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Abstract

In a previous paper we have studied the structure of the Isobaric Analogue State (IAS) using a
realistic single-particle model within a formalism that allows to disentangle real effects of isospin
violations from spurious effects associated with the construction of basis states. In this work we
discuss the influence of the Isovector Monopole State (IMS) on the width of the IAS. According to
our results, the presence of a collective IMS is necessary to preserve the empirically found isolation
of the IAS from states of the background. Thisvalid for a simplified hamonic oscillator model
and for a realistic single-particle basis as well, since for both cases there is a strong Coulomb mixing
between the IAS and the IMS, which increases at the expense of decreasing the mixing between the
IAS and theAN = 0 configuration states. The prediction of the total width of the IAS remains in
reasonable agreement with the experimental value in a calculation without free parameters.

0 2004 Elsevier B.V. All rights reserved.

PACS 21.60.Jz; 22.40.Hc; 21.60.Fw

1. Introduction

In a previous paper (here on referred to as I) [1], we have been able to account for
the width of the isobaric analogue state (IAS)%¥Bi by means of a procedure that
allows us to disentangle physical effects due to isospin non-conserving terms in the
Hamiltonian from spurious effects arising from the presence of isospin impurities in the
set of basis states. In that calculation thartitg Hamiltonian consisted of pure single-
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particle terms. In particular, a Woods—Saxon potential with spin—orbit coupling was used
and no two-body terms were introduced (other than the counterterms demanded by the
procedure).

However, at least in heavy nuclei, the width of the IAS & T) has been attributed [2]
to its mixture with the isovector monopole state (IMS) with= T — 1, due to the strong
relation between the intrinsic structures of these two modes [3,4]. In turn, the IMS would
decay to one-particle—one-hole and two-particle—two-hole std@tes T — 1) lying in the
vicinity of the IAS, thus yielding a width. Comparison with experimental data has been
successfully performed using this approach [5]. However, quite a number of parameters
have been introduced along this procedure, a fact which renders uncertain the validity of
the model, no matter how useful it may be to provide a framework for the systematization
of the experimental data.

Properties of the IMS have been studied by Auerbach and Klein using the self-consistent
HF-RPA approach with Skyrme-type nucleon—nucleon interactions [6]. Calculations were
made inr-coordinate representation, which is specially suitable for treating particles in the
continuum. These authors have also derived sum rules for the three mades0, +1
and discussed blocking effts due to neutron excess.

Microscopic RPA calculations yield a widtt the IAS, already at lowest order. In |, we
have corrected the errors due to the fact that shpgirticle states used in the description
of nuclei with a neutron excess do not carry the isospin as a good quantum number. The
correction is performed through the introdioa of collective coordinates in isospace. As
shown in [7] this is the natural way to treat eashat violate a symmetry. Application of
this procedure to the present case enables us:

(i) to restore the isospin symmetry of the problem;
(ii) to diagonalize within the RPA the subset of isosfiin- 1 states, including the IMS,
but excluding the IAS (with isospiffr);
(iii) to isolate (to the sameelhding RPA order) the isospin non-conserving terms of the
Hamiltonian; and
(iv) to perform an exact diagonalization of these last terms within the subset of RPA modes
plus IAS.

In the present paper we pay special congitlen to the role that the IMS plays in the

width of the IAS. We use the same formalism as in |, but with the inclusion of a two-body
interaction that is specific for the IMS.

2. The many-body framewor k
2.1. Single-particle states

Single-particle states are created by the 0perab§5§, for protons andcj.m for
neutrons. Here, v label states with the same orbital and total angular momenta; the label
Jj includes the orbital angular momentdm
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We allow for the fact that the proton and neutron basis may be different. For instance,
they may be obtained from Woods—Saxon potentials with different parameters for protons
and neutrons.

The isospin operators should take into @act the differences between the proton and
neutron basfs

1 1
— _ + L T .
1= ﬁcpuijVJm = ﬁwi]bwjmc‘)]m’
1 1
— + - T ,
-1= Ecvjmcl’”/m - \/Ex"w/cvjmbwjm’
1
— . T S .
0= E(xwojxov]bwjmbv]m cwjmc\)]m)~ (1)

In the above expressions we denotec?jyjm the proton creation operator that is obtained
from the neutron creation operatofj“jm through the charge conjugation. It may be
expanded in terms of the proton creation opera&gﬁ with the same values gf m

c['fvjm = wijszm' (2
2.2. The Hamiltonian

We assume total and Coulomb single-particle Hamiltonians
HS(S) = epw/baf]mbw/m + enpjc‘j}mcujm7 (3)
Hég) = (ij|Vcoul|PUj)b:;jmbgjm. (4)

Hs(f,) may display realistic single-particle energies. The ground state will be represented by
a double-magic nucleus with neutron exce¥sahd isospin projectioff, = —T'.

In the present paper we also include an isospin scalar specific interaction for the IMS
mode, namely

o
Hims = —5 151, 81, (5)
whereS4; carries isospin 1 and isospin projectitii. Here
1
S1= _ﬁswujb:;jmcvjmy (6)
Swvj = =V 2(pwjm|r?tinvjm). (7

The non-vanishing matrix elements,; are such that the labeds, v are always different
(v—w==1).
If the Coulomb term is the only isospin symmetry breaking contribution, the difference

HS) = HY) — Hgl) (8)

1 We use the Einstein convention that the repetition of an index on a given side of an equation implies a
summation over that index, unless the samexrajgears on the other side of the equation.
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should be attributed to the Hartree—Fock contribution of an isospin conserving two-body
interaction. Part of this interaction may be attributeddigs.

The one- and two-body terms of the Hamiltonian are treated within the RPA. The
modes are labeled by the quantum number 41, according to whetlr they increase
or decrease the isospin projecti@n In the case of, = T — 1 modes, the spectrum has
three branches, associated with isospi 1, T andT — 1, respectively. Since the branch
with isospinT — 1 carries most of the intensity [6], it is the only one considered in this
work. Consistently, in the following we take into account the leading order term in the
expansion of different contributions in powers gfTL(see I).

In order to insure the essential overall isoscalar symmetry, we follow the treatment of the
motion of the center of massleveloped in [8]. The detailed discussion of the formalism
can be found in I. For the benefit of the reader we shall now briefly enumerate the main
steps of the formalism, which are the following:

(i) the introduction of the counterterms which restore the isospin symmetry of the
Hamiltonian (8);
(ii) the transformation of the resulting Hamiltonian to the intrinsic frame;
(i) the application of Marshalek treatmeaf the collective space in terms of phonons;
and
(iv) the determination of the elementagiegrees of freedom and the coupling between
them.

To begin with our treatment we add counterterms
H'© = H{) + Hivs — Tat; — Ty (9)

The operatord. are determined by the requirement ti&%) becomes invariant under
isospin transformations. To leading order, this requirement leads to the expressions

1,0
Ti1 = _?(Hsgl(il) + a(S0)S+1 — 7+1(70)),

1@ 2
(To) = — 5 ({Hgppg + ¢ (50)?). (10)
The total Hamiltonian is written
H=H{ +V, (11)
V = Hms — (T1t5 + Tim). (12)

As in I, we must transform the Hamiltonian to the intrinsic frame. Therefore, it is
relevant to determine the isomultipolés {« = 0) of each of its terms. Both single-particle
Hamiltonians (3), (4) include isoscaléfspoo and isovectotHsp10 components. The two-
body termsV in (9) display isoscalar and isoquadrupole terms

2 The commonly used procedure of adjusting constamensure the appearance of a zero-energy root, may
introduce significant errors in the populatiohtbe remaining modes through the operater and thus in the
calculation of the width of the IAS (see [8]).
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2 2 o a o
Voo = —§(Tlfi —Tin) + éToTo - 5[51, Sil+ + §So,
1 2 o o
Vao=—3(Tiry — Tyep) — 3700 — GlS1. Sil+ — 755, (13)

3. Collectivevariablesand constraints

The transformation parameters determ@ithe orientation of an intrinsic frame of
reference in isospace are raised to the stafusllective coordinates. The total Hilbert
space is thus factorized into iimsic and collective subspaces.

¥ = Yintrinsic X Ycollective

2T +1 baus 2T (=+\m (+»+\k
1)”collectiveZ‘/ WD;/IK %( % ) ), (14)

whereT, M, K are the collective isospin and its projections along the laboratory and
the intrinsic z-axis, respectively. In the Marshalek representation (k4> %(T + M),

k= %(T + K) [9]. This representation is specially useful ferk T andk « T, which we
assume to be the case. The opergtoincreases the isospin projection in the laboratory
frame by one unit, while * performs the same task in the intrinsic frame. One also defines
the isospin raising operator through the equation

/32 (T+)2T |> _ (T+)2T+2 |> (15)
Ve J@T +2)1

The over-completeness of the Hilbert space requires the existence of compensating
constraints

70,41 = To +1. (16)
To leading orders in an expansionfi?, these constraints are expressed by
o=-T+¢te, le—ﬁé‘, fi=ﬁ§+. a7

4. The elementary modes of excitation and the coupling terms

Every operator should be transformed to theirsic system, including the Hamiltonian.
Using the expansion of the rotational matrix elemdhﬁ in terms of the operators, £,

&, ¢, ¢, one obtains the isospin conserving tefinand the coupling tern&, (cf. [10])
Hy =W +w:gTE+0(T7Y3). (18)

Repeated application of the operator generates the sequence of IAS. It is associated
with the energy

1
s == 2103 as)

while the orthonormal modes with isosgih— 1 are determined from the Hamiltonian
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’ 1 _
W= Hél‘j) +V+ ;0—;[11, T1l+ + ?(E+ri —Eu)+0(T 1/2),
1
5% = Hfy+ (Hhgm + O(T7?), (20)

Both the HamiltonianW (to be diagonalized within the RPA) and the operafot are
expressed in terms of uncoupled creation and annihilation bosons. Since

[W,t21] =[E7, 741] =0, (21)

we expect to find a root with zero frequency corresponding to the isospin degree of
freedom. Consistently, the operatar™ only displays matrix elements connecting the
ground state with finite-frequency bosons. leams that the badly-behaved operatpr
is eliminated and replaced by the Weehaved collective operatgr-.

To the same RPA order, there appears a term

— 1 —25 =+ 26+ =
H, ﬁ(ﬂ EET +B%TE) (22)
which couples the finite RPA roots with the IAS. The operaj®fé change the value of
the isospinT according to (15). We diagonalize this interaction through the procedure
advocated in Appendix 2D of Ref. [11].
The width of the IAS is determined by means of the population of the resultant states
by means of the isospin operatar Since

u— VT +O(T7Y3), (23)

this population is achieved through the admixtures of the §A8 in each final state.

5. Results

In the first place we apply the previous formalism to the case of a harmonic oscillator
potential, neglectind.s and|I? contributions. Since in this model th&7;, = 1 branch of
excitations consists only of the IAS and the IMS, we profit from this schematic structure
in order to study the coupling between these two modes. Next, we apply the formalism
to a realistic situation, and we compare the resulting features with those of the schematic
calculation and with experimental values.

5.1. Harmonic oscillator approximation

We consider nucleons moving in a pure harmonic oscillator potential with the same
frequencyw for both neutrons and protons

HS(S) = hw(b;jmijm + C;jchjm). (24)
Since[Hs(E), 7,1 =0, thenx,,; = 8., in Eq. (2).

We denote by, the principal quantum number of the last shell filled with protons and
by N, the corresponding value for neutrons. We assiipe= N, 4 1.



66 D.R. Bes, O. Civitarese / Nuclear Physics A 741 (2004) 6077

The particle—hole isovector monopole excitations are created by

1
+ +
y ;= —Ab ; CN yjms
1a’j ﬁ] (Ny+2) jm=Ngr Jm
1
+ _ + )
ST CNyt2) jmPNp m> (25)
wherej = \/j + 1/2. There are three types of particle—hole isovector monopole operators
carryingAN =2, AL =0, AT, = 1, which are labeled by’ = 2, 3, 4. In the first line
of (25), N2 = N,; N3= N, — 2, andN4 = N, (see Table 3 of I). Similarly, there is only
one type of excitations with N =2, AL =0, AT, = —1, which is labeled by the index 1.
Within the spirit of the RPA, the Hamiltonial is written in terms of the operators (25)
(see Eg. (20)). The corresponding expression of the opesater
RPA 2
S( ) _JAa /)/111/ JAiji]_j» (26)
whereA, ; = Ay, andA,; = An,1. Here

At =((N + 2lmy|r?|Nimy) = \/(N—l+2)(N+l+3)— (27)

We have also defined the sum rulﬁs and their averag&”

A 2
s dpe-n )

leN leN

116(N4+ o ))(%)2. (28)

The simplification implied by keeping only the leading order ternviallows us to use the
average sum rul& = X, for the four types of particle-hole excitations that have been
defined above.

The approximate diagonalization of thgamiltonian within the RPA method is
performed by solving the equation of motion

[H. "] =E0, (29)

whereI';" is the one-phonon creation operator afdis the energy of the one-phonon
state. The main features of the RPA dispersion relations are shown in Figs. 1 (pure
harmonic oscillator case) and 4 (realistic case). These dispersion relations are distinctive of
asymmetric vacuum states, as in the case of pairing vibrations in normal systems [12]. They
approximately show a parabolic behavior around zero and display a half-parable shape for
large absolute values of the energy. Due to the existing degeneracy in the pure harmonic
oscillator case, the RPA yigs only two (collective) phonons,t, r = 41,

F[+ = Aa’j V,Z/j — Me1jYi1j» (30)
with energiesE, satisfying the dispersion relation associated with the curve represented in
Fig. 1. The function
1
1+€

3
F(e) = E+ (31)



D.R. Bes, O. Civitarese / Nuclear Physics A 741 (2004) 6077 67

10

fo Ly

Fig. 1. The roots of the RPA dispersion relation are giby the intersection of the curve represented on the
vertical axis with the horizontal line-1/7.

and the dispersion relation
1
F(e)=—— (32)
n

are the harmonic oscillator limits of Eq. (A.12). The values of the adimensional energies
€ = E,/2hw are represented in Fig. 2 and they are given by

& =tn+n2+4n+1, (33)

where the adimensional parameteis defined ag) = o X' /2fiw. The phonon amplitudes
are

oAy, aAq 4
kla/jz—Zhw‘]Aa/j/(l—El), /’Lllj:%]Apj/(l‘}‘Gl),
aA7 » (XAi A
My =5 =iAp/ =€), pig;=mjAaj/ A+ €, (34)
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n

Fig. 2. Energieg1 as a function of the parametgr

with normalization constants

2+ty/n?+4n+1
A =T n+2+1/n°+4n+

. (35)
Vn?+an+1
We parametrize the Coulomb potential at the interior as
zZ zZ
Ve(r) = (2.16— - 0.72—3r2> MeV F. (36)
Ro R3

The single-particle HamiltoniaHé,‘;) includes the Coulomb contribution

0.72Z
Hy) = [BNb]J&jmijm = =5 AN (v 42 jmbNim + b]J\?jmb(N'f'Z)jm)] MeVF,
0
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(37)

216z 0.72Z h ( 3)
N = N

Ko R ma\" T2

which yields the particle—hole term with isospin 1 and isospin projection 1 and the
expectation value of the term with isospin 1, projection 0

Hagl=[He 7]

(anqylZ,j +jApvir;) MeVF
0

0.727
_< A1F+> MeVF+.--,

O

;" Mev,

Vn?+4an+1

(H g =—([HSY. 11]. 11]) = — BsT = —15.93T MeV. (38)

_312J2+77+V7)2+477+1

In the absence dfs and|? couplings, and in the neighborhood of mass= 208, shell
closures take place & = 70 andN = 112, corresponding to an ideal= 182 nucleus.

In this case, w ~ 14.47 MeV. Therefore, in the absence of the residual interaction (5)
the IAS (s = 15.93 MeV) and the IMS are almost degenerate. These two states should

be strongly mixed by theHégil coupling (38). Fig. 3 displays the value of the square of
the admixturegcg 12 of the IAS in the IMS as a function of the parameteiFor values of

n ~ 0, the IAS and the IMS are equally excited through a Fermi process represented by the
operatorr; — £7. However, for a more realistic IMS energy 8f30 MeV, n ~ 0.4 and

|c§|2 ~ 0.1. It means that within a pure harmonic oscillator potential, the survival of the

IAS as an isolated state is preserved by the collectivity of the IMS.
5.2. Realistic single-particle basis

We start by diagonalizing a neutron and a proton Woods—Saxon potential. The
parameters have been taken from Ref. [11]. The central part of the potential has the strength

N-Z
Vg =-51Mev, V= (_51+ 33T> MeV, (39)

while the spin—orbit strength is
Veo P = —0.44v3" P (40)

The radiusRg and thicknessgg are fixed at the valuesa74Y/3 F and 0.67 F, respectively.
We use the Coulomb potential given in (36).

The calculations have been performed foe= 208. The set of 0 states in?98Bi are
described as proton (particle)-neutron (hole) excitations on the ground stRf®bf We
have included seven major harmonic oscillator shells in the calculation. A sample of single-
particle energies, corresponding to the region of neutron excess, is listed in Table 1.
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Fig. 3. Square of the amplitudes of the 1ASthe IMS as a function of the parameigr

Table 1
The eigenvalues,;; (pure Woods—Saxon potential) for neutrons, ang; (Woods—Saxon plus Coulomb
potentials) for protons. The energies are in MeV. Thesdla states belonging to the region of neutron excess

# lj enlj eplj

1 ho/2 —-10.514 2.375
2 f172 —-9.971 3.359
3 i13/2 —8.209 3.668
4 f172 —7.794 5.693
5 P3/2 —7.752 6.089
6 P12 —6.937 6.917

Ther =1 (t = —1) particle—hole basis consists of 22 (4) states. We have obtained the
valuew; = 18.17 MeV (see Eq. (19)) a value which is indeed quite comparable with the
experimental valu2E|as = 17.85 MeV [5,13].

3 We are given the value of the IAS energy respect to the ground st€P@b. The experimental value
E\as = 15.17 MeV, which is the energy measured from the ground stat@%i, is obtained after subtraction
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Fig. 4. RPA dispersion relation for the realistic case.

As said in the previous section, the RPA spectrum contains negative energy eigenvalues,
a zero energy root and the positive energy eigenvalues, which include\ the= 0
excitations between the single-particle states of Table 1, as well as those invdlVirg?2
transitions.

The explicit form of the RPA determinant is obtained as a straightforward generalization
of Eqg. (57) in | (see Appendix A). Fig. 4 shows the dispersion relation corresponding
to the realistic single-particle basis. The lack of degeneracy between the particle—hole
excitations manifests itself through the structure of states appearing in the region of 10—
15 MeV and 26-30 MeV, as well as for negative energies. The RPA eigenvalues shown in
Fig. 4 are the zeros of the determinant (A.8), calculated with0.007 MeV F~4, which
is equivalent to the value= o X' /4iiw ~ 0.4 (see below Eq. (33)). The energy of the IMS
state is given by the intersection at the far-end at about 36 MeV, which is supposed to be a
realistic estimate [14]. The energy of the IMS is given in Fig. 5 for different values of the

of the neutron—proton mass difference (1.29 MeV) areddifference in the energies of the ground staté%6Bi
and208pp (1.39 MeV).
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Fig. 5. Energy of the IMS as a function of the coupling constant

parametetr. The dependence dfjys with « is linear, fora > 0.002 MeV F4 as it was
the dependence ef with » in the case of the pure harmonic oscillator (see Fig. 2).

5.2.1. The spreading width of the IAS

The isospin conserving Hamiltonidi gives rise to monopole RPA bosons carrying
AT, = 41. For each of these cases, there is a single giant resonance, the IMS, plus many
particle—hole phonons. The Fermi population of the states with= 1 (for instance, by
means of $He, t) reactions) takes place through the admixture of each phonon with the
IAS. This admixture is of the order of per tenths in the case of the IMS and of the order of
per cents for the other modes.

Following the method of I, one can calculate the centrfig, and the root mean square
deviation,o, associated with the population of these states

Yy Excf )

m =

Dk Cg(k)
o (Zk (Ex — Em>2c§<k>>1/2.
Yk ek

(41)
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Fig. 6. Mean square deviation ) of the IAS due to the coupling with thE — 1 particle—hole states as a function
of the coupling constant. The curve shows the results obtained by diagonalizing the coupling Hamiltonian of
Eq. (22), excluding the IMS from the set 6f— 1 states.

The relationship between and the spreading widthV is [11,15]

i Nd
o=—", A=—.
2E,, b4

The quantities/ andN are the mean energy spacing and the number of states, respectively.

The average excitation energy, determined from the eigenvalues and matrix elements
for transitions between the perturbed states and the ground state, is almost independent of
a and its value is equal ty 18.31 MeV.

For AT, = 1 excitations, the two main peaks (IAS and IMS) are well separated.
Therefore, the fragmentation of the IAS resonance over RPA configurations should be
associated with the quantity represented in Fig. 6. Since the use of the definitions (41)
is valid only for a single-mode (e.g., Gaussian-like distributions of the intensity), we have
excluded the contribution of the IMS to both quantiti€s, ando . The actual value of is
effectively reduced by the mere existerafehe IMS, since most of the strength Bf— 1
excitations around the IAS is shifted upwards due to the collective nature of the IMS. This
decrease may be understood on the same basis as the change of the effective charge in E1
and E2 low-energy transitions due to the mixing between configuration particle—hole states
and giant resonances: the smallness of this admixture is compensated by the large size of

(42)
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the matrix element exciting the resonance. Quite systematically, this effect acts coherently
for attractive forces and destructively for repulsive ones such as (5).

Due to the existence of the IMS, and in the context of the present framework, the value
of o decreases from the valae86 keV obtained in | withx = 0, to the valuer ~ 25 keV,
for « = 0.007 MeV F4.

The strong suppression found in the present calculations suggests that higher order
corrections may yield contributions of similar size, for instance those associated with
transitions to two-particle—two-hole states.

The use of the relation (42), for heavy-mass nuclei, leads to the estifate(6-12¢,

i.e., a value of the order of 150-300 keV fr= 10F, d = (10-20 eV, E,, = 18.31 MeV,

ando ~ 25 keV. Although these values are about 2—3 times larger than the experimental
value of the spreading width (294 keV) [16], they are 3—4 times smaller than the value
obtained witha = 0. Further reductions could be obtained (see Fig. 6) by increasing
the value ofa, upon which there is no certainty. The present estimate is based on the
conservative assumption that the energy of the IMS should be larger than 35 MeV. A giant
resonance may also decay by particle-emissiThis emission is associated with the
portion of the giant resonance having the particle in the continuum [17]. Since we have
not included particle states in the continuum we cannot estimate that contribution to the
width.

We would like now to comment on previous attempts to explain the spreading width of
the IAS in terms of the coupling to the IMS [3,4]. In these works both the energy of the
IMS, Ejms and the spreading width die IMS at the IAS energy,‘,ﬁ,ls, are taken as free
parameters. Following [3,4] the width of the IAS is written

1 IAS|Vc|Ems)|?
- [{(IAS] c|2 IMS)L ZIWS‘ (43)
(Evs — Eins)* + (Iys/2)

While the value of the energy of the IMS can be approximated within an interval, for
instance by using the estimate discussed in [4], and the matrix element of the Coulomb
interaction can be reasonably calculated, practically nothing is know about the value of
the width of the IMS state at the energy of the IAS, which in the estimate of [4] is taken
aSIms ~ 2-3 MeV. In the present formalism, the only uncertainty is represented by the
value of«, a value which eventually may be more accurately fixed by the experiments,
while the mechanism leading to the reduction of the width of the IAS is well established
and it does not require the use of additional parameters.

Ias =

6. Conclusions

In this work we have extended the formalism presented in |, in order to account for the
effects of the coupling between the Isobaric Analogue State and the Isovector Monopole
State upon the width of the IAS. To fulfill this goal we have added, to the previously
considered Hamiltonian, an interaction whinduces the correlations which are specific of
the IMS. The calculations have been performetthnframework of the collective treatment
of the isospin degree of freedom, both for a pure harmonic oscillator and for a realistic
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single particle basis. From the correspondence drawn between these set of results, we may
conclude about the predominance of shell closure effects upon the structure of the IAS and
of the IMS and upon the coupling between them. The coupling constant of the residual
two-body interaction responsible for thpmearance of the IMS was fixed by fitting the
energy shift between the IMS and the IAS. To the extent that this energy shift is known,
the calculations may be considered toffee of un-desired parametrizations.

Itis found that, from the interplay between the strong coupling induced by the Coulomb
interaction and the relatively large energyfsbetween the IAS and the IMS, the influence
of the IMS is decisive to isolate the IAS from the backgroundrof- 1 particle-hole
excitations. As shown by the result of our calculations the coupling between the IAS and
the IMS reduces the width of the IAS by a factor four, compared to the value obtained
when the coupling is ignored.
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Appendix A. Thedispersion relation for realistic cases

The isospin conserving Hamiltonia# (20) may be written as

1 1
— (e) __ (e) (e) i
W= HS(S) + T (Hsgllfl + HS;]_TLT].) + W(Hsglé[fl, 11+

o o (So) o
- E[Sl’ Sil+ — T(Slfi + 83711) — >72

It is easy to verify the fact the invariance @f against isospin rotationgW, t+1] = 0).
Within the RPA, the components of the single-particle terms are given by

(So)2[t1, Ti)+- (A1)

TL= = MajYin; — I M1, Vid s
H® — A; 1. P N Vi s YA
sp 1aj¥14jV1aj 11711 Y11j°
(e) __ 2 i ot AL _ _
Hgp11= —JA1ajMajV1,j + 7 A11M1 Vi1,
() 52 2 2 2
(Hspl& =—J"A1ajn1,; — J Ailjnilj, (A.2)

wherea = 1,2, 3,4, since we have also included theN = 0 boson creation (and
annihilation) operator

1
V1+1j = ﬁjb;njchnjm’ (A.3)
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in addition to thQ/lZ,j phonons defined in (25), and

S1= _Aa’jjyjz/j - Apijj_lj,
(So) = _Aa/jnla/l.;z + Apjniljfz- (A4)
We introduce now the independent phonons
+ +
I)" = Aqaj Viaj = MqljV11j- (A.5)

The relation W, I‘q+] —wy Fj yields the amplitudes

n (e) 2
J Kq <Hspl(? a(So)
Agaj = W[T (Alajnlaj —a(So)Ay; + Nlaj — T’)laj
L (So)
+ 7q7)1aj - Oqu (Aa/j + Tnlaj):|y
2 (e) 2
o J Ky o ) (Hspl& B a(So) B
Hql1j = W[T<_Alljnllj — a(S0)A pj + 7 M1 T Ty
L (So)

in terms of the sums
Ky = j(n1ajMaj + ni1Hq1))
Lq = J(Aajniajriaj — Adgjniziiati):
My = j(Awjrgar + Apjiigr)). (A7)

The RPA energiesw;, are given by the roots of the determinant obtained by
replacing (A.6) in (A.7), namely

(din— 222 f) di2 —af
(dor— 25%g)  dpo —ag |=0, (A.8)
(dar— 25%h) dap (~1—ah)
where
So) X So) X So) X
f=X3+M, g:X4~|—M, h=X5~I—M (A.9)
T T T
and
(e)
1 spl&
di1=-14+—=(X Xo|, di2= —Xp,
11 —I—T( + T 12 T 0
(e)
1 ( spl(?
dr1=—(X X1, dyp=—-14+ —X3,
21 T( T 1) 22 —I—T 1

1 ( 1
d31= —(X4+ STpl& X3), dz2= = X3. (A.10)
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The quantitiesX,, are defined as in I, with modifications due to the inclusion of the IMS
interaction,

2 2 2 2
Xo—f2< M1aj N M1 ) Xl—fz( Asajliy; Aqyjmiy; )
Aj—wg  Ajgjt+og) Ayj—wg  Ajgj+ag)’

2 2 - 2 _
Xp= ] ( ALajMaj Alljznllj) Xa= ( Ay jnaj Apjniy; )
Awj—wg  Ajgj+og) Aj—wg  Aigj;t+og)

Xa=] (Aa’jAla’jﬂla’j 3 Aijilj”11j>
Ay — g Ailj + wy
2 2
Xs=] ( Aa + A ) (A.11)
Ay — g Ailj+wq

After some straightforward algebra, the determinantis cast in the form of the dispersion
relation

Y
== Z_: (A.12)
where
Yy = f(d21ds2 — d2d31) + g(d12d31 — d11d32)
+ h(d11d22 — d12d21) + @(gdlz — fd22),
Zy = d11d22 — d12d21. (A.13)
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