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Abstract

We have analyzed the relation between the two-neui2ngg) and neutrinolesgOvss) double
beta decays of°Ge, 82Se, 100Mo, and 116Cd. The relevant nuclear matrix elements have been
calculated by using the proton—neutron quasiparticle random-phase approximation (pn-QRPA) with
realistic two-body interactions. The dependence of the calculated matrix elements on the strength
gpp Of the particle—particle part of the proton—neutron two-body interaction is investigated. Recently
a procedure was proposed where data gf)B2decay half-lives could be used to derive appropriate
values ofgpp for calculating the 088-decay matrix elements. Following this procedure, we have
determined the allowed values gfp by including experimental errors of the measuregl?-decay
half-lives and the uncertainties in the axial-vector coupling congtantThis set ofgpp values is
used to predict single-beta anddB observables. Careful study of these observables points to serious
shortcomings in the adopted procedure.
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1. Introduction

The amount of data acquired in recent neutrino-oscillation experiments [1] allow
for a well founded description of neutrino properties in terms of oscillations between
neutrino mass eigenstates. The present status of the components of the neutrino mix-
ing matrix has been reported in [2,3]. Also, recent studies have shown that the pos-
sible scenarios concerning light-neutrino masses may be those where the mass eigen-
values are arranged hierarchically [2]. The absolute scale of the neutrino mass is still
beyond the reach of the present experiments. At the moment the most feasible way
to determine the mass scale is by the observation of neutrinoless double beta de-
cay.

Double beta decay processes are indeed the unique tool to extract this information [3—
6]. However, since the physics of double beta decay necessarily refers to the knowledge of
nuclear-structure properties, precise determination of the neutrino mass from the half-life
data is strongly hampered by the uncertainties in the calculated nuclear matrix elements
[6]. The problem of fixing the nuclear-model parameters, and particularly the strength of
the attractive proton—neutron interaction in the dhannel, scaled by the parameggp
[7,8], has captured the attention of nuclear physicist for almost 20 years [6]. This issue is
very important due to the observed [7,8] strong dependence of the value aofgienR-
clear matrix element ogpp, sometimes called the,, problem of the 288 decay. Further
details about the nuclear-structure models and approximations, involved in the microscopic
description of both the two-neutrino and neutrinoless modes of double beta decay can be
found in, e.g., [6].

In [6] we have advocated in favor of a case-by-case analysis of the nuclear systems
where double beta decay can occur. We have focussed our attention on adequate theoretical
description of spectroscopic observables, including lajgratlecay and electron-capture
feeding of nuclear states in the even—even mother and daughter nuclei of double beta de-
cay (see, e.g., [9,10]). In addition, the effects of the size of single-particle valence space
[11] and the sequence of individual single-quasiparticle levels for odd-mass nuclei in the
neighborhood of the participant double beta decay nuclei has been addressed [12]. Lately,
the connection between tifedecay and 288-decay matrix elements was studied in [13].

A different approach to the problem was suggested in a recent publication [14]. Therein,
a procedure to limit the theoretical uncertainties which affect the estimateggfriatrix
elements was advocated and applied to some offhelecay emitters. The procedure
presented in [14] may be summarized as the following steps:

(a) The strength of the particle—particle part of the proton—neutron interaggigns fixed
by reproducing the experimental nuclear matrix elements extracted from the measured
2vBB-decay half-lives, and

(b) this very value ogpp is used to calculate the nuclear matrix elements relevantfgs O
decay.

The steps (a) and (b) were applied in [14] to various microscopic two-body interactions
which, in turn, were approximately diagonalized using the standard proton—neutron qua-
siparticle random-phase approximation (pn-QRPA) [8] and also its renormalized version
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(pn-RQRPA) [17]. From their results the authors of [14] claimed that their procedure is able
to produce reliable nuclear matrix elements which exhibit a certain degree of independence
with respect to the interaction as well as to the method, pn-QRPA or pn-RQRPA, used to
solve the many-body problem. These are very interesting results, indeed, the validity of
which needs to be verified in a systematic manner. Since we focus our attention on the spe-
cific question about the possible relation between two-neutrino and neutrinoless-double
beta decay matrix elements, we shall not review here the indeed vast existing literature
which deals with the more general subject of the theoretical approaches which may be ap-
plied to describe nuclear double beta decay transitions. We leave this for the reader, with
the help of references [3—6]. As we have pointed out before, we shall concentrate on the
use of the conventional pn-QRPA approach [8]. For extensions of this method, and related
ones, the reader may consult Refs. [3-6].

Double beta decay studies have been performed in other approaches, like the shell
model, see, i.e., [15]. The progress achieved during the last decade in shell model cal-
culations is considerable [16]. However, the difficulties possed by the formidable task of
dealing with realistic interactions in huge basis persist and we are still forced to use ap-
proximations, like the pn-QRPA, to perform systematic studies of these transitions. As said
before in this work we focus on the RPA-type of approaches.

In this paper we have taken the results of [14] as our main motivation and we have
adopted a similar starting point, that is the adjustment of the paraggiéo reproduce
the 288-decay data. We have improved the method of [14] by including experimental er-
rors of the data. We have also included the uncertainties stemming from the adopted value
of the axial-vector coupling constania. The effective value of this coupling constant
is not known in finite nuclei of medium-heavy and heavy masses. Our adopted effec-
tive values ofga, betweenga = 1.0-125, simulate the nuclear many-body effects on
the involved spin—isospin dependent operators. The quenched valggsané a simpli-
fied means of renormalizing these operators for calculations performed in finite valence
spaces. The origin of the quenching gf can also be a more general property of the
nuclear medium but this issue has not been settled yet. In any case, we include the
possible variation in the effective value gf without trying to resolve its fundamental
origin.

The experimental errors and the uncertaintyinproduce an interval of allowed values
of the extracted 288-decay matrix elements. This, in turn, leads to an interval for the
fitted values ofgpp. Within this interval we have investigated the dependencgrof
the magnitude and decomposition of the88 matrix elements. In particular, we have
addressed the role and relevance of tfiechannel, relative to other involved multipoles,
in this decomposition. In these studies we analyze the feasibility of the method advocated
in [14].

Our article is organized as follows: in Section 2 we present the essential ingredients
of the 288-decay and 0BB-decay formalisms, needed to follow our discussion of the
results. In Section 3 we present the results and discuss them from the viewpoints of single
beta decays and double beta decays. Finally, in Section 4 we draw conclusions of our
studies.
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Fig. 1. Dependence of the computed matrix eIenMé;fT”) on gpp for the decay of 8Ge. The boxes enclose

the values of 288 matrix elements extracted from measurements of the decay half-life, including experimental
error bars. The intersections with the theoretical results (solid line) indicate the ranggswaflues where the
computed matrix element is compatible with the data.

2. Formalism

In this section we briefly introduce the formalism which we have used to obtain the
computed results for thevBs and Q88 observables. We start by writing down an expres-
sion for the 288-decay half-life,t{f;) for transition from the initial ground state,*(lo the

final ground state,p. This expression reads

2 (1)

-1
[lﬁz) (07' — O'F")] —G@ |M((32TV)

whereG®") is an integral over the phase space of the leptonic variables [6].
The nuclear two-body Gamow-Teller matrix eleme, 2{’), corresponding to thevs

decay, can be written as

@y OFIY; oD ILH A L @EIY o (e 10))
er (30pp + En — Mp)/mo + 1

m,n

: (2)




O. Civitarese, J. Suhonen / Nuclear Physics A 761 (2005) 313-332 317

0.4

82
Se
0.2

0.0 A

-0.2

(2v)
MGT

0.4

-0.6 4

-0.8 4

Fig. 2. The same as Fig. 1 for the@8 decay off2Se.

where the transition operators are the usual Gamow-Teller operatoss foransitions,
Qgp is the 288 Q value, E, is the energy of theth intermediate statel/; is the mass
energy of the initial nucleus, andk is the rest-mass of the electron. The overlgp | 1})
takes into account the fact that within the pn-QRPA approach we have to generated the set
of intermediate states by starting separately from the mother and daughter ground states.
This yields two sets of intermediate states and the overlap is used to connect members of
these sets.

In the extremely simple case, when only the lowest intermediatstadte in (2) domi-

o (2v) .
nates, one can writd#/ 7’ approximately as

@) ~ MecMp-
GT =71 -
(508 +E1—Mp)/me+1

In this case we have assumed that for a pn-QRPA calculation the overlap factor in (2)
is roughly equals to one. This is indeed in practical calculations to within 20 percent.
The situation shown in (3) is called the single-state dominance (SSD) and it was studied
extensively in [18]. The two branches of theg transition,Mgc and Mg-, can in some
cases be determined from experimental data. This is due to the fadtthatorresponds

to electron-capture (EC) decay of th§ §tate of the intermediate odd—odd nucleus to the

©)




318 O. Civitarese, J. Suhonen / Nuclear Physics A 761 (2005) 313-332

0.8 4

100
Mo

0.7 A

0.6

(2v)

0.5 -

0.4

0.3

0.2 A

0.1+

0.5 0.6 0.7 0.8 0.9 1.0 11

9ep

Fig. 3. The same as Fig. 1 for the#B decay ofl%Mo.

initial even—even ground state of theAp transition. FurthermoreMg- corresponds to
the 8~ decay of the same state to the final even—even ground state ofgieransition.
Sometimes data exists for half-lives of these two branche;‘ eftdte de-excitation.

Let us now turn to the case of thefB decays. The inverse half-life fonBg-decay
transitions, mediated by the neutrino mass, is written [6,19] as

2
(1507 — 07)] =it (). @

me

where @ is the initial ground state andGhe final one. Herém, ) is the effective neutrino

mass being a linear combination of the mass eigenstates weighted by the elements of the
neutrino mixing matrix [6,19]. Relation of this quantity to the neutrino-mass hierarchies
and experimentally determined elements of the mixing matrix has been discussed, e.g., in
[20,21]. In the present discussion we have omitted the possible contributions from right-
handed currents [6,19] and supersymmetric particles [22].
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Table 1
Data on 288 decays. The double beta decay system is indicated in the first column. The calculated phase space
factor, G(®) [yr1=1, is given in the second column. For each case the central value of the experimental half-life,

z§§;)| is given in the third column. The experimental errors are indicated hyand A_, so that the data are

v (tA
expressed a{ 2exp= 2,

experimental values are taken from [27] using the same notation for the original references

* Inthe last column (r.v.) stands for the recommended value [26]. The rest of the

Case G@) [yt t](j;) [yr] Ag [yr] A_ [yr] Refs.
76Ge 13x 10719 1.43x 1071 0.9 x 1020 0.7 x 1020 V.
9.0 x 1020 1.0 x 1020 1.0 x 1070 Vas90a
1.1x 102t 0.6 x 10?1 0.3 x 10?1 Mil90
8.4 x 1020 1.0 x 10720 0.8 x 1020 Bro93
1.1 x 102t 0.2 x 10?1 0.2 x 10?1 Aal9e
1.8 x 1021 0.1x 10?1 0.1x 10?1 Gun97
82g¢ 43x 10718 0.96 x 1020 0.3 x 1020 0.1 x 1020 r.V.
1.1 x 1020 0.3 x 1020 0.1 x 1020 Ell92
8.3 x 1019 1.2 x 1019 1.2 x 1019 Arn98
100mo 8.9x 10718 8.0x 1018 0.7 x 1018 0.7 x 1018 V.
3.3 x 1018 2.0 x 1018 1.0 x 108 Vas90b
1.2 x 1019 0.5 x 1019 0.3 x 1019 Ejiol
9.5x 1018 1.0 x 10'8 1.0 x 10'8 Das95
7.6 x 1018 2.2 x 1018 1.4 x 108 Als97
6.8 x 1018 0.8 x 1018 0.9 x 1018 Sil97
116cq 74 x 10718 3.3x 1019 0.3 x 1019 0.3 x 1019 r.V.
2.6 x 1019 0.9 x 1019 0.5 x 1019 Eji95
2.7 x 1019 1.0 x 1019 0.7 x 10%° Dan95
3.8x 1019 0.4 x 1019 0.4 x 1019 Arnoe
2.6 x 1019 0.7 x 1019 0.4 x 1019 Dan00

From the point of view of the present discussion the relevant ingredients are contained
in the factorC,(,,O,,”) of (4). This factor contains the leptonic phase space and the nuclear
structure in the form

©Ov) _ ~(0v)  ,(Ov) 2 _(8v 2M|(:0U)
Cmm —Gl (MGT (1—XF)) s XF= (g_A) @, (5)
whereG(lo”) is the leptonic phase-space part and
MEY = (meR)™2Y " Y (0F || (rij. Ea)o (D)o (j)z() 2 (j)~||0F) (6)

)

is the nuclear matrix element of the two-body Gamow-Teller operator. It should be noted
that in the above definition [23] we use the scaling faciegR) 2 relative to the one
introduced in [19]. The factogg is the ratio between the Fermi

MO = (meR)™2 Y D (OF [ iy, E @) 2())7][0F) @

ij a
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Fig. 4. The same as Fig. 1 for the@B decay ofl16cd.

and the Gamow-Teller matrix element (6). The axial-vector coupling congtams been
absorbed into the definition of the phase-space inte(@f?il) [6,19] and into the ratigg.

The matrix element (6) is evaluated by expanding the neutrino poténtiai;) in
spherical multipoles, which are then coupled to the spin operators appearing in (6). A suit-
able way to calculate this expansion consists of introducing, for each multipole, a complete
set of states labelled by the quantum numlagrs(6). These are nuclear states whose wave
functions should be determined to compute the transition amplitudes [6].

3. Resultsand discussion
3.1. Parameters of the Hamiltonian

The calculation of the matrix elements (2) and (6) proceeds as follows. The single-
particle energies of the spherical mean field are obtained from a Woods—Saxon single-
particle potential, including the Coulomb and spin—orbit parts in the Bohr—Mottelson para-
metrization [24]. The single-particle valence space is taken typically to span two to three
oscillator major shells around the proton and neutron Fermi surfaces in a way described in
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Fig. 5. Dependence of the matrix eIemM@O}’)(l*) on gpp for the QBB decay of’Ge. Notice that the sign is
irrelevant, since only one set of states (the set'oflates) was included in the calculations.

[18]. The adopted two-body interaction is a realistic one, based on the one-boson-exchange
potential of the Bonn type, transformed to nuclear matter by the G-matrix technique. The
finite-size effects have been taken into account in an approximate way by using simple scal-
ing parameters both for the short-range and long-range parts of the two-body interaction in
its particle—hole and particle—particle channels. This scaling is discussed below.

The strong short-range correlations between nucleons have been treated by using the
BCS approximation. The associated pairing strengths are adjusted to reproduce the em-
pirical pairing gaps, extracted from the experimental separation energies of protons and
neutrons, in a way described in [25]. The many-body aspects of the problem were handled
by the use of the pn-QRPA. In the case of the beta decays &l @&cays the involved
multipole of the odd—odd intermediate nucleugfs= 17. In this case the proton—neutron
correlations are treated by fixing the scale of the particle—hole two-body matrix elements
to reproduce the empirical location of the Gamow-Teller giant resonance. The particle—
particle part of the same interaction is scaled by the interaction strength cofigtautich
is adjusted using the data ongB-decay half-lives. For the other multipoles, appearing in
the QBB matrix element (6), the particle—hole channel was kept as a bare G-matrix and
the particle—particle channel was scaled by the valug,pfextracted from the/™ = 17
multipole.
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3.2. Sngle beta decay

Let us first briefly discuss the effect on single beta decays of the fixingoby the
2vpB-decay data. In [13] it was found that by fixirg, by the 288-decay data the result-
ing computed3™ and EC matrix elementd/z- and Mec in Eq. (3), fail to reproduce the
corresponding data. In [13] this was studied for the nutdéie, 82Se, 1Mo, 116Cd, and
128Te, The mechanism behind this is easy to grasp when consideringgfie@2cay in the
SSD approximation (3). For, e.d%°Mo and!16Cd this seems to be a reasonable approxi-
mation. One first uses they28-decay data to fixpp. The matrix elemengc, computed
for this value ofgpp, produces a far too large decay rate for the corresponding EC transition
as compared to experimental data. At the same time the comptedfor the samegpp
value, produces a far too small decay rate for the correspordirtgansition. Hence, use
of this extracted value ofpp reproduces thei3g half-life via two compensating errors:
too large an EC matrix element is compensated by too sngail matrix element.

In [13] it was advocated that a more proper determination of the value gfgthpa-
rameter could be done by using experimental information orgthelecay half-life. This
procedure can lead to a notably different valueggf from the one extracted by using
the 288 decay half-life, even in the simple case of the SSD. In [13] it was noticed that
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the value ofgpp, extracted from thgs™— data, could reproduce both the EC-decay and the
B~ -decay data rather well for most of the cases.

3.3. Two-neutrino double beta decay

To begin with the discussion of our results we show, in Figs. 1-4, the calculated matrix
elementsMgT”) of (2) for all the considerediiBs transitions. To extract the experimental
values we have used the recommended values for the half-lives [26] in combination with
the ones reported in [27], adding also the experimental errors. The used data is summarized
in Table 1.

Then we have extracted the largest and smallest valu%%#f allowed by the data. In
doing this we have used the rangg = 1.0-1254 for the values of the axial-vector cou-
pling constant. The horizontal limits in Figs. 1-4 indicate the rangﬂg{f) deduced by
using this method. The intersections of these lines and the curves representing the corre-
sponding theoretical values determine, for each case, the allowed valggs©he should
note here that we have allowed both positive and negative values of the matrix elements
compatible with the data. This results in two symmetrical stripes of allowed experimental
matrix elements yielding two ranges of possip}g values.
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Fig. 8. Dependence of the two-body Gamow-Teller matrix element on the paragpgter the Q8 decay of
76Ge. The values indicated Yo T(bulk) contain the contributions of all multipoles exceft = 1. The values
denoted byMgT are the ones which included the contribution/df = 1. The matrix elementtqgq) is the sum
of the Gamow-Teller and Fermi contributions.

The cases of®Ge and®?Se in Figs. 1 and 2 are examples of a situation where the region

where the pn-QRPA collapses is far from the region where the matrix eIeM}(JéHtis sup-
pressed to its experimental value by the renormalization of particle—particle correlations.
In the case ot%Mo, in Fig. 3,M((32T”) is not totally suppressed and its values reaches a min-
imum, without touching the region allowed by the data. For this case we have taken only
the value ofgpp corresponding to the minimum @t 2. The peculiar behavior ot/

for 190Mo stems from the adopted single-particle energies which we have computed by
using the standard parameters of the Woods—Saxon potential described previously. Similar
behavior was reported in [29] for the case'8fCd. There a modification of the spin—orbit
force was used to obtain a more smooth behavior of tig2lecay matrix element. One
could also resort to the experimentally available single-particle energies, as was done in
[30]. Here we are not using the28-decay matrix element to obtain thegB-decay ma-

trix element and thus we do not need to modify our single-particle energies to be able to fit

the experimental 285-decay rate.
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The case ot16Cd illustrates a situation where the point of collapse is close to the point
of total suppression o‘f/lgT”). Hence, in the region of allowed valuesMEzT”) the value of
the computed matrix element changes very fast leading to small allowed ranggg. for
From this first set of results we may conclude that by including the experimental errors
of the measured half-lives and the uncertainties in the valug gfroduces not only one
value but aange of values forgp, by the procedure suggested in [14]. Naturally, this is not
necessarily a drawback of the procedure, since we still have to assess the consequences of

it upon the determination of the values of the matrix elemMé‘%).
3.4. Neutrinoless double beta decay

The nuclear matrix element governing the mass sector of tj8g @ecay mode, see
Egs. (4)—(6), has two contributions, namely the ones due to Gamow-Teller and Fermi tran-
sitions. The Gamow-Teller part of the matrix eIemeMéoT”), is the more important one
and collects also the contributions coming froif = 1* virtual transitions. We are thus
tempted to see if this contribution shows the trend exhibited by the matrix element for the
two-neutrino case, where the 1s the only allowed channel.
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Figs. 5-7 show the dependence M OT“)(1+), that is the contribution of the*1set

of states td\/l((;OT”), for the values ofgpp determined previously (see Figs. 1-4). The case

of 1%Mo has been omitted because for it only one valuggf is taken, as explained
before. As can be seen from Figs. 5-7, thecbntributions the 088 transitions exhibit
a similar pattern to the one shown in Figs. 1-4 for thgRtransitions. It means that in
the neutrinoless mode, just like in the two-neutrino mode, the contribution of the sét of 1
states is suppressed by the proton—neutron particle—particle interactions.
Bearing in mind that all the other multipoles, with angular momehta 2, 3, 4, ...
and both parities, contribute MéOT”) one may wonder how the changesgig, influence
the total matrix element: is it suppressed and how much? To answer this question we have

calculated separately the vaIueMéOT"), with and without the contribution of theistates.

The results are shown in Figs. 8-10. Thafet(bulk) represents the matrix elemet| OT”)

without the contribution from the 1 states, whileMgTt has their contribution included.
These figures do not show the casé¥Mo since for it nogpy, interval is obtained from
the analysis of the88-decay matrix element.

From the figures it is obvious thatcT(bulk) is practically constant over the allowed
range of values ofpp. This means that in the region of valuesggh, determined by using
the procedure of [14], the effect of this parameter on the relevant matrix element, that is the
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bulk one, is practically null. Considering the values of the total matrix elerméﬁft), de-
noted byM;qta in Figs. 8-10, it is seen that the changes are of the order of 10 to 20 percent
within the allowed ranges @f,p. This small variation stems from the above discussed very
small variation ofMgTt(bulk) and the fact that within the allowed region the dontribu-
tion lies close to its complete cancellation and the variations of it withdo not affect
much the total matrix element. In other words, thie dontribution is efficiently damped
by the contributions coming from the other multipoles which are practically independent
of gpp in its allowed region. In Table 2 numerical values corresponding to Figs. 8-10 are
shown to gain a quantitative estimate of the effect.

The allowed ranges of the matrix element OT”) are reflected in the values of t 8,‘1)

coefficients in Eq. (5). Thgpp andga dependence of these coefficients is documented in

Table 3. There the values of t S?n‘;) coefficients are given for the two extreme values

of ga and for the fourgp, values at the borders of the allowed ranges. As mentioned
before,'%%Mo is an exception since for it only ong value is used. Table 3 shows that
the inclusion of experimental errors in thegB half-lives causes large variations in the

calculated values (ﬂ?,(,g,”,). The changes iga induce changes (If,(,?,,”f by a factorx 2.
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Table 2

Value of the matrix elememéo.;.’) of Eq. (5) as a function of the parametgyp across the domains gpp which

best fit the experimental data ongB. The results of the sum over all multipoles is given in the third column, the
contribution of only one set of stat¢g” = 11) is shown in the fourth column, and the bulk value, obtained by
excluding the/™ = 17 states from the sum, is shown in the fifth column. The last two columns show the results
of the ratioxr, for two values of the axial-vector coupling constgat= 1.00 andga = 1.254, respectively

Case 2pp M@y  mMat M buk)  xF(ga=100  xF (ga = 1254
76Ge 0.89 1635 1918 14317 —0.419 —0.266
0.96 14831 889 13942 —0.428 -0.272
1.00 13798 106 13692 —0.439 —0.279
1.05 12039 —1279 13318 —0.470 —0.299
825¢ 0.98 1183 1223 10260 —0.378 —0.240
1.10 10339 307 10032 —0.374 —0.238
1.17 9516 —-3.69 9885 —-0.374 —-0.238
1.23 8670 -10.82 9751 —0.376 —0.239
100Mmo 1.16 14230 2044 12186 —0.373 —0.237
116cq 1.44 6612 680 5932 —0.363 —0.231
1.50 6277 437 5840 —0.371 —0.236
155 5906 155 5751 -0.381 —0.242
1.58 5601 -0.98 5799 —~0.391 —0.249
Table 3

Values of the coeﬁicient‘,(,?,,”,) of Eq. (5), in units of yFl, for the gpp andga values specified in the second and

last two columns, respectively

Case 8pp i) (gn = 1.00) O (gn = 1.254)
76Ge 0.89 89492x 1014 1.7627x 10713
0.96 75726x 10~14 1.4860x 10713
1.00 66630x 10~ 14 1.3017x 10713
1.05 53048x 10~14 1.0239x 10713
825¢ 0.98 18752x 10713 3.7575x 10713
1.10 15181x 1013 3.0469x 1013
1.17 12908x 1013 2.5910x 1013
1.23 10815x 1013 2.1683x 1013
100Mmo 1.16 52248x 10-13 1.0493x 10712
116cq 1.44 13177x 1013 2.6542x 1013
1.50 12005x 1013 2.4122x 10713
155 10818x 10~13 2.1645% 1013
1.58 10008x 1013 1.9937x 10713

The above results point to the conclusion that the choigggfadvocated in [14], may
lead to contradicting results for the single beta decays and does not affect much the total
matrix elements of theyBg decays. The effect gfyp is seen in the contribution of the'1
multipole to MéOT”) but not in the bulk ofMéoT‘”). To investigate this aspect of the problem
more carefully we have analyzed the multipole decompositidﬂé@f) within the allowed
intervals of gpp. We have chosen gy value which roughly reproduces the centroid of
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Fig. 12. Multipole decomposition of the matrix eIemeMéOP for the decay oP2Se. The values shown in the
figure have been obtained wighp = 1.10.

the 288 data for positiveM(GzT”). The results are shown in Figs. 11-13. The similarity
between the decompositions for the different discussed nuclei is striking. In particular,
the clear dominance of the contribution coming from tHe= 2~ set of states becomes
evident. We have commented upon this feature in detail in [28] where we have pointed out
to the fact that dedicated experiments may be able to confirm these results.

Other procedures to handle tlgg, problem have been suggested, e.g., in [6]. They
are based on a different philosophy, that is extracgpgfrom the fit to 8~ transitions
and from other measured quantities, like electron-capture rates. This approach, too, has
problems of its own since for the two-neutrino case the final matrix element is the result of
a subtle balance between quantities which cannot always be simultaneously reproduced by
the calculations, as it was shown in Refs. [10,11,30].

4. Conclusions

The results recently published in Ref. [14] show some interesting features about the
calculations of the nuclear matrix elements corresponding to#i¢ 2nd Q88 decays,
namely:
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Fig. 13. Multipole decomposition of the matrix eleme\mg)})) for the decay of%%Mo. The values shown in the
figure have been obtained wighp = 1.05.

(a) they are almost insensitive to the type of microscopic two-body interaction used in
the calculations, and

(b) the results are also very much independent of the pn-QRPA variant used to approx-
imately diagonalize the proton—neutron interactions.

These are, in our opinion, important results, since they point out to a relative inde-
pendence of the nuclear-structure component of tigB@lecay problem on some of the
essential elements entering the calculations. At this point it is worth pointing out that this
independence has been discussed only for the QRPA-based class of models.

However, as we have shown in the previous section, the method of [14] cannot be con-
sidered as solution to thg, problem of double beta decay. The contradicting arguments
can be condensed in the following:

(a) As shown explicitly in [13] the use ofvBS-decay transitions as a way to select the
proper values ofpp leads in many cases to inconsistent results for the single beta decays.

(b) As seen from Figs. 8-10, the bulk of the contributions to thgsedecay matrix
element, i.e., the contributions coming from all multipoles excéptrémains practically
unaffected by the changes ¢pp.
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Fig. 14. Multipole decomposition of the matrix eleme\mgo%}) for the decay oft16cd. The values shown in the
figure have been obtained wighp = 1.55.

(c) The contribution of the 1 states, which represents at most 10 percent of the total
value of the 058-decay matrix element, varies strongly as a functiogpf like for the
case of 288 decays, but this is the only significant change observed in the multipole
decomposition of the total matrix element.

(d) The largest contributions to the@8-decay matrix element are coming from the
higher multipoles, especially from the 2Znultipole.

These results support the notion that the procedure advanced in [14] is not that selective
of proper values ogpp as it was emphasized in that paper.

Finally, our conclusions, which are based on the results of realistic calculations, may
be compared with the ones of Ref. [31], where the validity of the procedure of [14] is
analyzed in the framework of a solvable Hamiltonian. In their conclusions the authors
of [31] pointed out to the fact that “the procedure of [14] to eliminate model-space de-
pendence in the QRPA helps but does not work as well in their model as in realistic
calculations”. The results of our analysis point to difficulties also in realistic calcula-
tions.
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