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Theq-deformed harmonic oscillator is revisited in connection with the spectrum of finite range potentials. It
is found that the finite series expansion of the canonical variables, theq-deformed phase space coordinate and
momentum variables, generates a local momentum dependent interaction. It turns out that the resulting spec-
trum exhibits features of the spectrum of a finite range potential, added to the low-lying harmonic oscillator
behavior. Thus, the otherwise unbounded spectrum of the harmonic oscillator behaves, in theq-deformed
version, as the spectrum of a finite range potential subject to specific boundary conditions.
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I. INTRODUCTION

Among the different deformed Heisenberg-Weyl algebras
that have been applied extensively in the past(see Refs.[1,2]
and references therein), the so-calledq-oscillator commuta-
tion relation[3]

a a† − q a† a = 1, q P R, s1d

has deserved special attention. It has been used, for ex-
ample, in the case 0,q,1 to describe particles with
small violations of Fermi and Bose statisticssquonsd f4g.
The appearance of quantum groupsf5,6g has increased the
interest in such kind ofq-commutation rules, and the
Biedenharn-Macfarlaneq-oscillator f7,8g

A A† − q1/2 A† A = q−N/2, s2d

where the number operatorN fulfills

fN, Ag = − A, fN, A†g = A†, s3d

was soon introduced in order to obtainq-generalizations
f9g of the usual boson mapping techniquesf10g. Since
then, suchq-oscillator and its many-body generalizations
f11,12g have been widely used to construct new effective
anharmonic Hamiltonians related, for instance, with non-
classical states of lightf13,14g, vibrational spectraf15g,
and superfluidityf16g.

Although the full representation theory of algebras(1) and
(18) has been developed[2,17] (in fact, for q a real number,
both algebras are identical under the transformationa
=qN/4 A), the problem of finding the associated self-adjoint
q-analogs of position and momentum operators does not

have a unique solution. In Ref.[18], the position operator for
the q-oscillator algebra was proposed to be

X = ez Nsa + a†de−z N s4d

with z being a real parameterfnote the formal analogy of
Eq. s4d with the Sx operator which has been recently used
in Ref. f19g to describe effective fermion-boson interac-
tions through the suqs2d algebrag.

In this paper we consider the Lorek-Ruffing-Wess(LRW)
q-oscillator [20] which hasq=eh.1 and fulfills

a a† − q−2M a† a = 1,M = 0, 1, 2, . . . . s5d

The LRW q-oscillator Hamiltonian will be defined asf20g

H = v a† a s6d

and a couple of Hermitianq-position X and q-momentum
P operators can be naturally associated with the creation
and annihilation operatorss5d. We stress that, since the
operatorsX andP have a discrete spectrum, the associated
q-phase space has a lattice structuref21g. Moreover, a
so-called q-deformed quantum mechanicsf21–27g has
been developed by considering theq-Schrödinger equa-
tion coming from the Hamiltonian

H =
1

2
P2 + VsXd, s7d

which is defined in terms of the above mentioned
q-position and momentum operators.

Following the work of Ref.[20], we have considered the
canonical realization of Hamiltonian(6) in terms of the usual
position and momentum operatorsx and p. Hamiltonian(6)
is expanded as a power series of the parameterh. To leading
order inÎhM, the deformed Hamiltonian(6) turns out to be
just the usual quantum mechanical oscillator plus some in-
teraction terms which depend linearly on the momentump.
Thesep-dependent terms are responsible for the presence of

*Electronic address: angelb@ubu.es
†Electronic address: civitare@fisica.unlp.edu.ar
‡Electronic address: reboiro@fisica.unlp.edu.ar

PHYSICAL REVIEW C 68, 044307(2003)

0556-2813/2003/68(4)/044307(5)/$20.00 ©2003 The American Physical Society68 044307-1



local interactions, but no lattice structure is now needed for
the phase space, which remains the usual continuous one.
Moreover, the spectrum of thish-harmonic oscillator shows,
at certain energy, a transition to a confined, finite range, re-
gime. In other words, a certain portion of the spectrum of an
h-deformed harmonic oscillator may possibly be interpreted
as the spectrum of a finite range potential. We recall that
p-dependent terms have been previously derived in the con-
text of the so-called nonstandardq-deformed algebras[28],
which give rise in a natural way to different types of non-
Hermitian Hamiltonians, a class of objects that could be in-
teresting in various fields of physics, among them, e.g., the
physics of resonances[29] and Poeschl-Teller symmetric
quantum mechanics[30].

In this work we aim at establishing a link between the
h-deformation(or “truncated“q-deformation) and the finite
range structure of the resulting Hamiltonian, that is, to relate
the presence ofp-dependent terms in theh-deformed har-
monic oscillator with the appearance of finite range interac-
tions. We shall show the existence of such a correspondence,
for the case of a one-dimensional harmonic oscillator. There,
the effect of theq-deformation materializes in a certain re-
gion of the spectrum, which looks like the one belonging to
a one-dimensional finite range potential. In other words, we
conjecture that the resulting effect of theq-deformation, and
theq-deformation itself, may be related to the boundary con-
ditions associated with the problem. In order to support our
conjecture, we shall compare the resulting spectrum with the
one corresponding to a central, finite range, volume-type
Woods-Saxon potential. In this manner we aim at fixing re-
alistic values ofq, which is a nonobservable quantity, from
observables, such as the depth of the potential and its range.

The needed background, about the LRWq-deformed har-
monic oscillator, is presented in Sec. II, together with the
expansion of the Hamiltonian. Section III is devoted to the
discussion of the numerical results. There, we show and dis-
cuss the result of the calculations of the spectrum and wave
functions of theq-deformed harmonic oscillator with the ad-
dition of the momentum dependent interactions. Conclusions
are drawn in Sec. IV.

II. FORMALISM

A. The Lorek-Ruffing-Wess q-oscillator

Hereafter we shall follow the notation of Ref.[20]. If q
denotes the deformation parameter, such thatq=eh, with
q.1, andU is a unitary matrix, the relationships(deformed
commutation rules) of the LRW q-Heisenberg-Weyl algebra
are

ÎqX P−
1

Îq
P X= iU ,

U X −
1

q
X U = 0,

U P − qP U= 0. s8d

The q-position X and momentumP operators defined in
Eq. s8d are Hermitian. We can now express the creation
and annihilation operators fulfilling the LRW algebras5d
as

a = a U−2M + b U−MP, s9d

a† = a U2M + b UMP, s10d

whereM =0,1,2, . . ., anda andb are complex amplitudes.
With these expressions in mind, the LRWq-oscillator
Hamiltonian is defined as in Eq.s6d.

B. Leading order interactions

We consider the following realization[20] of the opera-
tors P andU:

P = p̂,

U = q− i
2

sx̂p̂+p̂x̂d,

where

x̂ = x,

p̂ = p +
1

Î1 − q−2M
g. s11d

In these expressionsx and p=−i ] /]x are the ordinary ca-
nonical conjugate variables andg= ±Î2mv. In this way,
the annihilation and creation operatorsa, Eq. s9d, anda†,
Eq. s10d, can be written as power series of the parameter
ÎhM. This is achieved by expanding the exponential ap-
pearing inU. The result is

a = o
k=0

`

o
l=0

k

cklsMhdkF̂kl,

ckl =
s− 1dlsidk+l

2ll ! sk − ld !
,

F̂kl = bsx̂p̂dk−lp + s2ka + bzdsx̂p̂dk−l , s12d

with z=1/Îs1−q−2Mdg. A similar expression holds fora†.
With these expressions we are now in a condition to re-
write the Hamiltonian. To leading order inÎhM one gets

H = H0 +
1

4
ÎhM

mv
vf2p − 3mvsx2p + p x2dg, s13d

whereH0 is the undeformed harmonic oscillator,

H0 =
p2

2m
+

mv2x2

2
. s14d

Hamiltonians13d can also be written as
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H = H0 +
ÎhM

4
vF2b0p +

6i

b0
x −

6

b0
x2pG , s15d

where b0 is the oscillator lengthsb0=Î1/mvd in units of
"=1.

The leading order Hamiltonian of Eq.(15) is, basically, a
quartic anharmonic oscillator. This can be shown by per-
forming on Eq.(15) the gauge transformation:

Fsxd = fsxdexpfiAsxdg, s16d

where

Asxd =
ÎhM x s− b0

2 + x2d
2b0

3 . s17d

The resulting differential equation is

−
f88

2m
+

s1 + 24g2dx2vfsxd
2b0

2 −
18g2x4vfsxd

b0
4 − 2g2vfsxd

= Efsxd. s18d

The above expression is similar, for small values ofx, to
the Poeschl-Teller potential

Vsxd =
V0

cosh2sx/Rd
= V0 − V0

x2

R2 + V0

2x4

3R4 + ¯ . s19d

Thus, from a formal point of view we can argue that
q-deformations are indeed similar to finite range poten-
tials, as shown above.

III. RESULTS AND DISCUSSION

We have calculated the eigenvalues ofH, of Eq. (13), for
various values of the couplingg=ÎhM/4. The results are
shown in Fig. 1. There, for small values ofg, cases(b)–(d),
the low-energy portion of the spectrum remains nearly in-
variant, with respect to the pure harmonic oscillator, while
for larger values ofg, cases(e)–(g), the high-energy part of
the spectrum becomes more dense and it looks similar, case
(g), to the spectrum of the finite range Woods-Saxon poten-
tial,

Vsrd =
V0

1 + esr−R0d/a0
, s20d

caseshd.
Note that a direct comparison of cases(a) and (h), the

pure harmonic oscillator and the Woods-Saxon potential, re-
spectively, may be performed for some low-lying states only,
but both potentials look very different at high energies, due
to the unbounded character of the harmonic oscillator. This is
a direct consequence of the boundary conditions which are
imposed on each case. From these, we may conclude that the
spectrum of theq-deformed harmonic oscillator may ap-
proach the spectrum of the finite range potential, as shown
by cases (b)–(g). This is a definite effect of the
q-deformation. The use of relatively large values ofg causes
the appearance of a gap at low energy, as observed in cases

(f) and (g). This effect may be explained by the truncation
performed at the level of the Hamiltonian.

In order to explore the effects of theq-deformation we
have calculated the spectra ofq-deformed harmonic oscilla-
tor of different frequencies and deformations, with a standard
Woods-Saxon potential. The result is shown in Fig. 2. As
indicated by the captions of this figure, the dimension of the
basis used to diagonalize the Hamiltonians of Eqs.(13) and
(20), for each of the shown cases, is considerably large. This
is to ensure that truncation is not affecting the results. Since
the agreement between the positive energy parts of the spec-
tra persists, the effect may be only attributed to the
q-deformation. The states of theq-deformed harmonic oscil-
lator have been shifted, so that its lowest state coincides with
the lowest eigenvalue of the finite range potential. From the
result shown in Fig. 2 one can see that both spectral distri-
butions nearly coincide over the full range of energies.

The similarities between the results of theq-deformed
harmonic oscillator and the ones obtained with a finite range
potential, such as the Woods-Saxon potential of Eq.(20), are
better illustrated, actually, by comparing the shapes of the
potentials introduced in Sec. II. Figure 3 shows the depen-
dence of the potentials, with the coordinate, in the region of
interest. The curves have been calculated at leading order
and for relatively small values ofx. For values ofx larger
than 1.4 the three curves change their curvatures, as happens

FIG. 1. Eigenvalues of the harmonic oscillator, case(a); of the
q-deformed harmonic oscillator, cases(b)–(g); and of the Woods-
Saxon potential, case(h). The values are shown in arbitrary units.
The parameters used in the calculations are, respectively,"v=4.4
[cases(a)–(g)]; and g=0.001 [case (b)], g=0.015 [case (c)], g
=0.019 [case(d)], g=0.022 [case(e)], g=0.024 [case(f)], and g
=0.025[case(g)]. Case(h) corresponds to the Woods-Saxon poten-
tial with V0=−50, a=0.5, andR0=1.1. The calculations have been
performed in a basis with 65 harmonic oscillator shells.
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in the case of theq-deformed oscillator(q-osc) nearx=1.4.
The parameters used in the calculations are given in the cap-
tion of Fig. 3.

Concerning the structure of the wave functions, the uncer-
taintiesDxDp for each eigenvalue of the finite range potential

(20) and for theq-deformed harmonic oscillator(13) are
comparable for the eigenvalues of positive energies. The re-
sults are shown in Fig. 4. Theq-deformed harmonic oscilla-
tor exhibits, however, larger values for the product of uncer-
tainties at low energies in the negative energy part of the
spectrum of Fig. 2. Thus, it may be concluded that the wave
functions of the finite range potential and those of the
q-deformed oscillator produce comparable observables.

Both features, namely,(a) the similarity of the eigenval-
ues and density of eigenvalues, and(b) the comparable wave
functions, strongly suggest the existence of a correspondence
between theq-deformation and the finite range structure of a
potential. Moreover, it points to a more fundamental equiva-
lence between aq-deformed algebra, such as the one chosen
to “deform” a certain Hamiltonian, and the boundary condi-
tions which one imposes on the corresponding eigenvalue
problem. Although this correspondence has to be probed yet,
from a pure mathematical point of view, physical intuition
signals the possible existence of a trade-off mechanism be-
tween added interactions, like the one generated by the
q-deformation of a certain algebraic structure, and boundary
conditions.

IV. CONCLUSIONS

In this work we have revisited the problem of the LRW
q-deformed harmonic oscillator, introduced in the work of
Ref. [20], by considering only the leading order correction
introduced by the deformation. In this way, no discretization
of the quantum phase space is needed, and from the compari-
son between the eigenvalue densities and deviations of ca–

FIG. 2. Eigenvalues(in arbitrary units) for a q-deformed har-
monic oscillator with"v=2.8 andg=0.044 [case(a)] and of the
Woods-Saxon potential, case(b), with the parameters given in the
caption of Fig. 1. The calculations have been performed in a basis
consisting of 45 harmonic oscillator shells.

FIG. 3. The curves show the results for the potentialVsxd cor-
responding to theq-deformed harmonic oscillator of Eq.(18) (q-
osc, solid line), Poeschl-Teller(PT, dotted-line), and Woods-Saxon
(WS, dashed-line) potentials. The parameters are"v=6.98,g=1.8
(q-osc); V0=−50, R0=1.1, a0=0.5 (WS), and V0=−45, R0=1.26
(PT). The values ofVsxd andx are given in arbitrary units.

FIG. 4. UncertaintiesDxDp, divided by", calculated by using
the wave functions obtained from the diagonalization of the Woods-
Saxon(WS, solid-line) andq-deformed harmonic oscillator(q-def,
dotted-line), for the positive-energy eigenvalues(denoted as energy-
values in arbitrary units). The parameters of the potentials are given
in the caption of Fig. 2.
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nonical conjugate variables we conjecture that a correspon-
dence betweenq-deformation effects and boundary condi-
tions (e.g, the finite range behavior of a central potential)
may exist. In the example which we have presented in this
work, the correspondence is clearly illustrated for the change
of the regime of the eigenvalue density of an unbounded
harmonic spectrum, which behaves, afterq-deformations,
like the spectrum of a central potential of finite range.
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