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Abstract

We study the effects of isospin symmetry violation in the description of the isobaric analogue
state (I.A.S.). The sources of such violation are either spurious (like isospin violations induced by
the choice of the independent-particle basis), or have a physical origin (as those arising from the
presence of isospin violating terms in the residual interactions). We perform a treatment based on
the use of collective variables. The restoration of the symmetry is enforced at the collective level, in
order to calculate physical isospin violating terms within an isospin conserving basis. The method is
illustrated for a schematic model and for realistic single-particle model spaces. In the last situation,
we obtain an excellent agreement with data arodnd 208, both for the energy and width of the
I.LA.S.
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1. Introduction

In nuclear structure calculations, the treatment of the isospin degree of freedom is fre-
guently hampered by use of single-particle bases which violate the isospin symmetry. This
fact has produced ambiguities both in the description of isobaric analogue states (1.A.S.)
and in the treatment of Fermi transitions in single- and double-beta decay processes.
A common source of violations is to only include terms of the typero in the con-
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struction of the basis states, while isospin symmetry would require that the contributions
-T+.7¢ should be taken into account as well. H&rés the total isospin, while is the cor-
responding single-particle operator. An additional source of violations in the double-beta
decay problem is the inclusion of only pairing between identical particles, within the BCS
formalism. Note that there are also legitimate sources of isospin mixtures, due the presence
of physical isospin non-conserving terms in the Hamiltonian, such as Coulomb contribu-
tions to the proton single-particle Hamiltonian, or differences between the strength of the
isovector proton—proton, neutron—neutron and proton—neutron pairing channels. Therefore,
the problem is to disentangle between spurious and legitimate sources of isospin violations,
and to prevent unwanted coherence effects between them. Although the existence of this
problem was recognized long time ago in studies concerning I.A.S. and isospin impurities
[1,2], the problem has remained largely unsolVedl.global analysis of the energy and
spreading width of the .A.S., in the range= 110 to 238 can be found in [3]. For a com-
pilation of experimental values for the Coulomb displacement energies between members
of isospin multiplets, see Ref. [4].

A collective treatment has been proposed for the pairing case, which not only allows
to restore the symmetries in the cases for which this is adequate, but also to disentangle
between the real isospin admixtures and the spurious ones [5,6]. This formalism has its
own interest, independently of the above mentioned applications. The perfect analogy to
this treatment is the use of intrinsic and collective degrees of freedom in the description of
nuclear deformations and space rotations [7]. Although such an analogy has been drawn
long time ago [7—10], the microscopic theory of gauge and isospin collective phenomena
was not discussed before in detail. The present availability of radioactive beams and
targets, may also call for the application of the present formalism, in order to explore
nuclear structure aspects for which it is relevant a correct treatment of the isospin degree
of freedom.

The results obtained in Ref. [5] for the case of purely isovector (spin independent)
transitions are in perfect agreement with available exact solutions, in contrast with the
behavior of other approximations in the vicinity of the symmetry restoration (see [5,6] for
a detailed discussion). The formalism was generalized, presented in detail and applied to
particular cases in Ref. [6].

Let us stress the fact that we are facing a different problem in many-body physics.
Usually, collective variables are introduced in order to restore, at the macroscopic level,
symmetries that are lost in the microscopic description. This implies that there is a
symmetry to start with, which is reflected in an invariance property of the original
Hamiltonian. However, in the present case, the initial Hamiltonian is in general not scalar
in isospin space. Otherwise, neither double-Fermi transitions between states differing in
two units of isospin could exist, nor admixtures of I.A.S. with states of the underlying
background, carrying one unit less of isospin, would be possible.

Since the previous presentations were confined to superfluid shell-model systems, we
here adapt the formalism to the simpler case of normal systems (Section 2). Subsequently

1 The following entries are taken from Ref. [2]:severe limitation of any HF calculation in N > Z nuclei
is the appearance of spurious isospin mixing. . .; this limitation cannot be avoided; in the section discussion and
summary:... and its [the result] main limitation is again the isospin mixing.
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we apply it to the study of I.A.S. We do not discuss the spurious sector, for which we refer
to [6].

An alternative approach to study this problem is to consider the admixture between
the ILA.S. with isospin T and the giant isovector monopole resonance (G.I.M.R.) with
isospin T-1 through the Coulomb interaction. In turn, the G.I.M.R. is mixed with doorway
states having also T-1. (See, for instance, Ref. [11].) In the present paper we avoid the
complication due to the presence of another collective mode, and leave the comparison
between the two approaches for a subsequently publication.

In this presentation we consider two cases: (i) a Hamiltonian which conserves isospin
for certain values of the parameters associated with the residual two-body interaction,
and that may be straightforwardly treated within the present formalism (Section 4);
(ii) a realistic single-particle Hamiltonian for which the difference between neutrons and
protons single-particle energies proceeds from both an isospin conserving interaction, the
isovector Hamiltonian, and from a non-conserving isospin force, the Coulomb interaction
(Section 5).

2. Thetreatment of the isospin degree of freedom with collective coor dinates

Let us split the Hamiltonian into single-particle and two-body terms,
H=Hep+V, (1)

where at leastHsp is not invariant against symmetry transformations associated with
isospin symmetry. Thus the single-particle basis states, determinédpylo not carry

the quantum numbers corresponding to this symmetry. The symmetry may be restored at
the collective level by raising the transformation parameters determining the orientation of
an “intrinsic” or “moving” frame of reference, to the status of collective coordinates. The
total Hilbert space is thus factorized into an intrinsic and a collective sector. This last one
may be labeled by the quantum numbers associated with the original symmetry

¥ = Yintrinsic X Diyx (Pas O, Dy)- (2)

Here¢q, g and¢, represent the Euler angles in isospin space. The quantum numbers
M and K are the eigenvalues of the isospin projection along the laboratory and intrinsic
frames of reference, respectively.

We operate on the intrinsic system, where symmetry violations may still take place
(even for a spin symmetric Hamiltonian), since it is an artificial construction. Therefore
any operator must first be transformed to the intrinsic frame, before acting on the product
states (2). Obviously problems of over-completeness and of constraints should be properly
taken into account.

If the total Hamiltonian does not conserve the symmetry, the same procedure may
be carried out, yielding an appropriate isospin conserving base for the calculation of
matrix elements of iso-multipole operators. Thus we disentangle the physical effects due
to non-conservation of isospin in the Hamiltonian, from the spurious effects arising as a
consequence of isospin violations within the set of basis states.
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2.1. The generators of the transformations and the constraints

The intrinsic generators of the isospin transformations in the intrinsic frame are the
operatorst, (¢ =0,1 and—-1= 1). The operatorgp, T+1 denote the corresponding
collective momenta.

The generators of isospin transformations satisfy the following commutation relations

[0, T+1] = £741, [To, T+1]l = — F T41, [t4, T,1=0. 3

The over-completeness of the basis poses a problem that is clarified through the
observation that a system, described as above, possesses a “gauge” symmetry. This
symmetry consists of the group of transformations which simultaneously move the intrinsic
frame of reference and the particle system so as to reproduce the same physical situation.
It is expressed by the constraints

7, —T,=0. (4)

The conditions (4) may be rigorously derived whenever we consider a Lagrangian
corresponding to a description from a moving frame, and we treat both the original
coordinates and the coordinates of the moving frame on an equal footing [12]. Such
Lagrangian is called singular, meaning that the velocities cannot be inverted as functions
of the coordinates and the momenta. As a consequence, the momenta are not independent
from each other: there appear relations such as (4) between them, which are called
constraints.

Atthe quantum level, the constraints (4) imply that physical states should be annihilated
by them and physical operators should commute with them. Several procedures have been
developed in order to enforce these constraints for the case of gauge field theories. In
particular, the one based on the BRST invariance [13,14], has been adapted to many-
body problems in Ref. [15]. It has been illustrated by means of applications to very simple
mechanical models in Ref. [16].

2.2. The collective sector of the Hilbert space

The set of basis states within the collective sector may be straightforwardly obtained in
two limiting situations, according to whether the Coriolis type of interac%ajnl)‘f T,7;
is taken into account perturbatively or is wholly included in the intrinsic single-particle
spectrum (as in the cranking model). The former solution is to be preferred if the magnitude
of the isospinT is smaller than other parameters of the problem, while the second solution
is adopted for larger values @f. In the present paper we consider this second case.

The assumption of large valuesBfsuggests the use of the Marshalek generalization of
the Holstein—Primakoff representation [18]. Thus, the rotational isospin sector in (2) may
be expressed in terms of the boson creation operators ™ and¢™

2T (s+\m +\k
rmry =T E )y 012, 5)
V@) (m)! V(&)!
where the quantum numbens = %(T + M) andk = %(T + K) substitute the isospin
projectionsM and K, respectively. This representation is specially useful for values of
m/T,k/T <« 1, which we assume to be the case.
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We may also write down the expression for the matriD% acting on states (5). Such
operators are expanded in powers pf'lin Appendix A for the cases of interest.

Within the same representation, the collective components of the isospin operators may
be written in terms of the bosors", ¢

1
To=-T+¢%s, Tj=¢" T—§§+§%—ﬁg+,

Ti=-T; ~VTs. (6)
Therefore, the constraints (4) are written, to leading ordey iR, s
o=-T+c¢"c, n=—+Tg, =vTgs". (7)
We also define the isospin raising operator
2(T+)2T (T+)2T+1

BAT) =T +1) < B ). (8)

J@2T)! = J@T 1)

3. Thetransformation of a general Hamiltonian

The Hamiltonian (1) displays single-particle and two-body contributions. Each of them
may be written in terms of isomultipoléswith projectionu = 0.

H = Hoo+ H1o + H>o,

Hoo = Hspoo+ Voo,

H10= Hsp10+ V1o,

Hoo= Vaoo. 9)

The isovector single-particle teriHsp10is responsible for the isospin mixtures that are
present in the independent-particle basic set of states, and thus for all the evils that we
intend to cure through the present work. Thg terms represent two-body interactions.
The different isospin components may be individualized according to the procedure given
in Appendix B.

To lowest order, the constraints (3) imply

(o) =—T. (10)

Since the calculations are performed in the intrinsic system, any operator should be
transformed to this frame. As usual [7], the transformation between laboratory (lab) and
intrinsic (int) tensor operators is expressed by

O =D}, O, (11)

2 We use the Einstein convention that the repetition of an index on a given side of an equation implies
a summation over that index (for instance, there is a summation over the indexthe second Eg. (25)).
Exceptions: (i) the index is repeated also on the other side of the equation, as for the indethe second
Eq. (25); (i) whenever there is a limitation on the summation, a$fgr. o.
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whereDﬁw are the rotational matrices, discussed in the previous section. The operators
O, are irreducible tensor operators carrying isospand isospin-projectiop.

The application of this transformation to the Hamiltonian is a trivial step in cases for
which the Hamiltonian displays only scalar terms. In the present situation the Hamiltonian

transforms as
H = Ho+ H1+ Ho,
Ho = Hspoo+ Voo,
H1= D, Hspy + Dj, V1,
Hy = DZ Vs, (12)

The termsH; and H, of the Hamiltonian (12) are physical operators, because they
commute with the constraints (4). This is not the case for the compoBptand Hzg
in (9).

Apparently, we have only succeeded in complicating the problem through the substi-
tution of the Hamiltonian (9) by (12), which must be considered simultaneously with the
constraints (4). In the following we show that this is not the case, but rather constitutes the
first step of a systematic and simplifying procedure.

3.1. The elementary modes of excitation and the quadratic coupling terms

We replace the rotational functiom%l) andDSV (Eqg. (12)) by the corresponding leading
order terms, given in Appendix B

H=ho+ws(1+cTc+&Te—p%c—p2tct)

1
+ ia (Hsp11+ Vi1 + V3 Va1) (" — /3725)

—%(Hspﬂ + Vi1 +V3Vy) (s — B%T) + O(T73). (13)

We have used the following definitions

ho = Hspoo+ Voo + Hspio+ Vio+ Voo,

wg = _%((Hspld + (V10) + 3(V20)). (14)
Thus,

h1 = —[t1, hol = Hsp11+ V11 + v/3 V21,

hi = [11, hol = Hgpgi + Va1 + V3 Vor. (15)

If we also replace the operatots™, ¢ by their equivalent values obtained from the
constraints (7), we obtain

3
H=W +w; (s+s - 5) + Heoup+ O(T/2),

1
Heoup= —ﬁ(ﬁ_ZSE+ +p%TE) (16)
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where

13 1
W =ho — o [rv. vl + 7 (haty + hymo).
Et=h— wg T,
& =—hij+ wsTq. a7)

Here W is an effective Hamiltonian, yielding the normal modgscarrying energyy,
and isospinT — 1, through the TDA or RPA. The particle-hole creation (annihilation)
operatorsZ* (&) are expressed in terms of normal mogedhe operators€ +, & and
W are independent of.; to leading ordet in T. Therefore,W yields a zero-energy
root. The corresponding degree of freedom is thus eliminated from the spectrum, being
replaced by the collective degree of freedém i.e., by the sequence of analogue states.
All the successive I.A.S. carry the isospih The renormalization procedure is able to
eliminate the spurious effects associated with the badly behaved oparatoparticular
the divergence appearing in RPA treatments.

The coupling termHcqup mixes the 1.A.S. with they modes. It creates (annihilates)
the modeg; simultaneously with the annihilation (creation) of the 1.A.S. mode and the
lowering (rising) of the isospif by one unit.

3.2. Transition probabilities

The Fermi operator is written
ﬁ(F*) — \/E‘L'l. (18)

As we proceeded in the case of the Hamiltonian, we must transform the opgétatdrto
the intrinsic frame

B — V2(Diyr1 + Digro+ Di_yy7-1) = V2 D1y(w0) + O(T~Y?)

= —V2T &t +0(T712). (19)
The badly-behaved operatey is again replaced by the well-behaved collective operator

£

Thus the Fermi operator would only populate the I.A.S., but for the presence of the
coupling term Heoup We diagonalize this term following the procedure advocated in
Ref. [17], i.e., we neglect the residual matrix element between the I.A.S. itself and between
theg-modes. The energids;, are given by the dispersion relation

(q| Heoup€)?

(wg — Ex) = oy —Er (20)
while the eigenstates
k) = cx(©)1§) + cx(q)lq) (21)

3 [t+1, E]1=0O1) and[t41, W] = O(T~1Y/2), while they could be expected to be one order of magnitude
larger inT.
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display the amplitudes

3 (q| Heoul€)2\ 71/
Ck@)—(”m) |
H
c(g) = ck(s)@E'%“wpm. (22)
q

The matrix elements of the Fermi operator between the ground state and anyistate
given by the product

(kIB"719.8) = —V2T cr(§). (23)
The strength of this transition is centered at an enéfgind has a spread given by
2
£ Eda®©P
lex (8)]
_ 2 2\ 1/2
OT:<(Ek E) |c§(~§)| ) ' (24)
ek (8)]
4. Modd |

This model is analytically tractable but non-trivial. We expect to learn from it how
the above formalism works, rather than to extract, at this point, physical predictions.
The single-particle levels are labeled by the isospin compongnt)(and the angular
momentum §, m) quantum numbers

1
_§ . — (Tt .ot .
0= 70/ T0j = 2(ijmcl7/m anmcnlm)’
J

1
Tl:Zlea le:__c;fjmcnjm7
- N

‘L'i = —‘L'lJr. (25)

We assume that every single-particle state is completely filled with neutrons and
completely empty of protons. Therefore
22 22 2 . 1

(voj)=—j° T=j° Jj= ]—1—5. (26)
The Hamiltonian of this model is

H = Hsp+ HTp + Hsc,

Hsp= (€4j + €0j)70j,

Hrp = a(k|V|j) Tty

&IV,

HSC: —ﬁTTOkTOj, (27)
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where
coj=sj+rj, sj=(iIVIKE, rjzémvm. (28)
This Hamiltonian is an isoscalar provided= 8 =1, since
[t1, H1= (L — @)s; + (L= Byrj)waj — (@ — B kIV]j)Tikto;. (29)
We also define the large quantities of the problem,
Szfzsj, Rsfzrj (30)

and we assume thatis of orderT (cf. Egs. (26), (28) and (30)). Thug is an order of
magnitude smaller, in powers @f 1. The matrix eIement$k|V|J) are ofO(T~1). From
here on we keep only the leading order terms of an expansion in pow&rs'of

The Hamiltonian displays in general isoscalar, isovector and isoquadrupole terms. The
transformation to the intrinsic system (11) yields

~ 1 N
ho = €ojt0; + a(k|V|j)TwcTy; — ﬂ§<k|v|j>"70k1'0j +0(17Y),

h1 = (coj —asj)r1j — BkIVj)ruero; + O(T7H2),
hy = (eoj — sty — BkIV]j) oy, +O(TH2),

S(1-
4.1. TDA

For the sake of simplicity, we further assume that the interaction matrix elements can
be factorized

kIV1j) = vev;. (32)
Under this approximation, we write

€oj =sj="Vuj, Ss=V? (33)
whereV = v; j2. The TDA Hamiltonian reads

(1—a)V?

Htpa = €0jT0; + avivjTiety; + V(vjtijty + UjTiJ-Tl) — T[H’ til+ (34)
and the creation operators for the normal bosons are

I’j:)»qjyj*, yf:—;j;rlj. (35)

The linearization equation
[HTDA, Fj] = wy Fqu (36)
yields the transformation amplitudes

1 (1—(X)V ~ V/.\ ~ (1—0[)VA
hgj = A ) VU PP A dh | Y
qj on_wq[ [ (U/J TJ>+ q("“)JJ T J)] (37)
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where
A==, 2 (e Vg (axi+ E29Y x
=Ngjj=ANg—— i |l o = ,

q qjJ q T 1 T 0 q 1 T 0

o A 1-a)V Vv _ 1-a)V

g E)»qjvj‘]:/\qf Xz—?Xl +Dq O(X2+ #Xl N
v‘ffz

X, =—l. (38)
€0j — Wyq

Eq. (38) constitute a homogeneous system of equations in the amplitydes,. The
vanishing of the determinant of the coefficients of this system yields the égots

As a checkout, we verify that there is a rogt=£ 0) corresponding to the eigenvalue
wo =0, and for it

52
T

= 1—7 Xl =

ij \%
Using these values, the second Eq. (38) becomes an identity. Thus thg rodtis always
present. The first Eq. (38) determines the ratio

E,/Ag=—V/T. (40)

According to Eqg. (16), the matrix elements of the Hamiltonian between the |.A.S. state
£*|) and the statefqﬂ ) are given by

Xo Xo=1. (39)

1.
(C]|Hcoup|§> = ﬁ)\qj](EOj —asj —wsg). (41)
4.2. Numerical results

We remind that this schematic model does not represent quantitatively any physical
situation. We rather use it as a qualitative check of the formalism in situations where isospin
invariance may be invoked.

We have solved the system of Eq. (38) using the single-particle stated factorsy;
in matrix elements, listed in Table 1. There @e= 6 unperturbed configurations, and the

Table 1

Single particle levels used for model I. The single-particle enekgjes

are obtained from Eq. (33), and the valugsare the matrix elements of

the separable interaction. The values of the energies are given in units

of MeV

# Jj eo; vj

1 9/2 0.630 0.100
2 7/2 1.260 0.200
3 13/2 1.890 0.300
4 3/2 2.520 0.400
5 5/2 3.150 0.500
6 1/2 3.780 0.600
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o

Fig. 1. RPA frequencies, and the collective energys, for model I. The single particle energies and the matrix
elements of the residual two-body interaction are given in Table 1. The RPA equations (38) yield one root at zero
energy and five non-zero intrinsic excitatiog. The collective energyy is defined in Eq. (31). The spectrum

is given for each value of the parameterThe energies are given in units of MeV.

isospin of the g.s. has the valie= 22 (as in2°8Pb). The parameter is varied within
the interval(—1, 1). The isospin symmetry is fully restored fer= 1. The TDA intrinsic,
£2 —1=5, rootsw, are shown in Fig. 1 as a function @f together with the energy; of
the collective I.A.S. The roabg = 0 is present for any value of. It must not be confused
with the rootwg , which vanishes only foe = 1. This behavior clearly illustrates the well
known but frequently ignored fact that the presence of a zero frequency eigenvalue does
not imply the restoration of the symmetry.

However, the admixture between the ILA.S. and the stateannot be inferred from
the results displayed in Fig. 1. One must diagonalize the matrix (41). The results are
shown in Fig. 2, where the physical roats (20) are represented as a functiorwofFor
comparison, we have included also the valuewgf which has no meaning now, since it
has been included already in the diagonalization. Several consequences are extracted from
the results shown in Fig. 2, namely: (i) there is Ap= 0 root, except fowx = 1; (ii) in
contrast with the smooth behavior shown in Fig. 1, every energy eigenvalue is affected by
the coupling between the collective and intrinsic states; (iii) the number of roots is again
the original number ofj-states 2 = 6; (iv) in the symmetry limite = 1 the lowest root
corresponds to the collective |.A.S.
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o

Fig. 2. Solutions of the system of equations (2B), The diagonalization yields six eigenvalues. The energy
is shown for completeness. Note thateas> 1 (full symmetry restorationp; = E1 = 0.

Fig. 3 shows the energy centraitiof the states populated by the Fermi transition from
the ground state and the sprea4), as a function of the parameterNote thatt ~ ws.
The distribution narrows as approaches the symmetry poiat£ 1).

5. Model 11
5.1. Thesingle-particle states

Since model Il is supposed to be realistic, we start discussing with some detail the
single-particle states. They are created by the operh}*gﬁl for protons and by the;fv i
for neutrons. Herew, v stand for the sequential number of times that the state with the
samej and! appears (the labglincludes the orbital angular momentuinWe allow for
the fact that the proton and the neutron bases may be different. For instance, they may be
obtained from Woods—Saxon potentials with different parameters. We deno}fgjgythe

proton creation operator that is obtained fromet[j\;gm through the charge conjugation. It
may be expanded in terms of thgwjm operators with the same values pin

+ _ gt
vajm - x”wlbpwjm'

(42)
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51 <E>+c
7 w
g
>
2 31
o <E>-o
TR
2_
1_
0 1 1 I 1 I
-1,0 -0,5 0,0 0,5 1,0

Fig. 3. Average excitation energg, and its root mean square deviatien,as a function of the pa_rameter(see
Eq. (24)). The value of the collective energy is shown for completeness. As— 1,0 — 0 andE — wg.

The isospin operators should take into account the differences between the proton and
neutron bases

1 1

— + L Bt .
T1= ﬁcpvjmcnvlm = ﬁxuwjbpwjmcnvjmy
1 1
— + e ot .
1= ﬁcnvjmcpvlm = ﬁwi]cnvjmbpw]m’
+ +
0= EXWijUVj (bpwjmbPij - cnwjmcn‘)jm)' (43)

5.2. The Hamiltonian

We assume total and Coulomb single-particle Hamiltonians

Hs(s) = eijb;wjmbPij + e"VjC:vij"me’ (44)
HE = (peoj | Vooul pO )b ibposm- 45)

Hsff,) may display realistic single-particle energies. Both single-particle Hamiltonians
include isoscalaHspgoand isovectospipcomponents.
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If the Coulomb term is the only isospin symmetry breaking contribution, the difference
H{S) = HY) — HEY (46)

should be attributed to the Hartree—Fock contribution of an (unknown) isospin conserving
two-body interaction. We may replace this interaction with a contribution that restores the
isospin symmetry. To do so, we follow the treatnfesitthe motion of the center of mass
developed in [19]. Thus we add counterterms

H = H{) — Tir; — Tim. (47)
The operatord.; are determined by the requirement ti#&# is invariant under isospin

transformations. To leading order, this requirement leads to the expressions

1 1
(€) (€)
7:; = _?HS;].U — W(Hsgl(}rv' (48)

The counterterms (47) display isoscalar and isoquadrupole terms

2 2
Voo=—3T1it3 — Tir1 + 3 Tovo,
3 3
1
3
where we have used expressions of Appendix B. The total Hamiltonian is

2
Voo=—5Thti — it — éToTo, (49)

H = HS(S%)O-}- Hs<|§)10+ Voo + Voo. (50)
We perform the calculations indicated in Section 3 for this Hamiltonian and we obtain the
expressions

1, @ ©
wg = _?«HsSl - <HS|€31 )’
ho=H§) — (Tit—1 + To1ty),

_gle (e _ g
hiy = Hsp]z - Hsp]t = Hsp]z’

1 @ © 1, @
W= HS(S) + T (Hspllr_l + HSpl(—l)rl) + ﬁ(HSpl&[Tl’ T—l]-h

=+ _ 7@ 1@
ET = Hgppt+ ?(Hspl&rl' (51)

If we perform the isospin decomposition of Appendix B by means of the isospin
operators (43), we obtain

© _ 1 @, + ,
Hspll__ﬁvaj bpa)ij"VJm’

@ __loo o+ _ © o+ ,
HSplO_ —5E 'xUV]bpwjmbPV]m + EEuaijU]cnwij"V]m’

4 The commonly used procedure of adjusting constants to ensure the appearance of a zero-energy root, may

introduce significant errors in the population of #ienodes through the operatey, and thus in the calculation
of the width of the LA.S.
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éﬁiﬁ ~ 7 Qi b yoyjm Cnvjm (52)
where
E® = (€pwi — €nvi)Xvwi
wvj pwj — €nvj)Xvwj,
Ouwvj = (pwj|Heoull poj)Xvsj- (53)

5.2.1. RPA

The unperturbed particle-hole creation operaﬁ,q@ include a quantum number=
41, according to whether they increase/decrease the isospin projection and a {abel
a(w,v) =1, 2, ... specifying the proton and neutron configuration

1
+ +
y .= b . C ims
laj ]\/E pwjm-nvjm
+ _ + .
yiaj_ fﬁcnvjmbpwlm' (54)

The possible particle-hole creation operators are listed in Table 3 of Appendix C, together
with their unperturbed energies,, ;, amplitudes);,;, and Coulomb matrix elemeng; .

The RPA expressions for the isospin components and for the single-particle Hamiltonian
components carrying= +1 are

= 1) (MrajVis; + MiajViaj)s

Hs(;)jt j(Atajntajytj;j - Afaj nfajyfaj)~ (55)
The uncoupled boson creation operatﬁ]r§ carry also the quantum numbernd they
are also labelled by the sequential numbet 1,2, .... They are written as the linear
combination

Fthr = )\tqaj)/,:j — KigajYiaj- (56)

As usual, the linearization equatiofiV, 1?;] = a),ql“,j; determines both the finite
frequenciesy,, and the amplitudes, ., iqaj (S€€ Appendix C). The frequencies are
fixed through the vanishing of the determinant

(H.
-1+ TXt1+ Spm) X0 %Xto -0 (57)
1 Hsp10> _1 1 -
X2+ X1 + 57X
where
2 2 2 2
2 Atajntaj Afajnfaj
Xt2 = J + )
Atjm — w,q Afjm =+ w,q
2 _ .2
Ajm —0rg Afjm + 01g
2 2
ntaj nt_aj
Xo0=] 2( + . (58)
! Atjm — Wrq A;‘jm + wig
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The determinant (57) has also a zero-frequency#get 0, as one may verify through the
replacements
lim Xt2 = —(Hsp10,
wo—0
lim Xp=T (59)
a)o~>
in the expressions given in Appendix C. The coupling between the I.A.S. and the intrinsic
phonong1g) is obtained by means of expressions (51) and (52)

hy = _j(QtajV,:j - Qt_ajyt_aj)

=0l tqg — Qiqliaj + (Hégi(}”v (60)
where
Q1g = —J(Qrajhigaj = Qiajltiqa)) (61)
and therefore
(q|Heoupl§) = Q14- (62)

5.3. Numerical results

We have calculated the expressions obtained from model Il, starting from the separate
diagonalization of a Woods—Saxon potential for protons and neutrons. The parameters have
been taken from Ref. [7]. The central part of the potential has the strength

N—-Z7
VP =—51Mev, V= (—51+ 33T> MeV, (63)

while the spin orbit strength is
Vad = —0.44v7. (64)
The radiusRg and diffuseness are fixed at the values.2741/3 fm and 0.67 fm,

respectively. We have parametrized the Coulomb potential at the interior as

z z
Ve(r) = (2.16R— - 0.72—3r2> MeV fm. (65)
0 0

The coefficients,,,; in Eq. (42) have been obtained as follows: firstly, we have performed
a diagonalization of the W.S. neutron potential in a harmonic oscillator basis, for each
value of(/, j). The radial part of the states is

¢(§l’:ll)J (r = a](\‘lxl}'n)‘[lej (r), (66)

whereN is the principal quantum number, agdy;;, harmonic oscillator wave functions.
Similarly for protons

o) = aly P (). (67)
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Table 2
The eigenvalues,,;; (pure WS potential) for neutrons, aag;; (WS plus Coulomb potential) for protons. The
energies are in MeV. These are the states belonging to the region of neutron excess

# lj enlj eplj

1 ho/2 -10.514 2.375
2 f12 —-9971 3.359
3 i13/2 —8.209 3.668
4 f12 —7.794 5.693
5 P3/2 —7.752 6.089
6 P12 —6.937 6.917

The inclusion of the Coulomb interaction requires an additional diagonalization in the
basis of eigenstateﬁg{’l)J. (r). The resulting eigenstates may be expressed in terms of the
Bl (r)'s

2,00 =P o). (68)
Replacing the eigenstates of the WS potential (protons without Coulomb) and using the
completeness of the harmonic oscillator basis, the proton states may be expressed as linear
combinations (42) of neutron states, where

_ 3. v.p) _(B.p)( (a.n)\*
My.alj =bgij ani) (ani;)" (69)

The calculations have been performed for= 208 (0" states in?98Bi as proton
(particle)-neutron (hole) excitations on the ground stat@%th). We have included seven
major harmonic oscillator shells in the calculation. This is the space which exhausts all
possible transitions, connecting with the neutron excess region, to be included in the
description of the isospin dependent monopole excitations. A sample of single-particle
energies, corresponding to the region of neutron excess, is listed in Table 2.

To start with, we have performed calculations by considering only particle-hole
excitations in the region of neutron excess. This implies neglecting the differences between
the neutron and proton wave functions. All the expressions derived above apply as well,
with the amplitudes:,,; = 8., (EQ. (42)). In this case, the RPA calculation reduces to a
TDA calculation, similar to the one performed for model | in Section 5. The resultant values
are:wg = 17.85 MeV; E = 18.11 MeV; o = 0.29 MeV. Although the average enerdy
does not differ much from the experimental value of the I.A.S. relative to the ground state
of 208pp [4], the width is about 3—4 times larger than the experimental value, which is of
the order of 78 KeV. The coupling shifts upwards the collective energy by 0.26 MeV.

In a second calculation we have taken into account the difference between proton
and neutron wave functions and the complete single-particle basis, which includes states
belonging to two mayor shells above and below the region of neutron excess.

The solution to the RPA equations yields positive and negative eigenvalues, correspond-
ing to isospin decreasing and increasing modes, respectively. The situation is similar to the
case of pairing interactions, where the negative eigenvalues are associated to pair-removal
modes. Negative eigenvalues are associated to backward going transitions (see Appendix
C, Table 3). Since the negative eigenvalues do not couple with the .A.S., they do not con-
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Fig. 4. Strength distribution, in percentage, for Fermi transitions from the ground s&#Ptf(g.s.) t?98Bi, see

Eq. (23). The values are the square of the coefficiepts), since the total strength is equal t& 2The energies
are measured from the ground stat€®Pb. The largest contribution corresponds to the excitation of the I.A.S.
The results correspond to the realistic calculation described in Section 5.

tribute to the physical strength distribution. They should nonetheless be included in the
overall normalization of the intrinsic states.

For the considered single-particle basis we have obtained the valeel8.17 MeV,
a value which is indeed already quite comparable with the experimental ¥ale =
17.852 MeV [3]. Note that we are given the value of the I.A.S. energy respect to the
ground state of%pPb. The experimental valug a s = 15.172 MeV, which is the energy
measured from the ground state ¥fBi, is obtained after substraction of the neutron-
proton mass difference (1.29 MeV) and the difference in the energies of the ground state of
2088j and2%8pb (1.39 MeV). As said in the previous section, the RPA spectrum contains
negative energy eigenvalues, a zero energy root and the non-zero energy eigenvalues, which
include the excitations involving the neutron excess as well as the ones with relates single
particle states two shells above and below the active ones (see Table 3, Appendix C).
Like it has been done, for the case of the schematic model |, we have solved the system
of equations which couples the I.A.S. with the RPA excitations. The resulting spectrum
is shown in Fig. 4. The average excitation energy, determined from the eigenvalues and
matrix elements for transitions between the perturbed states and the ground state, is equal
to Eaverage= 18.17 MeV and the spreading width is of the order of 84 keV. Again, these
results agree rather nicely with the measured values [3].
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As a final test about the dependence of the I.A.S. energy and strength with the Coulomb
interaction, we have performed calculations with the renormalized Coulomb interaction,
in a manner similar to the one described in the case of model I, where the parameter
was taken as an effective coupling constant. The dependence of the I.LA.S. energy, with
respect to a renormalization of the Coulomb interaction is rather strong. If one takes a
renormalization of 0.9, the energy of the I.A.S. is obtained at 16 MeV and a renormalization
of 1.2 produces a value of 22 MeV. This shows that the actual value of the energy of the
I.A.S., calculated by means of an empirical single-particle basis, gives a good indication
about the degree of violation of the isospin symmetry inherent to the choice of the single-
particle states.

6. Conclusions

In this paper we have studied the effects of isospin symmetry violation in the description
of the I.A.S. The formalism, based on the introduction of collective and intrinsic variables,
allows for the treatment of both spurious and physical isospin symmetry violations. The
formalism has been applied to two model situations, to illustrate the steps which we have
followed in constructing the theory. The results of realistic calculations, performed for
the case ofA = 208, show that the predictions of the theory are in excellent agreement
with data. Work is in progress concerning the application of the present formalism to the
calculation of the structure of Fermi beta decay transitions between mirror nuclei, and
on the comparison between the present method and other approaches predicting both the
displacement and the width of the I.A.S. [20].
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Appendix A. The collective operators

In this appendix we express the collective operatbt§ in terms of creation and
annihilation operators. A more detailed derivation, following Ref. [18], is given in Ref. [6].
Therein the meaning of the operators entering in the following definitions is given.

(a) Hamiltonian dipole operators
1 - _ _
Do1=(s" = p72) T2+ O(1 %),
Diy=1-(1+c"s +&% — p~2ce — p2sTeN T+ O(T72),
(€A) 2 -1/2 —3/2).
Dyi=—(s— B2 T2+ 0(T7%7); (A1)
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(b) Hamiltonian quadrupole operators

3
Doy = \@ (s -287%Te + p~ 43T 1+ O(T72),
DY) =V3(s" - p72%) T Y2+ O(T ),
DSy =1-3(1+¢Ts + &6 — 266 — p2TeNT 1+ O(172),

0,1
3
Dy} = \g (s2—282%&"+ p*(EN) T L+ O(T); (A.2)

(c) Transition dipole operators

DY =p2— (521 +c'c+8%) — cleN T+ O(17),
D= (- p25) T2+ O(T~¥?),

DY = %(ﬁ*Z;Z —2cet 4 BN T L+ O(T 7). (A.3)

Appendix B. Theisomultipole decomposition of the operators

Hsp11= [Hsp, 71l, Hspio= —[HsplL Ti],
1% 1[[Vr]r] 1% 1[V ] 1% 1[V ]
2= —©#= ,» 1l 11, 21= ——= 22, 711 20= ——#= 21, 711,
V6 V2 ! V3 !
Vii=[V, 1] — V3V, Vio= —[V11, 73l Voo=V — Vio— Vao.

Appendix C. The RPA for therealistic model

If we limit® the expansion (42) to terms= v, v + 1, there are five types of relevant
particle-hole creation operatoyﬁg i (see Table 3).

The commutationW, I} ] yields

[Wa Ft;] = )\tqajAtath—;j + /’quajAfaijaj
(Hspld
T

+ Atq (HSPJI + 'L't) + thft, (Cl)

where

5 This is equivalent to the\ N = 0, +:2 for the oscillator potential.
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Table 3
The particle-hole creation operators. The lake)s v, indicate the last proton and the
last neutron filled states with angular momentum and parity

+ _ 1 .+ ) '_ i
711 = 757 pun jm nvn im ETR Sy

+ 1+ . o )
y12j - ﬁjbp(vn+l)_irnc’7vnlm N12j = Xvy (va+1)j

+ 1,4+ ) o )
Y13; =~ ﬁibpvnjmcﬂ(‘)n*l)/m N13j = X(vp—Lyvn j

+ _ 1,4+ ) o )
y14j - _f_zjbp(wp—&-l)jmc"“’p]m n14j _x((l)p)((l)p+l)j

+ _ + ) o )
yj_lj - ﬁjcrl(wp+l)_irnhpw17.l’" nllj =X wp+Dwpj
A11j = €pvyj ~ Cnvyj 011 = (pvn j|Hcoull PO j) X, )
A12j = ep(uy+1)j ~ Cnvyj 012j = (p(vn + 1) jIHeoull POJ)Xvy0)
A13j =€puyj ~ En(uy—1)j 013j = (pvnj|Heoull POJ)X (v D)o
A14j = €p(wp+1)j ~ €nwpj Q14j = (p(wp + 1) jl|Heoul POj)Xw )0
Ajj = —Cpwpj T en(wp+)j Q11 = —(p(@p)jlHeoull POJ)X(wp+1)oj

A

Jjt
Arg = T(Atqajntaj + quajnfaj)a

~

- J
Eiq = 7 MgajArajiiaj = Rigaj Aiajliaj)- (C.2)
Therefore
J (Hsp1d? -
)\tqaj - Amj — Wyq (A"I( T Niaj + Atajntaj + Ztqtiaj ),
j (Hsp10't —
Kigaj = Afaj + org (Atq< T Ntaj — At_ajnt_aj + ZitqtNiaj |- (C‘?’)

The self-consistency on the values of the constanis =;, requires

1 H, 1
0: Atq <—1+ Tth + MX;()) + th TX;O,

T2
1 (Hsp10 . 1
0=Atq<7Xt2+ %Xﬂ) + Siq (—1+ TX&), (C.4)

where theX, are given in Eq. (58).
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