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Schematic model for QCD. I. Low energy meson states
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A simple model for QCD is presented, which is able to reproduce the meson spectrum at low energy. The
model is a Lipkin-type model for quarks coupled to gluons. The basic building blocks are quark-antiquark pairs
coupled to a definite flavor and spin. These pairs are coupled to pairs of gluons with spin zero. The multiplicity
problem, which dictates that a given experimental state can be described in various manners, is removed when
a particle-mixing interaction is turned on. In this first paper of a series we concentrate on the discussion of
meson states at low energy, the so-called zero temperature limit of the theory. The treatment of baryonic states
is indicated, also.
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I. INTRODUCTION

QCD is the favored theory of the strong interactions.
low energy, however, the description of the hadronic sp
trum based on QCD becomes difficult due to the nonlin
structure of the theory. This nonperturbative regimen, in c
trast to lattice gauge calculations, can be explored by me
of schematic models. The use of such models is commo
other fields of physics where the many-body structure of
theory may be explored by introducing effective degrees
freedom and their couplings. Nuclear structure physics is
of these examples and it is as complicated and involved
the low-energy domain of QCD. Like in the case of nucle
structure physics, QCD descriptions based on simple mo
may help in the understanding of basic concepts and pr
dures. The Lipkin model@1# is one of the most famous sche
matic models, and it helped substantially to appreciate
importance of pairing two-body interactions as well as
importance of collectivity in building the low-energy part o
the nuclear spectrum. An extended version of the Lip
model was applied to the description of pion condensate
nuclei @2#. A variety of many body techniques have be
tested with Lipkin-type models@3,4#. In Ref. @3# some real-
istic, less schematic, nuclear interactions, suitable to desc
various nuclear properties, were investigated in this way
Ref. @5# a Lipkin model was applied to describe a system
many quarks. As seen in these examples, the prediction
schematic models can be also rather rich in their compl
ties. This fact was shown, for a simple model of many glu
systems, in Ref.@6#.

Until now, the only formalism that can handle QCD fro
first principles is the lattice gauge theory@7#. Particularly, in
many gluon systems, a good description is obtained with
considering finite volume effects@8#. The problem with lat-
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tice gauge calculations, to treat QCD at low energies, is
only the lowest state, and in some cases also the next to
lowest state, for a given spin, charge conjugation, and pa
can be calculated. Lattice theory is numerically quite
volved, and the inclusion of quarks and antiquarks brings
additional problems that are difficult to solve. Effective mo
els of the hadrons, such as the MIT model@9#, can help to
shed some light on the structure of QCD at low energy.
Ref. @6# the spectrum of gluons, as obtained in Ref.@8#, was
reproduced and the sequence of levels explained by sim
assumptions. In other works@10,11# many-body methods
were used to describe the spectrum of QCD at low ene
After these considerations, it is obvious that it would be n
to have a model that~i! must be able to describe the bas
structure of QCD at low and high energies, and~ii ! must be
solvable exactly. Probably, such a model does not exist,
to the complicated structure of QCD. Nevertheless, one
try to construct a model that comes as near as possibl
QCD.

The purpose of the present work is to present a model
fulfills the above requirements. In Ref.@12# the most simple
version of such a model was presented. Like the mod
mentioned at the beginning, it is based on a Lipkin-ty
model and consists of two levels for the description
quarks and antiquarks. These quarks are coupled to a b
level that describes gluon pairs coupled to spin zero. T
other gluon states are treated as spectators. The basic i
dients of the model are the quark-antiquark pairs coupled
flavor singlet and spin zero and gluon pairs with spin zero
Ref. @12# it is shown that the model is able to describe t
appearance of a quantum phase transition at zero temp
ture, when the interaction is turned on, and a phase trans
to the noninteracting case at nonvanishing temperature
Ref. @12# the basic features of the model were discuss
Only flavor singlet and spin zero mesons were taken i
account. The appearance of a Goldstone boson was obta
for a sufficiently strong interaction. This state consisted o
meson with negative parity. Also, it possesses a very col
tive nature, i.e., it is a superposition of many particle
~quarks, antiquarks, and gluons! states. The behavior of th
model at high temperature was discussed, together with s
©2003 The American Physical Society09-1



ra
h
l a
e
s

io
ng
o

on
tr
e
n
.
w
IV

d
t

de
be

ie
d
a

al

w
n

ee-

i
eons
del

rac-

l is

st 3

ces

an-

rees
sic
the

tive
re-

tial
an-

asic
-
ter-

ra-

nti-
vel

by
ero.

fe

LERMA H., JESGARZ, HESS, CIVITARESE, AND REBOIRO PHYSICAL REVIEW C67, 055209 ~2003!
consequences for the quark-gluon plasma~QGP! in Refs.
@13,14#.

In the first part of the paper we will introduce the gene
form of the model for the description of meson states. T
discussion will concentrate on the behavior of the mode
low energy, corresponding to the zero temperature regim
QCD. The study of the high energy behavior and the tran
tion to the quark gluon plasma@13,14# will be presented in
the forthcoming paper of the series@15#. In Sec. II the basic
ingredients of the model are introduced, with the proposit
of a Hamilton operator. Because of the difficulties in treati
fermion pairs exactly, we shall diagonalize them in a bos
mapping scheme. The basis used to deal with the bos
images of the fermion pairs, and the corresponding ma
elements of the proposed Hamiltonian, is also given in S
II. There we show how to assign charge conjugation a
G-parity symmetries to the states belonging to the basis
Sec. III the model is applied to the description of the lo
energy meson spectrum. Conclusions are drawn in Sec.

II. THE MODEL

As indicated in Ref.@12#, the fermion sector is describe
by a Lipkin-type model@1#, consisting of two levels, one a
energy2v f and the other at energy1v f ~see Fig. 1!. This is
the Dirac picture for fermions, where antiquarks are regar
as holes in the lower level. Alternatively, one also descri
quarks and antiquarks in the level at1v f . The quarks and
antiquarks are coupled to a 1.6-GeV level, which is occup
by gluon pairs with spin zero@6#, a value that was obtaine
in the description of a many gluon system and which w
adjusted to lattice gauge calculations@8#. In consequence, we
shall take the energy of the gluon pair state as extern
fixed data. The valuev f is fixed to one third of the nucleon
mass~0.33 GeV!. There are further gluon states@6# that do
not interact with the quarks and antiquarks. These states
be treated as spectators and should be taken into accou
the final spectrum.

The degeneracy of each fermion level is 2V, whereV

-0.3

0

0.3

1.6

E
(G

eV
)

ωb

ω f

-ω f

FIG. 1. Schematic representation of the model space. The
mion levels are indicated by their energies6v f . The gluon pairs
are represented by the level at the energyvb .
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refers to color, flavor, and eventually other degrees of fr
dom. If only spin (ns), flavor (nf), and color (nc) degrees of
freedom are considered, the value ofV is given by the prod-
uct 2V5ncnfns . For flavor~0,0! and spin 0 pairs, only, the
model has similarities to the one of Ref.@2#, but with a
different interaction. In Ref.@2# the pion condensate in nucle
was the dominant phenomenon. In the present case, nucl
are replaced by quarks and the pions by gluons. The mo
has some similarities to Ref.@5#, which is also a Lipkin-type
model. There, only quarks were considered and the inte
tion conserves their number.

For zero temperature and no interactions the lower leve
filled by fermions. The creation~annihilation! operators of
these fermions areca(1,0)f s i

† (ca(1,0)f s i), in covariant and
contravariant notation for the indices. The symbol (1,0)f re-
fers to the flavor part, where (1,0) is the SU~3!-flavor nota-
tion andf is a shorthand notation for the hyperchargeY, the
isospinT, and its third componentTz . The indexs repre-
sents the two spin components6 1

2 , the index i 51 or 2
stands for the upper or lower level, and the indexa repre-
sents all remaining degrees of freedom, which are at lea
because of the color degree of freedom~when only color is
taken into account, instead ofa we will use the indexc).
Lowering and raising the indices of the operators introdu
a phase, which depends on the convention used@16#, and a
change of the indices to their conjugate values, i.e., the qu
tum numbers (1,0)YTTzs change to (0,1)2YT2Tz2s.

The operators, defined above, contain the relevant deg
of freedom of QCD, i.e., color, spin, and flavor. These ba
degrees of freedom appear at all energies, no matter how
resulting particles are defined, i.e., either in the perturba
or in the nonperturbative regime. In the nonperturbative
gime one usually denotes them asconstituentor effective
particles. This is mainly due to the difference in the spa
properties, while color, spin, and flavor have the same me
ing as in QCD. Here, the quarks and antiquarks areconstitu-
entparticles atlow energyand have little in common~except
for the quantum numbers mentioned! with the ones at high
energy. We shall show that a model that contains these b
degrees of freedomand which takes into account the dy
namic coupling with gluons can describe the main charac
istics of QCD at low energy.

The quark and antiquark creation and annihilation ope
tors are given in terms of the operatorsc andc†,

aa f s
† 5ca f s1

† , da f s5ca f s2
† ,

aa f s5ca f s1, d†a f s5ca f s2, ~1!

which corresponds to the Dirac picture of particles and a
particles: quarks are described by fermions in the upper le
and antiquarks by holes in the lower level.

The gluon sector of the model space is described
bosons that represent pairs of gluons coupled to spin z
The energy of a boson state is fixed at the valuevb
51.6 GeV@6#, as mentioned before.

The quark-antiquark pairs of the model are given by

r-
9-2
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SCHEMATIC MODEL FOR QCD. I. LOW ENERGY . . . PHYSICAL REVIEW C67, 055209 ~2003!
Cf 1s11
f 2s22

5Bf 1s1

† f 2s25(
a

ca f 1s11
† ca f 2s225(

a
aa f 1s1

† d†a f 2s2,

Cf 1s12
f 2s21

5Bf 1s1

f 2s25(
a

ca f 1s12
† ca f 2s215(

a
da f 1s1

aa f 2s2,

Cf 1s11
f 2s21

5(
a

ca f 1s11
† ca f 2s215(

a
aa f 1s1

† aa f 2s2,

Cf 1s12
f 2s22

5(
a

ca f 1s12
† ca f 2s225(

a
da f 1s1

d†a f 2s2. ~2!

The first two equations describe the creation and ann
lation of quark-antiquark pairs. The pairs can be coupled
definite flavor (l,l)5(0,0) or (1,1) and spinS50 or 1. We
shall write, in this coupling scheme,B(l,l) f ,SM

† , where f is
the flavor,S is the spin, andM is the spin projection. The
operatorsB(l,l) f ,SM annihilate the vacuumu0&, which can be
taken as the configuration where the lower state is co
pletely filled and the upper one is empty. Note that t
vacuum state is not uniquely defined@12#. All states, which
contain only quarks in the upper level and where the low
level is completely filled~so that antiquarks are not act
vated!, regardless of color, as, for example, the three qu
baryon states, are annihilated byB(l,l) f ,SM . This property
derives from the fact that the operatorsB(l,l) f ,SM contain an
antiquark annihilation operator that anticommutes with
the quark creation operators. Therefore, the Hilbert spac
the model may be divided into sectors, each one with a
ferent vacuum state having a given baryon number. The
with the baryon number zero is the real particle vacuum.

A. Group theory of the fermion part

From now on, we restrict to 2V5nsncnf518 with ns
52, nc53, andnf53, for the spin, color, and flavor de
grees of freedom, respectively. The largest group, wh
generators arecc1f 1s1i

† cc2f 2s2 j (ci51,2,3; f i51,2,3; s i

51,2; and i , j 51,2), is the U(4V) group. One possible
group chain for the classification of the states, which inclu
the flavor@SUf(3)# and the spin@SUS(2)# groups, is given
by

@1N# @h#5@h1h2h3# @hT#

U~4V! .U~ V
3 ! ^ U~12!

ø ø

~lC ,mC!SUC~3! ~l f ,m f !SUf~3! ^ SUS~2!S,M ,

~3!

where the irreducible representation~irrep! of U(4V) is the
completely antisymmetric one andN is the number of par-
ticles involved. The upper index in@hT# refers to the trans-
posed Young diagram of@h#, where the columns and row
are interchanged@17#. Due to the antisymmetric irrep@1N# of
U(4V), the irreps of U(V/3) and U(12) are complementar
and the irrep of U(V/3), which is forV59 the color group,
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has maximally three rows@17#. In group chain~3! no multi-
plicity labels are indicated. There is a multiplicityr f for
(l f ,m f) andrS for the spinS. The color labels (lC ,mC) are
related to thehi via lC5h12h2 andmC5h22h3. The com-
plete state is given by

uN,~lC ,mC!,r f~l f ,m f !YTTz ,rSSM&, ~4!

whereY is the hypercharge,T is the isospin andTz its third
component. For mesonlike states, the color quantum n
bers to be considered are (lC ,mC)5(0,0). These states wil
be located in an elementary volume of about 4p/3 fm3, cor-
responding to a sphere of radius 1 fm.

To obtain the values ofhi one has to consider all possib
partitions ofN5h11h21h3, which fixes the color. For col-
orless states we haveh15h25h35h. Each partition ofN
appears only once. The irrep@hhh# of U(V/3)5U(3) (V
59) fixes the irrep of U(12), as indicated in Eq.~3!. For the
reduction of the irrep of U(12) we have written a compu
code@18#, which is available to the interested reader. As
example, let us consider the U(12) irrep@3606# and the two
U(4) irreps@9202# and@9720#, where the first one contain
the state where the lower level is completely filled and
upper one empty, and the second irrep is the next highest
that contains flavor (0,0). The first is accompanied by fla
(0,0)1 and the second one by (0,0)1 and (1,1)1, where the
subindex denotes the multiplicity. The spin content of@9202#
is given by 055, 145, 236, 328, 421, 515, 610, 76 , 83, and
91. The spin content of@9720# is 081, 1171, 2189, 3135, 490,
554, 627, and 79. The lowest dimensional irrep is@5242#
with the spin content 01 and 11.

B. The boson mapping

The explicit construction of the basis states, Eq.~4!, and
the calculation of the matrix elements become very involv
which is in conflict with the idea to develop a simple mod
A way out of it is to use a boson mapping of the pair ope
tors B† andB and work in the boson model space.

The basic ingredients of the model are the pair operat
given in Eq.~2!. They can be mapped onto boson operat
@19#

Bf 1s1

† f 2s2→bf 1s1

† f 2s2, Bf 1s1

f 2s2→bf 1s1

f 2s2, ~5!

where the operators on the right satisfy the normal bo
commutation relations,

@bf 1s1

f 2s2,bf 3s3

† f 4s4#5d f 3f 2
d f 4f 1

ds3s2
ds4s1

. ~6!

The exact boson mapping is quite involved, but it can
obtained in general@19–21#. For the sake of this work, it is
worth to show that the mapping can be performed, inde
We shall~i! work from the beginning in the boson space,~ii !
define a Hamiltonian that corresponds to the Hamilton
acting in the fermion space, and~iii ! select a basis. The ad
vantage of working in the boson space is the simplification
9-3
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getting the matrix elements~see below!. The price to pay is
related to the appearance ofnonphysicalstates@19#, as we
shall discuss later on.

In order to choose a basis in the boson space, we p
from the fact that the basic degrees of freedom are given
the boson creation operatorsb(l,l) f SM

† 5bl f SM
† , with l50 or

1 andS50 or 1. This gives four possible combinations
@l,S#: @0,0#, @0,1#, @1,0#, and @1,1#. Consequently, the tota
Hilbert space is the direct product of 1, 3, 8, and 24 dim
sional harmonic oscillators@22#.

For each harmonic oscillator we can define a senio
basis,

NNlSnlS
~blS

†
•blS

† !(NlS2nlS)/2unlSalS&, ~7!

whereNlS is the number of bosons of type@l,S#, nlS the
corresponding seniority, andNNlSnlS

is a normalization con-

stant. The seniority is the number ofblS bosonsnot coupled
into pairs. ThealS contain all other quantum numbers for
particular harmonic oscillator. The dot in the factor refers
the scalar product.

The choice of a seniority basis is particularly useful f
the calculation of the matrix elements of the interactio
which contains expressions of the form (blS

†
•blS

† ),
(blS•blS), and (blS

†
•blS), where the latter is just the numbe

operator of the bosons of the type@l,S#. The exact structure
of unlSalS& is not needed, except for the knowledge of t
quantum numbersalS .

For the one dimensional harmonic oscillator~@0,0#! the
seniority can take the values 0 or 1. The state is of the fo
(b00

† )N00u0&5(b00
†
•b00

† )(N002n00)/2 (b00
† )n00u0&. For the three di-

mensional harmonic oscillator the seniority is equal to
spinSlS . The explicit expression of the state is given in R
@22#. The eight dimensional oscillator contributes to flav
only and it is discussed in Appendix A. The 24 dimension
oscillator can be found in Ref.@6#, where the color part in
Ref. @6# has to be interpreted here as the flavor part. In R
@6# only singlet states are listed, but the procedure to ob
nonsinglet flavor states is outlined.

The parity of each state is given byP5(21)N, whereN
5 (l,SNlS is the total number of bosons. Each boson ste
from a particle-antiparticle pair, which carries negative p
ity.

In order to obtain the property under charge conjugati
one has to apply the charge conjugation operatorC to the
pair creation operatorB(l,l) f ,SM

† . The result is~see Appendix
B!

C•Bl f ,SM
†

•C215~21!SBl̄ f̄ ,SM
† , ~8!

wherel̄5(l,2m), f̄ 52Y,T, 2Tz . From this it is clear that
only states withY50, Tz50, andm50 can have a definite
C parity. In Eq. ~8! we make use of the application of th
operatorC, which interchanges quark and antiquark ope
05520
fit
y

-

y

,

m

e
.
r
l

f.
in

s
-

,

-

tors (a†↔d†) and inverts the magnetic quantum numbe
(Yi→2Yi andTiz→2Tiz) of flavor and of color only.1

For products of two pair creation operator we obtain

C@Bl1 ,S1

†
^ Bl2 ,S2

† # f ,M
r(l,m)C21

5~21!S11S22l2m1rmax2r@Bl1 ,S1

†
^ Bl2 ,S2

† # f̄,M
r(m,l) ,

~9!

where r is the multiplicity label of (l,m) in the product
(l1 ,l1) ^ (l2 ,l2). The symbolrmax denotes the maxima
value ofr. The phase convention of Ref.@23# was used. The
symbol ^ denotes the combined product in SUf(3) and
SUS(2).

In analogy, the action of the charge conjugation on a pr
uct of three pair operators can be obtained:

C$@Bl1 ,S1

†
^ Bl2 ,S2

† #r12(l12 ,m12),S12^ Bl3 ,S3

† % f ,M
r(l,m),SC21

5~21!S11S21S32l2m1r12,max2r121rmax2r

3$@Bl1 ,S1

†
^ Bl2 ,S2

† #r12(m12 ,l12),S12^ Bl3 ,S3

† % f̄,M
r(m,l),S ,

~10!

wherer12 is the multiplicity of (l12,m12) in the product of
(l1 ,l1) ^ (l2 ,l2), r is the multiplicity of the total irrep in
the last coupling of the above equation, andr12,max is the
maximal value ofr12.

The procedure outlined here can be used in a recur
way for more involved coupling schemes. For our purpos
is sufficient to go up to three pairs, which will be the dom
nant structure at low energy.

For the G parity the additional rotation in the isospi
space has to be applied, which changesTi ,z to 2Ti ,z @24#.
For a polynomial in the pair operators this gives an ad
tional phase (21)T, whereT is the total isospin@24#.

The same phase properties underC- and G-parity trans-
formations have to be valid for the mapped boson opera
bl f ,SM

† .
In a seniority basis, the matrix elements are easily

tained, and they are written as

^NlS12nlSalSu~blS
†
•blS

† !uNlSnlSalS&

5A~NlS2nlS12!~NlS1nlS1dlS!,

^NlS22nlSalSu~blS•blS!uNlSnlSalS&

5A~NlS2nlS!~NlS1nlS1dlS22!,

^NlSnlSalSu~blS
†
•blS!uNlSnlSalS&5NlS , ~11!

wheredlS is 1, 3, 8, or 24 for the case of the 1, 3, 8, or 2
dimensional harmonic oscillator. As a shorthand notation

1Hereafter, for the sake of notation, we shall indicate charge c
jugate states with a bar over the indexf.
9-4
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SCHEMATIC MODEL FOR QCD. I. LOW ENERGY . . . PHYSICAL REVIEW C67, 055209 ~2003!
will use instead of (blS
†
•blS

† ) the expression (blS
† )2, and

similarly for the other products, (blS)2 andblS
†
•blS .

As a Hamiltonian, invariant under rotation, charge con
gation, andG parity, we propose

H52v fnf1vbnb1(
lS

VlSH @~blS
† !212blS

†
•blS1~blS!2#

3S 12
nf

2V Db1b†S 12
nf

2V D @~blS
† !212blS

†
•blS

1~blS!2#J . ~12!

Due to symmetry arguments, the interaction strengthVlS is
the same for the two last lines in Eq.~12!. The term
(blS

† )2 @(blS)2# describes the creation~annihilation! of two
quark-antiquark pairs with the simultaneous creation or
nihilation of a gluon pair. The termblS

†
•blS , in Eq. ~12!,

describes the scattering of a fermion pair with the emiss
or annihilation of a gluon pair. All processes can be depic
by a Feynman graph and all graphs can be obtained from
other one by an appropriate interchange of lines. Because
strengthVlS should be, basically, invariant under the e
change of lines, we shall use the same interaction stre
for all channels, as a first approximation. The terms that
pear in Eq.~12! originate in the normal product of :(bf S

†

1bf S)2:, where the square implies a scalar product. The f
tor (12nf /2V) represents a cutoff that can be traced back
the boson mapping of the fermion pairs with flavor~0,0! and
spin 0. This term simulates the effect of an exact boson m
ping @19–21# and it is responsible for the disappearance
the interaction when the number of pairs reaches 2V. In
other words, this cutoff term simulates the Pauli princip
that does not allow more than 2V pairs.

Hamiltonian~12! is the most simple form we can think o
and it contains only four parameters~the values ofVlS). The
value of v f is fixed to 0.33 GeV, which is about13 of the
mass of a nucleon. The most notorious difficulty, associa
with the use of the boson mapping, lies in the Hilbert spa
of the boson operators. It is larger than the Hilbert space
the fermion pairs. In some situations one can identify
source of the spurious dimensions. If, for example, only
vor ~0,0! and spin 0 pairs are taken into account, the relev
group structure is U(4V).U(2V) ^ U(2). The irrep of
U(4V) has to be antisymmetric, which implies that the
reps of U(2V) and U(2) have to be complementary, i.e.,
U(2) is given by a Young diagram with two rows, the one
U(2V) has to be the adjoint, which is obtained by inte
changing rows and columns@17#. The upper limit, up to
which no spurious states appear, is 2V because U(2V) al-
lows 2V rows in the Young diagram. This is also the max
mum number of pairs allowed, i.e., for this case no unphy
cal states occur. If flavor values~0,0! and~1,1! and spin 0 are
used, only, we have U(4V).U(2V/3)^ U(3) and up to
2V/3 pairs there is no problem with respect to the appe
ance of unphysical states. This implies that states with
plicit flavor will present unphysical states only for larg
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number of bosons. If flavor~0,0! and spins 0 and 1 are con
sidered, we have U(4V).U(V) ^ U(4), which has as an
upper limit the numberV up to which no spurious state
appear. Finally, for all pairs, i.e., flavor~0,0!, ~1,1! and spin
0,1 the relevant group chain is U(4V).U(V/3)^ U(12) and
the upper limit isV/3. This gives us a hint about the grou
sequence where unphysical states may appear. The u
limit up to which all states are physical is lowered in th
sequence where bosons with more degrees of freedom
pear. There are states that can be described either by on
the other type of bosons or even by a combination of boso
For example, when both levels, the lower and the upper o
are filled there is only one allowed state, which is the flav
singlet with spin zero. However, all types of boson pairs c
describe it, e.g., when the number of bosons coupled to
vor singlet and spin zero is equal to 2V. In view of these
considerations, and for the 1, 3, 8, and 24 dimensional h
monic oscillator basis, we have introduced the limits 2V, V,
2V/3, andV/3, respectively. The higher nonphysical stat
do not play an essential role because, as shown below
dominant contribution at low energy comes from configu
tions with a small number of quark-antiquark pairs@15#. By
working with these dimensional cutoff values, the influen
of nonphysical states is minimized. Also, for each case,
total number of bosons is restricted to<2V. For a reason-
able interaction strength, however, the dominant contribut
comes from a small number of bosons. In such cases,
number of unphysical states is small and they do not in
ence much the result. The dimensional cutoff in the Hilb
space has the advantage that most unphysical states ar
cluded. In principle, one can eliminate the spurious states
applying another, more involved, procedure. For that one
to reduce the irrep of U(12) to the flavor and spin groups,
done in the preceding section. This gives us the allow
content of flavor and spin for a given irrep of U(12). Th
matching condition, i.e., by comparing for a given number
pairs the spin and flavor content on the boson side to the
on the fermion side, eliminates unphysical states. If on
boson and fermion sides, for a given flavor and spin,
number of states are equal, all states in the model space
taken into account. This is the case of low lying basis sta
A simple counting procedure can be used for other situatio
If there are, for a given flavor and spin, more states in
boson space than in the fermion space, one cannot de
easily which combination is allowed. However, one can
duce the number of states of the model space to the s
dimension as the one of the fermion space. As a rule, one
first eliminate the states that contain most of the bosons w
the largest degree of freedom, i.e., which are of the ty
@1,1#, and in this way proceed, if necessary, until only sta
with flavor ~0,0! and spin zero bosons are left. At least, t
proposed procedure eliminates most of the spurious sta
The error made can be absorbed in the parameters of
model, a general practice in dealing with phenomenolog
models, because in the end the correct number of degree
freedom~dimension of the Hilbert space! dominates in a suc-
cessful description of the spectrum. The idea of the propo
procedure is not new and it was used in another contex
Cseh and Le´vai @25#.
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III. APPLICATION TO THE MESON SPECTRUM

The Hamiltonian~12! commutes with the isospin operato
and it does not depend explicitly on the hyperchargeY. As a
consequence, all states that belong to the same flavor
are degenerate. In principle, we can add terms proportio
to T2, Y, andY2 in order to lift the degeneracy. These term
will add new parameters to the four already present (vb is
fixed, as in Ref.@6#!. Also, a flavor mixing term could be
added, as suggested by theh-h8 mixing @26#. In order to
simplify the discussion, we shall first ignore these additio
interaction terms.

In fitting the spectrum of the mesons we will use, as
experimental input for each multiplet, only the state withT

TABLE I. States used in the fit. The particles are listed in t
first column, and their transformation properties in flavor and s
are shown in the second and third columns. Note that, for the
ticles in the first~0,0!, ~1,1! 02 and ~0,0!, ~1,1! 12 irreps, we are
listing the value of the masses without flavor mixing~they are
marked by an asterisk!. The experimental data are taken from R
@27#.

Particle (l f ,m f) Jp Eth ~GeV! Eexp ~GeV!

Vacuum ~0,0! 01 0.0 0.0
f 0(400–1200) ~0,0! 01 0.656 0.600
f 0(980) ~1,1! 01 0.797 0.980
f 1(1420) ~0,0! 11 1.445 1.420
f 2(1270) ~1,1! 11 1.363 1.270
h8 ~958! ~0,0! 02 0.885 *0.892
h(1440) ~0,0! 02 1.379 1.440
h(541) ~1,1! 02 0.602 *0.615
h(1295) ~1,1! 02 1.428 *1.295
h(1760) ~1,1! 02 1.671 1.760
v(782) ~0,0! 12 0.851 *0.861
f(1020) ~1,1! 12 0.943 *0.940
v(1420) ~1,1! 12 1.389 1.420
v(1600) ~1,1! 12 1.639 1.650
05520
ep
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n

50 andY50. For an octet all states have the same energ
the isospin singlet and hypercharge zero state. Because
on we shall take into account flavor mixing interactions to
the positions of the singlet and octet states are not fixe
the measured energy values, but at the values obtained w
the flavor mixing interactions are switched off@24#. The mix-
ing angle is introduced for two multiplets: the~1,1! 02 and
~0,0! 02 irreps, containing the pions and theh, h8, and the
~1,1! 12, ~0,0! 12, containing thev, f, andr particles. The
mixing angles are, respectively,223.7° and 35.3°@24#. For
other multiplets one assumes that the mixing angle is z
because of missing data, and because of the smallness o
energy splitting between members, as compared to the
ergy splitting within the multiplet that contains the pions
the r mesons. The uncorrected masses for, e.g., the o
~before flavor mixing! are m85615 MeV in the first case
~see notation of Ref.@24#! andm85940 MeV for the second
case~see also Table I!.

In Table I we show the states used in the fit. Their flav
spin, and parity are indicated together with the experimen
values. In total, to perform the fit, we have considered th
teen states with spin zero and one in the four parameter
ting procedure. All other states are predicted, particula
those with spins 2 and 3.

In Fig. 2 we give the spectrum for spin 0 and 1 mes
stateswithout any particle number changing interaction. O
each side of a level the flavor quantum numbers and its
generacy are indicated. This serves to illustrate that the m
tiplicity at energies lower than 2 GeV is already very larg
This is a consequence of the various manners in which
same set of quantum numbers can be obtained, for a g
configuration, when many quarks, antiquarks, and gluons
considered. This is known as themultiplicity problem. The
result of the best fit values, obtained after the interaction
turned on, is given in Figs. 3–6 for spins 0, 1, 2, and
respectively. Only states that correspond to nonexotic pa
charge conjugation quantum numbers are shown. Mos
them appear above 2 GeV and some can be deduced from
gluon spectrum published in Ref.@6#. In Figs. 3–6 each

n
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FIG. 2. The meson spectrum for spin 0 and
states, for the case of no interaction. The val
mf50.33 GeV was used. Note the large mul
plicity appearing at already low energies.
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FIG. 3. The meson spectrum for spin 0, a
obtained from the fit to experimental data@27#.
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theoretical spectrum is compared to the experimental o
On the right hand side of each level the theoretical interp
tation in terms of flavor and the multiplicity is indicated. O
the left hand side of each spin (JPC) the experimental infor-
mation is given, taken from Ref.@27#. The energy of these
states, appearing in the summary table of Ref.@27#, is given
in boxes and the experimental error is reflected by the siz
the box. If the error is very small, the box is replaced by
line. States that are not in the summary table of Ref.@27# are
indicated by dashed boxes~lines!. Only states that corre
spond to isospin singlet and hypercharge zero, after ha
corrected for the isospin mixing, are listed.

Note that very few states have a multiplicity. Most sta
were pushed upwards due to the interaction. This is an e
of the interaction, because it changes the number of parti
and relates the quark-antiquark sector with the gluons. M
els with a particle conserving interaction will always prese
the multiplicity problem. Thus, the particle mixing intera
tion is essential to remove the multiplicity problem.
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The spin 2 and 3 states were not adjusted. The theore
results seems to agree with the data, because the state
predicted at the correct energy domain. The density of st
for a given flavor also seems to be reproduced.

In Table II we show the quark-antiquark pair and glu
pair contents of some selected states. The total numbe
quark-antiquark pairs is denoted by^nq&, where the symbol
^•••& indicates the expectation value of this number. T
quantity^ni j & gives the average number of boson pairs of
type @i,j#, while ^ng& is the expectation value of the numb
of gluon pairs with spin zero. The total number of gluons
twice ^ng&.

The structure of the calculated ground state~physical
vacuum! is an interesting piece of information about th
model’s predictive power. The calculated value of the grou
state energy is equal to20.726 GeV. The physical vacuum
state contains about 3.1 quark-antiquark pairs of type@1,0#,
and the other configurations contribute with 0.06 pairs. T
dominance of the@1,0# quark-antiquark pairs is consisten
s
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FIG. 4. The meson spectrum for spin 1, a
obtained in a fit to experimental data@27#.
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FIG. 5. The meson spectrum for spin 2, o
tained with the parameters fixed by the fittin
procedure. Experimental data are from Ref.@27#.
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with the strengths of the interactions. The parameters,
tained in the fit, aremf50.33 GeV, V0,050.0337 GeV,
V0,150.0422 GeV, V1,050.1573 GeV, and V1,1
50.0177 GeV. The channel@1,0# is clearly the stronges
one. Also, the number of gluons is noticeable, i.e., 1.7 pa
which correspond to more than three gluons contained in
elementary hadron volume. This indicates a collective beh
ior of QCD states at low energy. Indeed, the pion state@cor-
responding toh(541) in Table II# contains about 2.7 pairs o
the type @1,0# while the rest contributes with about 0.0
pairs, as in the ground state. The number of gluon pairs in
pion, 1.2 pairs or 2.4 gluons, is similar to the number
gluon pairs in the ground state. They constitute about 30%
the particle content. In brief, the calculated states conta
large number of quark-antiquark pairs and gluons. Roug
speaking, no single state can be described approximatel
a pure quark-antiquark pair. Note that in this respect the
and experiment do agree, in spite of the simplicity of t
model. We think that the complex structure of the mes
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spectrum is described qualitatively by our model, as well
several other features, such as the positions of the first s
with spins 2 and 3, the density of states with flavor~0,0! or
~1,1! for each spin and parity, and charge conjugation nu
ber.

Concerning baryons, we have to include them yet in
model. Up to now they are described as spectators, i.e., w
out having an explicit coupling to the quark, antiquark, a
gluon sea. For that, further interaction terms should be in
duced. For example, one can introduce the interaction

nD,(0,1)0~b†1b!1nD,(2,0)1~b†1b!, ~13!

wherenD,(l,m)S is the number operator of adiquark coupled
to flavor (l,m) and spinS. This is analogous to the abov
ansatzof the Hamiltonian. The product of two pair creatio
operators of diquarks cannot appear because this would
the baryon number. The interaction in Eq.~13! is a direct
extension from the pair operator interaction of the form
x-
0
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FIG. 6. The meson spectrum for spin 3. E
perimental data are from Ref.@27#.
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TABLE II. Particle content for selected states. In columns we indicate the theoretical energy (Etheo), the
flavor @(l f ,m f)#, spinJ, and parity (p), expectation value of the boson pairs in the channel~1,1! 02(^n10&),
expectation value of the total number of quark-antiquark pairs (^nq&), and the total number of gluon pair
(^ng&) with spin 0.

Particle Etheo (l f ,m f) Jp ^n10& ^nq& ^ng&

Vacuum 0.0 ~0,0! 01 3.118 3.177 1.705
f 0(400–1200) 0.656 ~0,0! 01 0.457 0.471 0.321
f 0(980) 0.797 ~1,1! 01 3.781 3.832 1.495
f 1(1420) 1.445 ~0,0! 11 2.392 3.434 0.902
f 2(1270) 1.363 ~1,1! 11 2.464 3.519 0.993
h8(958) 0.885 ~0,0! 02 2.509 3.562 1.292
h(1440) 1.379 ~0,0! 02 0.773 1.790 0.444
h(541) 0.602 ~1,1! 02 2.711 2.766 1.163
h(1295) 1.428 ~1,1! 02 1.611 1.638 0.531
h(1760) 1.671 ~1,1! 02 3.535 4.581 1.254
v(782) 0.851 ~0,0! 12 2.563 3.621 1.341
f(1020) 0.943 ~1,1! 12 2.394 3.438 1.198
v(1420) 1.389 ~1,1! 12 0.853 1.870 0.468
v(1600) 1.639 ~1,1! 12 3.546 4.597 1.206
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is
Hamiltonian. The first term in Eq.~13! acts only on states
like the nucleon octet and the last one on particles like
baryon decouplet. The residual interaction will mix the nu
ber of gluons, and, mainly, increase the gluon content in
baryons, from a gluon content of about 30% to, say, 50
The inclusion of baryons will be reported in another wo
@28# .

IV. CONCLUSIONS

In the present paper we have advanced a schematic m
of QCD, based on a Lipkin-type model for fermions and
interaction to one gluon pair states. We have discussed
low energy structure of the model. The Hamiltonian is co
posed of a diagonal, particle conserving part, and an inte
tion that couples the quark-antiquark pairs to the gluons
changes the number of particles. The model contains o
four parameters that were adjusted to reproduce 13 obse
meson states with spins 0 and 1. After fixing these para
eters, we have predicted the remaining part of the spectr
The complex structure of the meson spectrum was qua
tively reproduced by our results.

Due to the schematic nature of the model, one can
expect to be able to reproduce all details of the low ene
meson spectrum. However, the results are in qualita
agreement with data, a fact that shows the validity of
model as a toy model for QCD. Baryons were not cons
ered, but the extension to this sector was briefly indica
The baryons would correspond to states where three e
quarks are added in the upper level. The corresponding
erators will commute with the boson pair operators and
interaction of baryon states with the quark-antiquark
should be included in the model.

We have found that the inclusion of particle mixing inte
actions turns out to be essential in order to remove the m
tiplicity problem encountered in other models, when sta
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with many quarks and antiquarks are considered. This
ticle changing interaction also introduces ground state co
lations resulting in many quarks, antiquarks, and gluon c
figurations in the states. It produces a large contribution
the gluons and the total spin is not a simple product o
quark-antiquark state, but of many quarks, antiquarks,
gluons. This illustrates the fact that, even at low energy,
structure of the hadron states is by no means as simpl
suggested by earlier particle conservation models. It a
shows that phenomenological potentials, which simulate
presence of gluons in a pure quark model, cannot resolve
problem of multiplicity.
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APPENDIX A: THE EIGHT DIMENSIONAL OSCILLATOR

The reduction of the eight dimensional oscillator grou
U(8), to theflavor group SUf(3) is discussed in Ref.@6#. As
an intermediary group, between U(8) and SUf(3), one can
use the SO(8) group. Though in Ref.@6# only the reduction
to flavor singlet groups is listed, the general procedure
outlined. Programs are available on request@29# and the pro-
cedure has been published elsewhere@30#.
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The generators of the U(8) group are given
b(1,1)f 1,00

†
•b(1,1)f 2,00, where the zeros refer to zero spin and

projection. Therefore, these bosons can only contribute to
flavor content. In Table III we list the flavor content of up
four bosons of the typeb(1,1)f ,00

† . As one can see, the mult
plicity raises especially for the~1,1! flavor irrep. With the
help of theSO(8) group one can further reduce the mul
plicity. For our purpose this is not necessary.

APPENDIX B: PARITY, CHARGE CONJUGATION, AND G
PARITY

The charge conjugation operator acts as follows on
quark and antiquark creation operators:

C•ac fs
†

•C215dc̄ f̄ s
† , C•dc fs

†
•C215ac̄ f̄ s

† , ~B1!

where thea† transforms in color and flavor as a~1,0! SU(3)
irrep, while thed† transform as~0,1!. If one of the color or
flavor index is raised then thed† transform as~1,0!. The ‘‘c̄’’
and ‘‘ f̄ ’’ refer to the reflection in the magnetic quantum num
bers of SU(3). That is, f stands forY, T, andTz and f̄ for
2Y, T, and2Tz and similarly for ‘‘c̄. ’’

With this, the action of the charge conjugation opera
ona quark-antiquark pair is given by
05520
e

e

r

TABLE III. The first column gives the Young diagram of th
U(8) group, the second column the irrep of the flavor group SUf(3)
and the third column gives the multiplicity of the flavor irrep. On
the flavor irreps~0,0! and ~1,1! are listed.

U(8) SUf(3) Multiplicity

@2# ~0,0! 1
~1,1! 1

@12# ~0,0! 0
~1,1! 1

@3# ~0,0! 1
~1,1! 1

@21# ~0,0! 0
~1,1! 3

@13# ~0,0! 1
~1,1! 1

@4# ~0,0! 1
~1,1! 2

@31# ~0,0! 0
~1,1! 1

@22# ~0,0! 2
~1,1! 2

@212# ~0,0! 1
~1,1! 4

@14# ~0,0! 1
~1,1! 1
1 1

he
C•Bl f ,SM
†

•C215C (
c f1f 2s1s2

ac f1s1

† df 2s2

†c ^~1,0! f 1 ,~0,1! f 2u~l1 ,l1! f &1S 2
s1 ,

2
s2USMDC21

5 (
c f1f 2s1s2

dc̄ f̄ 1s1

†
•af̄ 2s2

†c̄
^~1,0! f 1 ,~0,1! f 2u~l1 ,l1! f &1S 1

2
s1 ,

1

2
s2USMD

52 (
c f1f 2s1s2

af̄ 2s2

† c
•dc f̄1s1

†
^~1,0! f̄ 1 ,~0,1! f̄ 2u~l1 ,l1! f̄ &1S 1

2
s1 ,

1

2
s2USMD

52~21!2l1112S (
c f1f 2s1s2

af̄ 2s2

† c
•dc f̄1s1

†
^~1,0! f̄ 2 ,~0,1!f1u~l1 ,l1! f̄ &1S 1

2
s1 ,

1

2
s2USMD5~21!SBl̄ f̄ ,S1M

† , ~B2!

where we made use of the properties of the SU(2)@31# and SU(3)@23# Clebsch-Gordan coefficients. The subindex 1 in t
SU~3! Clebsch-Gordan coefficient indicates a multiplicity of 1@23#.

For the product of two pair operators we have

C@Bl1 ,S1

†
^ Bl2 ,S2

† # f ,M
r(l,m)C215C (

f 1f 2M1M2

Bl1f 1 ,S1M1

†
•Bl2f 2 ,S2M2

† ^~l1 ,l1! f 1 ,~l2 ,l2! f 2u~l,m! f &r~S1M1 ,S2M2uSM!C21

5 (
f 1f 2M1M2

~21!S11S2Bl1 f̄ 1 ,S1M1

†
•Bl2 f̄ 2 ,S2M2

†
^~l1 ,l1! f 1 ,~l2 ,l2! f 2u~l,m! f &r~S1M1 ,S2M2uSM!

5~21!S11S22l2m1rmax2r (
f 1f 2M1M2

Bl1 f̄ 1 ,S1M1

†
•Bl2 f̄ 2 ,S2M2

†
^~l1 ,l1! f̄ 1 ,~l2 ,l2! f̄ 2u~l,m! f̄ &r

3~S1M1 ,S2M2uSM!

5~21!S11S22l2m1rmax2r@Bl1 ,S1

†
^ Bl2 ,S2

† # f̄,M
(m,l) , ~B3!
9-10



SCHEMATIC MODEL FOR QCD. I. LOW ENERGY . . . PHYSICAL REVIEW C67, 055209 ~2003!
wherer is the multiplicity index of (l,m) in the product (l1 ,l1) ^ (l2 ,l2).
For the product of three pairs we have

C$@Bl1 ,S1

†
^ Bl2 ,S2

† # (l12 ,m12),S12^ Bl3 ,S3

† % f ,M
(l,m),SC21

5 (
f 12f 3M12M3

C@Bl1S1

†
^ Bl2S1

† # f 12M12

(l12 ,m12)S12C21

3C•Bl3f 3S3M3

†
•C21^~l12,m12! f 12,~l3 ,l3! f 3u~l,m! f &r~S12M12,S3M3uSM!C21

5 (
f 12f 3M12M3

(21)S11S22l122m121r12,max2r12@Bl1S1

†
^ Bl2S1

† #
f̄ 12M12

(m12 ,l12)S12

3~21!S3Bl3 f̄ 3S3M3

†
^~l12,m12! f 12,~l3 ,l3! f 3u~l,m! f &r~S12M12,S3M3uSM!C21

5~21!S11S21S32l122m121r12,max2r12 (
f 12f 3M12M3

@Bl1S1

†
^ Bl2S1

† #
f̄ 12M12

(m12 ,l12)S12

3Bl3 f̄ 3S3M3

†
^~m12,l12! f̄ 12,~l3 ,l3! f̄ 3u~m,l! f̄ &r~21!l121m122l2m1rmax2r~S12M12,S3M3uSM!

5~21!S11S21S32l2m1r12,max2r121rmax2r$@Bl1 ,S1

†
^ Bl2 ,S2

† # (m12 ,l12),S12^ Bl3 ,S3

† % f̄,M
(m,l),S , ~B4!

with the use of the notation of Ref.@23# for the SU(3) Clebsch-Gordan coefficients and their symmetry properties.
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