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Collective and boson mapping description of a system ofN Josephson junctions
in a resonant cavity
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A system ofN two-level Josephson junctions, interacting between themselves and with a single-mode cavity
field, is described in terms of the superposition of fermionic and bosonic excitations. The results of the exact
diagonalization are compared with the results of the Tamm-Dancoff approximation and with the results of a
boson mapping. It is found that the boson mapping provides a suitable description of the spectrum, sum rules,
and response function of the system. The dependence of the results upon the number of junctions, the excita-
tion of the cavity modes, and the coupling strengths is investigated.
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I. INTRODUCTION

The physics of one-dimensional arrays of small Joseph
junctions in a resonant cavity has been recently studied
series of papers by Al-Saidi and Stroud1,2 ~see Ref. 3 for a
two-dimensional array model!. The approach followed by the
authors of these works consisted of a description of the c
pling between states of the junctions and the cavity mode
strongly entangled quantum states. Al-Saidi and Stroud h
shown1 that the spectrum corresponding to the one-pho
process, obtained from an exact diagonalization in the sp
of the combined junction% photon states, agrees rather w
with the spectrum obtained from a reduced Jayn
Cummings Hamiltonian.4 In Ref. 2 these authors have e
tended the model of Jaynes-Cummings to accommodate
eral junctions and cavity mode states, and they have outl
a comparison with the results of Dicke model.5 Higher level
effects caused by interactions between the junctions, wh
are not accounted for by the Dicke model, have been
cluded perturbatively by adding a long-range dipole-dip
interaction term between the 1/2 pseudospins that repre
each of the two-level junctions.2

Generally speaking, the models used so far have con
ered~a! interactions between junctions, and~b! interactions
between junctions and cavity modes. When the atomic st
in a junction are approximated as a two-level mod
situation,4,5 the problem of placing several small Josephs
junctions in a resonant cavity strongly resembles proble
which involved fermion-boson interactions in other branch
of physics.6

In the present work, we study the structure of the so
tions of a Hamiltonian belonging to the class of models p
sented in Refs. 1,2,4,5 by applying techniques which or
nate in the nuclear many-body problem,7 particularly in the
0163-1829/2003/68~21!/214519~9!/$20.00 68 2145
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treatment of the coupling between fermionic and boso
degrees of freedom. Our starting point will be the descript
of a Josephson junction as a two-level system of fermio
While the cavity mode will play the role of a phonon, pai
of fermions will be represented as bosons.8,9 The coupling
between fermions and bosons will be treated microscopic
by using a linearization procedure, which is the famili
Tamm-Dancoff approximation~TDA! of the nuclear many-
body problem.8 As an alternative method we advocate t
use of a boson mapping technique.9,10

The details of the formalism are presented in Secs. II
II D. The observables of the model are defined in Sec. I
The results of our calculations are presented in Sec.
where the results of the TDA and of the boson mapp
technique are compared with the exact solution. We h
taken the number of junctions, the frequency of the cav
mode, the strength of the coupling between the atomic e
tations and the cavity mode, and the strength of the inte
tion between the junctions as parameters of the model. C
clusions are drawn in Sec. IV.

II. FORMALISM

The system under consideration, generally referred to
one-dimensional array of N two-level Josephson
junctions1,2,4,11–14 will be considered as equivalent to
sample ofN two-level atoms, each of them having two a
cessible atomic levels which may be excited or deexcited
either absorbing or emitting a photon such that the aver
distance between two atoms is much smaller than the wa
length of the radiation field~Dicke model!.

The nonlinear phenomena arising in the interaction
tween optical photons and~effective! two-level atoms have
been extensively treated in the literature~see, for instance
©2003 The American Physical Society19-1
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Refs. 5,15–20!. Explicitly, the Hamiltonian of such a physi
cal system has the following contributions.

~a! The term which describes the free-photon field. T
term is represented by a harmonic oscillator with a sin
frequencyvb . The use of a single frequency is not a serio
simplification of the problem, rather it is a convenient cho
regarding the experimental situation.21 In fact, one can con-
sider a full spectrum, instead, without adding to the compl
ity of the problem.

~b! The term which describes the internal excitations
the atoms. The simplified form~e.g., a two-level model situ
ation! allows for the use of su(2), pseudo-spin-1/2 operator
and this part of the Hamiltonian has the form of a collect
Sz term ~the free-fermion field! plus an effective long-range
spin-spin interaction.22

~c! The interaction between the photon field and the
oms. This is a scattering term representing the excitation
deexcitation of a single-atomic level by the absorption
emission of a photon. The scattering~or reemission! of the
photon proceeds like a collective excitation, since it impl
the participation of all the atoms in the system.

The exact treatment of the Hamiltonian consists of a
agonalization in the product space of photon and ato
states. The details of such a diagonalization can be foun
Ref. 2. The obvious limitation of this treatment is posed
the dimensionality of the Hamiltonian matrix. Since the e
citation and deexcitation of the atoms, by the multiple sc
tering of the photon field, may be considered as a collec
phenomena~e.g., it implies the participation of all the atom
in the array!, it opens the possibility to describe the physi
of the problem from the point of view of current methods
the quantum many-body theory. The superposition of
multiple deexcitation and excitation of the atoms constitu
a sort of spin-up spin-down localized wave, of bosonic n
ture. Thus, the excitation of the atoms can be added to
external photon field in a nonperturbative way. In terms
the standard many-body theory, we may talk about a T
state~e.g., the superposition of atomic excitations! built on
the uncorrelated fermionic vacuum~all atoms in the lower-
energy level!. To this TDA state we add a bosonic excitatio
~the external photon field!. Thus, the resulting spectrum ma
look as a nearly bosonic one. The departures from the t
bosonic behavior steam from the nature of the fermionic-p
contributions representing the excitation and deexcitation
the atomic energy levels. In this approximation, the num
of atomsN plays a crucial role, since its inverse, 1/N, has the
meaning of an expansion parameter. Alternatively, one m
think of an effective bosonic Hamiltonian. This constructi
may be obtained by applying another class of many-b
techniques known as algebraic mappings.10

In the following sections we shall discuss the structure
the Hamiltonian2 and the structure of the solutions which w
have obtained by applying the above mentioned many-b
techniques. We aim at the detailed comparison with the e
solution, obtained by a diagonalization, in order to supp
the approximations. In realistic cases~large values ofN) the
exact diagonalization is generally unfeasible and one ma
forced to introduce approximations such as the many-b
approximations which we are discussing in this paper.
21451
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A. The Hamiltonian

We shall consider a system ofN Josephson junctions~at-
oms!, each of them having two states. The energy gap
tween the states of a given junction is denoted by the qu
tity v f . The system ofN junctions may interact with an
external bosonic field of energyvb . A physical realization of
this system would be the excitation of two-level atoms in
cavity by an incoming photon. We can write the Hamiltoni
of the system as

H5v fSz1vb~a†a1 1
2 !1z~a†S21S1a!

1l (
i , j 51
iÞ j

N

~S1
( j )S2

( i )1S1
( i )S2

( j )!, ~1!

where

S15(
j 51

N

S1
( j ) ,

S25S1
† ,

Sz5(
j 51

N

Sz
( j ) ~2!

are the collective ladder operators which raise (S1), or
lower (S2) the states of the atoms, andSz is the number
operator for the pseudospin excitations. The second term
the Hamiltonian represents the free-photon field. The th
term is the interaction of the photon with the atoms: t
photon may be absorbed while the atoms are excited, or
photon may be emitted while the atoms are deexcited.
last term represents an effective atom-atom interaction
models the dynamical effects coming from the higher-ene
levels of the junctions.2 The collective operatorsS1 , S2 ,
andSz obey the commutation rules of the su(2) algebra

@S1 ,S2#52Sz ,

@Sz ,S6#56S6 . ~3!

The relationships between the coupling constants app
ing in Eq. ~1! and those of the original Hamiltonian of Ref
1,2 are easily determined once the order of magnitude of
physical quantities of the system are fixed. The reader
verify the correspondence between the setv f , vb , z, l and
the central current, the activation energy, the capacitance
frequency of the cavity mode, etc.~Ref. 28!.

B. Exact solution

The operatorsS6
( j ) and Sz

( j ) are the generators of thej th
copy su(2)j of the pseudospin algebra, wherej is the atomic
index. We take the tensor product) j 51

N su(2)j as the carrier
space for the representations of the fermionic part of
Hamiltonian. Afterwards, we consider the so-called Dic
state5 as the collective state withk<N atoms in the excited
state
9-2



b
si

-

an

es

s
f

d

ic

-
osi-
by
.

tion
for-
rpo-
A
r-

r in
,

nt.

le

8

.

e

e
ven

der

.

COLLECTIVE AND BOSON MAPPING DESCRIPTION OF . . . PHYSICAL REVIEW B 68, 214519 ~2003!
uk&5S N

k D 21/2

(
P

uk1
P
•••kN

P&,

uk1
P
•••kN

P&5NkP)
j 51

N

S1
( j )kj

P
u0&,

k5(
j 51

N

kj
P ,

where kj
P50,1. ~4!

Note that the internal degeneracy of each of the two availa
atomic states is included in the definition of the ba
uk1

P
•••kN

P &.
Since the Hamiltonian of Eq.~1!, contains a bosonic de

gree of freedom, the state which representsl photons is writ-
ten as the number state

u l &5
1

Al !
a†l u0&. ~5!

We shall then express the wave function of the photons
atoms as~dressed state!

u l ,k&5u l & ^ uk&, ~6!

which is the direct product of bosonic and fermionic stat
This is the basis where the Hamiltonian of Eq.~1! can be
diagonalized exactly.

Since the Hamiltonian of Eq.~1! commutes with the op-
erator

O5a†a1Sz1
1
2 N, ~7!

the basis of Eq.~5! may be labeled by the eigenvaluesL of
the operatorO, namely,

Ou l ,k& (L)5Lu l ,k& (L), ~8!

whereL5 l 1k. Thus, the set$u l ,k& (L)% represents the state
u l ,k& to which the application ofO assigns the same value o
L. In the finite-dimensional subspace corresponding to
fixed value ofL the matrix elements of the Hamiltonian rea

^ l ,kuHu l ,k& (L)5v f~k2 1
2 N!1vb~L2k1 1

2 !12lk~N2k!,

^ l 21,k11uHu l ,k& (L)5zA~L2k!~k11!~N2k!,

^ l 11,k21uHu l ,k& (L)5zA~L2k11!k~N2k11!. ~9!

C. Approximate solution: The TDA case

Approximate solutions of the Hamiltonian of Eq.~1! may
be obtained by performing a linearization of the fermion
part of the Hamiltonian, namely,

H f5v fSz1l(
i , j

iÞ j

N

~S1
( j )S2

( i )1S1
( i )S2

( j )!. ~10!

In the spirit of the TDA~Ref. 8! the linear combination
21451
le
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gn
†5(

j 51

N

Xn jS1
( j ) ~11!

is the operator which creates thenth superposition of the
excitations ofN atoms. Thus, the TDA approximation be
longs to the class of boson expansions where the superp
tion of pairs of fermionic excitations, as the one induced
the action of the operatorsS1

( j ) andS2
( j ) , is treated as a boson

Consequently, the fermionic HamiltonianH f acquires a di-
agonal form in the bosonic basis. Since the transforma
between pair of fermions and bosons is an unitary trans
mation, each pair of fermions can be replaced by a supe
sition of boson and vice versa. The definition of the TD
bosonsgn

† implies the existence of such an unitary transfo
mation; which expresses the Hamiltonian, at leading orde
some expansion parameter~which, as we shall show later on
is just the degeneracy of each atomic energy level! as an
harmonic Hamiltonian and leaves the vacuum invaria
Then, we want to find the set of coefficientsXn j for each
atom j and for each TDA moden. The diagonalization ofH f

in the basisgn
† yields a secular equation which is solvab

and which determines the energy of the TDA modesWn and
the amplitudesXn j . Therefore, if the dominant part ofH f is
replaced by a superposition of the formH f5const
1(nWngn

†gn , the TDA linearization procedure of Ref.
yields the equation of motion

@H f ,gn
†#5Wngn

† , ~12!

whereWn is the energy of thenth superposition. Solving Eq
~12! leads to the solutions of the amplitudesXn j subject to
the normalization condition

^@gn ,gn
†#&5(

j 51

N

uXn ju22V j51. ~13!

The factor 2V j is the vacuum expectation value of th
commutator between the operatorsS2

( j ) andS1
( j ) and it reads

for the degeneracy of the levels of thej th atom. If we replace
this value for 2V, adopting a common degeneracy for th
atomic levels, the TDA eigenstates of the system are gi
by

W15v f1~N21!4lV

Wn5v f24lV, n52,3, . . . ,N. ~14!

The eigenstate with energyW1 has the structure

g1
†5

1

A2VN
S1 , ~15!

which is the coherent superposition of all the atomic lad
operatorsS1

( j ) . Since the operatorsgn
† form a basis we can

express the Hamiltonian of Eq.~10! in terms of the operators
gn

† of Eq. ~11!. The TDA image of the Hamiltonian of Eq
~10! reads
9-3
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H f→2v fVN1 (
m51

N

Wmgm
† gm . ~16!

The above results indicate that there is an state which
coherent superposition of all the atomic excitations, the s
n51 or collective state, andN21 states which are mostl
related to an individual atomic transition, the states withn
52,3, . . .N or noncollective solutions of the TDA equa
tions. If one looks at the complete Hamiltonian, in additi
to the TDA sector, and now replaces the expression ofS1

andS2 in Eq. ~1! one gets

HTDA52v fVN1W1g1
†g11 (

n52

N

Wngn
†gn1vb~a†a1 1

2 !

1zA2VN~a†g11g1
†a!. ~17!

This version of the Hamiltonian contains the boson contri
tions of the external photon field, the effective bosong1

† , a
vacuum energy, the contribution of the noncollective boso
gn

† , and the interaction of the external photon and the coh
ent superpositiong1

† . As a first approximation we shall ne
glect the contributions ofgn

† , and look for the solution of the
remaining Hamiltonian. The states

u l ,k&5Nl ,ka
†lg1

†ku0&, ~18!

are eigenstates of the symmetry operator

OI5a†a1g1
†g11 1

2 N, ~19!

since

OI u l ,k&5Lu l ,k& (L), L5 l 1k. ~20!

The matrix elements of the Hamiltonian of Eq.~17! on the
basis of Eq.~18! are given by

^ lkuHTDAu lk& (L)5v f~k2 1
2 N!1vb~L2k1 1

2 !

12lk~N21!,

^ l 11k21uHTDAu lk& (L)5zANA~L2k11!k,
^ l 21k11uHTDAu lk& (L)5zANA~L2k!~k11!, ~21!

21451
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where, as in Eq.~9!, we have used the value 2V51.
Note that the nondiagonal matrix elements ofHTDA , Eq.

~21!, exhibit a distinctive dependence onzAN, which in this
case is a direct consequence of the TDA approach. The
pearance of the factorzAN has been noticed previously i
Refs. 2,4. In fact, in Refs. 2,4 it was found that the group
N junctions behaves somewhat like a single junction with
coupling to the cavity modezAN instead ofz.

D. Approximate solution: The Boson mapping

In the preceding section we have expressed the domi
part of the Hamiltonian in a certain restricted subspa
which is the subspace of particle-hole-like excitationgn

† .
Another option, in order to obtain approximate solutions
the Hamiltonian of Eq.~1!, is to express the fermionic op
erators in terms of bosonic ones. We also demand that
algebraic structure of operators entering in the Hamilton
remains invariant after performing the mapping to t
bosonic representation. Since the algebra obeyed byS6 and
Sz is a su(2) algebra, we shall look at the expression of th
operators in terms of boson operatorsb† andb, such that~i!
@b,b†#51, and~ii ! the transformed operatorsS6(b,b†) and
Sz(b,b†) obey the commutation relations of Eq.~3!. There
are several possible boson mappings.9 Among them we have
adopted the Holstein-Primakoff boson mapping:

S1→b†AN2b†b,

S2→AN2b†bb,

Sz→b†b2
N

2
. ~22!

Replacing the operators of Eq.~22! in the Hamiltonian of Eq.
~1!, and after expressing the interaction between fermion
a scalar product we obtain

HBM'@v f1l~2N23!#b†b1vb~a†a1 1
2 !2

N

2
v f

22lb†2b21z~a†AN2b†bb1b†AN2b†ba!.

~23!
y

ing

0000
1059
TABLE I. Energy Ea , partial contributions to the total strengthB(Sz), and partial contributions to the
EWSS for each eigenvalue indexa. The exact solution (exact), is compared with the results of the TDA
approximation, and with the results of the BM.N is the number of atoms,L is the eigenvalue of the symmetr
operator,z is the strength of the coupling between the atoms and the photons, andl is the strength of the
atom-atom interaction. The values shown in this table have been obtained forN52, L51, z520.015, and
l50.002. The valuesEa are given in units of\vb ~the energy of the cavity mode!, the valuesB(Sz) are
given in units of\2 and the EWSS in units of\/vb . The quantities given at the end of the correspond
columns are the accumulated values of each of the sumsB(Sz) and EWSS.

a Ea(exact) Ea(TDA) Ea(BM) B(Sz)exact B(Sz)TDA B(Sz)BM EWSSexact EWSSTDA EWSSBM

1 0.48069 0.48069 0.47976 0.29914 0.29914 0.27410 0.00000 0.00000 0.0
2 0.52331 0.52331 0.52224 0.24780 0.24780 0.24945 0.01056 0.01056 0.0

0.547 0.547 0.524 0.011 0.011 0.011
9-4
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TABLE II. Same as Table I forN58, L56, z520.015, andl50.0.

a Ea(exact) Ea(TDA) Ea(BM) B(Sz)exact B(Sz)TDA B(Sz)BM EWSSexact EWSSTDA EWSSBM

1 2.28486 2.24544 2.28486 2.61689 1.00000 2.61689 0.00000 0.00000 0.0
2 2.36325 2.33029 2.36325 1.33342 1.50000 1.33342 0.10453 0.12728 0.1
3 2.43431 2.41515 2.43431 0.01992 0.00000 0.01992 0.00298 0.00000 0.0
4 2.50000 2.50000 2.50000 0.00030 0.00000 0.00030 0.00006 0.00000 0.0
5 2.56569 2.58485 2.56569 0.00000 0.00000 0.00000 0.00000 0.00000 0.0
6 2.63675 2.66971 2.63675 0.00000 0.00000 0.00000 0.00000 0.00000 0.0
7 2.71514 2.75456 2.71514 0.00000 0.00000 0.00000 0.00000 0.00000 0.0

3.971 2.500 3.971 0.108 0.127 0.108
po
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the

e

In the above expression some of the terms which are pro
tional to l originate in the rearrangement of the fermion
interactions of the Hamiltonian of Eq.~1!, as said before. By
rearrangement we meant that the products of fermionic
erators have been normal ordered~Wick theorem8! before
applying the boson mapping~BM!. We stress that, under th
BM, the original spin-spin interaction inH can be interpreted
in HBM as a Kerr nonlinearityb†2b2 of the effective boson
field. We recall that some features of Kerr nonlinearity
su(2) systems have been studied in Ref. 23, and a nonli
Kerr Hamiltonian has been related with a mesoscopic
sephson junction model in Ref. 24. Also note that the ini
photon-junction interaction inH is now substituted by an
effective boson-boson term with intensity dependent c
pling of the typeAN2b†b.

Alternatively, one may directly apply the boson mappi
to the complete Hamiltonian of Eq.~1! and work out a clas-
sification of terms in powers of the densityb†b. Note that
the TDA approximation presented in Sec. II C represents
leading order of such an expansion.

The purely bosonic Hamiltonian of Eq.~23! can be diago-
nalized in the basis

u l ,k&5
1

Al !k!
a†lb†ku0&. ~24!

The matrix elements of the Hamiltonian of Eq.~23! are writ-
ten as

^ l ,kuHBMu l ,k& (L)5v f~k2 1
2 N!1vb~L2k1 1

2 !

12lk~N2k2 1
2 !,
21451
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^ l 11,k21uHBMu l ,k& (L)5zA~L2k11!k~N2k11!,

^ l 21,k11uHBMu l ,k& (L)5zA~L2k!~k11!~N2k!
~25!

with L5 l 1k.

E. Energy and non-energy-weighted strengths

If $Ea% denotes the complete set of eigenvalues of any
the Hamiltonians of the preceding sections, the ener
weighted strength sum~EWSS! is defined as

EWSS5(
a

~Ea2E0!u^auSzu0&u2. ~26!

The non-energy-weighted strength sum, also known as
strength function, is given by

B~Sz!5(
a

u^auSzu0&u2, ~27!

and the time evolution of the population~e.g., number of
atoms in the excited atomic state! is expressed by

S~ t !5Tr@r~ t !~Sz11/2!#, ~28!

wherer(t) is the density matrix.
In order to gather information about the quality of th

solutions obtained with the HamiltoniansHTDA andHBM , as
compared with the exact solution ofH in Eq. ~1!, we have
computed the quantities EWSS,B(Sz), and S(t), by using
the exact and approximate wave functions and energies.
0000
0192
0416
0014
0000
0000
0000
TABLE III. Same as Table I forN58, L56, z520.015, andl50.002.

a Ea(exact) Ea(TDA) Ea(BM) B(Sz)exact B(Sz)TDA B(Sz)BM EWSSexact EWSSTDA EWSSBM

1 2.32977 2.31594 2.32587 4.33696 3.76395 4.04660 0.00000 0.00000 0.0
2 2.40680 2.40529 2.40126 1.32058 1.35271 1.35183 0.10171 0.12087 0.1
3 2.47560 2.49465 2.46876 0.02671 0.00000 0.02908 0.00390 0.00000 0.0
4 2.54018 2.58400 2.53290 0.00062 0.00000 0.00069 0.00013 0.00000 0.0
5 2.60760 2.67335 2.60072 0.00001 0.00000 0.00001 0.00000 0.00000 0.0
6 2.68243 2.76271 2.67627 0.00000 0.00000 0.00000 0.00000 0.00000 0.0
7 2.76563 2.85206 2.76022 0.00000 0.00000 0.00000 0.00000 0.00000 0.0

5.685 5.117 5.428 0.106 0.121 0.106
9-5
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TABLE IV. Same as Table I forN580, L56, z520.015, andl50.0.

a Ea(exact) Ea(TDA) Ea(BM) B(Sz)exact B(Sz)TDA B(Sz)BM EWSSexact EWSSTDA EWSSBM

1 234.29239 234.30499 234.29239 1372.58057 1368.99976 1372.58057 0.00000 0.00000 0.00
2 234.02812 234.03665 234.02812 1.49890 1.49999 1.49890 0.39612 0.40250 0.39
3 233.76402 233.76833 233.76402 0.00016 0.00000 0.00016 0.00008 0.00000 0.00
4 233.50000 233.50000 233.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00
5 233.23598 233.23168 233.23598 0.00000 0.00000 0.00000 0.00000 0.00000 0.00
6 232.97188 232.96334 232.97188 0.00000 0.00000 0.00000 0.00000 0.00000 0.00
7 232.70761 232.69501 232.70761 0.00000 0.00000 0.00000 0.00000 0.00000 0.00

1374.080 1370.500 1374.080 0.396 0.402 0.39
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III. RESULTS AND DISCUSSION

In this section we are going to present and discuss
results of our calculations. We have taken the number
atoms and the coupling strength (z andl) as the parameter
of the model. We have diagonalized the HamiltonianH of
Eq. ~1! and solved the TDA and bosonic images of it (HTDA
andHBM). The results are shown in Tables I–V. Some of t
features which can be extracted from the analysis of the
sults are the following.

~a! Concerning the eigenvalues, the bosonic approxim
tion HBM compares very satisfactory~up to two digits! with
the exact solution. The agreement between the linear
proximationHTDA and the exact solution is acceptable at t
level of the first digit and it improves for larger values ofN.

~b! The fragmentation of the strength, namely, the amo
of each atomic excitation represented by each solution,
the partial contributions to the sumB(Sz) and to EWSS, are
better reproduced in the case of the BM approximation.

~c! The accumulated values ofB(Sz) and EWSS are bette
reproduced, as compared with the exact results, by
bosonic approximation.

~d! The linear TDA approach underestimates the to
strength and it overestimates the energy-weighted sum r

~e! The agreement improves ifN increases, particularly
when the interaction between sites is turned on.

In spite of these differences, the overall agreement of
spectra obtained by the TDA and BM approximations, w
respect to the exact solution, is rather acceptable. Howe
in order to qualify the approximations, the information abo
the eigenvalues must be complemented by the correspon
values of the intensity and EWSS.
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These results support the notion that both the algeb
treatment~boson expansion! and the linearization procedur
~TDA! constitutes a valid alternative to the exact diagon
ization of theN junctions interacting with an external optica
phonon and among themselves. It also shows the suitab
of the collective approach, which consists of replaci
fermion-pair excitations by bosonic modes of excitation.
this respect, and considering also the appearance of the fa
zAN, the present formalism constitutes a natural extens
of the treatment presented in Ref. 2. Moreover, as a
product, the boson mapping technique can be used in o
to relate the spin-spin interaction term between the juncti
to a kind of nonlinear Kerr effect whose dynamical cons
quences could be worth studying, in particular those c
cerning quantum superposition phenomena.23–25

Another piece of information, which can be used to co
pare the different approximations, refers to the behavior
the response functionS(t). Figure 1 shows the results o
S(t) corresponding to the exact diagonalization~solid lines!
and the ones of the boson expansion~dotted lines!, for N
52,4 junctions. The initial state consists of a single-exci
junction. Thus,S(t) measures the time evolution of the o
cupation of a single junction. The agreement between
exact solution and the boson approximation is rather sa
factory. Figure 2 shows the results corresponding to a dif
ent initial state, which is the one consisting of a boson and
junctions in the lower-energy state. The time evolution
S(t) from Fig. 2 shows a phase factorp/2, as compared with
the time evolution ofS(t) from Fig. 1. Figures 3 and 4 show
the comparison between the results of the exact@inset ~a!#
TDA @inset~b!#, and boson expansion@inset~c!# methods for
000
87
06
00
00
00
00

1

TABLE V. Same as Table I forN580, L56, z520.015, andl50.002.

a Ea(exact) Ea(TDA) Ea(BM) B(Sz)exact B(Sz)TDA B(Sz)BM EWSSexact EWSSTDA EWSSBM

1 233.79542 233.79567 233.79686 1543.24353 1543.45239 1542.75439 0.00000 0.00000 0.00
2 233.38527 233.38111 233.38829 0.63366 0.62844 0.63848 0.25989 0.26052 0.260
3 232.98071 232.96656 232.98528 0.00007 0.00000 0.00007 0.00006 0.00000 0.000
4 232.58156 232.55200 232.58764 0.00000 0.00000 0.00000 0.00000 0.00000 0.000
5 232.18764 232.13744 232.19518 0.00000 0.00000 0.00000 0.00000 0.00000 0.000
6 231.79874 231.72289 231.80772 0.00000 0.00000 0.00000 0.00000 0.00000 0.000
7 231.41466 231.30833 231.42503 0.00000 0.00000 0.00000 0.00000 0.00000 0.000

1543.877 1544.081 1543.393 0.260 0.261 0.26
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COLLECTIVE AND BOSON MAPPING DESCRIPTION OF . . . PHYSICAL REVIEW B 68, 214519 ~2003!
S(t), with and without the inclusion of the site-site intera
tion ~cf. Ref. 2, the extended Dicke model!. As seen from
these results, the agreement between the TDA approxima
and the exact solution improves if the site-site interaction
present, but, in general, the agreement between the bos
approximation and the exact solution is much better. Figu
5 and 6 show the time evolution ofS(t), for N58 andN
580 junctions. In both cases, we have calculatedS(t) by
consideringL56 bosons in the initial state and all junction

FIG. 1. Time evolution of the population of atoms in the excit
stateS(t) as a function oft. The time is measured in units ofvb

21 ,
and the results correspond to the caseN52 @inset ~a!#, andN54
@inset ~b!#. The initial state consists of a single atom in its excit
state and all other junctions and the cavity boson in their gro
states. Solid lines show the results of the exact diagonaliza
Dotted lines show the results of the boson mapping of Sec. II D

FIG. 2. Same as Fig. 1, with one cavity boson in the first exci
state and all junctions in their ground states.
21451
on
s
nic
s

in the lower-energy state. Only the exact results@insets~a!
and~c!# and the ones of the boson expansion@insets~b! and
~d!# are shown. The agreement between both sets of resu
rather good over the extended time evolution.

IV. CONCLUSIONS

In this work we have studied some alternatives to
exact diagonalization of the problem posed by a system
N-Josephson junctions interacting with a photon field a
among themselves. The conventional treatment makes us

d
n.

d

FIG. 3. S(t) for N54 junctions andL56. The coupling be-
tween junctions is fixed atl50. The initial state has six photons i
the resonator and all the junctions are in their ground states. In
~a!, ~b!, and ~c! show the results of the exact treatment, the TD
and the boson mapping, respectively.

FIG. 4. Same as Fig. 3 forl50.002.
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BALLESTEROS, CIVITARESE, HERRANZ, AND REBOIRO PHYSICAL REVIEW B68, 214519 ~2003!
the isomorphism between the atomic excitations, by the
sorption and emission of the optical photon, and a quan
mechanical systems ofN two-level, pseudospin-1/2-like
qubits.26,27 The Hamiltonian of the system belongs to t
familiar Dicke’s structure and its extended version, whi
includes a long-range site-site interaction. We have advan
the notion of a superposition between the photon and
excitation of the atomic levels, as in the case of a spin w
in the Heisenberg spin-spin interaction in presence of an
ternal magnetic field. We have applied two different bos
techniques, namely,~a! the TDA linear approximation, and
~b! a boson expansion method. We have found that the bo
expansion reproduces rather satisfactory, the exact, res
even for a relatively large number of junctions. The agr
ment between the TDA and exact results is not as good
that of the agreement between the exact and boson expa
methods, but still the TDA shows the correct trend of t
exact solution. We have noted that the comparison of
eigenvalues does not suffice for a qualification of the
proximations, and that the information about the stren

*Electronic address: angelb@ubu.es
†Electronic address: civitare@fisica.unlp.edu.ar
‡Electronic address: fjherranz@ubu.es
§Electronic address: reboiro@fisica.unlp.edu.ar
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3E. Almaas and D. Stroud, Phys. Rev. B67, 064511~2003!.
4F.W. Cummings and Ali Dorri, Phys. Rev. A28, 2282~1983!; T.

FIG. 5. S(t) for the caseN58, L56. The initial state has six
photons in the first excited state and all the junctions in their gro
state. Insets~a! and~c! show the exact results, and insets~b! and~d!
show the results of the boson mapping. The values of the strengl
used in the calculations are indicated in each inset.
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function and EWSS provides a good indication about
validity of the approximations. This is also true for the ca
of the results corresponding to the time evolution of t
population of atoms in the excited state. The time evolut
of S(t), over a large number of periods, shows that the bo
expansion accurately describes the features of the exac
lution.

In view of these results we conclude that the use of
boson expansion, in the treatment of Hamiltonians belong
to the class of Dicke’s Hamiltonians may be a suitable alt
native ~and perhaps the only one applicable! to an exact di-
agonalization. From a more physical oriented point of vie
the validity of the boson expansion underlines the collect
structure of the motion induced by the scattering of the
tical photon by the system of junctions.
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