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Abstract

In a previous paper we have studied the structure of the Isobaric Analogue State (IAS) u
realistic single-particle model within a formalism that allows to disentangle real effects of is
violations from spurious effects associated with the construction of basis states. In this wo
discuss the influence of the Isovector Monopole State (IMS) on the width of the IAS. Accord
our results, the presence of a collective IMS is necessary to preserve the empirically found is
of the IAS from states of the background. This isvalid for a simplified harmonic oscillator mode
and for a realistic single-particle basis as well, since for both cases there is a strong Coulomb
between the IAS and the IMS, which increases at the expense of decreasing the mixing betw
IAS and the�N = 0 configuration states. The prediction of the total width of the IAS remain
reasonable agreement with the experimental value in a calculation without free parameters.
 2004 Elsevier B.V. All rights reserved.

PACS: 21.60.Jz; 22.40.Hc; 21.60.Fw

1. Introduction

In a previous paper (here on referred to as I) [1], we have been able to accou
the width of the isobaric analogue state (IAS) in208Bi by means of a procedure th
allows us to disentangle physical effects due to isospin non-conserving terms
Hamiltonian from spurious effects arising from the presence of isospin impurities i
set of basis states. In that calculation the starting Hamiltonian consisted of pure singl
* Corresponding author.
E-mail address: civitare@fisica.unlp.edu.ar (O. Civitarese).
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particle terms. In particular, a Woods–Saxon potential with spin–orbit coupling was
and no two-body terms were introduced (other than the counterterms demanded
procedure).

However, at least in heavy nuclei, the width of the IAS (T ′ = T ) has been attributed [2
to its mixture with the isovector monopole state (IMS) withT ′ = T − 1, due to the strong
relation between the intrinsic structures of these two modes [3,4]. In turn, the IMS w
decay to one-particle–one-hole and two-particle–two-hole states(T ′ = T − 1) lying in the
vicinity of the IAS, thus yielding a width. Comparison with experimental data has
successfully performed using this approach [5]. However, quite a number of param
have been introduced along this procedure, a fact which renders uncertain the val
the model, no matter how useful it may be to provide a framework for the systematiz
of the experimental data.

Properties of the IMS have been studied by Auerbach and Klein using the self-con
HF–RPA approach with Skyrme-type nucleon–nucleon interactions [6]. Calculations
made inr-coordinate representation, which is specially suitable for treating particles
continuum. These authors have also derived sum rules for the three modes�T = 0,±1
and discussed blocking effects due to neutron excess.

Microscopic RPA calculations yield a width of the IAS, already at lowest order. In I, w
have corrected the errors due to the fact that single-particle states used in the descript
of nuclei with a neutron excess do not carry the isospin as a good quantum numb
correction is performed through the introduction of collective coordinates in isospace.
shown in [7] this is the natural way to treat cases that violate a symmetry. Application
this procedure to the present case enables us:

(i) to restore the isospin symmetry of the problem;
(ii) to diagonalize within the RPA the subset of isospinT − 1 states, including the IMS

but excluding the IAS (with isospinT );
(iii) to isolate (to the same leading RPA order) the isospin non-conserving terms of

Hamiltonian; and
(iv) to perform an exact diagonalization of these last terms within the subset of RPA m

plus IAS.

In the present paper we pay special consideration to the role that the IMS plays in th
width of the IAS. We use the same formalism as in I, but with the inclusion of a two-
interaction that is specific for the IMS.

2. The many-body framework

2.1. Single-particle states

Single-particle states are created by the operatorsb+
ωjm for protons andc+

νjm for

neutrons. Hereω, ν label states with the same orbital and total angular momenta; the label
j includes the orbital angular momentuml.
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We allow for the fact that the proton and neutron basis may be different. For ins
they may be obtained from Woods–Saxon potentials with different parameters for p
and neutrons.

The isospin operators should take into account the differences between the proton a
neutron basis1

τ1 = − 1√
2
c+
pνjmcνjm = − 1√

2
xνωjb

+
ωjmcνjm,

τ−1 = 1√
2
c+
νjmcpνjm = 1√

2
xνωj c

+
νjmbωjm,

τ0 = 1

2

(
xωσjxσνj b

+
ωjmbνjm − c+

ωjmcνjm

)
. (1)

In the above expressions we denote byc+
pνjm the proton creation operator that is obtain

from the neutron creation operatorc+
νjm through the charge conjugation. It may

expanded in terms of the proton creation operatorsb+
ωjm with the same values ofj,m

c+
pνjm = xνωjb

+
ωjm. (2)

2.2. The Hamiltonian

We assume total and Coulomb single-particle Hamiltonians

H(e)
sp = epωjb

+
ωjmbωjm + enνj c

+
νjmcνjm, (3)

H
(q)
sp = 〈pωj |Vcoul|pσj 〉b+

ωjmbσjm. (4)

H
(e)
sp may display realistic single-particle energies. The ground state will be represen

a double-magic nucleus with neutron excess 2T and isospin projectionTz = −T .
In the present paper we also include an isospin scalar specific interaction for th

mode, namely

HIMS = −α

2
[S1, S1̄]+, (5)

whereS±1 carries isospin 1 and isospin projection±1. Here

S1 = − 1√
2
sωνj b+

ωjmcνjm, (6)

sωνj = −√
2〈pωjm|r2τ1|nνjm〉. (7)

The non-vanishing matrix elementssωνj are such that the labelsω, ν are always differen
(ν − ω = ±1).

If the Coulomb term is the only isospin symmetry breaking contribution, the differ

H(ε)
sp = H(e)

sp − H
(q)
sp (8)
1 We use the Einstein convention that the repetition of an index on a given side of an equation implies a
summation over that index, unless the same index appears on the other side of the equation.
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should be attributed to the Hartree–Fock contribution of an isospin conserving two
interaction. Part of this interaction may be attributed toHIMS.

The one- and two-body terms of the Hamiltonian are treated within the RPA.
modes are labeled by the quantum numbert = ±1, according to whether they increase
or decrease the isospin projectionTz. In the case ofTz = T − 1 modes, the spectrum h
three branches, associated with isospinT + 1,T andT − 1, respectively. Since the bran
with isospinT − 1 carries most of the intensity [6], it is the only one considered in
work. Consistently, in the following we take into account the leading order term in
expansion of different contributions in powers of 1/T (see I).

In order to insure the essential overall isoscalar symmetry, we follow the treatment
motion of the center of mass2 developed in [8]. The detailed discussion of the formal
can be found in I. For the benefit of the reader we shall now briefly enumerate the
steps of the formalism, which are the following:

(i) the introduction of the counterterms which restore the isospin symmetry o
Hamiltonian (8);

(ii) the transformation of the resulting Hamiltonian to the intrinsic frame;
(iii) the application of Marshalek treatmentof the collective space in terms of phonon

and
(iv) the determination of the elementarydegrees of freedom and the coupling betwe

them.

To begin with our treatment we add counterterms

H(ε) = H(ε)
sp + HIMS − T1τ1̄ − T1̄τ1. (9)

The operatorsT±1 are determined by the requirement thatH(ε) becomes invariant unde
isospin transformations. To leading order, this requirement leads to the expressions

T±1 = − 1

T

(
H

(ε)
sp1(±1) + α〈S0〉S±1 − τ±1〈T0〉

)
,

〈T0〉 = − 1

2T

(〈
H

(ε)
sp10

〉 + α〈S0〉2). (10)

The total Hamiltonian is written

H = H(e)
sp + V, (11)

V = HIMS − (T1τ1̄ + T1̄τ1). (12)

As in I, we must transform the Hamiltonian to the intrinsic frame. Therefore,
relevant to determine the isomultipoles (λ,µ = 0) of each of its terms. Both single-partic
Hamiltonians (3), (4) include isoscalarHsp00 and isovectorHsp10 components. The two
body termsV in (9) display isoscalar and isoquadrupole terms

2 The commonly used procedure of adjusting constants to ensure the appearance of a zero-energy root,

introduce significant errors in the population of the remaining modes through the operatorτ1, and thus in the
calculation of the width of the IAS (see [8]).
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V00 = −2

3
(T1τ1̄ − T1̄τ1) + 2

3
T0τ0 − α

3
[S1, S1̄]+ + α

3
S2

0,

V20 = −1

3
(T1τ1̄ − T1̄τ1) − 2

3
T0τ0 − α

6
[S1, S1̄]+ − α

3
S2

0. (13)

3. Collective variables and constraints

The transformation parameters determining the orientation of an intrinsic frame o
reference in isospace are raised to the statusof collective coordinates. The total Hilbe
space is thus factorized into intrinsic and collective subspaces.

Ψ = ψintrinsic× ψcollective,

ψcollective=
√

2T + 1

8π2
DT

MK ≈ (Υ +)2T (ξ+)m(ζ+)k√
(2T )!m!k! |〉, (14)

whereT , M, K are the collective isospin and its projections along the laboratory
the intrinsicz-axis, respectively. In the Marshalek representation (14)m = 1

2(T + M),
k = 1

2(T +K) [9]. This representation is specially useful form � T andk � T , which we
assume to be the case. The operatorξ+ increases the isospin projection in the laborat
frame by one unit, whileζ+ performs the same task in the intrinsic frame. One also de
the isospin raising operator through the equation

β2 (Υ +)2T

√
(2T )! |〉 ≡ (Υ +)2T +2

√
(2T + 2)! |〉. (15)

The over-completeness of the Hilbert space requires the existence of compe
constraints

τ0,±1 = T0,±1. (16)

To leading orders in an expansion inT −1, these constraints are expressed by

τ0 = −T + ζ+ζ, τ1 = −√
T ζ, τ1̄ = √

T ζ+. (17)

4. The elementary modes of excitation and the coupling terms

Every operator should be transformed to the intrinsic system, including the Hamiltonia
Using the expansion of the rotational matrix elementsDλ

µν in terms of the operatorsβ , ξ+,
ξ , ζ+, ζ , one obtains the isospin conserving termHt and the coupling termHc (cf. [10])

Ht = W + ωξ ξ
+ξ +O

(
T −1/2). (18)

Repeated application of the operatorξ+ generates the sequence of IAS. It is associa
with the energy

ωξ = − 1 〈
H

(q)

sp10

〉
(19)
T

while the orthonormal modes with isospinT − 1 are determined from the Hamiltonian



ee of
he

f
dure

tates

illator

cture
alism
ematic

same
D.R. Bes, O. Civitarese / Nuclear Physics A 741 (2004) 60–77 65

W = H(e)
sp + V + ωξ

2T
[τ1, τ1̄]+ + 1

T

(
Ξ+τ1̄ − Ξτ1

) +O
(
T −1/2),

Ξ+ = H
(q)
sp11+

1

T

〈
H

(q)
sp10

〉
τ1 +O

(
T −1/2). (20)

Both the HamiltonianW (to be diagonalized within the RPA) and the operatorΞ+ are
expressed in terms of uncoupled creation and annihilation bosons. Since

[W,τ±1] = [
Ξ+, τ±1

] = 0, (21)

we expect to find a root with zero frequency corresponding to the isospin degr
freedom. Consistently, the operatorΞ+ only displays matrix elements connecting t
ground state with finite-frequency bosons. It means that the badly-behaved operatorτ1
is eliminated and replaced by the well-behaved collective operatorξ+.

To the same RPA order, there appears a term

Hc = − 1√
T

(
β−2ξΞ+ + β2ξ+Ξ

)
(22)

which couples the finite RPA roots with the IAS. The operatorsβ±2 change the value o
the isospinT according to (15). We diagonalize this interaction through the proce
advocated in Appendix 2D of Ref. [11].

The width of the IAS is determined by means of the population of the resultant s
by means of the isospin operatorτ1. Since

τ1 → √
T ξ+ +O

(
T −1/2), (23)

this population is achieved through the admixtures of the IASξ+|〉 in each final state.

5. Results

In the first place we apply the previous formalism to the case of a harmonic osc
potential, neglectingl.s and l2 contributions. Since in this model the�Tz = 1 branch of
excitations consists only of the IAS and the IMS, we profit from this schematic stru
in order to study the coupling between these two modes. Next, we apply the form
to a realistic situation, and we compare the resulting features with those of the sch
calculation and with experimental values.

5.1. Harmonic oscillator approximation

We consider nucleons moving in a pure harmonic oscillator potential with the
frequencyω for both neutrons and protons

H(e)
sp = h̄ω

(
b+
NjmbNjm + c+

NjmcNjm

)
. (24)

Since[H(e)
sp , τq ] = 0, thenxνωj = δνω in Eq. (2).
We denote byNp the principal quantum number of the last shell filled with protons and
by Nn the corresponding value for neutrons. We assumeNn = Np + 1.
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The particle–hole isovector monopole excitations are created by

γ +
1a′j = 1√

2ĵ
b+
(Na′+2)jmcNa′ jm,

γ +
1̄1j

= 1√
2ĵ

c+
(Np+2)jmbNpjm, (25)

whereĵ = √
j + 1/2. There are three types of particle–hole isovector monopole oper

carrying�N = 2, �L = 0, �Tz = 1, which are labeled bya′ = 2,3,4. In the first line
of (25),N2 = Nn; N3 = Nn − 2, andN4 = Np (see Table 3 of I). Similarly, there is on
one type of excitations with�N = 2,�L = 0,�Tz = −1, which is labeled by the index 1

Within the spirit of the RPA, the HamiltonianW is written in terms of the operators (2
(see Eq. (20)). The corresponding expression of the operatorS1 is

S
(RPA)
1 = −ĵAa′j γ

+
1a′j − ĵApjγ1̄1j , (26)

whereAa′j = ANa′ l andApj = ANpl . Here

ANl ≡ 〈
(N + 2)lml

∣∣r2|Nlml〉 = 1

2

√
(N − l + 2)(N + l + 3)

h̄

Mω
. (27)

We have also defined the sum rulesΣN and their averageΣ

ΣN ≡ 2
∑
lεN

l̂ 2A2
Nl ≈ 1

2

∑
lεN

l
(
N2 − l2

)( h̄

Mω

)2

= 1

16

(
N4 +O

(
N3))( h̄

Mω

)2

. (28)

The simplification implied by keeping only the leading order term inN allows us to use the
average sum ruleΣ ≡ ΣNp for the four types of particle–hole excitations that have b
defined above.

The approximate diagonalization of theHamiltonian within the RPA method i
performed by solving the equation of motion[

H,Γ +
t

] = EtΓ
+
t , (29)

whereΓ +
t is the one-phonon creation operator andEt is the energy of the one-phono

state. The main features of the RPA dispersion relations are shown in Figs. 1
harmonic oscillator case) and 4 (realistic case). These dispersion relations are distin
asymmetric vacuum states, as in the case of pairing vibrations in normal systems [12
approximately show a parabolic behavior around zero and display a half-parable sh
large absolute values of the energy. Due to the existing degeneracy in the pure ha
oscillator case, the RPA yields only two (collective) phononsΓ +

t , t = ±1,

Γ +
t = λta′j γ

+
ta′j − µt1jγ1̄1j , (30)

with energiesEt satisfying the dispersion relation associated with the curve represen
Fig. 1. The function
F(ε) = 3

1− ε
+ 1

1+ ε
(31)
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Fig. 1. The roots of the RPA dispersion relation are given by the intersection of the curve represented on
vertical axis with the horizontal line−1/η.

and the dispersion relation

F(ε) = −1

η
(32)

are the harmonic oscillator limits of Eq. (A.12). The values of the adimensional ene
εt ≡ Et/2h̄ω are represented in Fig. 2 and they are given by

εt = tη +
√

η2 + 4η + 1, (33)

where the adimensional parameterη is defined asη ≡ αΣ/2h̄ω. The phonon amplitude
are

λ1a′j = αΛ1

2h̄ω
ĵAa′j /(1− ε1), µ11j = αΛ1

2h̄ω
ĵApj/(1+ ε1),
λ1̄1j = αΛ1̄

2h̄ω
ĵApj/(1− ε1̄), µ1̄a′j = αΛ1̄

2h̄ω
ĵAa′j /(1+ ε1̄), (34)
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Fig. 2. Energiesε±1 as a function of the parameterη.

with normalization constants

Λt = √
Σ

√√√√η + 2+ t
√

η2 + 4η + 1√
η2 + 4η + 1

. (35)

We parametrize the Coulomb potential at the interior as

Vc(r) =
(

2.16
Z

R0
− 0.72

Z

R3
0

r2
)

MeV F. (36)

The single-particle HamiltonianH(e)
sp includes the Coulomb contribution

[ ]

H

(q)
sp = BNb+

NjmbNjm − 0.72Z

R3
0

ANl

(
b+
(N+2)jmbNjm + b+

Njmb(N+2)jm

)
MeV F,
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BN = 2.16Z

R0
− 0.72Z

R3
0

h̄

mω

(
N + 3

2

)
(37)

which yields the particle–hole term with isospin 1 and isospin projection 1 and
expectation value of the term with isospin 1, projection 0

H
(q)

sp11=
[
H

(q)
sp , τ1

] → 0.72Z

R3
0

(
ĵAa′lγ

+
1a′j + ĵApjγ1̄1j

)
MeV F

=
(

0.72Z

R3
0

Λ1Γ
+
1

)
MeV F+ · · · ,

= 3.12

√√√√2+ η + √
η2 + 4η + 1√

η2 + 4η + 1
Γ +

1 MeV,

〈
H

(q)

sp10

〉 = −〈[
H

(q)
sp , τ1

]
, τ1̄

]〉 = −B5T = −15.93T MeV. (38)

In the absence ofl.s and l2 couplings, and in the neighborhood of massA = 208, shell
closures take place atZ = 70 andN = 112, corresponding to an idealA = 182 nucleus
In this case, 2̄hω ≈ 14.47 MeV. Therefore, in the absence of the residual interaction
the IAS (ωξ = 15.93 MeV) and the IMS are almost degenerate. These two states s

be strongly mixed by theH(q)

sp11 coupling (38). Fig. 3 displays the value of the square

the admixture|cξ |2 of the IAS in the IMS as a function of the parameterη. For values of
η ≈ 0, the IAS and the IMS are equally excited through a Fermi process represented
operatorτ1 → ξ+. However, for a more realistic IMS energy of≈ 30 MeV, η ≈ 0.4 and
|cξ |2 ≈ 0.1. It means that within a pure harmonic oscillator potential, the survival o
IAS as an isolated state is preserved by the collectivity of the IMS.

5.2. Realistic single-particle basis

We start by diagonalizing a neutron and a proton Woods–Saxon potential
parameters have been taken from Ref. [11]. The central part of the potential has the s

V
(p)

0 = −51 MeV, V
(n)
0 =

(
−51+ 33

N − Z

A

)
MeV, (39)

while the spin–orbit strength is

V
(n,p)
so = −0.44V (n,p)

0 . (40)

The radiusR0 and thicknessa0 are fixed at the values 1.27A1/3 F and 0.67 F, respectivel
We use the Coulomb potential given in (36).

The calculations have been performed forA = 208. The set of 0+ states in208Bi are
described as proton (particle)–neutron (hole) excitations on the ground state of208Pb. We

have included seven major harmonic oscillator shells in the calculation. A sample of single-
particle energies, corresponding to the region of neutron excess, is listed in Table 1.
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Fig. 3. Square of the amplitudes of the IAS in the IMS as a function of the parameterη.

Table 1
The eigenvaluesenlj (pure Woods–Saxon potential) for neutrons, andeplj (Woods–Saxon plus Coulom
potentials) for protons. The energies are in MeV. These are the states belonging to the region of neutron exce

# lj enlj eplj

1 h9/2 −10.514 2.375
2 f7/2 −9.971 3.359
3 i13/2 −8.209 3.668
4 f7/2 −7.794 5.693
5 p3/2 −7.752 6.089
6 p1/2 −6.937 6.917

The t = 1 (t = −1) particle–hole basis consists of 22 (4) states. We have obtaine
valuewξ = 18.17 MeV (see Eq. (19)) a value which is indeed quite comparable with
experimental value3 EIAS = 17.85 MeV [5,13].
3 We are given the value of the IAS energy respect to the ground state of208Pb. The experimental value
EIAS = 15.17 MeV, which is the energy measured from the ground state of208Bi, is obtained after subtraction
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Fig. 4. RPA dispersion relation for the realistic case.

As said in the previous section, the RPA spectrum contains negative energy eigen
a zero energy root and the positive energy eigenvalues, which include the�N = 0
excitations between the single-particle states of Table 1, as well as those involving�N = 2
transitions.

The explicit form of the RPA determinant is obtained as a straightforward generaliz
of Eq. (57) in I (see Appendix A). Fig. 4 shows the dispersion relation correspon
to the realistic single-particle basis. The lack of degeneracy between the particle
excitations manifests itself through the structure of states appearing in the region
15 MeV and 26–30 MeV, as well as for negative energies. The RPA eigenvalues sh
Fig. 4 are the zeros of the determinant (A.8), calculated withα = 0.007 MeV F−4, which
is equivalent to the valueη = αΣ/4h̄ω ≈ 0.4 (see below Eq. (33)). The energy of the IM
state is given by the intersection at the far-end at about 36 MeV, which is supposed
realistic estimate [14]. The energy of the IMS is given in Fig. 5 for different values o
of the neutron–proton mass difference (1.29 MeV) and the difference in the energies of the ground state of208Bi
and208Pb (1.39 MeV).
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Fig. 5. Energy of the IMS as a function of the coupling constantα.

parameterα. The dependence ofEIMS with α is linear, forα � 0.002 MeV F−4 as it was
the dependence ofε1 with η in the case of the pure harmonic oscillator (see Fig. 2).

5.2.1. The spreading width of the IAS
The isospin conserving HamiltonianW gives rise to monopole RPA bosons carry

�Tz = ±1. For each of these cases, there is a single giant resonance, the IMS, plu
particle–hole phonons. The Fermi population of the states with�Tz = 1 (for instance, by
means of (3He, t) reactions) takes place through the admixture of each phonon wit
IAS. This admixture is of the order of per tenths in the case of the IMS and of the ord
per cents for the other modes.

Following the method of I, one can calculate the centroid,Em, and the root mean squa
deviation,σ , associated with the population of these states

Em =
∑

k Ekc
2
ξ (k)∑

k c2
ξ (k)

,

(∑ 2 2 )1/2
σ = k (Ek − Em) cξ (k)∑
k c2

ξ (k)
. (41)
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Fig. 6. Mean square deviation (σ ) of the IAS due to the coupling with theT − 1 particle–hole states as a functio
of the coupling constantα. The curve shows the results obtained by diagonalizing the coupling Hamiltoni
Eq. (22), excluding the IMS from the set ofT − 1 states.

The relationship betweenσ and the spreading widthΓ ↓ is [11,15]

σ = Γ ↓λ

2Em

, λ = Nd

π
. (42)

The quantitiesd andN are the mean energy spacing and the number of states, respec
The average excitation energy, determined from the eigenvalues and matrix ele

for transitions between the perturbed states and the ground state, is almost indepe
α and its value is equal to≈ 18.31 MeV.

For �Tz = 1 excitations, the two main peaks (IAS and IMS) are well separa
Therefore, the fragmentation of the IAS resonance over RPA configurations sho
associated with the quantityσ represented in Fig. 6. Since the use of the definitions
is valid only for a single-mode (e.g., Gaussian-like distributions of the intensity), we
excluded the contribution of the IMS to both quantities,Em andσ . The actual value ofσ is
effectively reduced by the mere existenceof the IMS, since most of the strength ofT − 1
excitations around the IAS is shifted upwards due to the collective nature of the IMS
decrease may be understood on the same basis as the change of the effective cha

and E2 low-energy transitions due to the mixing between configuration particle–hole states
and giant resonances: the smallness of this admixture is compensated by the large size of
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the matrix element exciting the resonance. Quite systematically, this effect acts coh
for attractive forces and destructively for repulsive ones such as (5).

Due to the existence of the IMS, and in the context of the present framework, the
of σ decreases from the value≈ 86 keV obtained in I withα = 0, to the valueσ ≈ 25 keV,
for α = 0.007 MeV F−4.

The strong suppression found in the present calculations suggests that highe
corrections may yield contributions of similar size, for instance those associated
transitions to two-particle–two-hole states.

The use of the relation (42), for heavy-mass nuclei, leads to the estimateΓ ↓ ≈ (6–12)σ ,
i.e., a value of the order of 150–300 keV forN = 106, d = (10–20) eV, Em = 18.31 MeV,
andσ ≈ 25 keV. Although these values are about 2–3 times larger than the experim
value of the spreading width (79± 4 keV) [16], they are 3–4 times smaller than the va
obtained withα = 0. Further reductions could be obtained (see Fig. 6) by increa
the value ofα, upon which there is no certainty. The present estimate is based o
conservative assumption that the energy of the IMS should be larger than 35 MeV. A
resonance may also decay by particle-emission. This emission is associated with t
portion of the giant resonance having the particle in the continuum [17]. Since we
not included particle states in the continuum we cannot estimate that contribution
width.

We would like now to comment on previous attempts to explain the spreading wid
the IAS in terms of the coupling to the IMS [3,4]. In these works both the energy o
IMS, EIMS and the spreading width ofthe IMS at the IAS energy,Γ ↓

IMS, are taken as fre
parameters. Following [3,4] the width of the IAS is written

Γ
↓
IAS = 1

2T

|〈IAS|VC |EIMS〉|2
(EIMS − EIAS)2 + (Γ

↓
IMS/2)2

Γ
↓
IMS. (43)

While the value of the energy of the IMS can be approximated within an interva
instance by using the estimate discussed in [4], and the matrix element of the Co
interaction can be reasonably calculated, practically nothing is know about the va
the width of the IMS state at the energy of the IAS, which in the estimate of [4] is t
asΓ

↓
IMS ≈ 2–3 MeV. In the present formalism, the only uncertainty is represented b

value ofα, a value which eventually may be more accurately fixed by the experim
while the mechanism leading to the reduction of the width of the IAS is well establ
and it does not require the use of additional parameters.

6. Conclusions

In this work we have extended the formalism presented in I, in order to account f
effects of the coupling between the Isobaric Analogue State and the Isovector Mon
State upon the width of the IAS. To fulfill this goal we have added, to the previo
considered Hamiltonian, an interaction whichinduces the correlations which are specific

the IMS. The calculations have been performed inthe framework of the collective treatment
of the isospin degree of freedom, both for a pure harmonic oscillator and for a realistic
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single particle basis. From the correspondence drawn between these set of results,
conclude about the predominance of shell closure effects upon the structure of the IA
of the IMS and upon the coupling between them. The coupling constant of the re
two-body interaction responsible for the appearance of the IMS was fixed by fitting th
energy shift between the IMS and the IAS. To the extent that this energy shift is kn
the calculations may be considered to befree of un-desired parametrizations.

It is found that, from the interplay between the strong coupling induced by the Cou
interaction and the relatively large energy shift between the IAS and the IMS, the influen
of the IMS is decisive to isolate the IAS from the background ofT − 1 particle–hole
excitations. As shown by the result of our calculations the coupling between the IA
the IMS reduces the width of the IAS by a factor four, compared to the value obt
when the coupling is ignored.
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Appendix A. The dispersion relation for realistic cases

The isospin conserving HamiltonianW (20) may be written as

W = H(e)
sp + 1

T

(
H

(e)
sp11τ1̄ + H

(e)

sp1̄1
τ1

) + 1

2T 2

〈
H

(e)
sp10

〉[τ1, τ1̄]+

− α

2
[S1, S1̄]+ − α〈S0〉

T
(S1τ1̄ + S1̄τ1) − α

2T 2 〈S0〉2[τ1, τ1̄]+. (A.1)

It is easy to verify the fact the invariance ofW against isospin rotations ([W,τ±1] = 0).
Within the RPA, the components of the single-particle terms are given by

τ1 = −ĵ η1ajγ
+
1aj − ĵ η1̄1j γ1̄1j ,

H (e)
sp = ∆1ajγ

+
1ajγ1aj + ∆1̄1j γ

+
1̄1j

γ1̄1j ,

H
(e)
sp11= −ĵ∆1ajη1ajγ

+
1aj + ĵ∆1̄1j η1̄1j γ1̄1j ,〈

H
(e)
sp10

〉 = −ĵ 2∆1ajη
2
1aj − ĵ 2∆1̄1j η

2
1̄1j

, (A.2)

where a = 1,2,3,4, since we have also included the�N = 0 boson creation (an
annihilation) operator
γ +
11j = 1√

2ĵ
b+
NnjmcNnjm, (A.3)
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in addition to theγ +
1a′j phonons defined in (25), and

S1 = −Aa′j ĵγ +
1a′j − Apj ĵγ1̄1j ,

〈S0〉 = −Aa′j η1a′l ĵ
2 + Apjη1̄1j ĵ

2. (A.4)

We introduce now the independent phonons

Γ +
q = λqajγ

+
1aj − µq1j γ1̄1j . (A.5)

The relation[W,Γ +
q ] − ωqΓ +

q yields the amplitudes

λqaj = ĵ

∆1aj − ωq

[
Kq

T

(
∆1ajη1aj − α〈S0〉Aa′j + 〈H(e)

sp10〉
T

η1aj − α〈S0〉2

T
η1aj

)

+ Lq

T
η1aj − αMq

(
Aa′j + 〈S0〉

T
η1aj

)]
,

µq1j = ĵ

∆1̄1j + ωq

[
Kq

T

(
−∆1̄1j η1̄1j − α〈S0〉Apj + 〈H(e)

sp10〉
T

η1̄1j − α〈S0〉2

T
η1̄1j

)

+ Lq

T
η1̄1j − αMq

(
Apj + 〈S0〉

T
η1̄1j

)]
, (A.6)

in terms of the sums

Kq ≡ ĵ (η1ajλ1aj + η1̄1jµq1j ),

Lq ≡ ĵ (∆1ajη1ajλ1aj − ∆1̄1j η1̄1jµq1j ),

Mq ≡ ĵ (Aa′jλqa′j + Apjµq1j ). (A.7)

The RPA energiesωtq are given by the roots of the determinant obtained
replacing (A.6) in (A.7), namely∣∣∣∣∣∣∣

(
d11 − α〈S0〉

T
f

)
d12 −αf(

d21 − α〈S0〉
T

g
)

d22 −αg(
d31 − α〈S0〉

T
h
)

d32 (−1− αh)

∣∣∣∣∣∣∣
= 0, (A.8)

where

f = X3 + 〈S0〉X0

T
, g = X4 + 〈S0〉X1

T
, h = X5 + 〈S0〉X3

T
(A.9)

and

d11 = −1+ 1

T

(
X1 + 〈H(e)

sp10〉
T

X0

)
, d12 = 1

T
X0,

d21 = 1

T

(
X2 + 〈H(e)

sp10〉
T

X1

)
, d22 = −1+ 1

T
X1,

( (e) )

d31 = 1

T
X4 + 〈Hsp10〉

T
X3 , d32 = 1

T
X3. (A.10)
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The quantitiesXn are defined as in I, with modifications due to the inclusion of the I
interaction,

X0 = ĵ 2
(

η2
1aj

∆1aj − ωq

+
η2

1̄1j

∆1̄1j + ωq

)
, X1 = ĵ 2

(
∆1ajη

2
1aj

∆1aj − ωq

−
∆1̄1j η

2
1̄1j

∆1̄1j + ωq

)
,

X2 = ĵ 2
(

∆2
1ajη

2
1aj

∆1aj − ωq

+
∆1̄1j2η

2
1̄1j

∆1̄1j + ωq

)
, X3 = ĵ 2

(
Aa′j η1a′j

∆1a′j − ωq

+ Apjη1̄1j

∆1̄1j + ωq

)
,

X4 = ĵ 2
(

Aa′j∆1a′j η1a′j
∆1a′j − ωq

− Apj∆1̄1j η1̄1j

∆1̄1j + ωq

)
,

X5 = ĵ 2
(

A2
a′j

∆1a′j − ωq

+ A2
pj

∆1̄1j + ωq

)
. (A.11)

After some straightforward algebra, the determinant is cast in the form of the disp
relation

− 1

α
= Yω

Zω

, (A.12)

where

Yω = f (d21d32 − d22d31) + g(d12d31 − d11d32)

+ h(d11d22 − d12d21) + 〈S0〉
T

(gd12 − f d22),

Zω = d11d22 − d12d21. (A.13)
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