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Correspondence between thg-deformed harmonic oscillator and finite range potentials
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The g-deformed harmonic oscillator is revisited in connection with the spectrum of finite range potentials. It
is found that the finite series expansion of the canonical variablesydeéormed phase space coordinate and
momentum variables, generates a local momentum dependent interaction. It turns out that the resulting spec-
trum exhibits features of the spectrum of a finite range potential, added to the low-lying harmonic oscillator
behavior. Thus, the otherwise unbounded spectrum of the harmonic oscillator behaves gideflioemed
version, as the spectrum of a finite range potential subject to specific boundary conditions.
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I. INTRODUCTION have a unique solution. In R€fL8], the position operator for

Among the different deformed Heisenberg-Weyl algebrasfhe g-oscillator algebra was proposed to be

that have been applied extensively in the gast Refs[1,2] X=e*Na+ahe?zN (4)
and references therginthe so-called-oscillator commuta-

tion relation[3] with z being a real parameté¢note the formal analogy of

Eq. (4) with the S, operator which has been recently used
aa’-ga'a=1, qeR, (1) in Ref.[19] to describe effective fermion-boson interac-
. . tions through the sj2) algebrd.
has deserved special attention. It has been used, for eX- |n this paper we consider the Lorek-Ruffing-WekRW)

ample, in the case €q<1 to describe particles with g-oscillator[20] which hasq=€">1 and fulfills
small violations of Fermi and Bose statisti@guons [4].

The appearance of quantum grolipss] has increased the aa’-g™Ma'a=1,M=0,1,2, .... (5)

interest in such kind ofg-commutation rules, and the e - : .
Biedenharn-Macfarlang-oscillator [7,85] The LRW g-oscillator Hamiltonian will be defined §20]

A Al - q1/2 Al A= q—N/27 2) H=wa'a (6)
and a couple of Hermitiag-position X and g-momentum
where the number operatdt fulfills P operators can be naturally associated with the creation
B 1 At and annihilation operator&). We stress that, since the
[N,A]=-A, [N, AT]=A", 3) operatorsX andP have a discrete spectrum, the associated

was soon introduced in order to obtaipgeneralizations U-Phase space has a lattice structfizd]. Moreover, a
[9] of the usual boson mapping techniqugld]. Since so-called g-deformed guantum mechanls{sz_l—zﬂ has
then, suchg-oscillator and its many-body generalizations t?ee“ de\_/eloped by CO”S"?"‘-‘”UQ theSchradinger equa-
[11,12 have been widely used to construct new effectivelloN coming from the Hamiltonian
anharmonic Hamiltonians related, for instance, with non- 1
classical states of lighft13,14], vibrational spectrd15], H==P?+V(X), (7
and superfluidity[ 16]. 2

Although the full representation theory of algeb(@sand  which is defined in terms of the above mentioned
(18) has been develo_pe[d,_lﬂ (In fact, forq a real numb_er, q-pOSitiOﬂ and momentum Operators_
both algebras are identical under the transformatdn  Following the work of Ref[20], we have considered the
=g"* A), the problem of finding the associated self-adjointcanonical realization of Hamiltonia) in terms of the usual
g-analogs of position and momentum operators does NnQiosition and momentum operatorsand p. Hamiltonian(6)

is expanded as a power series of the parantet®o leading

order in\hM, the deformed Hamiltonia¢6) turns out to be

*Electronic address: angelb@ubu.es just the usual quantum mechanical oscillator plus some in-
"Electronic address: civitare@fisica.unlp.edu.ar teraction terms which depend linearly on the momenfum
*Electronic address: reboiro@fisica.unlp.edu.ar Thesep-dependent terms are responsible for the presence of
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local interactions, but no lattice structure is now needed for UP-gP U=0. (8)
the phase space, which remains the usual continuous one. - ) )
Moreover, the spectrum of thisharmonic oscillator shows, The d-position X and momentunP operators defined in
at certain energy, a transition to a confined, finite range, reEd. (8) are Hermitian. We can now express the creation
gime. In other words, a certain portion of the spectrum of arfnd annihilation operators fulfilling the LRW algeb(&)
h-deformed harmonic oscillator may possibly be interpretec®S
as the spectrum of a finite range potential. We recall that
p-dependent terms have been previously derived in the con-
text of the so-called nonstandagddeformed algebraf28], _
which give rise in a natural way to different types of non- a'=a UM+ g UMP, (10
Hermitian Hamiltonians, a class of objects that could be in-
teresting in various fields of physics, among them, e.g., th
physics of resonancef29] and Poeschl-Teller symmetric
guantum mechanids0].

In this work we aim at establishing a link between the _ _ )
h-deformation(or “truncated”g-deformation and the finite B. Leading order interactions
range structure of the resulting Hamiltonian, that is, to relate  We consider the following realizatiof20] of the opera-
the presence op-dependent terms in thb-deformed har- tors P andU:
monic oscillator with the appearance of finite range interac-
tions. We shall show the existence of such a correspondence, P=p,
for the case of a one-dimensional harmonic oscillator. There,
the effect of theg-deformation materializes in a certain re-

a=a UM+ UMP, (9)

hereM=0,1,2,..., andv and B are complex amplitudes.
ith these expressions in mind, the LR\§oscillator
Hamiltonian is defined as in Ed6).

. ; . . U= q 2%
gion of the spectrum, which looks like the one belonging to '
a one-dimensional finite range potential. In other words, weyhere
conjecture that the resulting effect of thedeformation, and
the g-deformation itself, may be related to the boundary con- X=X,
ditions associated with the problem. In order to support our
conjecture, we shall compare the resulting spectrum with the 1
one corresponding to a central, finite range, volume-type p=p+ '1—W% (11)
J1-

Woods-Saxon potential. In this manner we aim at fixing re-

alistic values ofg, which is a nonobservable quantity, from | these expressionsand p=—id/dx are the ordinary ca-
observables, such as the depth of the potential and its rangggnical conjugate variables anyzizi\s’m. In this way,
The needed background, about the LRMleformed har-  yhe anninilation and creation operatasEq. (9), anda’,
monic oscillator, is presented in Sec. Il, together with theEq' (10), can be written as power series of the parameter
expansion of the Hamiltonian. Section Ill is devoted to the hM. This is achieved by expanding the exponential ap-
discussion of the numerical results. There, we show and dist_ . y exp g P P

cuss the result of the calculations of the spectrum and Wajgearmg InU. The result is

functions of theg-deformed harmonic oscillator with the ad- <k R
dition of the momentum dependent interactions. Conclusions a=>, > cu(Mh¥F,
are drawn in Sec. IV. k=0 1=0
~ (_ 1)I(i)k+l
Il. FORMALISM = k=D

A. The Lorek-Ruffing-Wess g-oscillator

Hereafter we shall follow the notation of RgR0]. If q Fi = BED)'p+ (2Xa + BO(RD), (12
denotes the deformation parameter, such dra€", with eV Iy - . t
g>1, andU is a unitary matrix, the relationshigdeformed with £=1/Y(1-q*")y. A similar expression holds foa.

commutation rulesof the LRW g-Heisenberg-Weyl algebra W',th these expres;mns we arg now in gygndmon to re-
are write the Hamiltonian. To leading order ithM one gets

H=Hg+ 1 \ /h—Mw[Zp— 3mw(xp+p X, (13
4 N mw

1
— .
\,'qX P- —/—P X=iU,

vq whereH, is the undeformed harmonic oscillator,
o= 2 X (14
1 °“2m 2
UX--XU=0, I .
q Hamiltonian(13) can also be written as
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[

/hM 6i 6 b d f h

H=Hg+ w[2b0p+_x__xzp}’ a5 (8 (b) (0) (d) () (H (@ (h)

4 bo bo 80 e : —_ —_— :

where by is the oscillator lengthby=+1/mw) in units of _ T = _ : - = —

h=1. _— = - _ — =

The leading order Hamiltonian of E(L5) is, basically, a gob— — = - — = = =

guartic anharmonic oscillator. This can be shown by per- - _ = — - — - =

forming on Eq.(15) the gauge transformation: > - _ == == =

) - === = —

P(x) = Px)exiAX)], (16) Swl_-_—Z-—=Z=-=-=-"

where —::::::_

_VhM x (b3 +53) - — —Z = — —

A= 7 ] _

The resulting differential equation is _ - - -

(14 249)%%wd(x) 189X wdp(x _ . _ —_ _ —

¢, A+ 24C0d0) 18FK0d0) o o Z == — =

2m 2b, bo

—Eh(x). (18) g-deformation

FIG. 1. Eigenvalues of the harmonic oscillator, céage of the
g-deformed harmonic oscillator, casé®y—Qg); and of the Woods-
Saxon potential, cas@). The values are shown in arbitrary units.

The above expression is similar, for small valuesxpfo
the Poeschl-Teller potential

A X2 oy The parameters used in the calculations are, respectivelty4.4
(x) = =Vo-Vo + Voo + - (19 [cases(a)~(g)]; and g=0.001 [case (b)], g=0.015 [case (c)], g
COSH(X/R) R 3R =0.019 [case(d)], g=0.022[case(e)], g=0.024 [case(f)], and g

=0.025[case(g)]. Case(h) corresponds to the Woods-Saxon poten-
tial with V,=-50,a=0.5, andR,=1.1. The calculations have been
performed in a basis with 65 harmonic oscillator shells.

Thus, from a formal point of view we can argue that
g-deformations are indeed similar to finite range poten
tials, as shown above.

IIl. RESULTS AND DISCUSSION

We have calculated the eigenvaluesfof Eq.(13), for  (f) and(g). This effect may be explained by the truncation
various values of the coupling=VhM/4. The results are performed at the level of the Hamiltonian.
shown in Fig. 1. There, for small values gf casegb)—d), In order to explore the effects of thggdeformation we
the low-energy portion of the spectrum remains nearly in-have calculated the spectra gdeformed harmonic oscilla-
variant, with respect to the pure harmonic oscillator, whiletor of different frequencies and deformations, with a standard
for |arger values og’ casege)—Q), the high_energy part of Woods-Saxon potential. The result is shown in Fig. 2. As
the spectrum becomes more dense and it looks similar, cagedicated by the captions of this figure, the dimension of the
(g), to the spectrum of the finite range Woods-Saxon potenbasis used to diagonalize the Hamiltonians of E@8) and
tial, (20), for each of the shown cases, is considerably large. This
is to ensure that truncation is not affecting the results. Since
the agreement between the positive energy parts of the spec-
tra persists, the effect may be only attributed to the
g-deformation. The states of tlipedeformed harmonic oscil-
case(h). lator have been shifted, so that its lowest state coincides with

Note that a direct comparison of cas@ and (h), the the lowest eigenvalue of the finite range potential. From the
pure harmonic oscillator and the Woods-Saxon potential, reresult shown in Fig. 2 one can see that both spectral distri-
spectively, may be performed for some low-lying states onlyputions nearly coincide over the full range of energies.
but both potentials look very different at high energies, due The similarities between the results of tigedeformed
to the unbounded character of the harmonic oscillator. This iarmonic oscillator and the ones obtained with a finite range
a direct consequence of the boundary conditions which arpotential, such as the Woods-Saxon potential of(2), are
imposed on each case. From these, we may conclude that thetter illustrated, actually, by comparing the shapes of the
spectrum of theg-deformed harmonic oscillator may ap- potentials introduced in Sec. Il. Figure 3 shows the depen-
proach the spectrum of the finite range potential, as showdence of the potentials, with the coordinate, in the region of
by cases (b)«g). This is a definite effect of the interest. The curves have been calculated at leading order
g-deformation. The use of relatively large valueggafauses and for relatively small values of. For values ofx larger
the appearance of a gap at low energy, as observed in cassin 1.4 the three curves change their curvatures, as happens

Vo

V(r) = T+ oo’ (20)
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FIG. 4. UncertaintieAxAp, divided by#, calculated by using

FIG. 2. Eigenvaluesin arbitrary unitg for a g-deformed har- the wave functions obtained from the diagonalization of the Woods-
monic oscillator with%w=2.8 andg=0.044 [case(a)] and of the ~ Saxon(WS, solid-ling andg-deformed harmonic oscillatag-def,
Woods-Saxon potential, cagl), with the parameters given in the dotted-ling, for the positive-energy eigenvalugienoted as energy-
caption of Fig. 1. The calculations have been performed in a basi¥alues in arbitrary units The parameters of the potentials are given
consisting of 45 harmonic oscillator shells. in the caption of Fig. 2.

in the case of the-deformed oscillatofg-0sg nearx=1.4.  (20) and for theg-deformed harmonic oscillatofl3) are
The parameters used in the calculations are given in the cagomparable for the eigenvalues of positive energies. The re-
tion of Fig. 3. sults are shown in Fig. 4. Theedeformed harmonic oscilla-

Concerning the structure of the wave functions, the uncertor exhibits, however, larger values for the product of uncer-
taintiesAxAp for each eigenvalue of the finite range potentialtzinties at low energies in the negative energy part of the
spectrum of Fig. 2. Thus, it may be concluded that the wave
functions of the finite range potential and those of the
g-deformed oscillator produce comparable observables.

Both features, namelya) the similarity of the eigenval-
ues and density of eigenvalues, gbgithe comparable wave
functions, strongly suggest the existence of a correspondence
between the-deformation and the finite range structure of a
potential. Moreover, it points to a more fundamental equiva-
lence between g-deformed algebra, such as the one chosen
to “deform” a certain Hamiltonian, and the boundary condi-
tions which one imposes on the corresponding eigenvalue
problem. Although this correspondence has to be probed yet,
from a pure mathematical point of view, physical intuition
signals the possible existence of a trade-off mechanism be-
tween added interactions, like the one generated by the
g-deformation of a certain algebraic structure, and boundary
-50 | . conditions.

V(x)

00 02 04 06 08 1.0 1.2 1.4
X IV. CONCLUSIONS

FIG. 3. The curves show the results for the poteried) cor- In this work we have revisited the problem of the LRW
responding to thej-deformed harmonic oscillator of E¢18) (g- g-deformed harmonic oscillator, introduced in the work of
osc, solid ling, Poeschl-Telle(PT, dotted-ling, and Woods-Saxon ~Ref. [20], by considering only the leading order correction
(WS, dashed-linepotentials. The parameters ai@=6.98,g=1.8  introduced by the deformation. In this way, no discretization
(9-0s9; Vp=-50,R,=1.1,3,=0.5 (WS), and V,=-45,R,=1.26  of the quantum phase space is needed, and from the compari-
(PT). The values olV(x) andx are given in arbitrary units. son between the eigenvalue densities and deviations of ca—
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nonical conjugate variables we conjecture that a correspon-

dence betweem-deformation effects and boundary condi-
tions (e.g, the finite range behavior of a central poteptial
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