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Abstract

Parameters which describe neutrino flavor oscillations and neutrino mixing mechanisms, o
from the analysis of the Sudbury Neutrino Observatory (SNO), Super-Kamiokande (SK), CH
KamLAND and WMAP data, are used to calculate upper limits of the effective neutrino
〈mν〉 relevant for the neutrinoless double-beta decay (0νββ). The observability of planned 0νββ
experiments, and the present status of the decay of76Ge are discussed within different light-neutri
mass spectra and by presenting a systematics on the available nuclear matrix elements.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The present understanding about the properties of the neutrino has been dram
advanced by the results of various large-scale experiments, as reported by SNO
[2], KamLAND [3], CHOOZ [4], and WMAP [5] Collaborations. These experimen
evidences have confirmed the existence of neutrino flavor oscillations and have esta
stringent limits to the neutrino mass-mixing mechanisms. A general overview of the
experimental results is given in review articles by Valle [6], Bahcall et al. [7]. Deta
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discussions about the extracted values of the mixing angles, mixing amplitude
mass differences can be found in Refs. [9–11]. The implications of the latest resu
the physics of electroweak interactions and dark-matter studies have been discu
Refs. [12–14].1

In addition to the findings on neutrino flavor oscillations and the confirmatio
some of the theoretically predicted possibilities for the mixing and enhancement
oscillations in the presence of matter [15], double-beta-decay experiments [8] can p
complementary information on the nature of the neutrino and about its absolute mas
[16–20]. This is a unique feature of the double-beta decay, which must be consiste
other scale-fixing measurements, like the WMAP measurements [5]. In the case of d
beta-decay measurements the knowledge about relevant nuclear matrix elements is
as it is crucial to know the correct neutrino-mass spectrum for the analysis of the
type of measurements. The implications of the results of the solar, atmospheric, reac
astrophysical neutrino experiments upon double-beta-decay experiments have bee
already in several publications, see, for instance, [21–26]. To the wealth of param
involved in the analysis, like CP-phases, mixing angles and masses, one shou
the nuclear-structure degree of freedom needed to extract the effective electron–n
mass [17–20].

At first glance, to physicists who are less familiar with nuclear-structure analysis, i
seem an easy task to produce the needed nuclear-structure information. Unfortuna
not so because of several reasons:

(a) double-beta-decay transitions take place in medium- and heavy-mass systems
explicit shell-model calculations are unfeasible, unless severely truncated va
spaces are used;

(b) results of the calculations depend on the structure of the double-odd-mass n
involved in the decay. These intermediate states play an essential role in the s
order transition matrix elements entering the expression of the decay rate, an
is known about them, as compared with the relatively large amount of inform
gathered about the spectrum and electromagnetic and particle-transfer transit
double-even-mass nuclei. However, this dependence can be mimicked by a s
choice of the average energy in the closure approximation. The use of closure
justified for the case of the two-neutrino double-beta decay mode. Therefore, the
of the average excitation energy, in the case of the neutrinoless double-beta
mode, may be taken as an additional parameter;

(c) in dealing with medium- and heavy-mass nuclei one is forced to introduce appro
tions to obtain the participant wave functions and these approximations are not u
they vary from model to model;

(d) to assign a certain degree of significance to the already existing theoretical
one has to define, first, what should be taken as the equivalent of the experi

1 Because of the large amount of publications in the field we focus our attention on the most recent one

most of the valuable previous literature has been quoted in the papers which we have included in the present list
of references.
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confidence level, e.g., which models may be taken as references and what wo
the confidence level assigned to them depending upon the used approximations

In the past, all of these features have been referred to as theuncertainties in the nuclear
matrix elements and roughly estimated to be within factors of 2 to 3, with respect to
reference values. This aspect of the problem certainly deserves some attention, as
going to discuss later on in this work, since there turns out to be a gap between the
of mass limits extracted from double-beta-decay studies, 0.4 eV to 1.3 eV [22], and
extracted from the other neutrino-related studies which yield upper limits of the ord
0.10 to 0.20 eV [24] or even lower [12]. There is a clear discrepancy between bot
of results concerning the observation of neutrinoless double-beta (0νββ) decay. This issue
has become a hot one, due to the recent claim [27] about the positive identificat
neutrinoless-double-beta decay signals in the decay of76Ge (see, however, the objectio
presented in [28–30]), from which a central value of the mass of the order of 0.3
was extracted [27]. We think that these aspects must be considered from the point o
of both neutrino- and nuclear-structure physics. In this work we discuss the cons
set by the oscillation and mass parameters on the effective neutrino mass relevant
0νββ decay, and compare them with the ones obtained by performing the nuclear-str
study. We start from the best-fit mass-mixing matrix presented in [31] and, for compa
we have considered other estimates of the mixing matrix, i.e., the form written in
of the mixing angle of solar neutrinos, and the estimation based on a maximum-m
scheme [23].

In the first part of the paper we review the basic elements of the theory and d
the structure of the adopted neutrino mass-mixing matrix. We discuss a way to e
light-neutrino masses (mi) from the observed mass differences and by combining t
with the adopted neutrino mass-mixing matrix we calculate the effective neutrino
relevant for the 0νββ decay. In the second part of the paper we review the current nu
structure information about the 0νββ decay, by presenting the up-to-date values of
effective neutrino mass extracted from the adopted limits on the half-lives. In doin
we have considered the range of variation for the nuclear matrix elements, calc
within definite classes of models. We have focused our attention in the case
0νββ decay of76Ge. The nuclear structure analysis includes the values of the nu
matrix elements reported during last years. We are also presenting a set of nuclear
elements, which we have calculated as it is explained in the text. Finally, we discu
observability of planned experiments on the 0νββ decay in the context of the prese
results.

2. Formalism

2.1. Neutrino data

Two- and three-generation analysis of neutrino data, provided by the sola

atmospheric observations and by the range of mass differences explored in reactor-based
experiments, have been performed by several groups [6–11]. The picture which emerges
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Table 1
Current limits on neutrino-mass differences. The values listed are a
compilation of the results from the SNO [1], SK [2], KamLAND [3]
and WMAP [5]

δm2
12 = δm2

solar 5× 10−5 eV2 → 1.1× 10−4 eV2

δm2
23 = δm2

atm 10−3 eV2 → 5× 10−3 eV2

sin22θsolar ≈ 0.86
sin22θatm ≈ 1.0
Ων < 0.71 eV

from these very detailed analysis of neutrino-flavor oscillations favors the large m
angle (LMA) solution of the Mikheev–Smirnov–Wolsfenstein (MSW) mechanism [
Recently, KamLAND Collaboration [3] has confirmed the LMA solution and a cru
step towards the elucidation of the neutrino-mass spectrum was given by the res
WMAP [5,24], which fixed a stringent upper limit for the scale of neutrino masses.2 A brief
compilation of the adopted results is given in Table 1. As shown in this table, the SNO
are consistent with a value of the mass difference�m2

12 of the order of 10−5 eV (solar-
neutrino data), and another independent scale�m2

31 ≈�m2
32, of the order of 10−3 eV, has

been determined from the analysis of the atmospheric-neutrino data, which is in the
of the sensitivity of the reactor-based measurements. Because of the independenc
determined mass differences, the global picture is consistent with the existence o
active neutrino flavors. To these data, the information obtained by WMAP is addin
value of the upper limit of the sum of the three mass eigenvalues (light-neutrino m
only), which is of the order of 0.71 eV [5].

To calculate effective neutrino properties, like the effective electron–neutrino m
〈mν〉, one needs to know the neutrino-mixing matrixU and the light-neutrino mas
spectrum(m1,m2,m3) [16]. The determination of the matrix elements ofU and the
absolute values of the masses is the ultimate goal of any of the models of the ne
and it is, of course, a matter of intensive effort. Out of the very rich, recently publishe
of articles dealing with the analysis of the SNO results, we have selected two represe
ones, namely (a) the results presented in the paper of Bandyopadhyay, Choubey, G
and Kar (BCGK) [31], and (b) the expression of the mixing matrix in terms of
solar-neutrino data, and the zeroth-order approximation of the mixing matrix assu
maximum mixing, to perform our calculations. Our choice is motivated by the fact
in the BCGK paper the best-fit value ofU , with respect to the solar, atmospheric, a
CHOOZ data, is given explicitly and the confidence level of the results is well establi
The mixing matrices of case (b) give complementary mixing information and show
our final results as deviations from the best-fit BCGK-based results.
2 The results of WMAP are related to the value of the density of neutrinos in the Universe and not directly to
the neutrino mass. Thus, one should use this information with some caution.
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The three-generation mixing matrixU can be written as.3

U =

 c13c12 s12c13 s13

−s12c23 − s23s13c12 c23c12 − s23s13s12 s23c13

s23s12 − s13c23c12 −s23c12 − s13s12c23 c23c13


 . (1)

This expression does not include CP violation, as explained in [31]. By performing a
generationχ2-analysis of the solar-neutrino and CHOOZ data, and by considering the
differences�m2

12 =�m2
solar, �m

2
31 ≈�m2

32 =�m2
atm, the BCGK found that the best fi

occurs in the LMA region with tan2 θ13 ≈ 0. This finding greatly simplifies the form of th
mixing matrixU , because it narrows the value ofUe3 down to a very small range aroun
Ue3 ≈ 0 [23,31]. The best-fit form ofU , reported in the BCGK paper, is

U =




2
√

2
11

√
3
11 0

−
√

3
22

2√
11

1√
2√

3
22 − 2√

11
1√
2


 . (2)

In our second choice for the matrixU we considerUe3 = 0 and exploit the solar an
atmospheric mixing-angles data, reducing Eq. (1) to

U =

 c12 s12 0

−s12c23 c23c12 s23

s23s12 −s23c12 c23


 . (3)

As a special case of Eq. (3) we have the maximum mixing (sinθ12 = cosθ23 = 1/
√

2 )
solution

U =




1√
2

1√
2

0

−1
2

1
2

1√
2

1
2 −1

2
1√
2


 . (4)

Only the first row in the matrices Eqs. (2)–(4) is relevant for the electron–neutrino m
The next step consists of the definition of a neutrino mass spectrum. The relative

between the mass eigenvalues, usually referred to in the literature asmass hierarchy or
hierarchical order of the mass eigenvalues, cannot be fixed only by the measured squa
mass differences. In order to estimate the possible range of themi , we define the relative
scales

m1 = fm2, m2 = gm3 (5)

for the so-called normal hierarchy (m1 ≈m2<m3), and

m1 = fm2, m3 = gm1 (6)

3 This expression does not include CP violation. For the 0νββ decay only the first row of the matrix is relevan
Out of the three CP-violating phases (one Dirac phase, two Majorana phases), which are normally includ

matrix, the Dirac phase disappears ifs13 = 0, and the remaining two Majorana phases reduce into one relative
phase between the first and second elements of the first row.
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for the so-called inverse (m1 ≈m2>m3) and degenerate (m3 ≈m2 ≈m1) hierarchies. To
these factors we have added the information related to the scale of the mass eigen
which is determined by the extreme value

m0 = Ων

3
, (7)

where the value ofΩν is taken from the WMAP data (see Table 1). The factorsf and
g are determined in such a way that the resulting massesmi(f,g) obey the observe
mass differences, hereafter denoted as�m2 (�m2

31 ≈ �m2
32) and δm2 (�m2

12). We are
restricted to light-neutrino masses, as said before. The numerical analysis was per
by assuming the above given scalings and by finding the values of(f, g) which are
solutions of the equations

1

1− g2 − r

1− f 2 = 1 (8)

for the normal mass spectrum, and

r

1− f 2 − 1

1− g2 = r (9)

for the inverse and degenerate cases. The use of the scalem0 fixes the limiting values off
andg at

0 � f �
√

1− δm2

g2m2
0

,

0 � g �
√

1− �m2

m2
0

(10)

for the normal hierarchical order,

0< f � 1√
1+ δm2/m2

0

, 0 � g �
√

1− �m2

m2
0

(11)

for the inverse mass spectrum, and

0< f � 1√
1+ δm2g2/m2

0

, 0< g � 1√
1+�m2/m2

0

(12)

for the nearly degenerate masses.
In the above expressions the factorr is given by the ratio between the solar a

atmospheric squared mass differences

r = δm2

�m2 . (13)
Therefore, the variation of the parametersf andg is effectively restricted by the actual
value ofr andm0. For each set of allowed values of(f, g) and for each of the hierarchies
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considered we have calculatedmi . The effective neutrino mass〈mν〉, relevant for the 0νββ
decay, is given by [17–20]

〈mν〉± =
3∑
i=1

miλi |Uei |2 =m1U
2
e1 ±m2U

2
e2, (14)

since for the adopted best fitUe3 ≈ 0 [31]. We have consistently neglected CP-violat
phases, assumed CP conservation, and writtenλi = ±1, for the relative Majorana phase
since the fit of [31] was performed under the assumption of CP conservation.

This may be considered as a first step towards a more elaborate analysis which
necessarily include the possibility of CP violation. For the purpose of the present
we shall limit ourselves to the case of CP conservation and leave the complete an
including also CP violation, for a future effort. In Table 2 we give, for each of the ado
forms of the mixing matrix U, the range of values of the calculated effective elec
neutrino masses. These values correspond to the limiting values off and g, given in
the previous Eqs. (10)–(12). As can be seen from this table, the largest value whi
can obtain for〈mν〉 is of the order of 0.24 eV, and the smallest one is of the orde
0.7×10−4 eV, both for the degenerate mass spectrum. Notice that the larger value is
order of the mass scale extracted from the results of WMAP and it will certainly de
upon new results forΩν . A value ofΩν < 0.5 eV [24] would then give a mass limit of th
order of 0.16 eV, while the estimateΩν < 0.18 eV [12] will reduce it to the more stringen
limit of 0.06 eV. This part of the analysis is, of course, relevant for the present study s
determines exclusion regions for the allowed values of the effective neutrino mass re
for the 0νββ (see, for instance, [11] for a similar approach).

Table 2
Calculated effective electron–neutrino masses〈mν 〉±. Indicated in the table are the mass spectrum and
adopted mixing matrix. The values are given in units of eV. The results listed as extreme have been o
by using the extreme upper values off andg of Eqs. (10)–(12). The adopted values for the mass differen
areδm2

12 = 7.1 × 10−5 eV2, δm2
23 = 2.7 × 10−3 eV2, andm0 = 0.24 eV. The mixing matrixU(a) is taken

Eq. (2) (the best fit of [31]),U(b) is based on Eq. (3) by taking the largest values of the solar and atmosp
mixing angles, andU(c) is the maximum-mixing solution given explicitly in Eq. (4)

Mass spectrum 〈mν 〉 U(a) U(b) U(c)

Normal (m1 = 0) 〈mν 〉− −0.010 −0.012 −0.019
〈mν 〉+ 0.011 0.012 0.019

(extreme) 〈mν 〉− 0.105 0.086 −0.769× 10−4

〈mν 〉+ 0.231 0.231 0.231
Inverse (m3 = 0) 〈mν 〉− 0.105 0.087 −0.153× 10−2

〈mν 〉+ 0.234 0.235 0.235
(extreme) 〈mν 〉− 0.108 0.088 −0.749× 10−4

〈mν 〉+ 0.237 0.237 0.237
Degenerate (extreme) 〈m 〉 0.107 0.088 −0.715× 10−4
ν −
〈mν 〉+ 0.237 0.237 0.237
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2.2. Nuclear matrix elements

The implication of these results for〈mν〉 upon the rates of 0νββ decay is easily seen
one writes4 the corresponding half-life,t(0ν)1/2 , as

(
t
(0ν)
1/2

)−1 =
( 〈mν〉
me

)2

C(0ν)mm , (15)

where the factorC(0ν)mm is defined as

C(0ν)mm =G(0ν)1

(
M
(0ν)
GT (1− χF)

)2
, (16)

in terms of the nuclear matrix elements,M(0ν)
GT (1−χF), and the phase-space factors,G

(0ν)
1 ,

entering the mass term of the transition probability [17].
There are several aspects concerning Eq. (15) which are worth of mentioning:

(a) in the event of a successful measurement of 0νββ decay and considering th
information emerging from neutrino-related measurements, Eq. (15) may be v
as a possible test for nuclear models, since the calculated matrix elements resid
factorC(0ν)mm ;

(b) if one assigns a certain confidence level to nuclear-structure calculations, by
the value ofC(0ν)mm , and takes the range of values of the effective neutrino m
extracted from neutrino-related measurements, Eq. (15) may be viewed as a cr
for determining the observability of 0νββ decay;

(c) in the event of a positive measurement of 0νββ decay and considering a reliab
estimate of the nuclear matrix elements, Eq. (15) may be viewed as a consi
equation for the value of the effective neutrino mass seen in double-beta-de
compared with the one extracted from neutrino-related experiments.

Let us start with the discussion of the nuclear-structure related information, con
in C

(0ν)
mm . The ultimate goal of nuclear-structure models is, in fact, the predictio

observables based on the knowledge about nuclear wave functions at the neede
of accuracy. In the case of 0νββ decay studies, to achieve this ultimate goal one ne
to fulfill several requirements, some of which are purely technical and some of whic
conceptual. Among the technical barriers one has, of course, the un-feasibility of
scale shell-model calculations, prohibited by hardware constraints. Among the conc
requirements one has the realization that a prediction of a neutrinoless double-beta
rate should always be accompanied by other model predictions, like single-beta-
electromagnetic and particle-transfer transitions involving the nuclei which partic
in the double-beta-decay transition under consideration. We stress the point that,
experience, the study should be conducted on the basis of a case-by-case analysis
4 Only the mass sector of the half-life will be considered in the following analysis. The expression of the
half-life, including right-handed currents, can be found in [17].
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Most of the current nuclear-structure approximations are based on the proton–n
quasiparticle random phase approximation (pnQRPA). This is a framework where p
neutron correlations are treated as basic building blocks to describe the nuclear
which participate in a double-beta-decay transition. The pnQRPA formalism is rathe
known and it has been discussed in a large number of publications during the las
years. For the sake of brevity we are not going to present it here again, rather we
like to refer the reader to [17] for details. In particular, the sensitivity of the pnQ
method to values of specific parameters of the interactions, like the sensitivity t
renormalization of the particle–particle (proton–neutron) coupling, has been a ma
intensive studies. Again, we would like to refer to [17] for details concerning this poi
well as concerning the large number of extensions of the pnQRPA method, their suc
and failures. Restricting ourselves to a very elementary theoretical background, w
say that the standard procedure, applied in the literature to calculate the 0νββ-decay rate
involves three major components:

(a) the calculation of the spectrum of the intermediate double-odd-mass nucleu
(A,N ± 1,Z ∓ 1) nucleons. The pnQRPA is an approximate diagonalization in
one-particle–one-hole, 1p–1h, (or two-quasiparticle) space and it includes the
of 2p–2h ground-state correlations by means of the backward-going amplitudes
the calculations are based on a quasiparticle mean field one forces the br
of certain symmetries, like the particle-number symmetry by the use of the
approximation, and the isospin symmetry, by the use of effective proton and ne
single-particle states. The final results of the pnQRPA calculations will cert
be affected by these symmetry-breaking effects induced by the way in w
we handle the nuclear interactions. Some attempts to cure for these effect
been implemented by means of enlarging the representation space, including
principle-related blocking and by performing self-consistent approaches beyon
quasiparticle mean field. As said before, the list of various extensions of the sta
pnQRPA is too long to be commented here in detail. A fairly complete list of refere
about the set of extensions of the pnQRPA is given in [17–19]. We will gene
refer to these approximations as pnQRPA-related ones. In this paper we shall sh
results based on this family of approximations.5 In addition, we quote the results
the available shell-model calculations;

(b) the calculation of the leptonic phase-space factors, as dictated by the secon
perturbative treatment of the electroweak interaction. At the level of the min
extension of the Standard Model (SM) Lagrangian (mass sector only), these
space factors can be easily calculated, and the values of them should be rather u
causing no source of discrepancies in the calculations, except for the adopted v
the axial-vector couplinggA. At the level of the two-nucleon mechanism this value
currently fixed atgA = 1.254 but for the medium-heavy and heavy nuclei an effec

5 We shall explicitly quote the sources from where the results have been taken in order to avoid here a re
of the details of each formalism, since the aim of the present section is not to present a critical review

theories but rather to show their results to give an idea about the spread in the values of the relevant nuclear
matrix elements.
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value ofgA = 1.0 has also been used. In this work we adopt the conservative est
of gA = 1.254. Expressions for the phase-space factors, for theories beyon
minimal extension of the SM Lagrangian, i.e., for left–right and right–right coupli
have been listed exhaustively in the literature (see, e.g., [17,18]) and their valu
well defined, too. In going beyond the two-nucleon mechanism one has to con
also, the momentum dependence of the operators, which will reflect upon the str
of the phase-space factors. This is also true for the case of calculations where
including p-electron wave effects and/or forbidden decays;

(c) the calculation of the matrix elements of the relevant current operators which ac
the nucleons. These operators are also well known and their multipole structur
derived from the expansion of the electroweak current [17]. In the present calcu
we have considered the standard type of operators, without introducing any mom
dependence in them, as originating from the electroweak decay at the quark leve

A compilation of the values of nuclear matrix elements and phase-space facto
be found in [17]. The current information about the status of 0νββ decays is reported i
[33–37].

Tables 3 and 4 show the set of double-beta-decay systems where experimental s
for signals of the 0νββ are conducted at present or planned for the next generatio
double-beta-decay experiments. The tables contain the experimental lower limits
0νββ half-life [38–47], the full range of variation of the nuclear matrix elements
contained in the factorsC(0ν)mm and as they are predicted by different models [17], the va
of the model-dependent factor [17]

FN = t(0ν)1/2 C
(0ν)
mm =

( 〈mν〉
me

)−2

, (17)

the calculated phase-space factorsG(0ν)1 , and the extracted values of the upper limits
effective neutrino mass.

In Table 4 only a sub-group of calculations are presented, namely the ones based
plain spherical pnQRPA approach of [17] (third column). These results are compare
our present calculations shown in the fourth column.

In the following, some brief details about the present pnQRPA calculations are g
They have been done by following the procedure outlined in [17]. The two-body nu
interactions were constructed by using theG-matrix interaction of the Bonn type includin
two to three major harmonic-oscillator shells around the proton and neutron F
surfaces. The spherical Woods–Saxon potential was used to generate the single-
energies and small adjustments of these energies were done in the vicinity of the
surfaces to reproduce the low-energy quasiparticle spectra of the neighboring od
nuclei. Following the criteria which we have advanced above, the various param
involved in the calculations have been fixed by reproducing the known data on single
decay transitions around the nuclei of interest for the double-beta-decay transitions
we are considering here. No further adjustment of the proton–neutron particle–p

coupling constant [17] is introduced once the known single-beta-decay observables are
reasonably reproduced.
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Table 3
0νββ model-dependent estimates and experimental limits. The double-beta-decay systems are given in

column. The factorsC(0ν)mm are given in units of yr−1 and their values are shown within the intervals predic
by different nuclear-structure models, like the shell model (a), the quasiparticle random phase approxima

the pseudo SU(3) model (c), and various other models (d). The valuegA = 1.254 is used. The quantitiest(0ν)1/2
are the experimental lower limits of the half-lives, in units of years. The corresponding references are qu
brackets. The factorFN (lower limit) is shown in the fourth column and the values are given within the inter

provided by the factorsC(0ν)mm . The last column shows the range of variation of the extracted upper limits fo

effective neutrino mass (upper limits) in units of eV. The coefficientsC
(0ν)
mm are taken from [17], except for th

case of124Sn [59]

System C
(0ν)
mm t

(0ν)
1/2 FN(min) 〈mν 〉max

48Ca (1.55–4.91)× 10−14 (a) 9.5× 1021[38] (1.47–4.66)× 108 (23.7–42.1)
(9.35–363)× 10−15 (b) (8.88–345)× 107 (8.70–54.2)

76Ge (1.42–28.8)× 10−14 (d) 2.5× 1025 [29] (3.55–72.0)× 1011 (0.19–0.86)
82Se (9.38–43.3)× 10−14 (d) 2.7× 1022 [40] (2.53–11.7)× 109 (4.73–10.2)
96Zr (9.48–428)× 10−15 (b) 1.0× 1021 [41] (9.48–428)× 106 (24.7–166)
100Mo (0.07–2490)× 10−15 (b) 5.5× 1022 [42] (0.38–13700)× 107 (1.38–262)
116Cd (5.57–66.1)× 10−14 (b) 1.3× 1023 [43] (3.90–46.3)× 109 (2.37–8.18)
124Sn (2.29–5.70)× 10−13 (b) 2.4× 1017 [44] (5.50–13.7)× 104 (1.38–2.18)× 103

128Te (1.71–33.6)× 10−15 (b) 8.6× 1022 [45] (1.47–28.9)× 108 (9.51–42.1)
130Te (1.24–5.34)× 10−13 (b) 2.1× 1023 [45] (1.74–7.48)× 1010 (1.87–3.87)
136Xe (2.48–15.7)× 10−14 (a), (b) 4.4× 1023 [46] (1.09–6.91)× 1010 (1.94–4.89)
150Nd (4.78–77.4)× 10−13 (b), (c) 1.7× 1021 [47] (8.13–132)× 108 (4.45–17.9)

Table 4
Calculated phase-space factorsG(0ν)1 and calculated nuclear matrix elements, using the formalism of the sph
pnQRPA, for some of the double-beta emitters included in Table 3. The phase space factors are given
of yr−1 and the dimensionless matrix elements are scaled by the nuclear radius [17]. Note that for the
100Mo the present (correct) value of the phase space factor differs from the one (a misprint) given in [1
third column, indicated as N.M.E., gives the extreme values of the nuclear matrix elementsM0ν

GT(1−χF) reported
in the literature (see the captions to Table 3), and the fourth column, indicated as N.M.E. (this work), gi
results of the present calculations forM0ν

GT(1−χF). The last column shows the range of values of the upper l
for the effective neutrino mass, in units of eV, extracted from the results given in the third and fourth colum

System G
(0ν)
1 × 1014 N.M.E. N.M.E. (this work) 〈mν 〉max

48Ca 6.43 1.08–2.38 8.70–19.0
76Ge 0.63 2.98–4.33 3.33 0.30–0.43
82Se 2.73 2.53–3.98 3.44 4.73–7.44
96Zr 5.70 2.74 3.55 19.1–24.7
100Mo 4.57 0.77–4.67 2.97 2.18–13.2
116Cd 4.68 1.09–3.46 3.75 2.37–8.18
128Te 0.16 2.51–4.58 9.51–17.4
130Te 4.14 2.10–3.59 3.49 1.87–3.20
136Xe 4.37 1.61–1.90 4.64 0.79–2.29

As one can see, our present results are in good agreement with the other pn

calculations, except for136Xe where our calculation gives a larger matrix element than the
other calculations. This deviation might occur due to the semi-magic nature (the neutron
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shell is closed) of136Xe, forcing the transition from the two-quasiparticle description
the particle–hole description.

If one compares the extracted upper limits for the neutrino masses of Table 3
the ranges of neutrino masses given in the previous section, it becomes evident t
present generation of 0νββ experiments is rather insensitive to the effective neut
mass coming from the best fit of the solar+ atmospheric+ reactor data, except for th
Heidelberg–Moscow experiment if one takes the range of values (〈mν〉 = 0.11 eV–0.56 eV)
reported in [27]. If one takes the value〈mν 〉 ≈ 0.24 eV (the heaviest possible effecti
mass), which is favored by the inverse and degenerate mass spectra (see Table
sees that it is outside the range of the present upper limits fixed by double-beta
experiments, with the possible exception of the decay of76Ge, which just barely reache
this estimate. Naturally, the upper limits of〈mν〉 extracted from the experimental low
limits of t(0ν)1/2 are model dependent, since the connection between the half-lives a
effective neutrino mass is given by the nuclear-model-dependent factorsFN . As a reference
value, for〈mν〉 ≈ 0.24 eV one obtainsFN = 4.53× 1012 (see Eq. (17)) which is to b
compared with the estimate (see Table 3, case of76Ge)FN � 3.55× 1011 → 7.20× 1012,
computed by assumingt(0ν)1/2 > 2.5× 1025 yr [29] and taking into account the total span
the calculated nuclear matrix elements.

With reference to the results shown in Table 4, the span in the upper limits o
effective neutrino mass is smaller, if one takes only the results of the spherical pn
(see the last column of Table 4), than when all the available model calculations are in
(see the last column of Table 3). For the case of76Ge the spherical pnQRPA gives a sp
of 〈mν〉 = 0.30 eV–0.43 eV in upper limit of the effective mass. This means that to r
the neutrino-mass value resulting from the neutrino data, one definitely needs larger
elements than the ones produced thus far by the spherical pnQRPA model, and/or
half-lives than the present measured limits. These observations will be discussed in
in the next section.

2.3. pnQRPA matrix elements for 76Ge

Table 5 shows the results of the matrix elements, corresponding to the mass se
the neutrinoless double-beta decay in76Ge, calculated within the family of the pnQRPA
related models [48–55]. The standard spherical pnQRPA method gives results wh
of the order ofC(0)mm ≈ 5–8× 10−14 in units of yr−1, with the exception of the resu
presented in [55], which yields to a magnitude of the order of 1.85× 10−14 yr−1 , and
the one of [48] where the pnQRPA value is 1.12× 10−13 yr−1. These factors transla
into the ranges of the nuclear matrix elements6 and upper limits of the effective neutrin
masses which were shown, previously, in Tables 3 and 4. The results of the other, pn
related, approximations seem to be less stable and they deviate more from the centr
of C(0)mm ≈ 5–8× 10−14 yr−1. In analyzing the results of [55] one can notice that the lar
value does not differ much from the standard pnQRPA value, although is has been ob
6 Notice that the results of [48], which are relevant for the analysis performed in [27], are only 1.3 times larger
than the average pnQRPA matrix element.
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Table 5
Calculated nuclear matrix elements for the case of76Ge. The valuesC(0)mm are given in units of yr−1. The

adopted value for the lower limit of the half-life is the value recommended in [29],t
(0ν)
1/2 = 2.5 × 1025 yr.

Indicated in the table are the models used to calculate the nuclear matrix elements, which are taken
references quoted in the last row of the table. The abbreviations stand for the proton–neutron quas
random-phase approximation (pnQRPA), particle-number-projected pnQRPA (pnQRPA (proj.)), proton–n
pairing pnQRPA (pnQRPA+ pn pairing), the renormalized pnQRPA (RQRPA), the second pnQRPA (SQR
the self-consistent renormalized pnQRPA (SCRQRPA), the fully renormalized pnQRPA (full-RQRPA), a
variation after projection mean-field approach (VAMPIR). The model assumptions underlying these theo
presented in the quoted references

C
(0)
mm FN(min)× 10−12 Theory Refs.

1.12× 10−13 2.80 pnQRPA [48,49]
6.97× 10−14 1.74 pnQRPA [32]
7.51× 10−14 1.88 pnQRPA (proj.) [32]
7.33× 10−14 1.83 pnQRPA [50]
1.42× 10−14 0.35 pnQRPA+ pn pairing [50]
1.18× 10−13 2.95 pnQRPA [51]
8.27× 10−14 2.07 pnQRPA [52]
2.11× 10−13 5.27 RQRPA [53]
6.19× 10−14 1.55 RQRPA+ q-dep. operators [53]
1.8–2.2× 10−14 0.45–0.55 pnQRPA [54]
5.5–6.3× 10−14 1.37–1.57 RQRPA [54]
2.7–3.2× 10−15 0.07–0.08 SCRQRPA [54]
1.85× 10−14 0.46 pnQRPA [55]
1.21× 10−14 0.30 RQRPA [55]
3.63× 10−14 0.91 full-RQRPA [55]
6.50× 10−14 1.62 SQRPA [55]
2.88× 10−13 7.20 VAMPIR [56]
1.58× 10−13 3.95 Shell Model [57]
1.90× 10−14 0.47 Shell Model [58]

by using a more involved approximation. By using the phase-space factors listed in T
we arrive at the central value for the matrix elements in the pnQRPA, namely

M
(0ν)
GT (1− χF)pnQRPA= 3.65. (18)

The corresponding value for the latest large-scale shell-model calculation [58] is giv

M
(0ν)
GT (1− χF)shell-model= 1.74. (19)

Therefore, the latest shell-model results [58] and the centroid of the pnQRPA results
by a factor of the order of 2. In terms of the effective neutrino mass, using the ha
t
(0ν)
1/2 � 2.5× 1025 yr recommended in [29], these matrix elements lead to

〈mν〉pnQRPA� 0.35 eV, (20)

for the pnQRPA estimate, and

〈mν〉shell-model� 0.74 eV, (21)
for the shell-model estimate of the matrix element. It means that to go to masses of the
order of 0.24 eV, as required by WMAP, one needs larger nuclear matrix elements than
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the ones given by the pnQRPA or by the available shell-model results. In fact, to rea
WMAP limit one would need the value

M
(0ν)
GT (1− χF)experimental� 5.36, (22)

which is ≈ √
2 times larger than the reference pnQRPA value given in (18). The la

matrix element listed in Table 5, coming from the VAMPIR approach [56], would y
to the value〈mν〉VAMPIR � 0.19 eV, which just touches the value〈mν〉 � 0.24 eV coming
from the analysis of the neutrino-related data. However, it is appropriate to point ou
that the VAMPIR matrix element is to be considered unrealistically large because
calculations of [56] no proton–neutron residual interaction was included.

Finally, our present value

M
(0ν)
GT (1− χF)

present
pnQRPA= 3.33 (23)

(see Table 4) is consistent with the central value (18), and it yields an effective ne
mass

〈mν〉present
pnQRPA� 0.39 eV (24)

if one takes for the half-life the lower limit recommended in [29], and

〈mν〉present
pnQRPA� 0.50 eV (25)

if one takes for the half-life the value 1.5 × 1025 yr given by Heidelberg–Moscow
Collaboration [27].

3. Observability of the neutrinoless double beta decay

To grasp an idea about the observability of the 0νββ decay in other systems, we c
compare the values ofFN , of Table 3, with the ones obtained by using the upper limi
the effective neutrino mass of 0.24 eV, corresponding toFN � 4.53× 1012.

Fig. 1 shows the comparison between the lower limits of the values ofFN of Eq. (18),
listed in Table 3, and the values corresponding to the effective neutrino masses〈mν 〉 =
0.24 eV (upper limit coming from the neutrino data) and 0.39 eV (central value rep
in [27]. The interval between upper and lower values, for each case, represents the
the calculated nuclear matrix elements. For the case of76Ge the prominent upper value
given by the unrealistically large nuclear matrix element of [56].

The results shown in Fig. 1 indicate a departure with respect to the experimental
by orders of magnitude, excluding the case of76Ge which is closer but still outside of th
range consistent with the solar+ atmospheric+ reactor neutrino data.

Thus the issue about the observability of the 0νββ decay relies, from the theoretical sid
upon the estimates for the effective neutrino mass and upon the estimates of the r
nuclear matrix elements. While in some cases the differences between the calculated
elements are within factors of the order of 3, in some other cases the differences ar

larger. It shows one of the essential features of the nuclear double-beta decay, namely that
case-by-case theoretical studies are needed instead of a global one [17]. The elucidation of
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Fig. 1. FactorsFN (min), of Eq. (18), for each of the systems of Table 3. The lines are drawn to guide the
The interval between the upper and lower lines, for each case, represents the span of the calculated nucle
elements. The results corresponding to〈mν 〉 = 0.24 eV and〈mν 〉 = 0.39 eV are shown as horizontal lines.

this problem relies on data which may be available in the next generation of double
decay experiments. These future experiments are needed to reach the values of e
neutrino masses extracted from the neutrino-oscillation-related data.

4. Conclusions

To conclude, in this paper we have presented results on the effective neutrino
as obtained from the best-fit mass-mixing matrixU determined from the analysis o
solar+atmospheric+ reactor+satellitedata, and compared them with the values extra
from neutrinoless double-beta-decay experiments. The analysis of the neutrino sec
performed under the assumption of CP conservation, in a manner consistent with
of the mixing matrix, under the constraints forUe3 ≈ 0. A more elaborate one, includin
CP-violating phases in the neutrino sector will be performed in a subsequent effort.

The value of the effective electron–neutrino mass extracted from the neutrino-r

experiments,〈mν〉 � 0.24 eV, does not compare with the central value of〈mν〉 ≈ 0.39 eV,
reported in [27] and obtained by using the nuclear matrix elements calculated in [48]. It
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does not compare, either, with the values given by the standard pnQRPA model, after
into account the span in the calculated matrix elements.

To explain for the difference between the above results, we have compiled a syste
of the calculated nuclear matrix elements and performed additional pnQRPA calcula
In the case of76Ge, and if one adopts for the half-life the lower limit of 2.5 × 1025

yr suggested in [29], the nuclear matrix elements needed to yield the desired ef
neutrino masses are larger than any of the known nuclear matrix elements calculate
framework of the spherical pnQRPA. This conclusion also holds for the available
model results.

The present knowledge of the involved nuclear matrix elements shows tha
sensitivity of the 0νββ experiments is still far from the estimate coming from neutr
oscillations. However, the needed sensitivity is potentially achievable by the
generation of experiments.
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