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A schematic model for hadronic states, based on constituent quarks and antiquarks and gluon pairs, is
discussed. The phenomenological interaction between quarks and gluons is QCD motivated. The obtained
hadronic spectrum leads to the identification of nucleon andD resonances and to pentaquark and heptaquark
states. The predicted lowest pentaquark statesJp= 1

2
−d lies at the energy of 1.5 GeV and it is associated to the

observedQ+s1540d state. For heptaquarkssJp= 1
2

+, 3
2

+d the model predicts the lowest state at 2.5 GeV.
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I. INTRODUCTION

In a series of previous publications[1–3] a schematic
model for QCD was developed. The model was used to test
the meson spectrum of QCD. In spite of its schematic nature
the model seems to contain the relevant degrees of freedom
(color, flavor, and spin), as it was shown in the comparison
between calculated and experimental meson spectra[2]. This
letter is devoted to the extension of the model to accommo-
date baryonic features. Particularly, we shall concentrate on
the appearance of exotic baryonic states, like pentaquark and
heptaquark states[4–8].

The essentials of the model were discussed in detail in
Ref. [2]. It consists of two fermionic levels in the quark(q)
and antiquark(q̄) sector and a gluonic(g2) state containing
pairs of gluons. These are the elementary building blocks of
the model. The interaction among these parts is described by
excitations of pairs of quarks and antiquarks mediated by the
exchange of pairs of gluons. The pairs of quarks are classi-
fied in a flavor-spin coupling scheme. The pairs of gluons are
kept in the angular momentum(J), parity (p), and charge
conjugation(C) stateJpC=0++. The strength of various chan-
nels of the interaction, as well as the constituent masses, are
taken from a phenomenological analysis. The model de-
scribes meson (sqq̄dnsg2dm) states and baryonic
(q3sqq̄dnsg2dm) states. Among these states we focus onq3sqq̄d
states(pentaquarks) andq3sqq̄d2 states(heptaquarks), where
the configurations indicated represent the leading terms in an
expansion over many quark-antiquark and gluon states. The
basis states are classified using group theoretical methods
[2]. The interaction of quark-antiquark pairs with gluon pairs
is particle nonconserving.

The above described model belongs to a class of exactly
solvable models of coupled fermion and boson systems
[9–12]. Alternative descriptions of pentaquark states, which
use also an algebraic approach but which include orbital ex-
citations, and enforce particle number conservation, have
been proposed in Ref.[13].

In what follows we shall classify the basis states and solve
the Hamiltonian in the framework of the boson expansion
method[14,15]. Finally, we shall compare the results of the
calculations with recently published experimental data[4–7].

The model Hamiltonian is written

H = 2v fnf + vbnb + o
lS

VlSHfsblS
† d2 + 2blS

† blS+ sblSd2g

3S1 −
nf

2V
Db + b†S1 −

nf

2V
DfsblS

† d2 + 2blS
† blS+ sblSd2gJ

+ ns0,1d0sD1nb + D2sb† + bdd + ns2,0d1sE1nb + E2sb† + bdd.

s1d

The distance between the fermion levels is 2v f =0.66 GeV,
vb=1.6 GeV is the energy of the glue ball,nf and nb are
the number operators for fermion and gluon pairs, respec-
tively, VlS is the strength of the interaction in the flavorsl)
and spin(S) channel. The actual valuesl=0,1 refer to flavor
(0,0) and (1,1) configurations, while the spin channel isS
=0 or 1. The adopted values are:V00=0.0337 GeV,V01
=0.0422 GeV,V10=0.1573 GeV, andV11=0.0177 GeV[2].
The operatorsblS

† and blS are boson images of quark-
antiquark pairs[2]. The products which appear inside brack-
ets in (1) are scalar products. The factors1−nf /2Vd results
from the boson mapping[2]. The mapping is exact for the
channelfl ,Sg=f0,0g and simulates the effect of the boson
mapping for the other channels. The operatorb†sbd creates
(annihilates) gluon pairs with spin-color zero, andnsl0,m0dS0

is
the number operator of di-quarks coupled to flavor-spin
sl0,m0dS0. The parametersD1s2d and E1s2d are adjusted to
reproduce the nucleon andD resonances. The corresponding
terms describe the interaction between valence quarks and
mesons. The Hamiltonian(1) does not contain terms which
distinguish between states with different hypercharge and
isospin. It does not contain flavor mixing terms, either.
Therefore, the predicted states have to be corrected in

PHYSICAL REVIEW C 70, 025201(2004)

0556-2813/2004/70(2)/025201(4)/$22.50 ©2004 The American Physical Society70 025201-1



the way described in Ref.[16] to allow a comparison
with data. The adopted values ofD1s2d and E1s2d are: D1

=−1.442 GeV, D2=−0.4388 GeV, E1=−1.1873 GeV, and
E2=−0.3622 GeV. The Hamiltonian contains all relevant de-
grees of freedom requested by QCD.

The complete classification of quark-antiquark configura-
tions was given in Ref.[2].

The unperturbed ground state is composed by 18 quarks
occupying the lowest fermionic level. The baryonic states are
described by three quarks in the upper fermionic level to
which we addsqq̄dn states. The group chain which describes
these states is

f1Ngfhg = fh1h2h3gfhTg,

Us4Vd . USV

3
D ^ Us12d, s2d

whereV=9 accounts for three color and three flavor degrees
of freedom. The irreducible representation(irrep) of Us4Vd
is completely antisymmetric, andfhTg is the transposed
Young diagram offhg [17]. For N particles, and due to the
antisymmetric irrepf1Ng of Us4Vd, the irreps of UsV /3d and
Us12d are complementary and the irrep of UsV /3d is the
color group, which is reduced to SUCs3d with the color irrep
slC,mCd. The Us12d group is further reduced to

Us12d . U fs3d ^ Us4d . SUfs3d ^ SUSs2d

fp1p2p3p4gsl f,m fd S,M , s3d

wheresl f ,m fd is the flavor irrep andfp1p2p3p4g denotes the
possible Us4d irreps. The group reduction is done using the
methods exposed in Ref.[18]. The basis is spanned by the
states

uN,fp1p2p3p4gslC,mCd,r fsl f,m fdYTTz,rSSMl, s4d

whereN is the number of particles,Y is the hypercharge, and
(T,Tz) denotes the isospin and its third component,r f andrS
are the multiplicities of the flavor and spin representations.
The color labelsslC,mCd are related to thehi via lC=h1

−h2 and mC=h2−h3. To obtain the values ofhi one has to
consider all possible partitions ofN=h1+h2+h3, which fixes
the color. For colorless states we haveh1=h2=h3=h. Each
partition of N appears only once. The irrepfhhhg of
UsV /3d=Us3d fixes the irrep of Us12d, as indicated in(2).
For V=9 and color(0,0) the irrep of Us12d is given by
f3606g for mesons, and byf3705g for baryons. As an example,
Table I shows the relevant irreps for mesonic states.(More
details are given in Ref.[19].)

In the boson representation, the states are given by the
direct product of one-, three-, eight- and 24-dimensional har-
monic oscillators[2]. For each harmonic oscillator the basis
states are given by

NNlSnlS
sblS

†2dNlS−nlS/2unlSalSl, s5d

whereNlS is the number of bosons of typefl ,Sg, nlS is the
corresponding seniority, andNNlSnlS

is a normalization con-
stant. The seniority is defined as the number of uncoupled

bosons. The quantityalS represents the other quantum num-
bers needed to specify a particular harmonic oscillator.

Concerning the width of the states, in the present version
of the model it cannot be calculated. For it, one has to con-
struct the explicit form ofunlSalSl and calculate the overlap
of the initial state with the states of the exit channel, which
can be seen as a cluster component of the initial state. In
spite of this limitation we can advance some qualitative ar-
guments. We can determine the average numbers of quark-
antiquark pairs coupled to a definite flavor and spin and also
the average number of gluon pairs coupled to color and spin
zero. If these average numbers, as obtained for the initial
state, differ with respect to the sum of the average numbers
of the particles in the decay channel, then the width of the
state may be small. If these average numbers are similar, the
appearance of a broad width may be expected.

II. NUCLEON RESONANCES

The quality of the model predictions, concerning meson
states, was discussed in Ref.[2]. Figure 1 shows the lowest
nucleon andD resonances predicted by the model. In the
same figure are shown the calculated penta- and heptaquark
low lying states. For each state we indicate the spin, parity
(Jp), and the quark and gluon content(nq+nq̄, ng). The quan-
tity nq+nq̄ is the total number of quarks and antiquarks,
which is equal to the number of valence quarks(0 for me-
sons, 3 baryons) plus the number of quarks and antiquarks of
theqq̄ pairs, andng gives the number of gluons. As shown in
the figure, nucleonic states contain on the average about half
an additional quark-antiquark pair(equivalent to one extra
quark), and approximately 2.8 gluons. This implies a content
of 59% in the quark sector and of 41% in the gluon sector.
The theoretical Roper resonance(first excited nucleon reso-
nance) lies near the experimental energy of 1.44 GeV. Most
constituent models predict the Roper resonance too high,
above the negative-parity excitation. An exception is the

TABLE I. Flavor irreps coupled to the quark-antiquark content
of some different Us4d irreps. Shown are the irreps which contain,
at most, two quarks and two antiquarks. The number of quarks
(antiquarks) in a given configuration are denoted bynq snq̄d.

SUfs3d Us4d fq1q2g nq Sq fq̄1q̄2g nq̄ Sq̄ S

(0,0), (1,1), (2,2) f8811g f11g 2 0 f88g 2 0 0

(1,1), (3,0), (0,3) f9711g f11g 2 0 f97g 2 1 1

(1,1), (3,0), (0,3) f8820g f20g 2 1 f88g 2 0 1

(0,0), (1,1), (2,2) f9720g f20g 2 1 f97g 2 1 0, 1, 2

(1,1) f9810g f10g 1 1
2 f98g 1 1

2 0, 1

(1,1) f9810g f11g 2 0 f97g 2 1 1

(1,1) f9810g f11g 2 0 f88g 2 0 0

(1,1) f9810g f20g 2 1 f97g 2 1 0, 1, 2

(1,1) f9810g f20g 2 1 f88g 2 0 1

(0,0) f9900g f00g 0 0 f99g 0 0 0

(0,0) f9900g f10g 1 1
2 f98g 1 1

2 0, 1

(0,0) f9900g f20g 2 1 f97g 2 1 0, 1, 2
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model of [20], where the energy of the Roper resonance is
adjusted in a particular dynamical symmetry limit. In our
approach the Roper resonance appears at low energy because
of the sudden increase of the particle content of the configu-
ration, a feature which results in a collective excitation. The
first negative parity state withJp= 1

2
− appears at 1.51 GeV,

also in good agreement with the data.

III. D RESONANCES

The simplest way to obtain aD resonance is to couple the
three valence quarks in thes3,0d 3

2 configuration withqq̄
pairs in as0,0dJ=0 configuration. This scheme leads to the
Ds1232d resonance. The quark-antiquark and gluon content
of the calculatedDs1232d turns out to be lower than that of
the nucleon, while the structure of the state at 1.57 GeV can
be compared with the Roper resonance. Concerning negative
parity states, Fig. 1 shows a32

− state at 1.79 GeV.D reso-
nances can also be obtained by coupling the three valence
quarks in thes1,1d 1

2 configuration withs1,1dS qq̄states. The
lowest state of this type is at 1.51 GeV, and it should be
compared with the experimental value(D resonance) at
1.62 GeV[21].

IV. PENTAQUARKS AND HEPTAQUARKS

In the present calculation the minimal representation of
pentaquarklike states includes the following configurations:

s0,0d 1
2

−, s1,1d 1
2

−, s3,0d 1
2

−, s0,3d 1
2

− and s2,2d 1
2

−. Only the
s0,3d 1

2
− ands2,2d 1

2
− configurations contain hypercharge and

isospin combinations which cannot be obtained in a pureq3

coupling scheme, likeT=0, Y=2 in (0,3) andT=1, Y=2 in
(2,2). Within the model, the lowest pentaquark state
Q+s1540d [4–8] is interpreted as a coupling of the three va-
lence quarks ins1,1d 1

2
+ with theqq̄ background in(1,1)0− to

the final irreps1,1d 1
2

−. Thus, within our model, the calcu-
lated pentaquark state at 1.51 GeV may correspond to the
observed Q+s1540d state [4–8]. Another predicted pen-
taquark state is shown in Fig. 1.

Within the model, the lowest pentaquark has negative par-
ity in accordance with QCD sum-rules and lattice gauge cal-
culations [22–25]. If the orbital spin L is included, pen-
taquark states with positive parity may exist withL=1.
However, these states include an orbital excitation and
should appear at higher energies.

In order to obtain some information about the width of the
lowest pentaquark state, we use the procedure mentioned be-
fore (see Sec. III). The decay channel considered is the emis-
sion of a Kaon and a nucleon. The distribution of quark-
antiquark pairs in the lowest pentaquark state turns out to be
just the sum of the distributions of a Kaon and a nucleon.
This result suggests the existence of a very broad width, but
it has to be taken with caution because internal couplings can
change the situation.

The model contains heptaquarks, characterized by twoqq̄
pairs added to the three valence quarks. The lowest state has
an energy of approximately 2.5 GeV and it has a content of
3.9 qq̄ pairs of the types1,1d1+ coupled to the three valence
quarks in the configurations1,1d 1

2
+. This coupling scheme

yields three exotic flavor irreps:s3,3d 1
2

+,3
2

+, s4,1d 1
2

+,3
2

+, and
s1,4d 1

2
+,3

2
+. The lowest heptaquark state contains, basically,

three ideal valence quarks, fourqq̄ pairs and 4.6 gluons. This
implies a quark content of 70% and a gluon content of 30%.
The model predicts other heptaquark states at higher ener-
gies, which are obtained by coupling the three ideal valence
quarks with thes3,0d1+ ands0,3d1+ qq̄ configurations. This
leads to exotic flavor irreps like(4,1), (1,4), and (3,3) with
spin 1

2
+ and 3

2
+. The coupling of the three valence quarks

with a qq̄ irrep (2,2) S=0,1,2leads to exotic flavor irreps of
the type(3,3), (1,4) with spin-parity 1

2
+, 3

2
+, and 5

2
+ [19].

V. HIGHER MULTIQUARK STATES

In this letter we do not go further into the discussion of all
possible states with the structureq3sqq̄dn2gn3, since the num-
ber of these configurations increases with the energy. A more
complete overview of these states will be presented in Ref.
[19] with its complete classification of states.

To conclude, we have applied a schematic model based on
QCD degrees of freedom, to describe nucleon andD reso-
nances and more exotic penta- and heptaquark states. The
basis states were classified by applying group theoretical
methods. The Hamiltonian, used in the calculations, was
tested to the mesonic spectrum, nucleon andD resonances.
After fixing the parameters in this manner, we have investi-
gated the appearance of penta- and heptaquark states. The

FIG. 1. Nucleon resonances(first group of levels), D resonances
(second group), pentaquarks(third group) and heptaquarks(fourth
group). On the right side of each level are given the assigned spin
and parity(Jp), and the total quark and antiquarksnq+nq̄d and gluon
(ng) contents(see the text).
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results of the calculations show that the model predicts rea-
sonably well theQ+s1540d resonance. The lowest pentaquark
state is obtained at an energy of approximately 1.5 GeV and
it hasJp= 1

2
−. The lowest heptaquark state has an energy of

approximately 2.5 GeV andJp either 1
2

+ or 3
2

+. In addition,
other penta- and heptaquark states are predicted to appear at
higher energies.

The model allows for a complete classification of many
quark-antiquark and gluon systems. As we have shown, the
exotic configurations which appear in our classification

scheme cannot be obtained in a simple constituent quark
picture. The overall agreement with the experimental data
supports the claim about the suitability of the procedure.
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