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Abstract

Physical and mathematical aspects related to the description of resonant states are presented in a compre-
hensive way. The concepts concerning the representation of Gamow resonances are revisited in connection
with a rigorous mathematical treatment, based on the use of MHller operators and rigged Hilbert spaces. The
formalism is cast in a form amenable for applications to nuclear structure calculations in the continuum.
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1. Introduction

In spite of the long-time elapsed since the discovery of decay phenomena in nuclei and their
description in terms of resonances, the use of the concept in nuclear structure calculations has
been hampered by an apparent contradiction with conventional quantum mechanics, the so-called
probability problem. It refers to the fact that a state with complex energy cannot be the eigenstate
of a self-adjoint operator, like the Hamiltonian, therefore resonances are not vectors belonging to
the conventional Hilbert space.

This report is devoted to the description of resonances, i.e. Gamow states, in an amenable mathe-
matical formalism, i.e. Rigged Hilbert Spaces. Since we aim at further applications in the domain of
nuclear structure and nuclear many-body problems, we shall address the issue in a physical oriented
way, restricting the discussion of mathematical concepts to the needed, unavoidable, background.
From a rigorous historical prospective, the sequence of events and papers leading to our modern
view of Gamow vectors in nuclear structure physics includes the following series of publications:
[17,103,111,74–76]. The use of Gamow states in conventional scattering and nuclear structure prob-
lems was advocated by Berggren, at Lund, in the 1960s [17] and lately [18], by Romo [103] and
by Gyarmati and Vertse [111]. The notion was recovered years later, by Liotta, at Stockholm, in
the 1980s [76], in connection with the microscopic description of nuclear giant resonances, alpha
decay and cluster formation in nuclei. After these pioneering works, the use of Gamow states in
nuclear structure calculations become widespread, in spite of the numerical and mathematical diE-
culties found in the implementation of calculations of realistic nuclear interactions in single-particle
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resonant basis. Recently, both at GANIL-Oak Ridge [74] and at Stockholm [75], the use of Gamow
states in shell model calculations was reported.

A parallel mathematical development took place, this time along the line proposed by Bohm
and collaborators [20]. Curiously enough both attempts went practically unnoticed to each other for
quite a long time until recently, when some of the mathematical and physical diEculties found in
numerical applications of Gamow states were discussed on common grounds. The need to account
for nuclear properties in the continuum, and the notion that the nuclear continuum can be replaced
by few non-overlapping Gamow states in the so-called Berggren basis, i.e. single-particle basis
which include bound single-particle states and few single-particle resonances and that can be used to
perform approximate Tamm–DancoF (TDA) or random phase approximation (RPA) diagonalization
of residual nuclear two-body interactions [76], drove the attention of nuclear structure physicist
to the more mathematically oriented work of Bohm and collaborators. However, to the best of our
knowledge, a review of these approaches is still missed in the literature. We have taken the existence
of this gap as the motivation for the present work.

Technically speaking, one may concentrate the pros and drawbacks of Berggren and Bohm
approaches in the following:

(i) The formalism developed by Berggren is oriented, primarily, to the use of a mixed repre-
sentation where scattering states and bound states are treated on a foot of equality. The normally
accepted notion that the continuous should always be taken into account as a sort of complemen-
tary subspace of the space spanned by the bound states and resonances was revisited by Berggren.
In his approach a basis should contain bound states and few resonances, namely those which have
a small imaginary part of the energy. Thus, it is a certain degree of ambiguity in the choice of the
so-called narrow resonances [103]. No further requirements are imposed, as a departure from, for
instance, the in<nite box-discretization method.

(ii) In Bohm’s approach the steps towards the description of Gamow states are based on the
fact that the spectrum of the analytically continued Hamiltonian covers the full real axis. A direct
consequence of this is the de<nition, according to Bohm [20,42], of the expectation value of the
Hamiltonian on a Gamow state. As a diFerence with respect to Berggren’s method, the calculations
in Bohm’s approach are facilitated by the use of analytic functions.

The subjects included in this report can be ordered in two well-separated conceptual regions,
namely: (a) the S-matrix theory, with reference to MHller wave operators, to the spectral theorem
and to the basic notions about Rigged Hilbert spaces, and (b) the physical meaning of Gamow
resonances in dealing with calculation of observables. The mathematical tools needed to cover
part (a) are presented in a glossary of self-contained subsections. In that part of the report
we shall follow, as closely as possible, the discussion advanced in the work of Arno Bohm and
co-workers [20–25].

The conJict between the probabilistic interpretation of quantum mechanics and the description of
resonances, Gamow states, and its solution in an amenable mathematical formalism, Rigged Hilbert
spaces, is addressed to illustrate the suitability of the adopted representation. We think that this
discussion is needed to pass a conceptual barrier built by some to argue against the use of Gamow
states in nuclear structure calculations. In order to do it, we have addressed the link between mathe-
matical and physical aspects of Gamow states, which we think is one of the lively topics in realistic
nuclear structure calculations. In this respect we shall review, in a modern perspective, the work
advanced by the late Tore Berggren [17,18].
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Concerning the realization of the mathematical representation of Gamow states, we shall focus
on the study of the Friedrichs model. This is a nice example of a solvable model where the use
of generalized vectors in rigged Hilbert spaces becomes very simple and where the identi<cation of
Gamow states can be performed without diEculties.

As said before, in the <rst part of the report we focus on the elementary mathematical and physical
concepts related to the use of Gamow states. Concerning part (b), we focus on the calculation of
observables on resonant states and compare various prescriptions to calculate the mean value of
the energy. For reasons of brevity we have avoided to include in the present work other speci<c
examples on the use of Gamow states, but for this we relay mostly on the work done in speci<c
nuclear structure calculations by Liotta and collaborators, at Stockholm and Debrecen. We shall
refer to the work done at Stockholm [76], to show the usefulness of the approach based on the
inclusion of Gamow states in nuclear single-particle basis, in the calculation of mean <eld properties
and two-body interactions in nuclei. Particularly relevant for our present discussion are the results
of the Stockholm group related to the calculation of the decay of nuclear resonances, like isobaric
analogue states and Gamow–Teller resonances, as well as the exploration of mean <eld properties,
like nuclear superconductivity, for nuclei in the drip line [76]. Another indication about the relevance
of the use of Gamow states in nuclear structure calculations may be the recent announcement of the
measurement of two-proton radioactivity.

The material is organized in the following way: Section 2 contains the mathematical ingredients
of the problem, Section 3 is devoted to the discussion of physical concepts and properties of Gamow
states, including the presentation and discussion of Friedrichs model. In Section 4 we address the
problem of the mean value of the energy for resonance states. The extension of the formalism
to the relativistic regime is discussed in Section 5. Conclusions are drawn in Section 6. Some
additional mathematical details are presented in Appendices A and B. For the sake of convenience,
the references have been ordered alphabetically, rather than chronologically.

2. Mathematical concepts

The notion of time evolution, either in the Heisenberg or in the SchrKodinger representation, is
a cornerstone in ordinary quantum mechanics. During the past century, since the discovery and
formulation of quantum mechanics, the notion of time evolution has been exhaustively explored.
However, this has not been the case with Gamow ideas on resonance phenomena, where the time
evolution is determined by the presence of a complex parameter. Although the occurrence of this
complex parameter does not present a serious formal diEculty, it is not possible to accommodate
it in the framework of ordinary quantum mechanics. This may explain why this notion has been
somehow neglected for a long period of time.

Generally speaking, we may call resonance phenomena those for which the conventional de<nition
of probability are not applicable. Conventional quantum mechanics deals with two kinds of states:
bound states and scattering states. Resonances can only appear together with scattering states.

Resonances are characterized by two real parameters: the resonance energy ER and the width
�. The quantity 2˝=�, which is essentially the inverse of the width, represents the half life of the
resonance. Therefore, a resonance can be viewed as a particle that lives a <nite time Lt6 2˝=�.
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From this point of view, bound states (representing stable particles, with Lt = ∞) and resonances
(representing unstable particles, with Lt= <nite) diFer solely in the value of their widths.

In order to understand resonance phenomena better, we want to discuss here the resonance scat-
tering [20]. In a resonant scattering process a state of a particle is prepared in the remote past. It
evolves freely until it enters in the interaction region, in which the particle remains a relatively large
time, compared with the time scale of the non-interacting case. Then, it goes out of the interaction
region and evolves freely until the state is detected in the far future, i.e., when it reaches the asymp-
totic limit. A relatively large time delay spent in the interaction region characterizes the existence of
a resonance. This long-time delay reveals that a quasi-stationary state has been formed between the
incoming particle and the center of forces, usually another particle which interacts with the former
[20]. The scattering processes which we are considering are characterized by

(i) the free Hamiltonian H0 governing the evolution of the state before and after the interaction
takes place, and

(ii) the interaction V .
The total Hamiltonian is H =H0 +V . In mathematical terms, we may speak of two Hamiltonians,

{H0; H}, that characterize the scattering process [1,100,114].
Whether a prepared state would give rise to a resonance in a scattering process, characterized by

the Hamiltonians {H0; H}, depends on the potential V = H − H0 and on the energy of the incident
particle. The time delay would appear only at certain discrete values the energy, which are called
resonant energies. We shall elaborate these ideas in the next sections.

The most relevant concept in the description of a scattering process is the S-operator, or the
S-matrix. This operator relates the prepared free incoming states with the free outgoing states.

The free Hamiltonian can, in principle, be <xed arbitrarily. For the speci<c situation of the nuclear
many-body problem, the free-particle Hamiltonian is de<ned by the translational term

H0 =
N∑
i=1

p2
i

2mi
:

For other problems, like interaction between matter and radiation, interaction between <elds, or even
periodic interactions, the free Hamiltonian may appear in diFerent forms [1,100,5,7,67,9].

For a wide range of physical systems, the interaction is represented by a short ranged potential
V (r). We shall make the following hypothesis on this potential:

(i) V (r) is spherically symmetric.
(ii) V (r) �→ 0, if r �→ ∞.
(iii) V (r) decreases suEciently fast outside a domain.

More stringent conditions on the potential can be found, for instance, in the domain of nuclear
physics [32,48], where V (r) is also <nite at the origin.

The treatment of this sort of potentials in ordinary quantum mechanics proceeds via a diagonal-
ization in a basis of bound and scattering states. It means that any pure state can be written in
terms of a linear combination of bound and scattering states. When resonances are present, any pure
state can be written in terms of linear combinations of bound states, resonances and a background.
Now, the question arises on how we can accommodate this decomposition from the mathematical
point of view.
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2.1. The Hilbert space of scattering states

Once we have introduced the dynamics which produces the scattering phenomena, we should
de<ne what it is commonly understood by scattering states. Let H be a self-adjoint Hamiltonian.
This Hamiltonian may have bound states. These states are eigenvectors of H with real eigenvalues
and they span a Hilbert space which is called Hd, where the subindex d stands for discrete. In
addition to Hd, we have the Hilbert space Hc, which is the space of vectors orthogonal to all
vectors in Hd. we say that Hc is the continuous subspace of H with respect to H . Thus, the
Hilbert space of pure states of the system decomposes as the direct orthogonal sum (⊕) of Hd and
Hc:

H=Hd ⊕Hc : (1)

The continuous subspace of H with respect to H , which is Hc, has the following properties:
(i) There are enough vectors in Hc in which H acts. The result of applying H to a vector in Hc

is also a vector in Hc. We then say that H reduces 1Hc.
(ii) The operator H on Hc is self-adjoint and its spectrum is purely continuous.

The space Hd is spanned by the bound states of H . Consequently, the scattering states must be
included in Hc. However, for some Hamiltonians, not all states of Hc, in a dense subspace of Hc,
should be considered as scattering states. It can be realized when the continuous spectrum of H has
a fractal section. In such a case, Hc is decomposed into two mutually orthogonal parts, namely

Hc =Hac ⊕Hsc ;

where the sub-indices ac and sc stand for absolutely continuous and singular continuous, respectively.
The Hamiltonian H reduces both Hac and Hsc and the fractal section of the spectrum of H is the
spectrum of the restriction of H to Hsc. This spectrum is called the singular continuous spectrum of
H . The spectrum of H in Hac is the absolutely continuous spectrum of H . These names are taken
from the measure theory [98]. Therefore, we have the following decomposition:

H=Hd ⊕Hac ⊕Hsc : (2)

Scattering states are not-bound regular vectors and therefore they belong to Hac. In addition, they
should have <nite energy. This property holds, only, in a dense subspace of Hac. 2

1 In mathematical terms, the restriction of the domain Dc of H to Hc is dense in Hc and H ∈Hc, ∀  ∈Dc.
2 A subspace D of a Hilbert space H is dense if any vector in H can be arbitrarily approximated in norm by a vector

in D. Thus, for an arbitrary �∈H and for any j¿ 0, it exists  ∈D such that

‖� −  ‖¡ j:

In physical terms this inequality means that the state � can be replaced by the state  within an accuracy j.
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2.2. The MHller wave operators

We assume that any scattering state is asymptotically free in the past. For any scattering state �,
it exists a free state  such that 3

lim
t→−∞ {e−itH� − e−itH0 } = 0 : (3)

As the limit in a Hilbert space is taken with respect to its norm, this is equivalent to say that

lim
t→−∞ ‖e−itH� − e−itH0 ‖ = 0 : (4)

Since the evolution operator is unitary, we have:

lim
t→−∞ ‖� − eitHe−itH0 ‖ = 0 : (5)

It is natural to assume that any state can be prepared as a free state, i.e.  is an arbitrary vector
in H. Then, we can de<ne an operator which relates each scattering state � with its corresponding
asymptotically free state  as

� := �OUT = lim
t→−∞ eitHe−itH0 : (6)

The existence of �OUT depends on the potential V (r), see [100].
Analogously, we also assume that any scattering state is asymptotically free in the future. This

means that for any scattering state �∈Hac, there exists a free state ’∈H such that

lim
t→∞ {e−itH� − e−itH0’} = 0 : (7)

If this happens for each ’∈H, i.e., for each free state, then, there exists an operator �IN

de<ned as

� =�IN’ = lim
t→∞ eitHe−itH0’ : (8)

Again, the existence of �IN depends on V (r), see [100].
Along this paper we shall assume that no incoming scattering state can be trapped in the interaction

region and become a bound state. Also, that no bound state can spontaneously decay and become a
scattering state. This property is called asymptotic completeness. If asymptotic completeness applies,
then the operators �OUT and �IN are unitary operators from H to Hac [1,100]. Therefore, their
inverses exists from Hac to H. As these operators are unitary their inverses coincide with their
adjoints and

�−1
IN =�†

IN; �−1
OUT =�†

OUT :

The operators �OUT and �IN are the MHller wave operators. They have the following property:
if

� (0) = ’(0) ;

where � can be either �OUT or �IN, then,

� (�) = ’(�) ;

3 From hereon we take ˝= 1, unless indicated explicitly.
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where � is an arbitrary time. The proof of this statement is very simple. Write

eitHe−itH0 (�) = eitHe−i(t+�)H0 (0) = e−i�Hei(t+�)He−i(t+�)H0 (0) ;

taking limits as t goes to either −∞ or ∞, we have

� (�) = e−i�H’(0) = ’(�) :

This formula can also be written as

�e−i�H0 (0) = e−i�H’(0) = e−i�H� (0) :

If the free state  (0) can be arbitrary chosen, we have that

�e−i�H0 = e−i�H� ; (9)

or in in<nitesimal form [100],

�H0 = H� : (10)

In scattering theory we prepare a free state in the remote past. It evolves freely and at the time
t this state would have been  =  (t) if no interaction is present. As the particle in the state  (t)
enters in the interaction region, the state becomes �IN (t) = �(t). When the particle leaves the
interaction region, its state is given by ’(t) where �OUT (t) = ’(t). The relation between the free
incoming state  (t) and the outgoing state ’(t) is given, at all times, by

’(t) =�−1
OUT�IN (t) : (11)

If we assume asymptotic completeness, for any free incoming state  , there is a unique outgoing
state ’. 4 As the Mller operators are unitary, 5 the operator

S := �−1
OUT�IN (12)

is also unitary. Observe that it maps H onto itself. The operator S is the S-operator. Eq. (11) can
also be written as

Se−itH0 (0) = e−itH0’(0) = e−itH0S (0) :

Since the choice of  (0) is arbitrary, we have that

Se−itH0 = e−itH0S ; (13)

or, in in<nitesimal form,

SH0 = H0S ⇔ [S; H0] = 0 : (14)

Eq. (14) shows that the S-operator commutes with the free Hamiltonian H0. This property has
important consequences which will be commented upon in the next subsection.

4 For the sake of convenience, we write  ≡  (0) and ’ ≡ ’(0).
5 Strictly speaking, from the mathematical side, the MHller operators are unitary from the absolutely continuous subspace

Hac(H0) onto Hac(H), for H0 and H , respectively.



O. Civitarese, M. Gadella / Physics Reports 396 (2004) 41–113 49

2.3. The spectral theorem

Next, we are going to present, without proofs, important spectral properties of general self-adjoint
operators. For practical purposes, we shall introduce here only those results of direct application to
our formalism of resonance scattering.

Let A be a self-adjoint operator on a Hilbert space H, a vector �∈H is said to be a cyclic
vector of A if the sequence {�; A�; A2�; : : : ; An�; : : :} forms a basis, in general not orthonormal, of
H. Self-adjoint operators having a cyclic vector, can be written as a multiplication operator, exactly
like the position operator, on a certain Hilbert space. 6

If A has absolutely continuous spectrum only, i.e., if the decomposition of H with respect
to A given in (2) is H = Hac with vanishing Hd and Hsc, then, d� is the Lebesgue measure
on �(A) [1,98].

Summarizing, we have a unitary mapping U :

U :H �→ L2[�(A); d�] ; (15)

such that if  (x) ∈L2[�(A); d�] with x (x) ∈L2[�(A); d�], then

UAU−1  (x) = x (x) : (16)

If S is an operator which commutes with A, then there exists a function S(x) such that

USU−1 (x) = S(x) (x)

for any  (x) ∈L2[�(A); d�] with S(x) (x) ∈L2[�(A); d�] [1].
Should A not have a cyclic vector on H, then H can be decomposed as a direct sum of Hilbert

spaces [84,98]

H=H1 ⊕H2 ⊕ · · · ⊕Hn ;

such that A is an operator and it has a cyclic vector on each of the Hi. Therefore, the spectral
theorem applies on each of the Hi. In this case, we can always <nd a unitary operator U , as in
(15), and a function f(x) such that

UAU−1 (x) = f(x) (x) :

This spectral theorem is one of the tools of our presentation which will allow us to de<ne the
Breit–Wigner energy distributions for the Gamow vectors.

2.4. A model for scattering

Let us now come back to the scattering problem: we shall assume that H0 is the Hamiltonian of
a free particle in three dimensions and that V (r) is a potential which has the properties listed at the

6 In fact, the spectral theorem [98] states that there exists a measure d� on the spectrum of A, �(A), and a unitary
operator U from H into L2(�(A); d�), which is the space of square integrable functions from �(A) into C, the set of
complex numbers, with respect to the measure d�, such that UAU−1 is the multiplication operator [1,98].
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beginning of Section 2. Then,
(i) The Hamiltonians H0 and H = H0 + V are self-adjoint.
(ii) As the potential is spherically symmetric, H commutes with the three components of the

orbital angular momentum. In this case the Hilbert space H, which in our case is L2[R3; d3r], the
space of all integrable complex functions on the three-dimensional real space R3, can be decomposed
as

H=
∞⊕
l=0
Hl ; (17)

where Hl is the Hilbert space of all the states with value l of the angular momentum. The operators
H0 and H are self-adjoint on each of the Hl.

Let us take a <xed value of the orbital angular momentum l; thus Hl has a cyclic vector and
therefore the spectral theorem applies on it. In particular, there exists a unitary mapping U from Hl

to L2(R+; dE) such that 7

UH0U−1 l(E) = E l(E);  l ∈Hl ; (18)

where  l is the component of the vector  in the subspace Hl.
The S-operator is a unitary operator on each of the Hl. Since the S-operator commutes with H0,

there exists a function Sl(E) such that

USlU−1 l(E) = Sl(E) l(E) ; (19)

where Sl is the restriction of S to Hl and  l(E) ∈L2[R+; dE]. As U is unitary and S is also unitary
on Hl, we conclude that multiplication by Sl(E) on L2[R+; dE] is also a unitary application. This
implies that [1]

Sl(E) = ei�l(E) ; (20)

where �l(E) is real for E real. An equation like (20) holds for all values of the angular momentum.
The resulting functions �l(E) are the phase shifts.

Remark. From now on we shall work with a <xed value of the angular momentum and, for sim-
plicity, we omit the label l unless otherwise stated. Note that the case l = 0 should be treated with
care, since for it the centrifugal term vanishes in the radial form of both, the free and the total
Hamiltonian.

(iii) On H0, both H0 and H have spectrum �(H0) = �(H) = R+.
(iv) The MHller wave operators exists and asymptotic completeness holds for the pair {H0; H}

on H0. In particular, this means from (18) that

U�−1H�U−1 (E) = E (E) ; (21)

where � is either �OUT or �IN. Thus, there are two unitary operators that ful<ll the spectral theorem
for H , which are

V+ = U�OUT; V− = U�IN : (22)

7 R+ ≡ [0;∞). Therefore, L2(R+; dE) is the space of complex square integrable functions on R+.
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Therefore,

V±HV−1
±  (E) = E (E) : (23)

(v) The operator S(E) := Sl(E) can be analytically continued as described in the next subsection.

2.5. The S-matrix formalism

We are now in the position to discuss the properties of the S-operator on Hl. Although we shall
always work in the energy representation, for the sake of clarity we shall discuss its properties on
the p-plane, as a function of the variable p = +

√
2mE [90,20]. We call this function S(p) and it

has the following properties:
1. As a consequence of causality [90], S(p) admits an analytic continuation S(z) on the complex

plane. The possible singularities of S(z) are poles that may be of three kinds [20,90]:
(i) Single poles in the positive imaginary axis of S(z) that correspond to the bound states of H .
(ii) Single poles in the negative imaginary axis that correspond to virtual states.
(iii) Pairs of poles, in principle of any order, in the lower half-plane. Each of the poles of a pair

has the same negative imaginary part and the same real part with opposite sign. Thus, if pR is one
of these two poles the other is −p∗

R where the star denotes complex conjugation. These poles are
called resonance poles and in general there is an in<nite number of them [90].

2. This description has been made in the so-called p-plane or momentum plane. If we want to <nd
an analogous description in the energy representation we have to make the change of variables given
by E = p2=(2m). After this change of variables the p-plane is transformed into a Riemann surface.
This mathematical construction is composed by two planes which have the origin in common. Both
planes are called the <rst and the second Riemann sheet, respectively. The <rst and second sheet are
connected by their positive semi-axis. The upper rim connects the upper half-plane of the <rst sheet
with the lower half-plane of the second sheet, while the lower rim connects the lower half-plane in
the <rst sheet with the upper half-plane in the second sheet.

Any function S(z) on the p-plane can be transported to the Riemann surface by means of
the relation w = z2=(2m). The function S(w), de<ned on the Riemann surface, has the following
properties:

(i) If pR is a pole of S(z) in the p-plane, zR =p2
R=(2m) is a pole of S(w) in the Riemann surface

with the same multiplicity [5]. Thus, S(w) has three types of singularities:

(a) simple poles in the negative semi-axis in the <rst sheet that correspond to the bound states
of H ,

(b) simple poles in the negative semi-axis of the second sheet that correspond to virtual states, and
(c) pairs of complex conjugate poles in the second sheet with positive real part. 8 They are the

resonance poles. Each pair corresponds to a resonance in which the real part is the resonant
energy and the modulus of the imaginary part is �=2 [20].

8 The fact that the real part of the complex conjugate poles be positive is a consequence of causality. If we de<ne
resonances as poles of the extended resolvent [66,4] more general situations may arise. In particular, resonance poles may
have negative real parts.
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(ii) Let us call S(E − i0) the values of S(w) on the lower rim of the cut. The boundary values of
S(w) on the upper rim of the cut are denoted by S(E + i0) and coincide with S(E). These values
are related:

S(E + i0) = S∗(E − i0) : (24)

The above conditions (i) and (ii) are, in fact, the simplest which may be ascribed to the S
matrix, in order to discuss the mathematical properties and the proper mathematical frame for
Gamow vectors. The question about the existence of potentials which ful<ll these conditions has
been answered, positively, in Ref. [8]. Moreover, in Ref. [53] it is shown that it exists a class of
realistic potentials which ful<ll conditions on the corresponding S-matrix which are slightly diFer-
ent from conditions (i) and (ii) and that nevertheless yield to similar conclusions about Gamow
vectors.

Remark. We have introduced the function S(w), de<ned on a Riemann surface as it is usually
done. However, what are relevant here are the analytic properties of S(w) and not the geometric
structure of the Riemann surface, which can be ignored. Then, we can consider that S(w) is an
analytic function on a complex plane without isolated singularities other than the bound poles on
the negative semi-axis, with a discontinuity on the positive semi-axis given by (24). This function
can be continued through the real axis into two diFerent manners: from above to below and from
below to above. These two analytic continuations are identical with poles at the locations of the
virtual and resonance poles.

2.6. Rigged Hilbert spaces (RHS)

We shall de<ne resonance states as eigenvectors of H with complex eigenvalues, located at the
resonance poles. As self-adjoint operators in Hilbert spaces do not have complex eigenvalues, res-
onant states cannot be vectors on a Hilbert space. They belong to certain extensions of Hilbert
spaces which are the rigged Hilbert spaces (RHS). We start with a de<nition of RHS.

A triplet of spaces [63,21,2,102,85,26,16,56]

� ⊂ H ⊂ �× (25)

is a rigged Hilbert space (RHS) if:
(i) The intermediate space H is an in<nite-dimensional Hilbert space. 9

(ii) The space � is a topological vector space, which is dense in H. This means that for any
�∈H and for any positive number j¿ 0, there is another vector ’∈�, such that ‖�−’‖¡ j. In
other words, to any state � in H it can be assigned a state ’ in �, such that ’ approaches � with
arbitrary accuracy. The space � has its own topology, which is stronger than the topology that �
possesses as a subspace of H. This can be explained by noticing that the topology in � has more
open sets, and, consequently, more neighborhoods and less convergent sequences. As a consequence,

9 We shall always assume that our Hilbert spaces are separable.
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the identity mapping

i :� �→ H ;

such that i(’) = ’ for all ’∈�, is continuous. The topology in � is not given by a norm, but in
the most simplest cases of physical interest, by a countable in<nite family of norms. In this latter
case, � has the structure of a metric space.

(iii) The space �× is the anti-dual space of �. The vectors of �× are mappings, F , from � into
the set of complex numbers C, i.e., F :� �→ C, with the following properties:

(a) Anti-linearity: Given F ∈�×, for ’;  ∈� and "; #∈C, we have that

F("’ + # ) = "∗F(’) + #∗F( ) ;

where the star denotes complex conjugation.
(b) Continuity: It implies, in particular, that if ’n �→ ’ in �, then, F(’n) �→ F(’) in C, if F ∈�×.

The vectors in �× are often called functionals. The action of F ∈�× on ’∈� is usually ex-
pressed as F(’) or 〈’|F〉. This second notation, which is the most usual among physicists, originates
in Dirac notation [44]. Moreover, in a RHS, H ⊂ �×, meaning means that any vector in H can
be viewed as a functional on �. If  ∈H, then the functional F is de<ned as

〈’|F 〉 = 〈’| 〉 ;

where 〈’| 〉 is the usual scalar product in H. F is uniquely de<ned with  and it belongs to �×.
RHS are useful, among other applications, for:

1. Giving a rigorous meaning to the Dirac formulation of quantum mechanics [44]. In this case,
it is customary to demand that � be nuclear. For a de<nition of nuclearity and the discussion of the
nuclear spectral theorem, (see [60]). For the sake of completeness, we shall quote the Nuclear Spec-
tral Theorem, according to which every observable, or set of commuting observables, has a complete
set of generalized eigenvectors whose corresponding eigenvalues exhaust the whole spectrum of the
observable. This is in agreement with the Dirac requirement [44,46,21,26,102,2,3,28,85].

2. Giving a proper mathematical meaning to the Gamow vectors, i.e., vector states which represent
resonances [20,26,22,52].

3. Extending quantum mechanics to accommodate the irreversible character of certain quantum
processes such as decay processes [95,97,96,13].

4. Providing an appropriate context for the spectral decompositions of the Frobenius Perron oper-
ator for certain chaotic systems in terms of Pollicot–Ruelle resonances [14].

5. Extending the formalism of statistical mechanics in order to include generalized states and
singular structures on it. This can be achieved with the use of the rigged Liouville spaces (RLS)
[11,12].

6. De<ning some elements that appear in the axiomatic theory of quantum <elds: Wightman
functional, Borchers algebra, generalized states, etc. [19,54,7].

7. Dealing with physical problems requiring the use of distributions. In fact, distributions are well
known to be objects in the dual of a nuclear locally convex space [60–62,84].
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Rigged Hilbert spaces have the following properties:

Property 1. Let A be an operator on H, A† be its adjoint 10 and D(A†) be the domain of A†. Then,
(i) The domain, D(A†), contains the space �, i.e., � ⊂ D(A†).
(ii) For each ’∈�, we have that A†’∈�. We say that A†� ⊂ �.
(iii) The operator A† is continuous on � with the own topology on �.
Then, the operator A can be extended 11 into the antidual �× by the duality formula:

〈A†’|F〉 = 〈’|AF〉; ∀’∈�; ∀F ∈�× : (26)

Moreover, A is linear and continuous on �×.
This property also applies when A is self-adjoint. In this case A† =A and we do not need to write

A† in (26). Note that this property will allow us to construct continuous extensions of operators
which are not continuous on H. When A is self-adjoint it is always possible to <nd a RHS with
this property [84].

Property 2. Let A be an operator with the properties described in Property 1. A complex number $
is a generalized eigenvalue of A if for any ’∈� and for some non-zero F ∈�×, we have that

〈A†’|F〉 = $〈’|F〉 : (27)

After Eqs. (26) and (27) we have that if $ is a generalized eigenvalue of A, then,

〈’|AF〉 = $〈’|F〉
for all ’∈�. If we omit this arbitrary ’, we have that

AF = $F :

Therefore, a generalized eigenvalue of A is just an eigenvalue of the extension of A into �×. As
this extension is a linear mapping, �F is also an eigenvector of A on �× with eigenvalue $, for any
complex number � �= 0. The functional F is often called a generalized eigenvector or a generalized
eigenfunctional of A with eigenvalue $.

Property 3. A result due to Gelfand and Maurin [62,84] states the following: Let A be a self-adjoint
operator on H with continuous spectrum �(A). Although it is not necessary, we may assume that
the spectrum is purely continuous. Then, there exists a RHS, � ⊂ H ⊂ �×, such that

(i) A� ⊂ �, and A is continuous on �. Therefore, A can be extended by the duality formula
(26) to the anti-dual space �×.

(ii) There exists a measure d� on �(A), which can be chosen to be the Lebesgue measure if the
spectrum is absolutely continuous, such that for almost all $∈ �(A) with respect to d�, there exists
a nonzero functional F$ ∈�× such that

AF$ = $F$ : (28)

10 We always assume that A has a dense domain on H.
11 The extension of the operator A is often denoted as A× [20,22]. Nevertheless, we shall use the same notation for A

and for its extension to �× in order to keep the notation as simple as possible. Note that this is a true extension of A
in the sense that the restriction of the extended operator to the domain of A gives A again.
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This means that the points in the continuous spectrum of A are eigenvectors of the extension of A into
�×. However, these eigenvectors do not belong to the Hilbert space H. In addition, the generalized
eigenvectors of A with eigenvalues covering the continuous spectrum of A form a complete set. For
all ’; �∈�, we have that

〈’|A�〉 =
∫
�(A)

$F$(’)[F$(�)]∗ d� (29)

and that

〈’|�〉 =
∫
�(A)

F$(’)[F$(�)]∗ d� : (30)

Eqs. (29) and (30) are spectral representations, so that we can de<ne functions f(A) of A by using
the formula

〈’|f(A)�〉 =
∫
�(A)

f($)F$(’)[F$(�)]∗ d� ; (31)

provided this integral converges. If the spectrum of A has no singular part, then, d� can be chosen
to be the Lebesgue measure. Then, following the conventional Dirac notation, we can write F$ = |$〉
and Eq. (31) can be written as

〈’|f(A)�〉 =
∫
�(A)

f($)〈’|$〉〈$|�〉 d$ ; (32)

where we have used the convention 〈$|�〉 = 〈�|$〉∗. This equation is often written as

f(A) =
∫
�(A)

f($)|$〉〈$| d$ ; (33)

Eqs. (29) and (30) are particular cases of (32).

2.7. Examples of RHS

Example 1. Let us consider the set of functions S mapping the real line R into the complex plane
C satisfying the following properties [98,61]:

(i) If f(x) ∈ S, f(x) admits derivatives of all orders at all points. This implies that all derivatives
of f(x), f(n(x); n = 0; 1; 2; : : : exists and are continuous functions.

(ii) Each function f(x) ∈ S and its derivatives at all orders go to zero at the in<nity faster than
the inverse of any polynomial. In mathematical terms, this property can be written as

lim
x→±∞

∣∣∣∣xn dm

dxm
f(x)

∣∣∣∣ = 0; n; m = 0; 1; 2; : : : :

From this de<nition, we see that if f(x) belongs to S, all its derivatives also are in S. The space
S is a vector space, since the sum of functions in S and their products by complex numbers are
in S. It is customary to endow S with a topology such that a sequence fn(x) ∈ S converges to
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a function f(x) ∈ S if and only if∣∣∣∣
∣∣∣∣
(
x2 +

d2

dx2

)p

[fn(x) − f(x)]
∣∣∣∣
∣∣∣∣ �→ 0; p = 0; 1; 2; : : : ; (34)

where the norm here is given by

‖f(x)‖ =

√∫ ∞

−∞
|f(x)|2 dx :

This norm is well de<ned for all functions f(x) ∈ S.
A typical example of a function in S is f(x) = exp{−x2}. The space S is called the Schwartz

space and the functions on S are the Schwartz functions. The space S has the following properties:
(a) If f(x) ∈ S, then f(x) is square integrable with respect to the Lebesgue measure on R. The

functions with this latter property form a Hilbert space called L2(R). Thus, S ⊂ L2(R).
(b) The space S is dense in L2(R). Therefore, each function in L2(R) can be approached by a

function in S with arbitrary accuracy.
(c) If fn(x) �→ f(x) in S, then ‖fn(x)−f(x)‖ �→ 0. This is the case p=0 in Eq. (34). Therefore

all convergent sequences in S also converge in L2(R), but the converse is not true in general. S has
less convergent sequences than L2(R). The identity map from S into L2(R) is continuous.

(d) Let us consider the set S× of continuous anti-linear functions from S into C. Then, S× is
a vector space that contains L2(R) and that can be endowed with its own topology in such a way
that the identity mapping from L2(R) into S× (i(’) = ’; ∀’∈L2(R)) is continuous. In fact, the
topology that L2(R) inherits from S× is weaker (it has less neighborhoods) than the topology of the
Hilbert space. Therefore, there are more convergent sequences in S× than in L2(R).

From all these properties we conclude that [26]

S ⊂ L2(R) ⊂ S× (35)

is a RHS. Typical functionals in S× are the Dirac delta:

F[f(x)] =
∫ ∞

−∞
f∗(x)�(x − x0) dx = f∗(x0); ∀f(x) ∈ S

and the Fourier transform at the point k ∈R:

F[f(x)] =
∫ ∞

−∞
f∗(x)e−ikx dx = f̂(k); ∀f(x) ∈ S :

Observe that F is anti-linear in both cases.

Example 2. Let f(z) be a complex analytic function on the open upper half-plane C+

C+ = {z ∈C; z = x + iy; y¿ 0} :

We say that f(z) is a Hardy function on C+ if and only if [45,65,69,70,92,110]:
(i) For each y¿ 0 the function of real variable x, f(x + iy), is square integrable, i.e.,

I+(y) =
∫ ∞

−∞
|f(x + iy)|2 dx¡∞ : (36)
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(ii) Integrals (36) are uniformly bounded by the same upper bound K :

sup
y¿0

I+(y) = sup
y¿0

∫ ∞

−∞
|f(x + iy)|2 dx¡K ¡∞ : (37)

Hardy functions on the upper half-plane C+ have the following properties:
(a) they form a vector space, H2

+. Functions in H2
+ have boundary values on the real axis. For

each f(z) ∈H2
+, the set of these boundary values form a function f(x). This function is de<ned

taking the limit

lim
z→x

f(z) = f(x) :

The function f(x) is square integrable and∫ ∞

−∞
|f(x)|2 dx6K ¡∞ ; (38)

where the constant K is the same in (38) and in (37). The function f(z) determines uniquely the
function f(x).

(c) If f(x) is the function of the boundary values of a Hardy function f(z) on C+, we can
recover all the values of f(z) at the points z ∈C+ by means of the following equation:

f(z) =
1

2)i

∫ ∞

−∞
f(x) dx
x − z

: (39)

This result can be obtained by using the Cauchy theorem [45,65,69,70] and it is called the Titchmarsh
theorem. We see that a Hardy function determines uniquely the function of its boundary values and
vice versa. Consequently, we can identify both f(z) and f(x), and we shall do it in the sequel.

(c) We need a criterium according to which we can determine whether a function f(x) ∈L2(R) is
a Hardy function. This criterium is provided by the Paley–Wienner [92,45,65,69,70] theorem which
states that a function f(x) ∈L2(R) is in H2

+ if and only if its inverse Fourier transform vanishes
on the positive semi-axis. Moreover, if R− = (−∞; 0] and L2(R−) is the space of square integrable
functions on R−, the Paley–Wienner theorem establishes that the Fourier transform is unitary from
L2(R−) onto H2

+.
(d) Let S− be the space of all functions in S which vanish on the positive semi-axis R+ =[0;∞).

Take the space of the Fourier transform of the functions in S−. Due to the Paley–Wienner theorem
and the fact that the Fourier transform of a Schwartz function is also a Schwartz function, we
conclude that the Fourier transform of the space S− is the space S ∩H2

+. As S ∩H2
+ is a subspace

of S, we can use in S ∩H2
+ the topology of S.

(e) The space H2
+ is a subspace of L2(R). Furthermore, H2

+ is a Hilbert space when we give to
functions in H2

+ the L2(R) norm [45,65,69,70].
From all these properties and some mathematical machinery, taking some other properties into

account, as the fact that S− is dense in L2(R−), we conclude that [26,52]

S ∩H2
+ ⊂ H2

+ ⊂ (S ∩H2
+)× ; (40)

is a RHS. Eq. (40) implies that: S ∩H2
+ is a realization of �, H2

+ is a realization of the Hilbert
space H and (S ∩H2

+)× is a realization of the anti-dual space �×.
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Example 3. Let us take now the space of all complex analytic functions f(z) on the lower
half-plane C−

C− = {z ∈C; z = x − iy; y¿ 0} ;

such that
(i) For each y¿ 0, the function of real variable x, f(x − iy), is square integrable, i.e.,

I−(y) =
∫ ∞

−∞
|f(x − iy)|2 dx¡∞ : (41)

(ii) Integrals (41) are uniformly bounded by the upper bound K :

sup
y¿0

I−(y) = sup
y¿0

∫ ∞

−∞
|f(x − iy)|2 dx¡K ′ ¡∞ : (42)

These functions are called the Hardy functions on the lower half-plane. They form a vector space
which is denoted as H2−, which has very similar properties as H2

+. In particular:
(a) The boundary values on the real axis of every function f(z) ∈H2− determines a square

integrable function f(x) such that∫ ∞

−∞
|f(x)|2 dx¡K ′ ¡∞ :

(b) We can recover the values of f(z) for each z ∈C− by using the Titchmarsh formula:

f(z) = − 1
2)i

∫ ∞

−∞
f(x) dx
x − z

: (43)

Note on the minus sign in (43) which does not appears in (39). Thus, we can identify each function
f(z) ∈H2− with the function given by its boundary values f(x).

(c) A version of the Paley–Wienner theorem also applies here. The space H2− is the space of
the Fourier transform of the functions in L2(R+). If S+ is the subspace of the Schwartz space of all
functions that vanish on the negative semi-axis R− = (0;∞], the Fourier transform of S+ is given
by S ∩H2−.

(d) The space H2− is a subspace of L2(R) and is a Hilbert space with the L2(R) norm.
(v) It holds that L2(R) = L2(R+) ⊕ L2(R−). Using the properties of the Fourier transform we

conclude that

L2(R) =H2
+ ⊕H2

− ;

where ⊕ denotes orthogonal sum.
(f) If we endow S ∩H2− with the topology of S, we can show that

S ∩H2
− ⊂ H2

− ⊂ (S ∩H2
−)× ; (44)

is a new RHS. Observe that, again, S ∩H2− is a realization of �, H2− is a realization of the Hilbert
space H and, <nally, (S ∩H2−)× is a realization of the anti-dual space �×.

(g) Let f(z) be a function either in H2
+ or in H2−. For large values of |z| we have [70]

|f(z)| ≈ |z|−1=2 : (45)

This gives the asymptotic behavior of a Hardy function on a half-plane.
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(h) A theorem due to van Winter [112] shows that any function f(z) in H2
+ or in H2− is uniquely

determined by its boundary values on the positive semi-axis R+ = [0;∞]. The values on the open
half-plane and the negative real axis can be recovered from its values on R+. Moreover, if we called

S ∩H2
±|R+ ; (46)

to the spaces of functions that are restrictions to R+ of functions in S ∩H2±, these spaces are dense
in L2(R+) although S∩H2± are not dense in L2(R+) [112,26]. This is a rather surprising result which
will allow us to construct the next example (see Example 4). Note that the functions in S ∩H2±|R+

are just the boundary values of the functions in S ∩H2±, where we are ignoring the values of these
functions on R− = (−∞; 0].

(j) If  ±(E) ∈H2±, then, [ ±(E)]∗ ∈H2∓, where the star denotes complex conjugation. This means
that the complex conjugate of a Hardy function on a half-plane is a Hardy function on the other.

Example 4. After the above comments, we can construct two mappings, namely,

*± : S ∩H2
± �→ S ∩H2

±|R+ ; (47)

where *± carries a function f(x) ∈ S ∩H2± to the function of its boundary values on R+. As these
boundary values determine the whole function, as a consequence of the van Winter theorem [112],
the mappings *± have an inverse *−1

± . This is non-trivial and it has interesting consequences, as we
shall show later.

Take now spaces (46). A sequence fn(x) ∈ S ∩H2±|R+ converges to a function f(x) ∈ S ∩H2±|R+

if and only if [26]

*−1
± [fn(x)] �→ *−1

± [f(x)] ;

in S ∩H2±. We say that *± transport the Schwartz topology from S ∩H2± to S ∩H2±|R+. With this
de<nition the mappings *± as well as the mappings *−1

± are continuous. We conclude that [26,52]

S ∩H2
±|R+ ⊂ L2(R+) ⊂ (S ∩H2

±|R+)× (48)

are two new RHS.
It is important to observe that the mappings *± are not unitary because do not preserve scalar

products. If f(x) ∈ S ∩H2±, then f(x) ∈L2(R), and *±[f(x)] ∈L2(R+). Thus,

‖f(x)‖2 =
∫ ∞

−∞
|f(x)|2 dx

and

‖*±[f(x)]‖2 =
∫ ∞

0
|f(x)|2 dx¡

∫ ∞

−∞
|f(x)|2 dx = ‖f(x)‖2 :

This inequality is strict, i.e., the identity does not hold, because a Hardy function cannot vanish on
any interval. 12

We can now de<ne one to one onto mappings:

*×
± : (S ∩H2

±)× �→ (S ∩H2
±|R+)× ; (49)

12 Otherwise it would be the zero function.
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by using the duality formula

〈*± ’±|F±〉 = 〈’±|*×
±F±〉; ∀’± ∈ S ∩H2

±; ∀F± ∈ (S ∩H2
±)× : (50)

The mappings *×
± and their respective inverses *−1

±× are continuous [26]. Due to the non-unitarity of
*±, the mappings *×

± are not extensions of the mappings *±.
The RHS (48) will be the proper spaces to de<ne the Gamow vectors. We shall see this in the

next section.

2.8. Summary

The mathematical concepts presented in this section are related to the structure of RHS and
the construction of RHS for relevant examples. The transformations *± needed to de<ne the basic
spaces +, or space of test vectors, and +×, its dual, for certain cases of physical interest, have been
presented. A brief list of the relevant objects is the following:

H= ⊕
n
Hn (Hilbert space) ;

�OUT; �IN (MHller wave operators) ;

S =�IN�
†
OUT (S-operator) ;

� ⊂ H ⊂ �× (rigged Hilbert spaces) ;

H2
± (Hardy spaces) ;

S ∩H2
± (Hardy–Schwartz Functions) ;

*±; *×
± (Mappings) ;

S ∩H2
±|R+ (Restrictions to R+ of functions in S ∩H2

±) :

3. Physical concepts

The <rst known example of a quantum decay process is natural radioactivity, a process where the
atomic nucleus decays by the emission of particles. Under the hypothesis that the decay probability
on a radioactive sample does not depend on the past history of the sample, one concludes that if
at the time t = 0 there exist a population of N (0) nuclei, the number of remaining nuclei at a time
t ¿ 0 is given by

N (t) = N (0)e−,t ; (51)

where , = �−1 is the inverse of the half-life � of the considered radioactive nucleus.
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From the point of view of quantum mechanics, the relevant quantity is the non-decay probability.
Firstly, we de<ne the non-decay amplitude, which is the scalar product of the decaying state, 13

 =  (0) at t = 0, times the decaying state,  (t), at t ¿ 0. Thus, the non-decay amplitude is [50]

A(t) = 〈 |e−itH | 〉 = 〈 (0)| (t)〉 ; (52)

and the non-decay probability is

P(t) = |A(t)|2 = |〈 |e−itH | 〉|2 : (53)

It means that if we have a radioactive sample with N (0) nuclei at t = 0, the number of mother
nuclei which still remain after a time t ¿ 0 is given by

N (t) = N (0)P(t) :

The question on whether P(t) is exponentially decaying at all values of time, as suggested by
experiments on radioactive nuclei, can be answered by noticing that:

(i) For t = 0, the derivative of P(t) with respect to t, P′(0), is zero [50]. This implies that for
small values of t:

P(t)¿ e−,t :

As a direct consequence of this behavior of P(t), one has the so-called Zeno eFect: If a decaying
particle is continuously checked to see whether it has decayed or not, it never decays [109,41].
This is somehow logical, since a system which is constantly measured will not evolve. However,
the formal derivation of Zeno eFect is not so simple and it requires the use of functional analysis
[109,41].

(ii) For intermediate times, starting from a certain time t1 smaller than the half-life, to a time t2
larger than the half-life, the non-decay probability is exponential: P(t) ≈ e−,t . The time t1 needed
to begin with the exponential behavior is often called the Zeno time.

(iii) For very large times, P(t) ≈ At−n, where A is a positive constant and n is a positive number.
This fact has been discovered by Khal<n [68] and it is thereafter called the Khal<n eFect.

Comments. Deviations of P(t) from the exponential decaying law for very small and very large times
are obtained by using two hypothesis: the Hamiltonian which gives the dynamics of the system is
semibound and the energy has a <nite mean value 〈 |H | 〉 on the decaying state 14  .

It has been shown that the Khal<n eFect results from the fact that decay products recombine to
form the original decaying state [50]. Repeated measurements on the system and the interaction with
the environment may prevent the occurrence of this eFect [50].

We can obtain a purely exponentially decaying state, if and only if its energy distribution is a
Lorentzian or Breit–Wigner distribution of the type [50,35,49,47,20]

| (E)|2 =
,
)

1
(E − ER)2 + (2,)2 ; (54)

where ER is the resonant energy or the energy diFerence between the undecayed system and the
decay products. Observe that the Breit–Wigner distribution is diFerent from zero on the whole real

13 We assume for simplicity that the decaying state is a pure state.
14 This is equivalent to say that  is in the domain of H .
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axis, −∞¡E¡∞. This implies that, for a state that decays exponentially at all values of time,
the Hamiltonian H cannot be semi-bound and its spectrum must cover the whole real axis [47]. In
consequence, if exponentially decaying states are truly physical states, then, either the Hamiltonian
has a spectrum which covers the whole real axis or the decaying state is not a vector in the Hilbert
space on which H acts. If the <rst situation realizes, we are forced to discard Hamiltonians of the
kind H = p2=(2m) + V (x), which are nonetheless those describing resonance scattering. The latter
situation implies the need to enlarge the Hilbert space. This is precisely what should be done in
considering RHS.

3.1. Non-relativistic Gamow vectors

Here, we return to the model of resonance scattering introduced in Sections 2.4 and 2.5. The
model has, in general, an in<nite number of resonances, and this makes it rather complicated for
a <rst de<nition of the Gamow vectors and its properties. Instead, we shall introduce a toy model
[26]. We shall assume the existence of a resonance scattering which obey the following conditions:

(i) The resonance scattering is produced by a perturbation V on the free Hamiltonian H0; therefore,
we have two dynamics given by H0 and H = H0 + V , respectively.

(ii) The spectrum of both H0 and H is simple, absolutely continuous and is R+ = [0;∞). 15

(iii) The MHller wave operators exists and asymptotic completeness holds.
(iv) The S operator in the energy representation is a function of E, S(E), whose analytic

continuation has a pair of simple poles in the second sheet of the Riemann surface introduced in
Section 2.5. These poles are located at the points

zR = ER − i� and z∗
R = ER + i� : (55)

(v) On the second sheet, the growing of S(E) at in<nity is not faster than exponential. In particular,
this happens if for |E| suEciently large, it exists a polynomial P(E) such that,

|S(E)|6 |P(E)| : (56)

Once we have introduced the model, let us show how to de<ne the Gamow vectors and their
properties. According to our de<nition, Gamow vectors are the state vectors for exponentially de-
caying resonance states. 16 We have already mentioned that Gamow vectors should live in suitable
extensions of a Hilbert space given by the antidual in a RHS. Therefore, our <rst task is to de<ne
this RHS.

Since the spectrum of H0 is simple and absolutely continuous, the spectral theorem [98] determines
that there exists a unitary operator U acting from the Hilbert space H, in which H0 applies, 17 onto
L2(R+) the space of square integrable functions on the spectrum of H0 that we assume is R+.
The image by U of H0 is the multiplication operator on L2(R+), see (15) and (16). In our case,

15 Both, H0 and H may have bound states. In this case, we simply have to replace in the sequence the Hilbert space
H by its absolutely continuous subspace with respect the operator which has bound states.

16 We shall see later that those are not the only examples of Gamow vectors. New types of Gamow vectors arise when
the resonance poles are multiple.

17 Or its absolutely continuous part with respect to H0 if H0 has eigenvalues. This happens for instance in the Friedrichs
model we shall discuss later.
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we can write

U : H �→ L2(R+) :

For all  ∈H with ‖ ‖ = 1, the function  (E) = U is the wave function of the state vector  in
the energy representation. Also, if  is in the domain of H0, we have that

[UH0U−1] (E) = E (E) ;

i.e., the image by U of H0 in L2(R+) is the multiplication operator. Since U diagonalizes the
operator H0, we design the diagonal form by E, such that E (E) = E (E). The operator E is the
multiplication operator on L2(R+) and E= UH0U−1.

Take now V± as in (22). Obviously V± : H �→ L2(R+) and V± are unitary operators. After (23)
we have that V±HV−1

± = E. Therefore, both operators V± diagonalize H .
Let us de<ne

�± = V−1
± [S ∩H2

±|R+] : (57)

Now, we transport the topology from S ∩H2±|R+ into �±. This means that the sequence ( n)± con-
verges to  ± (( n)± �→  ±) in �± if and only if the sequence V±( n)± converges to
V± ± (V±( n)± �→ V± ±) in S ∩H2±|R+.

Once we have endowed the spaces �± with a topology, we automatically <nd their corresponding
anti-duals �×

±. After the van Winter theorem [112], we know that S ∩H2±|R+ is dense in L2(R+).
Since V± are unitary, �± are both dense in H. 18 Then, we have two new RHS:

�± ⊂ H ⊂ �×
± : (58)

The properties of E on L2(R+) [26] imply the following:
(i) The operator H does not lead out of �±, i.e., H�± ⊂ �±.
(ii) The operator H is continuous on �±. This implies that we can extend H into a continuous

operator on �×
±. This can be done by using the duality formula (26):

〈H ±|F±〉 = 〈 ±|HF±〉; ∀ ± ∈�±; ∀F± ∈�×
± : (59)

The extension of the operator H to �×
±, de<ned in (59), is continuous with the topology on

�×
± [26].
Consequently,
H is continuous on �± and on �×

± but not in H. 19

(iii) If t ¿ 0 and  + ∈�+, then, [26]

eitH  + ∈�+ : (60)

Furthermore, for t ¿ 0, eitH is a continuous operator on �+. However, for each t0 ¡ 0, we have a
vector  0

+�+ such that eit0H  0
+ does not belong to �+. Consequently, for all t ¡ 0, the operator eitH

18 We recall that H= V−1
± L2(R+).

19 Because its spectrum is not bounded.
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is not an operator on �+. Using the duality relation (26) we have that, for t ¿ 0,

〈eitH  +|F+〉 = 〈 +|e−itH F+〉; ∀ + ∈�+; ∀F+ ∈�×
+ (61)

and the evolution operator e−itH is well de<ned and continuous on �×
+ for the t ¿ 0 only. For t ¡ 0

e−itH is not even de<ned on �×
+.

If t ¡ 0 and  − ∈�−,

eitH  − ∈�− (62)

and is a continuous operator on �−. Then, using the duality formula (26), we have that e−itH is
well de<ned and continuous on �×

− for t ¡ 0. However, for t ¿ 0, e−itH is not even de<ned on �×
−.

These properties follow from the properties of eitE on S ∩H2±|R+ [26].
(iv) For each z+ ∈C+, there exists an anti-linear functional Fz ∈�×

+, which is de<ned as follows:
take  + ∈�+, we have that

V+ + =  +(E) ∈ S ∩H2
±|R+ ;

and the function  +(E) determines a unique function in S∩H2
+. This function is precisely *−1

+  +(E),
where *−1

+ is the inverse of the mapping *+ de<ned in (49) and (50).
Observe that the functions  +(E) and *−1

+  +(E) are boundary values of the same Hardy function
 +(z) on the upper half-plane. The diFerence between them lies on the fact that  +(E) represents
the boundary values of  +(z) on the positive semi-axis, R+ = [0;∞) and *−1

+  +(E) represents
the boundary values of  +(z) on the whole real axis R = (−∞;∞). On R+, both,  +(E) and
*−1

+  +(E) coincide. Therefore,  +(E) and *−1
+  +(E) represent the same function on diFerent domains

of de<nition, R+ and R, respectively. Then, it seems reasonable to use the symbol  +(E) for both,
 +(E) and *−1

+  +(E).
Then, let us de<ne the function  #−(E) as

 #
−(E) = [ +(E)]∗ ; (63)

where, as usual, the star denotes complex conjugation. By the properties of Hardy functions,  #−(E)
is a Hardy function on the lower half-plane. Therefore, it takes values on C−. As z+ ∈C+, its
complex conjugate z∗

+ ∈C− and we de<ne

Fz( +) =  #
−(z∗

+) : (64)

It is not diEcult to show that Fz is an anti-linear mapping from �+ into the set of complex numbers
C. We can also show that Fz is continuous [26] and, therefore, it belongs to �×

+. Following the
Dirac notation [44], Eq. (63) can be written as

Fz( +) = 〈 +|Fz〉 or also Fz( +) = 〈 +|z+〉 : (65)

In the second equation in (65) the functional Fz has been denoted as |z+〉.
For each z ∈C−, we can de<ne a functional |z−〉 on �− in the same manner;

 #
+(E) = [ −(E)]∗ ;
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where  −(E) = V− − with  − ∈�−, and

〈 −|z−〉 =  #
+(z∗

−) :

Here, |z−〉 ∈�×
−.

In our case, we have two resonance poles at the points zR =ER − i� and z∗
R =ER + i�. Following

the notation of [5], we shall denote the corresponding states as 20

|zR〉 = |f0〉 and |z∗
R〉 = |f̃0〉 : (66)

Therefore, the vectors |f0〉 and |f̃0〉, ful<ll, respectively:

〈 +|f0〉 = [ #
+(z0)]; 〈 −|f̃0〉 = [ #

−(z∗
0 )] (67)

with  ± ∈�±.
The functionals |f0〉 ∈�+ and |f̃0〉 ∈�− are, respectively, the decaying and growing Gamow

vectors. 21

Two intermediate spaces are also important. We de<ne them as

�± = U−1[S ∩H2
±|R+] ; (68)

where U diagonalizes H0. The spaces �± have the following properties:
(i) H0�± ⊂ �±.
(ii) We endow �± with the topology transported from [S ∩H2±|R+] by U−1. With this topology,

H0 is continuous on �±. Then, H0 can be extended into the antiduals �×
± by the duality formula

(see (26)):

〈H0 ±|F±〉 = 〈 ±|H0F±〉; ∀ ± ∈�±; F± ∈�×
± ;

(iii) There is a relation between �± and �± which is given by

�+ =�OUT�+; �− =�IN�− : (69)

These formulas appear as a consequence of (22). The operators �OUT and �IN are continuous
mappings between �± and �±. Since �OUT and �IN are unitary on H 22 , they can be extended to be

20 The meaning of the subindex zero will be clari<ed as we introduce the multiple pole resonances. See [5].
21 In references [20,26,52] the signs are changed. We prefer to use here the sign plus for the events after the scattering

and the sign minus for the events before the scattering, which is more intuitive. However, states in �×
− do not represent

necessarily situations before the scattering as we shall discuss later.
22 Or between the scattering states of H0 and H , if they have bound states.
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continuous mappings between the dual spaces [26], de<ning

〈�OUT +|�OUTF+〉 = 〈 +|F+〉; 〈�IN −|�INF−〉 = 〈 −|F−〉 ; (70)

where  ± ∈�± and F± ∈�×
±. Observe that �INF− ∈�×

− and �OUTF+ ∈�×
+.

The relation between these spaces can be summarized using the following diagrams:

�− ⊂ Hac(H) ⊂ �×
−

�−1
IN

�
� �−1

IN

� �−1
cIN

�− ⊂ Hac(H0) ⊂ �×
−

U

�
� U

� U

S ∩H2
−|R+ ⊂ L2(R+) ⊂ (S ∩H2

−|R+)×

* −1
−

�
� (* −1

− )×

S ∩H2
− ⊂ L2(R) ⊂ (S ∩H2

−)×

(71)

The operator U can be extended to be a continuous operator between �×
± and (S ∩H2±|R+)×,

also by a duality formula. Note that *−1
− does not connect L2(R+) to L2(R), because *−1

− originates
in a property of Hardy functions which is not shared by L2 functions. As *± are not unitary, their
adjoints *×

±, de<ned in (50), do not extend *± [26]. Note that (*×
±)−1 = (*−1

± )×, a property which
can be obtained from de<nitions (50). The second diagram is

�+ ⊂ Hac(H) ⊂ �×
+

�−1
OUT

�
� �−1

OUT

� �−1
OUT

�+ ⊂ Hac(H0) ⊂ �×
+

U

�
� U

� U

S ∩H2
+|R+ ⊂ L2(R+) ⊂ (S ∩H2

+|R+)×

* −1
+

�
� (* −1

+ )×

S ∩H2
+ ⊂ L2(R) ⊂ (S ∩H2

+)×

(72)

This diagram is self-explanatory.
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3.2. Properties of Gamow vectors

The Gamow vectors |f0〉 and |f̃0〉 have the following properties:
(i) They are generalized eigenvectors of the Hamiltonian, H , and satisfy the spectral equations

[20,26,52,5]:

H |f0〉 = zR|f0〉; H |f̃0〉 = z∗
R|f̃0〉 : (73)

Bound states of H represent physical states that do not evolve under the action of H . Their energies
are real. They satisfy a spectral equation of the form H’ = E’, with E real. In the language that
we are currently using, bound states are stable because their half-life, de<ned as the inverse of the
imaginary part of the eigenvalue, is in<nite [25]. On the other hand, decaying states, satisfy an
analogous spectral equation with complex eigenvalues.

Bound states represent stable states and Gamow vector represent unstable states. Both, stable and
unstable states satisfy similar spectral equations and they diFer in the character of the eigenvalues
[20].

The idea that resonances are eigenvectors of H with eigenvalues at the resonance poles is due to
Nakanishi [88].

(ii) We know that the action of the evolution operator e−itH on |f0〉 is valid for t ¿ 0, and for
|f̃0〉 for t ¡ 0. Taking into account these restrictions, we can prove that [26]:

e−itH |f0〉 = e−itERe−t�|f0〉; t ¿ 0 ; (74)

e−itH |f̃0〉 = e−itER e�t|f̃0〉; t ¡ 0 : (75)

It means that the Gamow vector |f0〉 decays exponentially for t ¿ 0 while |f̃0〉 grows exponentially
from t = −∞ to t = 0. The vector state |f0〉 would represent the state of an exponentially decaying
system, like the system formed by unstable particles. The growing process described by (75) is the
mirror image of the decaying process (74). The growing process usually does not describe the capture
process or the process of creation of a resonance, because these two processes are asymmetric [77].

(iii) If T represents the time reversal operator, we have that [23,58,36]

T |f0〉 = |f̃0〉; T |f̃0〉 = |f0〉 : (76)

Time reversal transforms the decaying process in its mirror image and vice versa.

3.3. Degenerate resonances

The term degenerate resonances has been coined by MondragTon et al. [86] to denote resonances
that are represented by multiple poles of the analytic continuation of the scattering function S(E).
They are poles on the second Riemann sheet. We shall see, in the next subsection, the existing
relation between these degenerate resonances and a new type of Gamow vectors. Also, we shall
show how to attach to any resonant pole of order N , exactly N +1 Gamow vectors of the new type.

Here, we shall present the mathematical construction of these new Gamow vectors and some of
their properties.

Let �± ∈�± and �±(E)=V±�±, de<ned as in Section 3.1. We recall that �#±(E)=[�±(E)]∗ and
that �#±(E) ∈ S ∩H∓|R+. Let zR be a pole of S(E) in the lower half-plane of the second Riemann
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sheet. Then, let us consider the following mappings:

�+ �→
[

dn

dzn
�#

−(z)
]
z=zR

; �− �→
[

dn

dzn
�#

+(z)
]
z=z∗

R

; (77)

with all values of n. If n=0 these maps represent the Gamow functionals |f0〉 and |f̃0〉, respectively.
For all values of n, we shall denote them as

|fn〉 and |f̃n〉 ; (78)

such that

〈�|fn〉 =
[

dn

dzn
�#

−(z)
]
z=zR

and 〈�−|f̃n〉 =
[

dn

dzn
�#

+(z)
]
z=z∗

R

: (79)

We can show that the functionals (77) are continuous and antilinear on +± [5]. Moreover, we can
prove the following formulas [5]:

H |fn〉 = zR|fn〉 + n|fn−1〉 (80)

and

H |f̃n〉 = z∗
R|f̃n〉 + n|f̃n−1〉 ; (81)

valid for n = 0; 1; 2; : : : ; N − 1, where N is the multiplicity of the poles 23 zR and z∗
R. Note that for

n = 0, we recover (73). Let us de<ne the N th-dimensional subspace �×
N+ of �×

+ as the subspace
spanned by the vectors |fj〉, j = 0; 1; : : : ; N − 1. Similarly, we de<ne the N th-dimensional subspace
�×

N− as the subspace of � spanned by the vectors |f̃j〉, j = 0; 1; : : : ; N − 1. We have that

H�×
N± ⊂ �×

N± : (82)

On �×
N+, we see after (80) that in the basis given by |f0〉; |f1〉; : : : ; [1=(N − 2)]|fN−2〉;

[1=(N − 1)]|fN−1〉, H admits the block diagonal representation:

H =




zR 1 0 : : : 0

0 zR 1 : : : 0

0 0 zR : : : 0

: : : : : : : : : : : : : : :

0 0 0 : : : zR




(83)

On �×
N−, we see after (81) that in the basis |f̃0〉; |f̃1〉; : : : ; [1=(N − 2)]|f̃N−2〉, [1=(N − 1)]|f̃N−1〉, H

admits the following block diagonal representation:

H =




z∗
R 1 0 : : : 0

0 z∗
R 1 : : : 0

0 0 z∗
R : : : 0

: : : : : : : : : : : : : : :

0 0 0 : : : z∗
R




: (84)

23 Causality relations show that both zR and z∗
R must have the same multiplicity [90].
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The evolution law of these Gamow vectors is given by [5]

e−itH |fn〉 = e−itzR
N−1∑
l=0

(
N − 1

l

)
(−it)l|fn−l〉 ; (85)

which is valid only for t ¡ 0, and

e−itH |f̃n〉 = eitz∗
R

N−1∑
l=0

(
N − 1

l

)
(it)l|f̃n−l〉 ; (86)

valid only for t ¡ 0.
From (85) and (86), we observe that only |f0〉 and |f̃0〉 evolve exponentially. For all the other

vectors |f0〉 and |f̃0〉, the exponential evolution law is multiplied by a polynomial of t of degree N .
On �×

N+, the evolution operator can be written in matrix form as

e−itH = e−itzR




1 −it
(−it)2

2!
: : :

(−it)N−1

(N − 1)!

0 1 −it : : :
(−it)N−2

(N − 2)!

0 0 1 : : :
(−it)N−3

(N − 3)!

: : : : : : : : : : : : : : :

0 0 0 : : : 1




; t ¿ 0 : (87)

Analogously, the matrix form of the evolution operator on �×
N− is

e−itH = eitz∗
R




1 it
(it)2

2!
: : :

(it)N−1

(N − 1)!

0 1 it : : :
(it)N−2

(N − 2)!

0 0 1 : : :
(it)N−3

(N − 3)!

: : : : : : : : : : : : : : :

0 0 0 : : : 1




; t ¡ 0 : (88)

3.4. Resonance scattering and Gamow vectors

In this subsection, we shall explain how Gamow vectors arise in a resonant scattering process, as
it was suggested by Bohm [20]. We assume that resonances are produced in a resonant scattering
process. A resonance scattering process implies the existence of a free dynamics, governed by a
free Hamiltonian H0, and a perturbed dynamics governed by the Hamiltonian H = H0 + V . In the
distant past, we prepare a state  in(t) that evolves freely, under the action of H0, until it enters in
the interaction region where it feels the action of the potential V . After a time, it goes out of the



70 O. Civitarese, M. Gadella / Physics Reports 396 (2004) 41–113

φ
out

scattering
region

detector

source

ψ
out

ψ
in

Fig. 1. Schematic representation of a scattering process (see Section 3.4). The state  (in) evolves freely, from the source,
until it reaches the interaction region.  (out) is the outgoing state and �(out) is its projection onto the measurement apparatus,
i.e. it is the observed state.

interaction region and evolves freely again as  out(t). Fig. 1 shows, schematically, the scattering
process we are interested in. The relation between the incoming free state  in and the outgoing free
state  out is given by the S operator:

 out(t) = S in(t) : (89)

If the particle represented by this quantum state spends, within the interaction region, a time much
larger than the time it would spent if the interaction would not exists, we say that a quasi-stationary
state or a resonance has been produced. This may happen for certain values of the energy, i.e. at the
resonant energies of the prepared state. Under certain rather general conditions [20], this resonance
is characterized by a pair of poles in the analytic continuation of the S operator. If we work in
the momentum representation, the function S(k) is mesomorphic in the complex plane (k ∈C). The
resonant poles are located in the lower open half plane (Im k ¡ 0) and are symmetric with respect
to the imaginary axis. If we work in the energy representation, the resonance poles of S(E) are
located in the second sheet of the Riemann surface at zR = ER − i�=2 and z∗

R = ER + i�=2. Here ER

represents the resonant energy of the quasi-stationary state and ˝=� is the half-life. Fig. 2 shows the
location of the resonant pole in the complex plane. We have to stress that, in general, we do not
observe the outgoing state  out(t) but, instead, its projection into the region where the measurement
apparatus is placed. Therefore, we need to project  out(t) into this region to obtain the observed
state �out(t).

The idea of Bohm is to calculate the transition amplitude between the true outgoing state and the
observed outgoing state. This gives

〈�out(t)| out(t)〉 = 〈�out|S in〉 : (90)

Now, let us assume that the MHller wave operators exist for the pair (H0; H) and that asymptotic
completeness holds. Then,

S =�†
OUT�IN



O. Civitarese, M. Gadella / Physics Reports 396 (2004) 41–113 71

zR = ER-iΓ/2

x

C- C
x

y

Fig. 2. Resonance poles of the S-operator.

and (90) yields

〈�out|�†
OUT�IN in〉 = 〈�OUT�out|�IN in〉 = 〈�+| −〉 ; (91)

where obviously

�+ =�OUT�out ;  − =�IN in : (92)

Since we are in the situation described in Section 3.1, Eq. (90) gives

〈�out|S in〉 =
∫ ∞

0
[�out(E)]∗S(E) in(E) dE : (93)

Let us make now the following ansatz:

�out ∈�+;  in ∈�− ; (94)

where �± have been de<ned in (68). The operator U diagonalizes the free Hamiltonian H0. There-
fore, it connects the abstract free evolving vectors with their wave functions in the energy represen-
tation. Thus, �out(E) = U�out and  in(E) = U in. Hence,

�out(E) ∈ S ∩H2
+|R+ ;  in(E) ∈ S ∩H2

−|R+ : (95)

According to the theorem by Gelfand and Maurin mentioned in Section 2.6, there exist eigenvectors
of H0 in �×

±, such that H0|E〉 = E |E〉, for all E ∈R+ [59], with the following property [26]:

〈 in|E〉 = [ in(E)]∗ ∈ S ∩H2
+|R+ ; 〈�out|E〉 = [�out(E)]∗ ∈ S ∩H2

−|R+ ; (96)

so that

〈�out | S in〉 =
∫ ∞

0
〈�out|E〉S(E)〈E| in〉 dE ; (97)

where

〈E| in〉 = 〈 in|E〉∗ : (98)

Let us de<ne now

|E+〉 =�OUT|E〉; |E−〉 =�IN|E〉 : (99)
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The functionals |E±〉 ∈�×
± have the following properties:

H |E+〉 = H�OUT|E〉 =�OUTH0|E〉 = E�OUT|E〉 = E|E+〉;
H |E−〉 = H�IN|E〉 =�INH0|E〉 = E�IN|E〉 = E|E−〉 : (100)

There is one pair of non-degenerate states |E±〉 for each E ∈R+, the spectrum of H 24 Therefore,
the theorem by Gelfand and Maurin applies here so that 〈 −|E−〉 and 〈�+|E+〉 are the complex
conjugate of the wave function  −(E) and �+(E) for the state vectors  − and �+ in the energy
representation. Also, we have that

〈�+|E+〉 = 〈�OUT�out|�OUT|E〉 = 〈�out|E〉 = [�out(E)]∗ (101)

and

〈 −|E−〉 = 〈�IN in|�IN|E〉 = 〈 in|E〉 = [ in(E)]∗ : (102)

Now, in order to obtain the Gamow vectors, we proceed as follows: <rst, let us consider the scalar
product

〈�+| −〉 = 〈�out|S in〉 =
∫ ∞

0
〈�out|E〉S(E)〈E| in〉 dE

=
∫ ∞

0
[�out(E)]∗S(E) in(E) dE : (103)

The function [�out(E)]∗ in(E) is analytic on the lower open (Im E¡ 0) half-plane, where the func-
tion S(E) is analytic except for isolated singularities. 25 Let us assume that S(E) contains resonance
poles only. Using the Cauchy theorem [26,52], we obtain∫ R

0
[�out(E)]∗S(E) in(E) dE = −

∫ 0

−R
[�out(E)]∗S(E) in(E) dE

+
∫
C

[�out(z∗)]∗S(z) in(z) dz

− 2)i
∑

Residues{[�out(z)]∗S(z) in(z)} ; (104)

where
(i) The integral over the negative axis refers to the negative axis in the second sheet of the

Riemann surface.
(ii) C is the semicircle, in the lower half-plane of the second sheet, centered at the origin with

radius R, which does not contain any pole of S(E).

24 The non-degeneracy holds in the case being considered here, for a spherically symmetric potential and for l = 0. For
the general case |E±〉 are degenerate, but this does not aFect the discussion.

25 If we use the language of Riemann surfaces, we note that the function [�out(E)]∗ in(E) has to be de<ned on the
upper rim of the cut, of the surface associated to the transformation z �→ √

z, that connects the upper half-plane of the <rst
sheet with the lower half-plane of the second sheet. This second sheet contains the resonance poles [20]. The geometry
is the one shown in Fig. 3.
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o cut

second sheetfirst sheet

Fig. 3. Geometry of the Riemann surfaces (<rst and second sheets) and the location of the resonance poles, as explained
in Section 3.4.

(iii) The sum of the residues extends over all poles of S(E) in the region limited by the contour
[ − R; R] ∪ C.

Fig. 3 illustrates these concepts. If we take the limit as R �→ ∞ and assume that S(E) is bounded
by a polynomial on the second sheet (see (56)), the integral over C goes to zero and we obtain∫ ∞

0
[�out(E)]∗S(E) in(E) dE = −

∫ 0

−∞
[�out(E)]∗S(E) in(E) dE

−2)i
∑

Residues{[�out(z∗)]∗S(z) in(z)} : (105)

The sum includes the residues of all the poles in the lower half-plane of the second sheet. The
number of these poles is in<nite for realistic models such as those with spherically symmetric
potentials. However, we may propose toy resonant models that are completely solvable and that
give us an excellent picture of the behavior of resonances. We can construct toy models having one
resonance only. Examples of those are the Friedrichs model, to be discussed in the next section,
and some completely solvable one-dimensional models. In those models we assume “a priori” the
form of S(k) with assigned resonance poles and then, obtain the potential [8,40]. Thus, we may
assume, for the sake of simplicity, the existence of a resonance pole located at zR and that this pole
is simple. In this case, the sum of the residues in (105) has one term, which is

− 2)i[�out(z∗
R)]∗s1  in(zR) = −2)i〈�+|f0〉〈f̃0| −〉 ; (106)

where s1 is the residue of S(z) at zR.
Then, using (105) and (106), we found that 26

〈�+| −〉 =
∫ 0

−∞
〈�+|E+〉S(E)〈E−| −〉 dE − 2)i〈�+|f0〉s1〈f̃0| −〉

= background − 2)i〈�+|f0〉s1〈f̃0| −〉 ; (107)

where “background” represents the integral term in (107). If we de<ne the complex constant
A = −2)is1〈f̃0| −〉, which obviously depends on  −, this background term is written as

background = 〈�+;  −〉 − A〈�+|f0〉 : (108)

26 For E ¡ 0, the mappings  in �→ 〈 in|E〉 = [ in(E)]∗, �+ �→ 〈�+|E+〉 = 〈�OUT�+|�OUT|E+〉 = 〈�out|E〉 = [�in(E)]∗,
etc., are also antilinear and continuous.
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Since,  − ∈H ⊂ �×
+, the vector  − can be identi<ed to a continuous anti-linear functional on �+,

for which the action on each �+ ∈�+ is the scalar product 〈�+| −〉. Therefore, the background
term in (102) is given by the action of a functional on �+. This functional is  − − A|f0〉 and we
call it |bgk〉 for simplicity, so that

background = 〈�+|bgk〉 :

If we omit the arbitrary vector �+ ∈�+ in (107), we have

 − = |bgk〉 + A |f0〉 : (109)

Thus, the decaying state  − is a sum of two terms, A |f0〉 proportional to the Gamow vector |f0〉,
that decays exponentially, and the “background” functional |bgk〉. The background functional |bgk〉
has the following properties:

(i) The state |bgk〉 decays to the future in the sense that

〈�+|e−itH |bgk〉 �→ 0; t �→ 0+; ∀�+ ∈�+ : (110)

This fact is a consequence of the properties of the integrable functions and, in particular, of the
Riemann–Lebesgue lemma [99].

(ii) The state |bgk〉 decays slower than an exponential for larger values of t. It is clear after de-
composition (109) and from the fact that a normalize vector in H cannot decay exponentially [50].

Finally, there is a “time reversal” of decomposition (109). This is the decomposition of �+ in the
sum of a vector proportional to |f̃0〉 plus a background type functional [20,26].

3.5. The Friedrichs model

An exactly soluble model for resonance scattering is given by the Friedrichs model [13].
The simplest form of the Friedrichs model [51] includes a free Hamiltonian H0 with a simple

continuous spectrum, which is R+ ≡ [0;∞), plus an eigenvalue !0 imbedded in this continuous
spectrum (!0 ¿ 0). An interaction is produced between the continuous and discrete parts of H0 by
means of a potential V so that the bound state of H0 is dissolved in the continuous and a resonance
is produced. The spectrum of the total Hamiltonian H = H0 + V is purely continuous and coincides
with R+. Furthermore, the MHller wave operators and, therefore, the S-operator, are well de<ned in
the case of the Friedrichs model [66,47]. The resonance appears as a pole in the analytic continuation
of the reduced resolvent as we shall explain next.

From the point of view of the Hilbert space formulation of quantum mechanics, the Hilbert space
of this system in the energy representation is the direct sum

H= C⊕ L2(R+) ; (111)

so that, any  ∈H can be represented as

 =

(
"

’(!)

)
; (112)
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where " is a complex number and ’(!) ∈L2(R+). The scalar product of two vectors in H is
given by〈(

"

’(!)

)∣∣∣∣∣
(

#

3(!)

)〉
= "∗# +

∫ ∞

0
’∗(!)3(!) d! : (113)

Then, the action of the Hamiltonian H0 on  is

H0 =

(
!0"

!’(!)

)
; (114)

where !0 ¿ 0 is the eigenvalue of H0 and ’(!) is a function on R+ with the property !’(!) ∈
L2(R+). Observe that the restriction of H0 to L2(R+) is the multiplication operator:

H0

(
0

’(!)

)
= !

(
0

’(!)

)
: (115)

This operator has an absolutely continuous spectrum equal to R+. Thus, H0 has an eigenvalue, !0,
imbedded in its continuous spectrum, R+. The vector

|1〉 =

(
1

0

)
(116)

is the state vector for the bound state. Observe that H0|1〉 = !0|1〉. After the de<nition of H in
(111), we see that |1〉 is orthogonal to the space L2(R+).

The total Hamiltonian is given by

H = H0 + $V (117)

with

V =




∫ ∞

0
f(!)’(!) d!

"f∗(!)


 ; (118)

where, $ is a positive real parameter, the coupling parameter, and f(!) is a function in L2(R+)
called the form factor.

Let us denote by P the orthogonal projection to the subspace spanned by |1〉 and let Q be
its orthogonal complement. Then, Q projects  in (112) into its second component. We obviously
have that

P + Q = I; PQ = QP = O ; (119)

where I and O are the identity and the zero operator on H, respectively.

Proposition F.1. We have that

QVQ = O : (120)



76 O. Civitarese, M. Gadella / Physics Reports 396 (2004) 41–113

Proof. Let us apply QVQ to  in (112):

QVQ

(
"

’(!)

)
= QV

(
0

’(!)

)
= Q




∫ ∞

0
f(!)’(!) d!

0


 =

(
0

0

)
: (121)

This is often called the Friedrichs condition [47]. The Friedrichs condition is nothing else than
a straightforward consequence of the model.

Proposition F.2. The projections P and Q commute with H0.

Proof. It is suEcient to prove that PH0 = H0P, since Q = I − P.

PH0

(
"

’(!)

)
= P

(
!0"

!’(!)

)
=

(
!0"

0

)
;

H0P

(
"

’(!)

)
= H0

(
"

0

)
=

(
!0"

0

)
: (122)

Under some conditions, that we are going to describe soon, the Friedrichs model has a resonance.
The eFect of $V is to transform the bound state |1〉 of H0 in an unstable state. The real number !0

is transformed into a complex number !$ that goes to !0 as $ �→ 0.

In order to describe resonances, we consider the reduced resolvent of H in |1〉 given by

FH (z) = 〈1| 1
z − H

|1〉 ; (123)

where H is the total Hamiltonian given by (117). The complex valued function FH (z) has no
singularities on the complex plane other than a branch cut coinciding with the spectrum 27 of H :
�(H) ≡ R+ [66]. Under certain conditions on the form factor f(!), FH (z) admits analytic continu-
ations from above to below and from below to above through the cut. These analytic continuations
may have singularities which are associated with the resonances. We shall present here these ideas
in detail. To start with, we shall introduce the following theorems:

Theorem F.3. The reduced resolvent (123) is given by [47]

〈1| 1
z − H

|1〉 =
(

−z + !0 + $2
∫ ∞

0

|f(!)|2
z − !

d!
)−1

: (124)

Proof. The second resolvent identity [113] states that

R(z; H) = R(z; H0) − $R(z; H0)VR(z; H) ; (125)

27 After the de<nition of the resolvent of H , it is clear why FH (z) must be singular at the points of the spectrum of H .
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where

R(z; H) =
1

z − H
; R(z; H0) =

1
z − H0

:

This gives

P
1

z − H
P = P

1
z − H0

P − $P
1

z − H0
V

1
z − H

P : (126)

Inserting (119) in the second term in the right of (126), we have:

P
1

z − H0
(P + Q)V (P + Q)

1
z − H

P

=P
1

z − H0
PVP

1
z − H

P + P
1

z − H0
QVP

1
z − H

P

+P
1

z − H0
PVQ

1
z − H

P + P
1

z − H0
QVQ

1
z − H

P : (127)

As P and Q commute with H0 and PQ = O, we have that

P
1

z − H0
Q = O ;

and therefore the second and fourth terms in the right-hand side of (127) vanish. We also have that

Q
1

z − H
P = Q

1
z − H0

P − $Q
1

z − H0
V

1
z − H

P : (128)

The <rst term of the right-hand side of (128) also vanishes. Then, we have

Q
1

z − H
P = −$Q

1
z − H0

(P + Q)V (P + Q)
1

z − H
P

= −$Q
1

z − H0
QVQ

1
z − H

P − $Q
1

z − H0
PVP

1
z − H

P

− $Q
1

z − H0
PVQ

1
z − H

P − $Q
1

z − H0
QVP

1
z − H

P : (129)

Again, the second and the third term in the right-hand side of (129) vanish. Due to the Friedrichs
condition (120), also the <rst term vanishes. Thus,

Q
1

z − H
P = −$Q

1
z − H0

QVP
1

z − H
P : (130)

Inserting (130) into (127) and then, (127) into (126), we have

P
1

z − H
P =P

1
z − H0

P − $P
1

z − H0
PVP

1
z − H

P

+ $2P
1

z − H0
VQ

1
z − H0

QVP
1

z − H
P : (131)
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If we multiply (131) to the left by (z − H0)P, we can write

(z − H0)P
1

z − H0
P = P

and therefore,

P =
[
(z − H0)P + $PVP − $2PVQ

1
z − H0

QVP
]
P

1
z − H

P ; (132)

or

P
1

z − H
P = [G(z)]−1 P ; (133)

where

G(z) =
[
(z − H0)P + $PVP − $2PVQ

1
z − H0

QVP
]

: (134)

Since,

PVQ
1

z − H0
QVP

(
1

0

)
=PVQ

1
z − H0

QV

(
1

0

)

=PVQ
1

z − H0
Q

(
0

f∗(!)

)
= PVQ

1
z − H0

(
0

f∗(!)

)

=PVQ


 0

f∗(!)
z − !


 = P




∫ ∞

0

|f(!)|2
z − !

d!

0




=




∫ ∞

0

|f(!)|2
z − !

d!

0


 ; (135)

and PVP|1〉 = 0, we have that

G(z)|1〉 =
[
z − !0 − $2

∫ ∞

0

|f(!)|2
z − !

d!
]

|1〉 : (136)

Consequently,

〈1| 1
z − H

|1〉 = 〈1|P 1
z − H

P|1〉 = 〈1|[G(z)]−1|1〉

=
[
z − !0 − $2

∫ ∞

0

|f(!)|2
z − !

d!
]−1

; (137)

which proves Theorem F.3.

Now, let us assume that the function

h(!) = |f(!)|2
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is entire analytic on the complex variable !. Then, the following result holds [51,47,66]:

Theorem F.4. The function,

3(z) = z − !0 − $2
∫ ∞

0

|f(!)|2
z − !

d! ; (138)

is a complex analytic function with no singularities on the complex plane other than a branch cut
coinciding with the positive semi-axis R+ provided that 3(0)¿ 0. It admits analytic continuations
through the cut 3+(z), from above to below 3−(z) from below to above. The continuation 3+(z)
has a zero at z0 with Im{z0}¡ 0, which is an analytic function on the coupling parameter $ on
a neighborhood of zero. Analogously, 3−(z) has a zero at z∗

0 , which is also an analytic function
of $.

The proof of this result is very technical and we refer the interested reader to the original sources
[51,47,66]. The form of 3±(z) is

3±(z) = z − !0 − $2
∫ ∞

0

|f(!)|2
z − ! ± i0

d! ; (139)

where the signs plus and minus on the denominator of (139) indicate that the analytic function
represented by the integral is an analytic continuation from above to below, +, or from below to
above,−. Thus, z0 and z∗

0 are, respectively, the zeroes of the equations:

3+(z) = 0 and 3−(z) = 0 : (140)

Theorem F.4 is also valid for other types of functions h(!). See [5].

3.5.1. The Friedrichs model in RHS
The notation for the Friedrichs model presented so far is not, in our opinion, the most practical for

explicit calculations. We shall use a new notation, in the spirit of the Dirac notation, for which rigged
Hilbert spaces (RHS) are particularly useful. According to the Gelfand–Maurin spectral theorem,
there exists a RHS � ⊂ H ⊂ �× such that H0� ⊂ �, H0 is continuous on � and for any !∈R+,
the absolutely continuous spectrum of H0, there exists a |!〉 ∈�× with H0|!〉 = !|!〉. As H0 has
the eigenvector |1〉, the spectral decomposition of H0 is then

H0 = !0|1〉〈1| +
∫ ∞

0
!|!〉〈!| d! : (141)

Then according to (118), V must have the following form:

V =
∫ ∞

0
[f∗(!)|!〉〈1| + f(!)|1〉〈!|] d! : (142)

Also, the vector  in (112) can be written as

 = "|1〉 +
∫ ∞

0
’(!) |!〉 d! : (143)

Note that the set {|1〉; |!〉}, !∈R+, of generalized eigenvectors of H0, forms a complete set in the
sense that each  ∈� can be written as a superposition of these vectors. Thus, each vector in � has
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a component on the bound state |1〉 of H0 and an in<nite number of components, in the continuous
spectrum of H0.

With this notation, the action of V on  can be obtained if we note that

〈1|1〉 = 1 ; (144)

〈1|!〉 = 〈!|1〉 = 0 ; (145)

〈!|!′〉 = 〈!′|!〉 = �(! − !′) : (146)

To show (144), we observe that this is just the scalar product of vector (116) by itself. To show
(146), let us consider the following scalar product in the old notation:〈(

0

’(!)

)∣∣∣∣∣
(

0

3(!)

)〉
=

∫ ∞

0
’∗(!)3(!) d! : (147)

In the new notation, this scalar product should be written as〈∫ ∞

0
’∗(!) 〈!|d!

∣∣∣∣
∫ ∞

0
3(!′) |!′〉 d!′

〉
=

∫ ∞

0

∫ ∞

0
’∗(!)3(!′)〈!|!′〉 d! d!′ : (148)

Should Eqs. (147) and (148) coincide, then Eq. (146) must follow. Observe that the Dirac delta is
referred to the integration from 0 to ∞. Finally (145) follows from the fact that the states |!〉 span
the lower component in (116) and functions in this component are orthogonal to |1〉.

Then, if we apply (142) to (143), we have

V =
∫ ∞

0
f∗(!)|!〉 d!〈1|"|1〉 +

∫ ∞

0

∫ ∞

0
f(!)’(!′)|1〉〈!|!′〉 d! d!′

= "
∫ ∞

0
f∗(!)|!〉 d! + |1〉

∫ ∞

0
f(!)’(!) d! : (149)

This result coincides with (118). This shows how to operate in the new notation, which is more
familiar to physicists.

3.6. The Gamow vectors for the Friedrichs model

Here, we intend to get the explicit form of the Gamow vectors for the Friedrichs model. We make
the following assumptions:

(i) The function 3(z) has no singularities in the complex plane other than a branch cut coinciding
with the positive semiaxis, i.e., the continuous spectrum of H .

(ii) The function 3(z) can be analytically continued through the cut. These are the functions 3+(z)
and 3−(z) of the previous section. These extensions have poles located at the points z0 and z∗

0 as
stated before.

(iii) Although resonance poles may, in principle, have arbitrary multiplicity, since in resonant
scattering this is not forbidden by causality conditions [90], we shall assume <rst that our resonance
poles are simple. In the next subsection, we shall obtain the Gamow vectors corresponding to a
double pole resonance.
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Thus, we intend to obtain the decaying Gamow vector |f0〉 ∈�×
+ and the growing Gamow vector

|f̃0〉 ∈�×
−. In order to accomplish our goal, we do the following [13,8]: Let x be an arbitrary positive

number (x¿ 0) and write the eigenvalue equation

(H − x)8(x) = 0 : (150)

Since x belongs to the continuous spectrum of H , 8(x) cannot be a normalized eigenvector of H
and therefore, it should belong to either of the duals �×

±. As |1〉 and |!〉 form a complete system,
we must have:

8(x) = "(x)|1〉 +
∫ ∞

0
 (x; !)|!〉 d! : (151)

If we apply H to (151), we obtain the following system of equations:

(!0 − x)"(!) + $
∫ ∞

0
 (x; !)f∗(!) d! = 0 ; (152)

(! − x) (x; !) + $f(!)"(!) = 0 : (153)

To solve this system, we write "(!) in terms of  (x; !) using (153) and carry the result to (152).
We obtain an integral equation, which gives one solution of the form

8+(x) = |x〉 + $f∗(x)
1

3+(x)

{
|1〉 + $

∫ ∞

0

f(!)
x − ! + i0

|!〉 d!
}

: (154)

This is a functional in �×
+. When applied to a vector in �+, it gives an analytic function on the

lower half-plane. We say that 8+(x) admits analytic continuation to the lower half-plane, in a weak
sense. This continuation has a simple pole at z0 so that we can write on a neighborhood of z0:

8+(z) =
C

z − z0
+ o(z) : (155)

From (150) and (155), we get

0 = (H − z)8+(z) =
1

z − z0
(H − z)C + (H − z)o(z) ; (156)

which gives

(H − z0)C = 0 ⇒ HC = z0C : (157)

Therefore, the residue C of 8(z) at the pole z0 coincides, save for an irrelevant constant, with the
decaying Gamow vector |f0〉. To calculate its explicit form, note that (155) on a neighborhood of
z0 has the form

8+(z) ≈ constant
(z − z0)

{
|1〉 + $

∫ ∞

0

f(!)
z − ! + i0

|!〉 d!
}

+ RT ; (158)

where RT stand for “regular terms”. Now, let us use the Taylor theorem to have

1
z − ! + i0

=
1

z0 − ! + i0
− z − z0

(z0 − ! + i0)2 + o(z) : (159)
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By replacing (159) in (158), we get

8+(z) ≈ constant
(z − z0)

{
|1〉 + $

∫ ∞

0

f(!)
z0 − ! + i0

|!〉 d!
}

+ RT : (160)

Therefore, up to an irrelevant constant, we conclude that

C = |f0〉 = |1〉 +
∫ ∞

0

$f(!)
z0 − ! + i0

|!〉 d! : (161)

The system given by Eqs. (152) and (153) has another solution that can be analytically continued
in the upper half-plane. This solution gives, using the same technique, the growing Gamow vector
|f̃0〉:

|f̃0〉 = |1〉 +
∫ ∞

0

$f∗(!)
z∗
0 − ! − i0

|!〉 d! : (162)

Note that the Gamow vectors depend on the coupling constant $.

3.7. Double pole resonances

The zeroes of 3±(z) at z0 and z∗
0 can be multiple, and this means that 3+(z) = (z − z0)nG(z) with

G(z) �= 0 on a neighborhood of z0. The question that arises now is whether these zeroes exist. We
want to describe a typical situation, for which the zeroes at z0 and at z∗

0 are double and obtain the
Gamow vectors.

Let us choose in (142) a form factor f(!) such that [5]:

|f(!)|2 =
√
!

P(!)
(163)

with

P(!) = (! − ")(! − "∗) : (164)

Identities (163) and (164) determine the form factor f(!) up to a phase. We have

3(z) = z − !0 − )$2

{√−z
P(z)

− 1
" − "∗

(√−"
z − "

−
√−"∗

z − "∗

)}
: (165)

If we make the change of variables:

z = p2; " = b2 (166)

and write ’(p) = 3(p2) = 3(z), we obtain

’(p) = p2 − !0 +
i)$2

(b − b∗)(p + b)(p − b∗)
: (167)

Then, if 3+(z) has a double zero at z0, ’(p) has a double zero at p0 with z0 =p2
R [5]. The condition

that ’(p) has a double pole at p0 reads

’(p0) = 0; ’′(p0) = 0; ’′′(p0) �= 0 : (168)
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The two complex equations (168) give a system of four real equations for six parameters, which
are: !0, $, Rep0, Imp0, Re b and Im b. We have two free parameters that, we choose to be !0 and
$. We can write the other four parameters in terms of these two and obtain:

b = !1=2
0 + 2i

(
)$2

16!0

)1=3

(169)

and

p0 =

[
!0 −

(
)$2

16!0

)2=3
]

−
(

)$2

16!0

)1=3

: (170)

However, the parameters !0 and $ are not completely independent if we impose the condition
Imp0 ¡ 0, since this implies that

!0 −
(

)$2

16!0

)2=3

¿ 0 : (171)

The condition Imp0 ¡ 0 comes from 3(0)¿ 0 and we impose the latter in order to restrict the
singularities of 3(z) to those on the branch cut [47,66]. The resonance poles are singularities of the
analytic continuations of 3(z), or for ’(p) on the upper half-plane [66].

If we carry (169) and (170) to (167), we obtain

’(p) = −(p − p0)2(p + p∗
0)

2

(p + t)(p − t∗)
; (172)

where t is a complex number diFerent from p0 or p∗
0 . We observe that ’(p) has double zeroes at

pR and p∗
R and therefore, so has 3(z) at z0 and z∗

0 .
Due to the fact that the analytic continuation of (154) exists on a neighborhood of z0, we can

now write

8+(z) ≈ C1

(z − z0)2 +
C2

z − z0
+ RT (173)

and

8+(z) ≈ constant
(z − z0)2

{
|1〉 + $

∫ ∞

0

f(!)
z − ! + i0

|!〉 d!
}

=
constant
(z − z0)2

{
|1〉 + $

∫ ∞

0

f(!)
z0 − ! + i0

|!〉 d!

−$(z − z0)
∫ ∞

0

f(!)
(z0 − ! + i0)2 |!〉 d!

}
: (174)

Comparing (174) with (173), we obtain

C1 = |1〉 + $
∫ ∞

0

f(!)
z0 − ! + i0

|!〉 d! ; (175)

C2 = −$
∫ ∞

0

f(!)
(z0 − ! + i0)2 |!〉 d! : (176)
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We must show that C1 and C2 are indeed the Gamow vectors we are looking for. More precisely

|f0〉 = C1; |f1〉 = C2 : (177)

Due to the properties of |f0〉 and |f1〉 presented in Sections 3.2 and 3.3, to get (177) we have to
show that

HC1 = zRC1; HC2 = zRC2 + C1 : (178)

From (175), there is no doubt that C1 = |f0〉. To obtain the second relation in (178), we apply H
to (176) and get

HC2 = −$
∫ ∞

0
d!′!′|!′〉〈!′|

∫ ∞

0
d!

f(!)
(zR − ! + i0)2 |!〉

−$2
∫ ∞

0
d!′f∗(!)|1〉〈!′|$

∫ ∞

0
d!

f(!)
(zR − ! + i0)2 |!〉

= −$
∫ ∞

0
d!

!f(!)
(zR − ! + i0)2 |!〉 −

[
$2

∫ ∞

0
d!

|f(!)|2
(zR − ! + i0)2

]
|1〉 : (179)

The coeEcient of |1〉 in (179) is equal to one. To show it, let us go back to (139) and derive it
with respect to z. We get

3′
+(z) = −1 − $2

∫ ∞

0
d!

|f(!)|2
(z − ! + i0)2 : (180)

Since ’′(p0) = 0 implies 3′(z0) = 0 [5], we have that

3′
+(z0) = 0 = −1 − $2

∫ ∞

0
d!

|f(!)|2
(z0 − ! + i0)2 ; (181)

which supports our claim. After (181) and (179) can be written as

HC2 = |1〉 + $
∫ ∞

0
d!

(−! + zR)f(!)
(z0 − ! + i0)2 |!〉

+ z0

[
−$

∫ ∞

0
d!

f(!)
(z0 − ! + i0)2 |!〉

]

= |1〉 + $
∫ ∞

0
d!

f(!)
z0 − ! + i0

|!〉 + z0

[
−$

∫ ∞

0
d!

f(!)
(z0 − ! + i0)2 |!〉

]

=C1 + z0C2 ; (182)

which shows that C2 = |f1〉.
On the subspace spanned by |f0〉 and |f1〉, the total Hamiltonian H exhibits a block diagonal

form:

H =

(
z0 1

0 z0

)
: (183)
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Analogously, one obtains for |f̃0〉 and |f̃1〉 the following expressions:

|f̃0〉 = |1〉 + $
∫ ∞

0
d!

f(!)
z∗
0 − ! − i0

|!〉 ; (184)

|f̃1〉 = −$
∫ ∞

0
d!

f(!)
(z∗

0 − ! − i0)2 |!〉 : (185)

Remark. Another model producing a double pole resonance has been discussed by MondragTon
and coworkers [86,87,10]. In their model, a double pole resonance is produced in one-dimensional
scattering with a double delta barrier. The potential has the form

V =
)
"
�(x − a) +

)
#
�(x − b) ;

where a, b, " and # are real parameters, and it gives an in<nite number of resonances such that
pairs of them coincide for certain values of the parameters [86,87,10].

3.8. The choice of the space �

There are several possibilities to choose the space �, but we request that V� ⊂ � and that V
be continuous on �, so that H is also continuous. This depends on the form factor function f(!).
If we choose as in [13]

�± = C⊕ S ∩H2
±|R+ ; (186)

where the spaces S ∩H2±|R+ (see Section 2), we need that f∗(!) ∈ S ∩H2±|R+. In this case, both
H0 and H have the following properties:

(i) The spaces �± are reduced by both H0 and H . This means that H0�± ⊂ �± and H�± ⊂ �±.
(ii) Both Hamiltonians H0 and H are continuous on �±.
(iii) Using the duality formula

〈A’|F〉 = 〈’|AF〉; ’∈�; F ∈�× ;

where A is either H0 or H , we can extend both operators to the duals �×
±. Then, it is possible to

show that these extensions are continuous operators on �×
±, when we endow �×

± with the weak
topology (see [105]). The condition f∗(!) ∈ S ∩ H2±|R+ is however too restrictive (see [5]). For
practical purposes, the function f(!) should be a real function of the real variable ! admitting
analytic continuation to the whole complex plane with possibly a branch cut along the positive
semiaxis. In this case, the property H�± ⊂ �± is false in general. There is, however, a way out as
H can be shown to be a continuous operator from �×

± into �×
±, for many choices of f(!). Then,

we assume in general that

H�×
± ⊂ �×

± : (187)

The possibility of de<ning Gamow vectors for the Friedrichs model, results from this idea. In fact,
for a wide class of form factors f(!), it is possible to show that the MHller wave operators �OUT

and �IN exist for the pair {H0; H} and are asymptotically complete [47]. In this case, the poles of
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the analytical continuation of the S-matrix in the energy representation, S(E), through the spectrum
of H , coincide with the poles of the analytic continuations of the reduced resolvent through the cut
[15]. These poles coincide with the zeroes of the functions 3±(z).

These poles appear in complex conjugate pairs. In the simplest case, we have only two and are
simple: z0 = ER − i�=2 and z∗

0 = ER + i�=2 with ER ¿ 0, �¿ 0. Since z0 and z∗
0 are the poles of

the analytic continuation of S(E), Gamow vectors can be de<ned as the eigenvectors of H with
respective eigenvalues given by z0 and z∗

0 . Since H is Hermitian, Gamow vectors cannot belong
to H.

On the other hand, H can be extended into �×
±. We can show that

(i) There is an eigenvector of H in �×
+ with eigenvalue z0 (H |f0〉 = z0 |f0〉) and an eigenvector

of H in �×
− with eigenvalue z∗

0 (H |f̃0〉 = z∗
0 |f̃0〉).

(ii) Time evolution for |f0〉 and |f̃0〉 is given by (74) and (75), respectively.
Therefore, the vectors |f0〉 and |f̃0〉 should be the decaying and growing Gamow vectors, respec-

tively. We shall show how to obtain them in the next subsection. We shall also study the possibility
that the resonance poles are double and give a situation in which it is realized.

3.9. Gamow states as continuous linear functionals over analytical test functions

In this subsection, we review a diFerent approach based in the use of tempered ultra-distributions
[33,34]. Tempered ultra-distributions are functionals on a test vector space, here called �, that we
describe as follows:

As a vector space, the test space � is the space of entire analytic functions such that, when
considered as functions de<ned on the real axis, are Schwartz functions. In other words, if �̂(z) ∈ �
with z = x + iy, then

�̂(z)|y=0 = �̂(x) ∈ S :

The space � is rather big as it contains the Fourier transforms of the functions on S which vanish
outside a bound interval [104]. This space is dense in the space of square integrable functions on
the whole real line, L2(R), and therefore, so is �. Thus, � ⊂ L2(R) and � is densely de<ned on
L2(R).

Let us consider on � the following set of norms:

‖�̂‖n = sup
|z|=n

|�̂(z)|; n = 1; 2; 3 : : : : (188)

The scalar product on �

〈 ̂ |�̂〉 =
∫ +∞

−∞
dE ̂ ∗(E)�̂(E) ; (189)

provides the following norm:

‖�̂‖2 = 〈�̂|�̂〉 : (190)
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The set of norms (188) along the norm (190) endow � with a metric topology, with the following
properties:

(i) Since � is a subspace of L2(R) and it possesses the norm of L2(R), it is clear that the canonical
injection

i : � �→ L2(R); i[�̂(z)] = �̂(z); ∀�̂(z) ∈ �

is continuous.
(ii) Since � has the Hilbert space norm of L2(R), it then results that any Cauchy sequence in �

is also a Cauchy sequence in L2(R). The converse is, however, not true as we have on � an in<nite
number of nonequivalent norms. Thus, the topology on � is Aner than the Hilbert space topology
that � has received from L2(R). This means in particular that � has less Cauchy sequences and more
open sets than L2(R).

(iii) The topology on � has the property of nuclearity, exactly as S. We do not want to go further
on this comment, because nuclearity is a very technical mathematical tool.

The space of linear continuous functionals on � is the space �′ of tempered ultra-distributions. It
ful<lls the following important property:

� ⊂ L2(R) ⊂ �′ : (191)

Thus, (191) is a RHS (although the functionals on �′ are linear and not anti-linear). We should
remark that, according to the Gelfand Maurin theorem, any hermitian operator A on � admitting
one and only one self-adjoint extension on L2(R) (hermitian operators with this property are called
essentially self-adjoint operators) has a complete system of eigenvectors in �′ whose respective
eigenvalues are in the Hilbert space spectrum of A.

Related to the RHS in (191), we have another RHS which is obtained with the use of the inverse
Fourier transform on (191). For any �̂(E) ∈ �, we have

�(t) =F−1{�̂(E)} =
1
2)

∫ +∞

−∞
eiEt�̂(E) dE : (192)

Since the inverse Fourier transform of a Schwartz function is also a Schwartz function, for each
�̂(E), the �(t) in (192) is a Schwartz function. We shall call �̃ the vector space of functions of the
form (192). Thus,

�̃ =F−1� :

The inverse Fourier transform F−1 is an one-to-one mapping from � onto �̃. We can endow �̃ with
the topology transported from � into �̃ by F−1. This means that if  ̂ 1;  ̂ 2; : : : ;  ̂ n; : : : is a Cauchy
sequence in �, then, �1 = F−1 ̂ 1; �2 = F−1 ̂ 2; �3 = F−1 ̂ 3; : : : is a Cauchy sequence in �̃. The
space � is also dense in L2(R) and, if �̃

′
is the space of all linear continuous functionals on �̃, then,

�̃ ⊂ L2(R) ⊂ �̃
′

is a RHS. We can extend F−1 as a mapping from �′ onto �̃
′
by means of the duality formula:

〈�|F〉 = 〈F−1�̂|F−1F̂〉 = 〈�̂|F̂〉 :
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At this point, the connection between this formalism and the formalism presented in Section 3.1
is established. In fact, schematically,

RHS ↔ � ⊂ L2(R) ⊂ �′ ;

RHS ↔ �̃ ⊂ L2(R) ⊂ �̃
′
;

RHS ↔ �± ⊂ H ⊂ �×
± :

Remark. The relation between S, S ′ (space of linear continuous functionals on S also called space
of tempered distributions), �, �′, �̃ and �̃

′
is given by:

� ⊂ S ⊂ L2(R) ⊂ S ′ ⊂ �′

and

�̃ ⊂ S ⊂ L2(R) ⊂ S ′ ⊂ �̃
′
:

Note that if S(x) ∈ S ′, the Dirac formula gives

S(x) =
∫ ∞

−∞
S(y) �(x − y) dy :

Analogously, we can obtain the value of  ̂ c(z) ∈ �′ at any complex value z (with Im z �= 0), if we
note that the ultra-distributions in �′ can be represented as complex analytic functions with a branch
cut on a real interval. Therefore, the desired formula is [107]

 ̂ c(z) =
1

2)i

∫ +∞

−∞
1

E − z
 ̂ (E) dE ; (193)

where

 ̂ (E) =  ̂ c(E + i0) −  ̂ c(E − i0) : (194)

and  ̂ c(E + i0) and  ̂ c(E − i0) are, respectively, the boundary values from above to below and
from below to above of the complex analytic function  ̂ c(z) (to illustrate the point see Eqs. (39)
and (193)).

Now, let H be the total hamiltonian and assume that it has a simple continuous spectrum from
E0 to E1 (in general H is semibound so that E1 =∞). Due to the above-mentioned Gelfand–Maurin
theorem, there exists functionals |E〉 ∈ �′ such that H |E〉 = E|E〉 for (almost in the sense of the
Lebesgue measure) all E ∈ (E0; E1).

Now, let zR = ER − i�=2 and z∗
R = ER + i�=2 its complex conjugate just as in previous sections.

Let us take those  c(z) ∈ �′ such that the diFerence (194) vanishes outside the interval (E0; E1). In
this case, formula (193) can be written as

 ̂ c(z∗
R) =

1
2)i

∫ E1

E0

1
E − z∗

R
 ̂ (E) dE ; (195)

and also as

[ ̂ c(zR)]∗ =
1

2)i

∫ E1

E0

1
zR − E

[ ̂ (E)]∗ dE : (196)
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It is customary to write the diFerence  ̂ (E) (see (194)) in the Dirac notation as  ̂ (E) = 〈E| ̂ 〉.
Then from (195), we have

 ̂ (z∗
R) =

1
2)i

∫ E1

E0

1
E − z∗

R
〈E| 〉 dE (197)

and using the convention 〈 |E〉∗ = 〈E| 〉, we have from (196):

[ ̂ (zR)]∗ =
1

2)i

∫ E1

E0

1
zR − E

〈 |E〉 dE : (198)

We now de<ne

〈f̃0| = 〈z∗
R| =

1
2)i

∫ E1

E0

1
E − z∗

R
〈E| dE (199)

and

|f0〉 = |zR〉 =
1

2)i

∫ E1

E0

1
zR − E

|E〉 dE : (200)

In consequence:

 ̂ c(z∗
R) = 〈f̃0| 〉; [ ̂ (zR)]∗ = 〈 |f0〉 : (201)

Compare the form of these functionals to (67).
Vectors (199) and (200) are, respectively, the left and right Gamow vectors in this presentation.

For n = 0; 1; 2; : : : ; also note that

Hn|f0〉 =
1

2)i

∫ E1

E0

1
zR − E

Hn|E〉 dE

=
1

2)i

∫ E1

E0

1
zR − E

En|E〉 dE : (202)

If  (z) is an arbitrary function in �, we have

〈 |Hn|f0〉 =
1

2)i

∫ E1

E0

En

zR − E
〈 |E〉 dE = znR 〈 |f0〉 ; (203)

so that if we omit the arbitrary function  (z), we have

Hn|f0〉 = znR|f0〉; n = 0; 1; 2; : : : : (204)
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Analogously, for n = 0; 1; 2; : : : ; we have

〈f̃0|Hn = znR〈f̃0| : (205)

The time evolution is given by

〈 |e−iHt|f0〉 = e−izR [ ̂ (z∗
R)]∗ = e−itER e−�t=2 〈 |f0〉 : (206)

Of course, if we omit the arbitrary  (z) ∈ �, we have:

e−iHt|f0〉 = e−itER e−�t=2 |f0〉 : (207)

This exponential evolution is valid for all values of time and therefore it does not lead to semi-
group time evolution. Consequently, this description based on ultra-distributions is not suitable for
a description of quantum irreversibility, in the sense of Prigogine [13,96,97], as it is the description
based on Hardy functions.

4. Observables

Generally speaking, by quantum mechanics we mean the theory and its interpretation. Central
to this point is the assignment of mean values to observables acting on states. So far, we have
not addressed this problem in relation to Gamow states and we shall devote this section to present
the state of the art. As it will become evident from our discussion, the notion that the use of
Gamow states violates the quantum mechanical probabilistic interpretation is wrong. As we said in
the Introduction, and as it has been shown in the previous section, probability considerations are
avoided in RHS.

The question whether it is legitimate to de<ne the mean value of an observable on a Gamow
vector is still open.

According to the postulates of the elementary quantum mechanics, the de<nition of the expectation
value of an observable A on a certain state < is given by 〈A〉=trace <A. It is desirable to generalize
this de<nition to accommodate expectation values on Gamow states. This has been attempted to in
Ref. [57]. As the reader may have already guessed the question of the physical interpretation of
the expectation value of an observable on Gamow states seems to be in conJict with the standard,
probabilistic, interpretation of quantum mechanics. It was clear, even when Gamow postulated the
existence of resonant states, that notions like uncertainties, the conservation of probability, etc.,
exceeded the framework based on the Hilbert space formulation of quantum mechanics. In the
following we shall concentrate on the various possibilities oFered by the use and properties of
Gamow vectors.

Let us brieJy summarize some of the possibilities that <nds in the literature [42,43], concerning
the energy as the expectation value of the Hamiltonian on a resonance. They are:

1. The mean value of the energy of a decaying state must be zero, because the energy of a
decaying process should be invariant. A non-zero energy will be in contradiction with the principle
of conservation of the energy [88,39,38,36].

2. The energy average of a Gamow state should be complex because the Gamow state is an
eigenvalue of H with complex energy.

3. Gamow states admit a representation as normalized vectors in a Hilbert space in which the
Hamiltonian is not a self-adjoint operator and it has a spectrum of eigenvalues extending from
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−∞ to ∞. In this case, we can de<ne scalar products of Gamow vectors and a mean value of the
energy, which is real [20].

4. If we admit that Gamow states are genuine quantum states they must have a real energy average
and it should be determined from <rst principles [20,17,18].

Next, let us discuss these four possibilities.

4.1. Vanishing average values

It was Nakanishi the <rst to proposed this idea [88]. In fact, if H |f0〉= zR|f0〉 and 〈f0|H = z∗
R〈f0|,

we have that 〈f0|H |f0〉= zR〈f0|f0〉= z∗
R〈f0|f0〉. This implies that (zR − z∗

R)〈f0|f0〉=0 ⇒ 〈f0|f0〉=0
and, therefore, 〈f0|H |f0〉 = 0. The weak point of this argument is that the bracket 〈f0|f0〉 is not
de<ned. Further attempts to de<ne 〈f0|f0〉 have been made, but the results are not convincing from
a mathematical point of view [36,96,91]. There is another possibility to rescue this idea and give to
it a precise mathematical form. It is based on the de<nition of a Gamow state as an exponentially
decaying functional over an algebra of observables [37]. The mean value of any observable on the
Gamow functional is the action of the functional on the observable. Thus, we can de<ne the trace
of any functional, as the action of this functional on the identity, and the mean value of the energy
on this functional, as its action on the Hamiltonian. The Gamow functional has zero trace and the
mean value of its energy is equal to zero. Furthermore, the action of the Gamow functional on any
power of the Hamiltonian is always zero. This suggest that the Gamow functional cannot represent
a physical state. For details see [37].

4.2. Complex average values

In speci<c models, like Friedrichs’s model, the bracket 〈f̃0|f0〉 is well de<ned and its value is
one [13]. If we try to obtain this result in a general model independent setting we conclude that
〈f̃0|f0〉 can be de<ned as a distribution kernel and that it has the value one, although it is not clear
if this is the unique choice [55]. If we now de<ne == |f0〉〈f̃0|, it is now obvious that =2 ==. This
property suggests that = could be taken as the density operator for the decaying Gamow vector |f0〉.
Now if it would be possible to de<ne Tr{H=} and this would be a candidate for the average value
of H on |f0〉 [57]. In fact, with the help of some generalized spectral decompositions [55] for the
Hamiltonian in terms of the Gamow vectors and the generalized eigenvectors of H with eigenvalues
in the continuous spectrum of H , we can de<ne this trace in such a way that Tr {H=} = 〈f̃0|H |f0〉
[55,57], thus

〈f̃0|H |f0〉 = zR〈f̃0|f0〉 = zR : (208)

Yet this result is not acceptable from the physical point of view. Due to the uncertainty principle we
cannot measure simultaneously the real part of zR, which is the resonant energy, and its imaginary
part, which is proportional to the inverse of the half life. Thus, zR cannot be the average of any
measurement process and cannot be accepted as the energy average.

Thus, the above generalization, which in principle seems to be the most natural de<nition of the
mean value of the energy for a Gamow vector, becomes untenable.

Also, from these considerations, we conclude that the energy average of a Gamow vector, if it
can be de<ned, should be real.
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Actually, the same problem arises when dealing with the complex scaling formalism [101,108].
Gamow vectors are, in complex scaling, eigenvectors with complex eigenvalues of an analytically
dilated non-self-adjoint Hamiltonian H (*), where * is a complex parameter such that H (*= 0) =H
is the total, interacting, hamiltonian H = H0 + V . These complex eigenvalues, zR, are independent
of * [114], and coincide with poles of the S-matrix in the energy representation, as it was shown in
[4]. Therefore, they are truly resonance eigenvalues. However, the corresponding eigenvectors |f*〉
are dependent on *, as dictated by the eigenvalue equation

H (*)|f*〉 = zR |f*〉 : (209)

The eigenvector |f*〉 is a normalized vector on Hilbert space and, therefore, its norm can be unity.
Then, a natural de<nition for the mean value of the energy on a Gamow state |f*〉 is

〈f*|H (*)|f*〉 = zR : (210)

Since |f*〉 is normalized the above expectation value is well de<ned. Again, this de<nition gives the
same untenable result, as we have discussed before.

4.3. Real average values: Bohm interpretation

This point of view is based in the idea that it is possible to construct a rigged Hilbert space
(RHS), in which the Gamow vector is a vector in the Hilbert space, under the following conditions:

(i) The continuous spectrum of H is the whole real axis.
(ii) H is not self adjoint, although it is still symmetric, i.e., 〈�|H 〉 = 〈H�| 〉 for all � and  in

the domain of H .
(iii) From the point of view of the Hilbert space, the Gamow vector is not in the domain of H ,

but the action of H on the Gamow vector is well de<ned in the dual space, that includes the Hilbert
space.

To this end, let us consider the RHS spaces in the lower row in (71) and (72). These spaces are:

S ∩H2
− ⊂ H2

− ⊂ (S ∩H2
−)× (211)

and

S ∩H+ ⊂ H+ ⊂ (S ∩H+)× : (212)

Let us de<ne now

 G = (*−1
− )×U�−1

IN |f̃0〉 (213)

and

 D = (*−1
+ )×U�−1

OUT|f0〉 : (214)

From (213) and (214) is not possible to obtain the explicit form of  G and  D. In order to get
these objects, let us take arbitrary vectors  ± ∈�± and consider the functions

 −(E) = (*−1
− )U�−1

IN  − and  +(E) = (*−1
+ )U�−1

OUT + ;

and their complex conjugates:

 #
−(E) = [ −(E)]∗ ∈ S ∩H2

+ and  #
+(E) = [ +(E)]∗ ∈ S ∩H2

− :
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We recall that  ±(E) ∈ S∩H2±, and they are, therefore, de<ned on the whole real axis, −∞¡E¡∞.
The duality formulas of Section 2 and the Titchmarsh theorem [110] give

〈 −(E)| G〉 = 〈 −|f̃0〉 = − 1
2)i

∫ ∞

−∞

 #−(E) dE
E − z∗

R
(215)

and

〈 +(E)| D〉 = 〈 +|f0〉 =
1

2)i

∫ ∞

−∞

 #
+(E) dE
E − zR

: (216)

Therefore,

 G = − 1
2)i

1
E − z∗

R
and  D =

1
2)i

1
E − zR

: (217)

Note that

 G ∈ (S ∩H2
−)× and  D ∈ (S ∩H2

+)× :

Since the operators (*−1
− )× U �−1

IN and (*−1
+ )×U�−1

OUT are one to one and onto transformations
between dual spaces, the functionals  G and  D represent Gamow vectors in (S ∩ H2−)× and
(S ∩H2

+)×, respectively.
We see that:
(i) These Gamow vectors are represented by square integrable functions in L2(R). Moreover, by

using the de<nition of Hardy functions, it is easy to show that

 G ∈H2
− and  D ∈H2

+ : (218)

(ii) The operator that represents the Hamiltonian on the RHS S ∩ H2± ⊂ H± ⊂ (S ∩ H2±)×
is given by

(*−1
+ )U �−1

OUTH�OUTU−1*+ ;

on S ∩H2
+ and

(*−1
− )U�−1

IN H�INU−1*−
on S ∩H2−. Observe that �−1

OUTH�OUT =�−1
IN H�IN = H0. Since U diagonalizes H0, we have that

UH0U−1 = E is the multiplication operator on S ∩H2±|R+ (E (E) = E (E)). Thus, *−1
± E *± are

the multiplication operators on S ∩ H2±, respectively. These operators are the restrictions of the
multiplication operator on L2(R), which we also denote by E.

Now, let us observe that neither

E G = −(2)i)−1 E
E − z∗

R
nor E D = (2)i)−1 E

E − zR
; (219)

are square integrable functions on L2(R). This means that, although the Gamow vectors may be
represented by square integrable functions, these functions are not in the domain of the operator Ê
(i.e. the Hamiltonian).

(iii) Formulas (219) acquire meaning in the RHS given by (211) and (212). If we use the duality
formula

〈E�±(E)|F±〉 = 〈�±(E)|EF±〉; ∀�±(E) ∈ S ∩H2
±; ∀F± ∈ (S ∩H2

±)× (220)

we extend the action of the operator E to the duals (S∩H2±)× and, then, (219) becomes meaningful.
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Now, we are in the position to give a de<nition for the mean value of the energy for the Gamow
vectors using this representation. Let us normalize  G and  D <rst and rede<ne

 G = "
1

E − z∗
R
;  D = "

1
E − zR

; (221)

where " is a complex constant to be <xed by the normalization condition

‖ G‖2 = ‖ D‖2 = "2
∫ ∞

−∞
dE

(E − ER)2 + (�=2)2 = "2) = 1 : (222)

Therefore, " = 1=
√
).

Once we have chosen this normalization criterium, we can propose expressions for the mean value
of the energy on the Gamow vectors:

〈 G|E| G〉 and 〈 D|E| D〉 : (223)

Let us evaluate these values. Since E  D(E) = E  D(E), we have that

〈 D|E| D〉 =
1
)

∫ ∞

−∞
1

E − z∗
R

E
E − zR

dE =
2
)�

∫ ∞

−∞
E dE(

E−ER
�=2

)2
+ 1

: (224)

The change of variables

x =
E − ER

�=2
; (225)

transforms the last integral in (224) into

ER

)

∫ ∞

−∞
dx

x2 + 1
+

�
2)

∫ ∞

−∞
x dx
x2 + 1

: (226)

The <rst integral in (226) has the value ). The second admits a Cauchy principal value equal to
zero. Thus, we <nd

〈 D|E| D〉 = ER (227)

and

〈 G|E| G〉 = ER : (228)

Remark. (a) Observe that the integral in (224) does not converge although its Cauchy mean value
does exists. Therefore, identities (227) and (228) are indeed Cauchy mean values.

(b) We see that this de<nition of the energy average of Gamow vectors gives the same real value
for both Gamow vectors and coincides with the resonant energy. In addition, due to the adopted
normalization, we have that 〈 D| D〉 = 〈 G| G〉 = 1. Furthermore,

〈 G| D〉 =
1
)

∫ ∞

−∞
dE

(E − zR)2 = 0 : (229)

Analogously, 〈 D| G〉 = 0.
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4.4. Real average values: Berggren interpretation

Berggren’s approach to the mean value of the Hamiltonian on a Gamow state [18] can be for-
mulated in a manner which is very similar to Bohm’s. Following [33,34], we shall not use Hardy
functions to construct the Gelfand triplets. Instead, we consider here another triplet �̃ ⊂ H ⊂ �̃×
for which the space �̃× consists of tempered ultra-distributions [33,34,107]. See Section 3.9.

One of the advantages of this presentation is that the Gamow vectors are normalized in the sense
that the product 〈f̃0|f0〉 exists and is given by [33,34]: 28

〈f̃0|f0〉 =
1

4)2�

[
arctan

(
E1 − ER

�

)
− arctan

(
E0 − ER

�

)]
: (230)

This normalization allows also to de<ne a mean value for the Hamiltonian in the form [33,34]:

〈f̃0|H |f0〉 = ER +
�
2

ln
[

(E1−ER)2+�2

(E0−ER)2+�2

]
[
arctan

(
E1−ER

�

) − arctan
(
E0−ER

�

)] : (231)

Note that this mean value is real. Also, if we take simultaneously the limits E0 → −∞ and
E1 → +∞, we have

〈f̃0|H |f0〉 = ER : (232)

We can also de<ne the probability distribution associated the Gamow vector as

P(E) : = |〈E|f0〉|2

=
�

(E − ER)2 + �2 · 1[
arctan

(
E1−ER

�

) − arctan
(
E0−ER

�

)] : (233)

In the limit E1 → +∞; E0 → −∞ the above equation yields

P(E) =
�=)

(E − ER)2 + �2 (234)

which is the Breit–Wigner form proposed by [20,18].
The coincidence between (232) for the mean value of the Gamow states and Bohm’s one, presented

in the previous sub-section, comes from a re-interpretation of Berggren’s de<nition given in [18].
In fact, for a spherically symmetric potential and for an arbitrary value of the angular momentum
l, we can write the normalized decaying Gamow vector as

|f0〉 = i

√
2�
)

∫ ∞

0

√
k
m

|k; k̂; l〉
E(k) − zR

dk ; (235)

where, k = |k|, E(k) = k2=2m and k̂ is the unit vector in the direction of k.
A similar de<nition was advanced by Romo [103]
For the growing Gamow vector, we have

|f̃0〉 = −i

√
2�
)

∫ ∞

0

√
k
m

|k; k̂; l〉
E(k) − z∗

R
dk : (236)

28 This normalization is not unique. In Ref. [13], Antoniou and Prigogine have proposed 〈f̃0|f0〉 = 1.
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Now, let A be an arbitrary observable. We can de<ne the mean value of A on |f0〉 as

〈f0|A|f0〉 =
2�
)

∑
l;l′

∫ ∞

0
dk

∫ ∞

0
dk ′

√
kk ′

m
〈k ′; k̂

′
; l′|A|k; k̂; l〉

(E(k′) − zR)(E(k) − z∗
R)

: (237)

If we replace A by H we obtain, straightforwardly, the value ER for this average. Instead, Berggren
de<nes [18] this mean value as Real〈f̃0|A|f0〉. As a matter of fact, one can easily show that

〈f0|A|f0〉 = Real{〈f̃0|A|f0〉} + o(�2) ; (238)

which means that Berggren’s approximation coincides with Bohm’s to the <rst order in �.

5. Relativistic Gamow vectors

To complete our presentation on Gamow vectors, and in order to introduce the reader in the <eld
of relativistic resonances, we shall brieJy comment on two of the existing approaches. One of them
deals with resonances that appear in the interactions between relativistic <elds. This approach has
been developed by the school of Brussels, which has produced several speci<c models [6,7,67,9].
These models have in common that they can be solved by using a transformation that shows their
equivalence with an exactly soluble Friedrichs model. We want to summarize here one of these
models, in which a local Klein–Gordon <eld, with <xed mass, interacts with a bilocal Klein–Gordon
<eld with an unbounded mass spectrum. The interaction is quadratic, so that it is exactly soluble.
When the mass of the local <eld and the threshold of the mass spectrum for the bilocal <eld ful<ll
a simple relationship, the interaction is unstable and a resonance appears. Then, the corresponding
Gamow vectors can be determined exactly as functionals in a RHS [7].

The other approach was developed by Bohm and collaborators [24,29–31] and it uses the properties
of the relativistic S-matrix. In order to avoid the complex momenta that appear in the Brussels
approach, due to PoincarTe transformations over four-momenta with complex masses, Bohm et al.
have introduced velocities. Although Bohms approach may look quite diFerent to the Brusselss one,
it is more general in the sense that it does not rely on speci<c models, i.e., it does not use of <eld
theory. Nevertheless, the conclusions reached by both methods are essentially the same.

In the next subsection we shall focus on the discussion of the Brusselss method, since it is more
closely related to the formalism which we have presented in this report. Since a detail comparison
between Bohms and Brusselss methods may be out of the scope of the present work we leave it
for a future eFort.

5.1. An exactly solvable model for unstable relativistic quantum Aelds

This model involves a quadratic interaction between a local scalar <eld ’(x) and a bilocal scalar
<eld  . The interaction makes the local scalar <eld ’(x) unstable.

The local scalar <eld ’(x) with mass M may be written in terms of creation and annihilation
operators as follows:

’(x; t) =
∫

dk̃[a†(k) eik·x + a(k) e−ik·x] : (239)



O. Civitarese, M. Gadella / Physics Reports 396 (2004) 41–113 97

By boldface letters, we denote three dimensional vectors. Four-dimensional vectors in Minkowski
space are denoted by roman style letters. The products of two vectors in Minkowski space are
characterized by a dot. In Minkowski space we use the metric (+− − −). For example, k·x=k0x0−kx.
The Lorentz invariant measure in (239) is

dk̃ =
d3k

(2))3 2!(k)
; !(k) = (k2 + M 2)1=2 : (240)

The creation and annihilation operators in (239) satisfy the usual commutation relations:

[a(k); a†(k′)] = (2))32!(k) �(k − k′) : (241)

The Hamiltonian of the <eld ’(x) is given by

HM =
∫

dk̃!(k)a†(k)a(k) : (242)

We shall consider, in addition, a simple bilocal scalar <eld,  (x�; q), with continuous mass spec-
trum. The notion of bilocal <eld was introduced long ago by Yukawa [115] and Markov [83] in
their discussion of the extended elementary particles. It is used here in a diFerent context. The <eld
depends also on an additional real variable q representing an internal degree of freedom. We shall
start by considering the classical <eld and then quantize it. For simplicity we shall assume that the
classical <eld  (x�; q) is an even function of q. This means that

 (x�;−q) =  (x�; q) : (243)

For the mass operator M, we choose the simplest possible form:

M2 = 4m2 − 92

9q2 : (244)

The spectrum of the mass operator is [2m;∞). The <eld  (x�; q) satis<es the following generalized
Klein–Gordon equation:

( −M2) (x�; q) = 0 ; (245)

where is the usual d’Alambert operator. The solution of Eq. (245) can be written in the following
form:

 (x�; q) =
∫

d4k�

∫ ∞

−∞
d@

cos q@
(2))4 e−ik�x��(k2 − 4m2 − @2)B(k�; @) ; (246)

where we took into account (243). The amplitude B(k�; @) is also an even function of @. Integrating
the r.h.s. of (246) over k0 gives

 (x�; q) =
∫ ∞

−∞
d@

d3k cos @q
(2))42E(k; @)

(B∗(k; @)eik·x + B(k; @)e−ik·x) ; (247)

where k� = (E; k) and

E(k; @) = [4m2 + @2 + k2]1=2 : (248)



98 O. Civitarese, M. Gadella / Physics Reports 396 (2004) 41–113

We can change the variables in (247) so that E is the new independent variable instead of @:

@ = (E2 − k2 − 4m2)1=2;
d@
E

=
dE
@

; (249)

then,

 (x�; q) =
∫ ∞

0

dE d3k cos @(k�)q
(3))4 @(k�)

(B∗(k; E)eik·x + B(k; E)e−ik·x) : (250)

Once we have the classical <eld written as in (250), we can make use of the standard quantization
rules [19,106] to obtain the quantum <eld

 (x�; q) =
∫ ∞

0

dE d3k cos @(k�)q
(2))4 @(k�)

[B†(k; E)eik·x + B(k; E)e−ik·x] : (251)

where the creation B†(k; E) and annihilation operators B(k; E) satisfy the following commutation
relations:

[B(k; E); B†(k′; E′)] = (2))4@(k�)�4(k� − k ′
�) : (252)

The Hamiltonian for the bilocal <eld  (x�; q) is given by

Hm =
∫

d3k dE
(2))4@(k; E)

EB†(k; E)B(k; E) : (253)

We now introduce the quadratic interaction Hamiltonian as

Hint = −$
∫

d3x
∫ ∞

−∞
dq  (x; q)f(q)’(x) ; (254)

where we assume that the even function f(q) is a Lorentz scalar and has the Fourier transform:

f(q) =
∫

dy "(y) cosyq : (255)

The function f(q) plays the same role as the form factor in the Friedrichs model. To avoid diver-
gencies, we choose it so that it has a good asymptotic behavior. With this choice of the interaction,
the total Hamiltonian becomes

P0 =
∫

d3k dE
(2))4@(k; E)

EB†(k; E)B(k; E)

+
∫

d3k
(2))32!(k)

!(k)a†(k)a(k) +
∫

d3k dE
(2))32!

$"(@(k; E))
@(k; E)

×(a(k) + a†(−k))(B†(k; E) + B(−k; E)) : (256)

Note that the function "(·) in the third integral in (256) coincides with the function "(·) that appears
in (255). The three momentum for the interaction <eld is given by

P=
∫

d3k dE
(2))4@(k; E)

kB†(k; E)B(k; E) +
∫

d3k k
(2))32!(k)

a†(k)a(k) : (257)
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The analogy between the Hamiltonian (256) and the interacting Hamiltonian in the usual Friedrichs
model is obvious. As a matter of fact, we are considering here an inAnite collection of Friedrichs
models, each corresponding to a value of the momentum k.

Our next step is to diagonalize the four momentum (256) and (257). This means that we are
looking for creation, b†(E; k), and annihilation, b(E; k), operators such that the four momentum
components P� can be written as

P� =
∫

d3k dE
(2))4@(E; k)

k�b†(E; k)b(E; k) ; (258)

where @ is given in (249). To achieve it, we write the eigenvalue equation [7]:

[P�; b†(E; k)] = k�b†(E; k) ; (259)

where k� = (E; k) and the P� are given by (256) and (257). To solve (259), i.e., to obtain the
creation operators b†(E; k), we make the following ansatz:

b†(E; k) =
∫

dE′(T (E; E′; k)B†(E′; k) + R(E; E′; k)B(E′;−k))

+ t(E; k)a†(k) + r(E; k)a(−k) ; (260)

which obviously means that we are assuming that b†(E; k) is a linear combination of B†(E; k);
B(E; k); a†(k) and a(k). In order to obtain b†(E; k), we insert (260) into (259) to obtain four
equations in the undetermined amplitudes T (E; E′; k), R(E; E′; k), t(E; k) and r(E; k) [7].

The formal solution, for positive energies, of the eigenvalue equation (259) is [7]

b†(E; k) =C

{
B†(E; k) + 2)$"(@(E; k))G(E; k)

×
[∫

dE′ $"(@(E′; k))
@(E′; k)

(E′; k) ×
(
B†(E; k)
E′ − E

− B(E;−k)
E′ + E

)

− (E + !(k))a†(k) + (E − !(k))a(−k)
2!(k)

]}
: (261)

Let us analyze this result. The functions !(k), "(·) and @(E; k) have been de<ned already in (240),
(255) and (249), respectively. The most interesting object in (261) is the Green function G(E; k),
where

G(E; k) =
1

!2 − E2 − =(E; k)
(262)

with

=(E; k) =
∫ ∞

E0

dE′2E′ <(E′; k)
E′2 − E2

; (263)

and E0 = (4m2 + k2)1=2. Therefore, G(E; k) depends on

<(E; k) = 2)
$2"2(@(E; k))

@(E; k)
; (264)
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through =(E; k), since <(E; k) is given by Eq. (264). Note that <(E; k) depends on "(·) and hence
on the form factor f(q).

The properties of G(E; k) and =(E; k) are discussed in [7]. Formulas (233) and (234) are also
valid for complex values of E and the Green function G(E; k) is analytic in E2 with a branch cut in
[E2

0 ;∞). The Green function admits analytic continuations from above to below G(E + i0; k), i.e.,
from the upper to the lower half plane, and from below to above G(E − i0; k) through the cut. If
M¿ 2m, G(E + i0; k) has a pole at E2 =k2 +�2

c and G(E − i0; k) has a pole at the conjugate point
E2 = k2 + �∗2

c , where:

�2
c = �2 − i�� ; (265)

and � and � are real positive numbers which depend on the form factor f(q) [7].
The equation for the complex pole �2

c is:

!2(k) − E2 −
∫

dE′2 <(E′; k)
E′2 − E2

= 0 : (266)

Compare this equation with (140). Eq. (266) can be written as

M 2 − (E2 − k2) − PV
∫

dE′2 <(E′; k)
E′2 − E2

− i)<(E; k) = 0 ; (267)

where PV stands for the Cauchy principal value. For small values of the coupling constant $, we
can omit the integral term and the result is

�2
c = M 2 − i)<(E; k)|E2−k2=M 2 = M 2 − 2i)2$2 ["(

√
M 2 − 4m2)]2√
M 2 − 4m2

: (268)

From (268), we note that the pole appears if M¿ 2m only.
Let us go back to the formal solution (261). Along this solution of (259) for positive energies,

there exists another formal solution for negative energies which is given by [7]

b(E; k) =C
{
B(E; k) + 2)$"(@(E; k))G(E; k)

[∫
dE′ $"(@(E; k))

@(E; k)

×
(
B(E; k)
E′ − E

− B+(E;−k)
E′ + E

)
− (E + !(k))a(k) + (E − !(k))a+(−k)

2!(k)

]}
: (269)

This is the annihilation operator.
The signs of the boundary conditions G(E ± i0; k) that provide both analytic continuations of the

Green function, coincide with the signs in the denominator of the Lippmann–Schwinger equations
[90]. These denominators have the sign plus for the incoming and the sign minus for the outgoing
equation respectively. Therefore, the solution of the eigenvalue equation (230) with incoming bound-
ary conditions is obtained by replacing G(E; k) by G(E + i0; k) in (261) and (269). The incoming
operators are

b†
in(E; k) =B†(E; k) + 2)$"(@(E; k))G(E + i0; k)

[∫
dE′ $"(@(E′; k))

@(E′; k)

×
(

B†(E; k)
E′ − E − i0

− B(E′;−k)
E′ + E

)
− (E + !(k))a†(k) + (E − !(k))a(−k)

2!(k)

]
(270)
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and

bin(E; k) =B(E; k) + 2)$"(@(E; k))G(E − i0; k)
[∫

dE′ $"(@(E′; k))
@(E′; k)

×
(

B(E′; k)
E′ − E + i0

− B†(E′;−k)
E′ + E

)
− (E + !(k))a(k) + (E − !(k))a†(−k)

2!(k)

]
: (271)

Here,

E¿E0(k) = (4m2 + k2)1=2

and we have chosen the constant C = 1 in (268). The outgoing operators, b†
out(E; k) and bout(E; k),

are obtained with the change +i0 �→ −i0 in (270) and (271), respectively. These operators have the
following commutation relations [7]:

[bin(E; k); b
†
in(E

′; k′)] = [bout(E; k); b
†
out(E

′; k)] ;

= (2))4@(E; k)�(E − E′)�3(k − k′) ;

[bout(E; k); b
†
in(E

′; k′)] = (2))4@(E; k)�(E − E′)�3(k − k′)
G(E + i0; k)
G(E − i0; k)

;

[bin(E; k); b
†
out(E

′; k′)] = (2))4@(E; k)�(E − E′)�3(k − k′)
G(E − i0; k)
G(E + i0; k)

: (272)

All other commutators vanish. These operators are the solutions to the diagonalization problem in
the sense of Eq. (258) holds, i.e.,

P� =
∫

d3k dE
(2))4@(E; k)

k�b
†
in
out

(E; k)b in
out

(E; k) : (273)

Now, we are ready to obtain the Gamow vectors for the unstable <eld.

5.2. Resonances and Gamow vectors

Let us start with the following remark [7]: Let us consider the vacuum state before the interaction,
is switched on. It is characterized by the following equations:

B(E; k)|0〉 = 0 and a(k)|0〉 = 0 : (274)

This is not the vacuum for the interacting <eld, since [7]

b(E; k)|0〉 �= 0 ; (275)

i.e. there arise a new vacuum state which will be a superposition of states with an arbitrary number
of particles of B and a-types. The new vacuum C can be obtained from the old one by means of a
transformation of the type

|C〉 = eV |0〉 ; (276)

where V is a quadratic functional of creation operators B†(E; k) and a†(k). It results that

bin(E; k)|C〉 = 0 : (277)
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Due to the form (269) of b†
in(E; k), the state

+in(E; k) = b†
in(E; k)|C (278)

has a pole as a function of E when we make the analytic continuation from above to below. This
pole has been found to be at the point [7]

zR = (k + �2 − i��)1=2 ; (279)

and the width � and therefore the lifetime depend on k. The state +in(E; k) can be written in a
neighborhood of zR as

+in(E; k) =
1

E − zR
’G

in(k) + regular part : (280)

The residue ’G
in(k) has the following properties [7]:

(i) It is an eigenvector of the total Hamiltonian P0 with eigenvalue zR,

P0’G
in(k) = zR’G

in(k) : (281)

Therefore ’G
in(k) is the Gamow vector associated to the resonance with resonance pole at zR.

(ii) As a consequence of (i), ’G
in(k) decays exponentially:

e−itP0’G
in(k) = e−itzR’G

in(k) : (282)

Properties (i) and (ii) show that ’G
in(k) cannot be a normalizable vector in a Hilbert (Fock) space.

As happens in the non-relativistic case, we need to rig the Fock space in order to <nd the true nature
of ’G

in(k). There is a standard procedure, [19,54,94] and this is done in three steps:
(i) We choose the one particle “test vector space”, that we call �. The space � has suEcient

properties so that � ⊂ H ⊂ �× is a RHS, where H is the Hilbert space of one particle states.
(ii) Starting with �, we construct the test vector space for arbitrary number of particles. This

space is the Fock algebra given by

F = C⊕�⊕ (�⊗�) ⊕ (�⊗�⊗�) ⊕ : : : ; (283)

where C is the set of complex numbers and ⊕ and ⊗ means direct sum and tensor product, respec-
tively. This Fock algebra admits a topology which is obtained from the topology on � [54,7] and
that is stronger (has more open sets) than the topology of the Hilbert space on the Fock space

H⊗ = C⊕H⊕ (H⊗H) ⊕ (H⊗H⊗H) : : : :

(iii) Then, the dual F× of F is obtained. We have the RHS

F ⊂ H⊗ ⊂ F× (284)

In our particular case, we construct F as follows: <rst, we choose the following space of
test functions

� = (H2
− ∩ S) ⊗ S(R3) ; (285)

where

(i) H2− is the space of Hardy functions on the lower half-plane.
(ii) S is the Schwartz space described in Section 2.7.
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(iii) S(R3) represents the space of all complex functions on the three dimensional real space R3

having the same properties as S in (ii). Usually, we call S and S(R3) the one-dimensional and
the three-dimensional Schwartz space, respectively.

(iv) The topology on � is then obtained from the topologies on the Schwartz spaces. This is a
technical matter [93], but this topology makes both � and F metric spaces, i.e., the topology
can be obtained from a metric.

A typical function of (H2−∩S)⊗S(R3) is of the form ’(E; k). For a <xed value of the momentum
k, this is a function of the energy and belongs to H2− ∩ S. For a <xed value of the energy E,
’(E; k) ∈ S(R3).

Thus, if ’(E; k) is in the space (H2− ∩ S) ⊗ S(R3), then, ’(E; k) represents an one particle state.
This state is equally well represented by the bra vector

〈’| =
∫

d3k dE
(2))4@(E; k)

〈C|bout(E; k)’(E; k) : (286)

The mapping given by

’(E; k) �→
∫

d3k dE
(2))4@(E; k)

〈C|bout(E; k)’(E; k) ;

is one to one and, hence, the space � is the space of vectors of the form (286). Once we have
�, we have the triplet (284). The action of the Gamow vector ’G

in(k) on the arbitrary vector of �
given by (286) is

〈’|’G
in(k)〉 = ’(E; k)

c
,−(−E)

∣∣∣∣
E=zR

; (287)

where [7] ,±(E) are, respectively, the solutions of the equations given by

,±(E; k),±(−E; k) = G±(E; k) : (288)

Note that the Gamow vector is a functional that vanishes on the vacuum and on the space of two
or more particles.

This model is exactly solvable because the interaction between <elds is quadratic. Due to the
presence of a mass spectrum in the second <eld, the interaction contains non-trivial features like
those studied here. Relativistic Gamow vectors can be obtained approximately when the interaction
between <elds is not quadratic [6].

6. Conclusions

In this work we have presented the essentials of the mathematical and physical interpretation of
resonances. We have shown that the mathematical diEculties arising from the probabilistic interpreta-
tion of resonances, in the context of ordinary quantum mechanics, are easily removed by considering
the resonances as vectors belonging to rigged Hilbert spaces. The chain of mathematical steps needed
to reach this result has been discussed by: (i) de<ning MHller wave operators, (ii) analyzing the
pole structure of the S-matrix, (iii) introducing the continuation of the scattering states in a larger
representation, the rigged Hilbert space, where the resonant wave functions can be un-ambiguously
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de<ned. The correctness of the approach was illustrated by the solutions of a schematic albeit re-
alistic model (the Friedrisch model) which displays bound state and resonant features. We have
focussed on the physical interpretation of mean values of observables on Gamow states, because
this is of particular interest concerning realistic applications of the method. This is the case of the
Berggren realization and its application in realistic nuclear structure calculations. The discussion of
that part of our report was inspired by the work of Liotta and collaborators, who has advocated
the use of Berggren resonant basis in the calculation of nuclear excitations. We have compared the
results of diFerent interpretations related to mean values on resonant states. The meaning of the
procedure adopted by the Stockholm group, to incorporate isolated Gamow resonances to account
for continuum nuclear structure eFects, starting from single particle states which are solutions of
the nuclear central potential with purely outgoing boundary conditions, was discussed in connection
with the identi<cation of resonances. We reported on the correctness of this approach, too, and give
some examples of the adequate boundary conditions. Finally, we have discussed the extension of
the formalism to the relativistic domain.

We would like to conclude by pointing out the prospects of the use of Gamow states in the
microscopic description of nuclei far from the stability line, where, like in the case of " decay,
resonant states may play a decisive role in the explanation of new decay modes (like two-proton
radioactivity) and correlations (like pairing correlations in the continuum).
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Appendix A

At the end of Section 2.6, we have introduced the Gelfand–Maurin spectral theorem. Let us go
back to formula (32) and omit the arbitrary vector ’∈� and take f(A) ≡ I , the identity operator.
Then, (32) leads to

� =
∫
�(A)

|$〉〈$|�〉 d$ : (A.1)

The function �($)= 〈$|�〉= 〈�|$〉∗ is the wave function for the pure state � in the A-representation.
If B is another observable, the Gelfand–Maurin theorem for B implies the existence of a new RHS
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� ⊂ H ⊂ �× such that B is continuous on � and �× and for all  ∈�, we have

f(B) =
∫
�(B)

f(b)|b〉〈b| 〉 db ; (A.2)

where b∈ �(B) and B|b〉 = b|b〉, |b〉 ∈�× and

 =
∫
�(B)

|b〉〈b| 〉 db ; (A.3)

where  (b) = 〈b| 〉 = 〈 |b〉∗ is the wave function of  in the B-representation. If further,  ∈�,
we use (A.3) in (A.1) to conclude that

 =
∫
�(B)

∫
�(A)

|b〉〈b|$〉〈$| 〉 db d$ ; (A.4)

If A = B, obviously 〈b|$〉 = �($ − b). In the general case, A �= B and the kernel 〈b|$〉 obviously
depend on A and B. Multiplying (A.4) to the left by the bra 〈$|, we obtain

〈$| 〉 =
∫
�(B)

〈$|b〉〈b| 〉 db : (A.5)

which gives a direct relation between the wave functions in the B representation and in the A
representation. This formula is invertible. If we multiply (A.1) to the left by the bra 〈b|, we
obtain that

〈b|�〉 =
∫
�(A)

〈b|$〉〈$|�〉 d$ : (A.6)

A typical example is A = Q and B = P the one-dimensional position and momentum operators,
respectively. We know that these two operators have purely continuous spectrum covering the real
axis. Then, Q|x〉=x|x〉, ∀x∈R and P|p〉=p|p〉, ∀p∈R. The kets |x〉 and |p〉 are antilinear continuous
functionals on the Schwartz space S [26]. We also know that the Fourier transform changes the wave
function for a pure state from the position representation into the momentum representation. Then,
we have

〈x| 〉 =
∫ ∞

−∞
〈x|p〉〈p| 〉 dp ; (A.7)

which implies that

〈x|p〉 =
1√
2)

e−ipx : (A.8)

The Gelfand–Maurin theorem can be extended to a set of commuting observables. Here, we shall
focus our attention to the case in which H; L2 and Lz are a set of commuting observables, where
L̃ ≡ (Lx; Ly; Lz) represents the orbital angular momentum. Then, there exists a RHS � ⊂ H ⊂ �×
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such that the eigenvalue equations

H |E; l; lz〉 = E|E; l; lz〉 ;

L2|E; l; lz〉 = l(l + 1)|E; l; lz〉 ;

Lz|E; l; lz〉 = lz|E; l; lz〉 (A.9)

have solution in the antidual of the three dimensional Schwartz space S(R3). Another possibility
for a set of commuting observables is the triplet of components of the three-dimensional position,
{Qx; Qy; Qz}, or momentum operator, {Px; Py; Pz}. In these two latter cases, the eigenvalue equations

Qx|x〉 = x|x〉; Qy|x〉 = y|x〉; Qz|x〉 = z|x〉 ; (A.10)

Px|p〉 = px|p〉; Py|p〉 = py|p〉; Pz|p〉 = pz|p〉 (A.11)

with x = (x; y; z) and p = (px; py; pz), also have solutions in the antidual of S(R3). Note that if
 (x) ∈ S(R3), then in the H; L2; Lz representation, the wave function for the state  (x) is given by

〈E; l; lz| 〉 =
∫
R3

〈E; l; lz|x〉〈x| 〉 d3x (A.12)

with 〈x| 〉 =  (x). Eq. (A.12) is invertible:

〈x| 〉 =
l∑

lz=−l

∞∑
l=0

∫
R3

〈x|E; l; lz〉〈E; l; lz| 〉 d3x (A.13)

Appendix B

Along this paper, we have de<ned Gamow vectors as eigenvectors of the Hamiltonian H with
complex eigenvalues. These eigenvalues correspond to the poles of the analytic continuation of the
S-operator in the energy representation. Their eigenvectors, the Gamow vectors, belong to the duals
of a given RHS. However, the set of complex eigenvalues of the Hamiltonian on these duals is in
general larger than the set of poles of the S-operator. For instance, the eigenvalue equation H = z 
has solutions with  in �×

+ in (58) for all all z with negative imaginary part and in �×
−, also in

(58), for all z with positive imaginary part. Thus, it would be interesting to have a criterion to know
which solutions of the eigenvalue equation H = z correspond to Gamow vectors, if we do not
know the analytic structure of S(E).

In order to make this criterion more comprehensible, let us present it on a simple model following
the lines of previous work [27,79–82]. We study a resonant scattering model with a spherically
symmetric potential of the type:

V (r) =




0; 0¡r¡a ;

V0; a6 r6 b ;

0; b¡ r¡∞ :

(B.1)
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Let  (x) be a pure quantum state in S(R3). Using the Gelfand–Maurin theorem for a system of
commuting observables, we have that

 =
l∑

lz=−l

∞∑
l=0

∫
R3

|E; l; lz〉〈E; l; lz| 〉 dE : (B.2)

If we apply H to (B.2), we have that

H =
l∑

lz=−l

∞∑
l=0

∫
R3

H |E; l; lz〉〈E; l; lz| 〉 dE : (B.3)

Then,

〈x|H 〉 =
l∑

lz=−l

∞∑
l=0

∫
R3

〈x|H |E; l; lz〉〈E; l; lz| 〉 dE : (B.4)

As 〈x|H 〉 is the wave function in coordinate representation of H , the SchrKodinger equation
yields

〈x|H 〉 =
(

− ˝2

2m
F + V (x)

)
〈x| 〉 ; (B.5)

where F is the three dimensional Laplacian. If we use (B.13) in (B.5), we have that

〈x|H 〉 =
l∑

lz=−l

∞∑
l=0

∫
R3

{(
− ˝2

2m
F + V (x)

)
〈x|E; l; lz〉

}
〈E; l; lz| 〉 dE ; (B.6)

where the brackets in (B.6) shows that only the kernel 〈x|E; l; lz〉 depends on the variable x.
Comparing (B.6)–(B.4) and taking into account that 〈E; l; lz| 〉 is arbitrary, we conclude that

〈x|H |E; l; lz〉 =
(

− ˝2

2m
F + V (x)

)
〈x|E; l; lz〉 : (B.7)

Since V (x) = V (r) is spherically symmetric, we can use spherical coordinates x= (r; *; �). Then,
the SchrKodinger equation (B.7) in spherical coordinates reads

〈r; *; �|H |E; l; lz〉 =
(

− ˝2

2m
1
r2

9
9r

(
r2 9
9r

)
+
˝2l(l + 1)

2mr2 + V (r)
)

〈r; *; �|E; l; lz〉

=E〈r; *; �|E; l; lz〉 : (B.8)

If we separate the radial and angular dependence, we obtain

〈r; *; �|E; l; lz〉 = 〈r|E〉l〈*; �|l; lz〉 =
1
r
Gl(r;E)Yl;lz(*; �) ; (B.9)

where Yl;lz(*; �) are the spherical harmonics. Connecting (B.8) and (B.9), we obtain for the
radial part:(

− ˝2

2m
d2

dr2 +
˝2l(l + 1)

2mr2 + V (r)
)

Gl(r;E) = EGl(r;E) : (B.10)
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Therefore, Gl(r;E) is the solution to the radial part of the SchrKodinger equation with orbital angular
momentum equal to l. If we choose l = 0 and write G(r;E) = G0(r;E), we get

− ˝2

2m
d2

dr2 G(r;E) + V (r)G(r;E) = EG(r;E) : (B.11)

The solutions of (B.11) are the Dirac kets, with <xed E, in the energy representation. The general
solution of (B.11) is given by

G(r;E) =




"1eikr + #1e−ikr ; 0¡r¡a ;

"2eiQr + #2eiQr; a¡ r¡b ;

F1eikr +F2e−ikr ; b¡ r¡∞ ;

(B.12)

where "1;2; #1;2 and F1;2 are arbitrary constants that depend on E and which we shall <x by using
boundary conditions and

k =

√
2m
˝2 E; Q =

√
2m
˝2 (E − V0) : (B.13)

Taking into account the form of the potential, the boundary conditions are [79,80]:

G(0;E) = 0 ; (B.14)

i.e., the wave function vanishes at the origin, and

G(a − 0;E) = G(a + 0;E) ;

G′(a − 0;E) = G′(a + 0;E) ;

G(b − 0;E) = G(b + 0;E) ;

G′(b − 0;E) = G′(b + 0;E) ; (B.15)

which implies the continuity of the function and its <rst derivative at the points a and b.
After (B.11), the Dirac ket G(r;E) satis<es the eigenvalue equation

HG(r;E) = EG(r;E)

for positive E. In order to look for Gamow vectors, we have to solve an eigenvalue equation of this
type with complex E. Then the eigenvalue equation to consider must have the form

HG(r; z0) = z0G(r; z0) ;

where z0 is a complex number. For l = 0, we have to solve the equation

− ˝2

2m
d2

dr2 G(r; z0) + V (r)G(r; z0) = z0G(r; z0) : (B.16)
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The solution G(r; z0) of (B.16) has the form (B.12) with

k = k0 =

√
2m
˝2 z0; Q = Q0 =

√
2m
˝2 (z0 − V0) : (B.17)

We impose to the solutions of (B.16) the boundary conditions:

G(0; z0) = 0 ; (B.18)

i.e., the wave function vanishes at the origin;

G(a − 0; z0) = G(a + 0; z0) ;

G′(a − 0; z0) = G′(a + 0; z0) ;

G(b − 0; z0) = G(b + 0; z0) ;

G′(b − 0; z0) = G′(b + 0; z0) ; (B.19)

which implies the continuity of the function G(r; z0) and its <rst derivative, with respect to r, at the
points a and b. Note that these boundary conditions diFer from the boundary conditions given in
Eqs. (B.14) and (B.15) of this Appendix B. At in<nity, we impose the so called purely outgoing
boundary condition [79,80], which is

G(r; z0) ∼ eikr for k �→ ∞ : (B.20)

See also [71]. The meaning of this boundary condition is the following: take the latter formula of
(B.19) and note that F1 and F2 must depend on k and, therefore, on z. Then, the S-matrix is
written in the form [89,64]

S(k) = −F1(k)
F2(k)

: (B.21)

Resonances are placed at the poles of S(k) for Im k ¡ 0, Real k �= 0 and this corresponds to the
zeroes of F2(k) with identical properties. Thus, if a resonance is placed at z0 = (˝2k2

0 )=(2m), then,
F2(k0) = 0 and reciprocally. This justi<es characterization (B.20) for resonance states.

Thus, a solution of the eigenvalue equation HG(r; z) = zG(r; z) represents a Gamow vector
for the square well potential (B.1) and l = 0 if and only if it ful<lls the purely outgoing boundary
condition (B.20).

If G(r; z0) is a Gamow vector, it still may happens that either Im z0 ¡ 0 or Im z0 ¿ 0. In the <rst
case, we have a decaying Gamow vector. Its form is given by [79,80]:

Gdecaying(r; z0) =




sin(k0r); 0¡r¡a ;

"2(k0)eiQ0r + #2(k0)e−iQ0r ; a¡ r¡b ;

F1(k0)eik0r ; b¡ r¡∞ ;

(B.22)

where k0 and Q0 are as in (B.17). If instead of z0, we have its complex conjugate z∗
0 , then Im z∗

0 ¿ 0
and we have the growing Gamow vector Ggrowing(r; z∗

0 ). To obtain its explicit form, we replace z0
by z∗

0 in (B.22).
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