV. CONCLUSIONS

In this work, we have applied a nonstandard q deformation
of the harmonic oscillator algebra to explore the features
of the resulting spectrum. Boson images of the chosen
Hamiltonians have been constructed. The calculations, which
have been performed for various sets of parameters, show
strong similarities between the shape of finite-range potentials,
of the WS and PT type, and the shape of the q-deformed
harmonic oscillator.

In conclusion, the present results may be used to show that
the extraction of q-deformation parameters, starting from the
spectrum of an effective Hamiltonian, is indeed feasible.
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