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A system ofN two-level Josephson junctions, interacting between themselves and with a single-mode cavity
field, is described in terms of the superposition of fermionic and bosonic excitations. The results of the exact
diagonalization are compared with the results of the Tamm-Dancoff approximation and with the results of a
boson mapping. It is found that the boson mapping provides a suitable description of the spectrum, sum rules,
and response function of the system. The dependence of the results upon the number of junctions, the excita-
tion of the cavity modes, and the coupling strengths is investigated.
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[. INTRODUCTION treatment of the coupling between fermionic and bosonic
degrees of freedom. Our starting point will be the description

The physics of one-dimensional arrays of small Josephsoff a Josephson junction as a two-level system of fermions.
junctions in a resonant cavity has been recently studied in ¥vhile the cavity mode will play the role of a phonon, pairs
series of papers by Al-Saidi and Strdiddsee Ref. 3 for a of fermions will be represented as bos8risThe coupling
two-dimensional array modelThe approach followed by the between fermions and bosons will be treated microscopically
authors of these works consisted of a description of the coudy using a linearization procedure, which is the familiar
pling between states of the junctions and the cavity mode asamm-Dancoff approximatiofTDA) of the nuclear many-
strongly entangled quantum states. Al-Saidi and Stroud haveody problenf As an alternative method we advocate the
showr! that the spectrum corresponding to the one-photoruse of a boson mapping technigl.
process, obtained from an exact diagonalization in the space The details of the formalism are presented in Secs. Il A—
of the combined junctiom® photon states, agrees rather well Il D. The observables of the model are defined in Sec. IlE.
with the spectrum obtained from a reduced JaynesThe results of our calculations are presented in Sec. lll,
Cummings Hamiltoniafl.In Ref. 2 these authors have ex- where the results of the TDA and of the boson mapping
tended the model of Jaynes-Cummings to accommodate setgchnique are compared with the exact solution. We have
eral junctions and cavity mode states, and they have outline@ken the number of junctions, the frequency of the cavity
a comparison with the results of Dicke modéfligher level mode, the strength of the coupling between the atomic exci-
effects caused by interactions between the junctions, whickations and the cavity mode, and the strength of the interac-
are not accounted for by the Dicke model, have been intion between the junctions as parameters of the model. Con-
cluded perturbatively by adding a long-range dipole-dipoleclusions are drawn in Sec. IV.
interaction term between the 1/2 pseudospins that represent
each of the two-level junctiorfs.

Generally speaking, the models used so far have consid-
ered(a) interactions between junctions, aflg interactions The system under consideration, generally referred to as a
between junctions and cavity modes. When the atomic statesne-dimensional array of N two-level Josephson
in a junction are approximated as a two-level modeljunctiong?*~ will be considered as equivalent to a
situation?® the problem of placing several small Josephsorsample ofN two-level atoms, each of them having two ac-
junctions in a resonant cavity strongly resembles problemsessible atomic levels which may be excited or deexcited by
which involved fermion-boson interactions in other branchesither absorbing or emitting a photon such that the average
of physics® distance between two atoms is much smaller than the wave-

In the present work, we study the structure of the soludength of the radiation fieldDicke mode].
tions of a Hamiltonian belonging to the class of models pre- The nonlinear phenomena arising in the interaction be-
sented in Refs. 1,2,4,5 by applying techniques which origitween optical photons an@ffective two-level atoms have
nate in the nuclear many-body problémarticularly in the  been extensively treated in the literatusee, for instance,

Il. FORMALISM
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Refs. 5,15-2p Explicitly, the Hamiltonian of such a physi- A. The Hamiltonian

cal system has the following contributions. We shall consider a system bf Josephson junction@t-

(a) The term which describes the free-photon field. Thisomg, each of them having two states. The energy gap be-
term is represented by a harmonic oscillator with a singlaween the states of a given junction is denoted by the quan-
frequencywy, . The use of a single frequency is not a serioustity . The system ofN junctions may interact with an
simplification of the problem, rather it is a convenient choiceexternal bosonic field of eneray, . A physical realization of
regarding the experimental situati®hin fact, one can con- this system would be the excitation of two-level atoms in a
sider a full spectrum, instead, without adding to the complexcavity by an incoming photon. We can write the Hamiltonian

ity of the problem. of the system as
(b) The term which describes the internal excitations of
the atoms. The simplified forrfe.g., a two-level model situ- H=wS,+wy(ata+3)+¢(a’'S_+S.a)
ation) allows for the use of 2), pseudo-spin-1/2 operators N
and this part of the Hamiltonian has the form of a collective ()l 1+ al)al)
S, term (the free-fermion fielglplus an effective long-range +)\iJ§=:1 (S¥SZH+SVSE), @)
spin-spin interactio? i#]

(c) The interaction between the photon field and the atyyhere
oms. This is a scattering term representing the excitation and
deexcitation of a single-atomic level by the absorption or N
emission of a photon. The scatterifgr reemissiop of the S, = E S(Jl),
photon proceeds like a collective excitation, since it implies =1
the participation of all the atoms in the system. +

The exact treatment of the Hamiltonian consists of a di- S-=S.,
agonalization in the product space of photon and atomic
states. The details of such a diagonalization can be found in N )
Ref. 2. The obvious limitation of this treatment is posed by S;= ‘21 S/ )
the dimensionality of the Hamiltonian matrix. Since the ex- .
citation and deexcitation of the atoms, by the multiple scatare the collective ladder operators which raisg, ), or
tering of the photon field, may be considered as a collectivéower (S_) the states of the atoms, ar®} is the number
phenomende.g., it implies the participation of all the atoms operator for the pseudospin excitations. The second term of
in the array, it opens the possibility to describe the physicsthe Hamiltonian represents the free-photon field. The third
of the problem from the point of view of current methods of term is the interaction of the photon with the atoms: the
the quantum many-body theory. The superposition of thephoton may be absorbed while the atoms are excited, or the
multiple deexcitation and excitation of the atoms constitutephoton may be emitted while the atoms are deexcited. The
a sort of spin-up spin-down localized wave, of bosonic nadast term represents an effective atom-atom interaction that
ture. Thus, the excitation of the atoms can be added to thgodels the dynamical effects coming from the higher-energy
external photon field in a nonperturbative way. In terms oflevels of the junctiond.The collective operatorS, , S_,
the standard many-body theory, we may talk about a TDAandS, obey the commutation rules of the su(2) algebra
state(e.g., the superposition of atomic excitatipmilt on

the uncorrelated fermionic vacuufall atoms in the lower- [S,,S_]=2S,,
energy level. To this TDA state we add a bosonic excitation
(the external photon fie)dThus, the resulting spectrum may [S,,S.]=*S.. 3)

look as a nearly bosonic one. The departures from the truly

bosonic behavior steam from the nature of the fermionic-pair The relationships between the coupling constants appear-
contributions representing the excitation and deexcitation oing in Eq. (1) and those of the original Hamiltonian of Refs.
the atomic energy levels. In this approximation, the numben,2 are easily determined once the order of magnitude of the
of atomsN plays a crucial role, since its inverseNl/has the  physical quantities of the system are fixed. The reader can
meaning of an expansion parameter. Alternatively, one mayerify the correspondence between thesgt w,,, £, \ and
think of an effective bosonic Hamiltonian. This constructionthe central current, the activation energy, the capacitance, the
may be obtained by applying another class of many-bodfrequency of the cavity mode, et(Ref. 28.

techniques known as algebraic mappifys.

In the following sections we shall discuss the structure of
the HamiltoniaA and the structure of the solutions which we _ _
have obtained by applying the above mentioned many-body The operatorss and S{ are the generators of trjgh
techniques. We aim at the detailed comparison with the exagtopy su(2) of the pseudospin algebra, whegris the atomic
solution, obtained by a diagonalization, in order to supporindex. We take the tensor produ&f‘zlsu(Z), as the carrier
the approximations. In realistic cas@garge values of\) the  space for the representations of the fermionic part of the
exact diagonalization is generally unfeasible and one may bElamiltonian. Afterwards, we consider the so-called Dicke
forced to introduce approximations such as the many-bodgtaté as the collective state witk<N atoms in the excited
approximations which we are discussing in this paper. state

B. Exact solution
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—1/2 N

k)= 2 [k kD, =2 XSV (11

k

N is the operator which creates tmth superposition of the
KD kQy=Ne [T sP410), excitations ofN atoms. Thus, the TDA approximation be-
=1 longs to the class of boson expansions where the superposi-
N tion of pairs of fermionic excitations, as the one induced by
k=3 kP the action of the operato&)) ands", is treated as a boson.
s Consequently, the fermionic Hamiltonidth; acquires a di-
agonal form in the bosonic basis. Since the transformation
where kJP:O,l. (4) between pair of fermions and bosons is an unitary transfor-
Note tht the internal degeneracy of each of the two availablgican o boson and vice versa. The defntion of the TOA
atSm'C Pstates Is included in the definition of the bas'sbosonSy; implies the existence of such an unitary transfor-
L% k). I . . mation; which expresses the Hamiltonian, at leading order in
Since the Hamiltonian of Ep[l), contains a bosc_)nlc _de- some expansion parameterhich, as we shall show later on,
gree of freedom, the state which represémibotons is writ- is just the degeneracy of each atomic energy leasl an
ten as the number state harmonic Hamiltonian and leaves the vacuum invariant.
1 Then, we want to find the set of coefficienXs,; for each
Y= —=a'|0). (5) atomj and for each TDA mode. The diagonalization ol
ND in the basisy! yields a secular equation which is solvable
We shall then express the wave function of the photons an nd Wh'c.h determines the energy of the TDA mome,sar_]d
atoms agdressed staje e amplitudesx,; . Thereforf—:-_, if the dominant part &i; is
replaced by a superposition of the forril;=const
I1,ky=[1®|k), (6) +2any§yn, the TDA linearization procedure of Ref. 8

L ) ) o yields the equation of motion
which is the direct product of bosonic and fermionic states.

This is the basis where the Hamiltonian of Ed) can be [He, v =W,y (12)
diagonalized exactly. $on none
Since the Hamiltonian of Eq1) commutes with the op- whereW, is the energy of thath superposition. Solving Eq.

erator (12) leads to the solutions of the amplitudks; subject to
O—a'a+S,+ 1IN, @ the normalization condition
the basis of Eq(5) may be labeled by the eigenvalueof N
the operatolO, namely, <[7n1?’$]>:§1 |Xnjl?20;=1. (13
Oll,k)B =L|I,ky®, (8)

The factor 2); is the vacuum expectation value of the
whereL=1+k. Thus, the sef|l,k)()} represents the states commutator between the operat@¥ andS% and it reads
|I,k) to which the application o assigns the same value of for the degeneracy of the levels of tjté atom. If we replace

L. In the finite-dimensional subspace corresponding to ahijs value for 22, adopting a common degeneracy for the
fixed value ofL the matrix elements of the Hamiltonian read gtomic levels, the TDA eigenstates of the system are given

b
(LKIH[LOWO = wg(k— EN) + op(L —k+ 1) + 2N k(N—K), y

(I= 1k + 1H[LKY O = (L =k) (k+ 1) (N=k), Wi=ort (N=1)4rQ

(+1k—1H|1LKO = (L—kT Dk(N—Kk+1). (9) Won=or=40), n=23,...N. (14

The eigenstate with energ/; has the structure
C. Approximate solution: The TDA case

Approximate solutions of the Hamiltonian of E({) may i1
be obtained by performing a linearization of the fermionic Vl_m&r' (15)
part of the Hamiltonian, namely,
N which is th(e) coherent superpositio? of all the atomic ladder
_ () 1 ) al) operatorsSY’ . Since the operatorg, form a basis we can
H= waZH\iE,j (S'S+SSED. (10 express thg Hamiltonian of E¢LO) innterms of the operators
1] y! of Eq. (11). The TDA image of the Hamiltonian of Eq.
In the spirit of the TDA(Ref. 8 the linear combination (10) reads
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N

Hi—— 0N+ X Woyhym. (16)
m=1

The above results indicate that there is an state which is

coherent superposition of all the atomic excitations, the stat

n=1 or collective state, antll—1 states which are mostly
related to an individual atomic transition, the states with
=2,3,...N or noncollective solutions of the TDA equa-

tions. If one looks at the complete Hamiltonian, in addition

to the TDA sector, and now replaces the expressiois.of
andS_ in Eq. (1) one gets

N
Hrpa= — o QN+W;yly, + nEZ W,y ynt+ wp(a’a+3)

+{2ON(a'y, + yla). 17)

This version of the Hamiltonian contains the boson contribu-

tions of the external photon field, the effective bosgn a

vacuum energy, the contribution of the noncollective bosons_ ;
9y r-SZ is a su(2) algebra, we shall look at the expression of these

yﬁ, and the interaction of the external photon and the cohe
ent superpositiorﬂ. As a first approximation we shall ne-
glect the contributions oﬂ , and look for the solution of the
remaining Hamiltonian. The states

1k)=Ny a™y10), (18)
are eigenstates of the symmetry operator
O,=a'a+ y{yl-i— N, (19
since
ollLk)y=L|1,k)®),  L=I+k. (20)

The matrix elements of the Hamiltonian of Ed.7) on the
basis of Eq(18) are given by

(Ik[H1pallk) P =wi(k—3N) + wp(L—k+3)
+ 2 k(N—1),

(14 1k—1|Hypallk )P = 2 UNV(L—k+ 1)k,

(I=1k+ 1[H7pallk) P = NV(L—K) (k+ 1),

(21)
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where, as in Eq(9), we have used the valug=1.

Note that the nondiagonal matrix elementstfy, EQ.
(21), exhibit a distinctive dependence ¢gr'N, which in this
case is a direct consequence of the TDA approach. The ap-
pearance of the factaf\N has been noticed previously in
Refs. 2,4. In fact, in Refs. 2,4 it was found that the group of
N junctions behaves somewhat like a single junction with the
coupling to the cavity modé+/N instead ofZ.

D. Approximate solution: The Boson mapping

In the preceding section we have expressed the dominant
part of the Hamiltonian in a certain restricted subspace,
which is the subspace of particle-hole-like excitatiqwh.
Another option, in order to obtain approximate solutions of
the Hamiltonian of Eq(1), is to express the fermionic op-
erators in terms of bosonic ones. We also demand that the
algebraic structure of operators entering in the Hamiltonian
remains invariant after performing the mapping to the
bosonic representation. Since the algebra obeye8.bgnd

operators in terms of boson operatbfsandb, such thati)
[b,b™]=1, and(ii) the transformed operato&. (b,b") and
S,(b,b") obey the commutation relations of E(). There
are several possible boson mappifigenong them we have
adopted the Holstein-Primakoff boson mapping:

S, —b"VN-bD,
S_—N-b'bb,

N
S,—b'b— > (22)

Replacing the operators of E@2) in the Hamiltonian of Eq.
(1), and after expressing the interaction between fermions as
a scalar product we obtain

t tap 1y N
Heu~[w;+N(2N—3)]b'b+ wy(a'a+ 5)—§wf

—27\b"p%+ ¢(a"N-bTbb+b"\N-b'ba).
(23

TABLE I. EnergyE,, partial contributions to the total strengB(S,), and partial contributions to the
EWSS for each eigenvalue index The exact solutiongxac}, is compared with the results of the TDA
approximation, and with the results of the BMis the number of atoms, is the eigenvalue of the symmetry
operator, is the strength of the coupling between the atoms and the photons, anthe strength of the
atom-atom interaction. The values shown in this table have been obtaindd=far L=1, {=—0.015, and
N=0.002. The value&, are given in units ofiw, (the energy of the cavity moglethe valuesB(S,) are
given in units of4? and the EWSS in units of/w,. The quantities given at the end of the corresponding
columns are the accumulated values of each of the ®8s) and EWSS.

E.(exac) E.(TDA) E.(BM) B(S)exact B(S)tpa B(S)em EWSSyact EWSSpa EWSSy

(%

1 0.48069  0.48069 0.47976 0.29914 0.29914 0.27410 0.00000  0.00000 0.00000
2 0.52331  0.52331 0.52224 0.24780 0.24780 0.24945 0.01056 0.01056 0.01059
0.547 0.547 0.524 0.011 0.011 0.011
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TABLE Il. Same as Table | foN=8, L=6, {=—0.015, and\=0.0.

E.(exac) E.(TDA) E.(BM) B(S)exact B(S)Tpoa B(S)em EWSSyact EWSSpa EWSSy

2.28486  2.24544 2.28486 2.61689 1.00000 2.61689 0.00000  0.00000 0.00000
2.36325 2.33029 2.36325 1.33342 1.50000 1.33342 0.10453 0.12728 0.10453
243431 241515 243431 0.01992 0.00000 0.01992 0.00298  0.00000 0.00298
2.50000 2.50000 2.50000 0.00030 0.00000 0.00030 0.00006  0.00000 0.00006
2.56569  2.58485 2.56569 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2.63675 2.66971 2.63675 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2.71514  2.75456 2.71514 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3.971 2.500 3.971 0.108 0.127 0.108

R

~NOo O WN P

In the above expression some of the terms which are propor- (| +1 k—1|Hgy|l, k) =z (L—k+1)k(N—k+1),
tional to A originate in the rearrangement of the fermionic
interactions of the Hamiltonian of EqL), as said before. By Ly _
rearrangement we meant that the products of fermionic op- (1= Lkt 1| Hg[1, k)= £V(L~ k) (k+ 1) (N~ k) 25
erators have been normal order@tfick theorenfl) before
applying the boson mappin®M). We stress that, under the with L=1+k.
BM, the original spin-spin interaction id can be interpreted
in Hgy as a Kerr nonlinearityp'?b? of the effective boson
field. We recall that some features of Kerr nonlinearity in  If {E,} denotes the complete set of eigenvalues of any of
su(2) systems have been studied in Ref. 23, and a nonlinelte Hamiltonians of the preceding sections, the energy-
Kerr Hamiltonian has been related with a mesoscopic Joweighted strength sutEWSS is defined as
sephson junction model in Ref. 24. Also note that the initial
photon-junction interaction irH is now substituted by an ’
effective boson-boson term with intensity dependent cou- EWSSZ% (E«—Eo)|(a[S;|0)/". (26)
pling of the typeyN—b'b.

Alternatively, one may directly apply the boson mappingThe non-energy-weighted strength sum, also known as the
to the complete Hamiltonian of Eq1) and work out a clas- strength function, is given by
sification of terms in powers of the densityb. Note that
the TDA approximation presented in Sec. Il C represents the

E. Energy and non-energy-weighted strengths

leading order of such an expansion. B(SZ)=§ (alS,|0)|?, (27)
The purely bosonic Hamiltonian of E(R3) can be diago-
nalized in the basis and the time evolution of the populatidie.g., number of

atoms in the excited atomic statis expressed by

1
)= Jga"e™ox @4 S(0)=Tr p(1)(S,+ 1/2)], 29

wherep(t) is the density matrix.

The matrix elements of the Hamiltonian of EG3) are writ- . . .
HG3) In order to gather information about the quality of the

ten as
solutions obtained with the Hamiltoniaks;p, andHgy, , as
(I,k|HBM|I,k)(L)=wf(k—%N)+wb(L—k+%) compared with the e.x_act solution &f in Eq. (1), we hz_ive
computed the quantities EWSB(S,), and S(t), by using
+ 2 \k(N—Kk—3), the exact and approximate wave functions and energies.

TABLE Ill. Same as Table | foN=8, L=6, {=—0.015, and\ =0.002.

E.(exac) E.(TDA) E.(BM) B(S)exact B(S)Tpoa B(S)em EWSSQyact EWSSpa EWSSy

2.32977  2.31594 2.32587 4.33696 3.76395 4.04660 0.00000  0.00000 0.00000
240680  2.40529 2.40126 1.32058 1.35271 1.35183 0.10171  0.12087 0.10192
247560  2.49465 2.46876 0.02671 0.00000 0.02908 0.00390  0.00000 0.00416
2.54018  2.58400 2.53290 0.00062 0.00000 0.00069 0.00013  0.00000 0.00014
2.60760  2.67335 2.60072 0.00001 0.00000 0.00001 0.00000 0.00000 0.00000
2.68243  2.76271 2.67627 0.00000 0.00000 0.00000 0.00000  0.00000 0.00000
2.76563  2.85206 2.76022 0.00000 0.00000 0.00000 0.00000  0.00000 0.00000
5.685 5.117 5.428 0.106 0.121 0.106

R
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TABLE IV. Same as Table | foN=80, L=6, {=—0.015, and\=0.0.

R

E.(exac)  E.(TDA) E.(BM) B(S)exact  B(S)Tpa B(S)em EWSSQxact EWSSpa  EWSSy

1 —34.29239 —34.30499 —34.29239  1372.58057 1368.99976  1372.58057 0.00000 0.00000 0.00000
2 —34.02812 —34.03665 —34.02812 1.49890 1.49999 1.49890 0.39612 0.40250 0.39612
3 —33.76402 —33.76833 —33.76402 0.00016 0.00000 0.00016 0.00008 0.00000 0.00008
4 —33.50000 —33.50000 —33.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 —33.23598 —33.23168 —33.23598 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 —32.97188 —32.96334 —32.97188 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 —32.70761 —32.69501 —32.70761 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1374.080 1370.500 1374.080 0.396 0.402 0.396
ll. RESULTS AND DISCUSSION These results support the notion that both the algebraic

In this section we are going to present and discuss th reatment(bo_son expans_,ldnand th('.‘\ linGaization progedure
DA) constitutes a valid alternative to the exact diagonal-

results of our calculations. We have taken the number of ) . ) . . .
atoms and the coupling strength &nd)\) as the parameters Ization of theN junctions interacting with an external optical
phonon and among themselves. It also shows the suitability

of the model. We have diagonalized the Hamiltontarof , ) : -
Eq. (1) and solved the TDA and bosonic images offt;(, s of the collective approach, which consists of replacing

andHg,,). The results are shown in Tables I-V. Some of thef€fmion-pair excitations by bosonic modes of excitation. In
features which can be extracted from the analysis of the relhis respect, and considering also the appearance of the factor
sults are the following. Z\JN, the present formalism constitutes a natural extension
(@) Concerning the eigenvalues, the bosonic approximaof the treatment presented in Ref. 2. Moreover, as a by-
tion Hg)y, compares very satisfactofup to two digitg with product, the boson mapping technique can be used in order
the exact solution. The agreement between the linear ape relate the spin-spin interaction term between the junctions
proximationHp, and the exact solution is acceptable at theto a kind of nonlinear Kerr effect whose dynamical conse-
level of the first digit and it improves for larger valuesNf  quences could be worth studying, in particular those con-
(b) The fragmentation of the strength, namely, the amounterning quantum superposition phenomé&ha®
of each atomic excitation represented by each solution, and Another piece of information, which can be used to com-
the partial contributions to the suB(S,) and to EWSS, are pare the different approximations, refers to the behavior of
better reproduced in the case of the BM approximation.  the response functio®(t). Figure 1 shows the results of
(c) The accumulated values B{S,) and EWSS are better S(t) corresponding to the exact diagonalizatisolid lineg
reproduced, as compared with the exact results, by thend the ones of the boson expansiaiotted line$, for N
bosonic approximation. =2,4 junctions. The initial state consists of a single-excited
(d) The linear TDA approach underestimates the totajunction. Thus,S(t) measures the time evolution of the oc-
strength and it overestimates the energy-weighted sum ruleupation of a single junction. The agreement between the
(e) The agreement improves N increases, particularly, exact solution and the boson approximation is rather satis-
when the interaction between sites is turned on. factory. Figure 2 shows the results corresponding to a differ-
In spite of these differences, the overall agreement of thent initial state, which is the one consisting of a boson and all
spectra obtained by the TDA and BM approximations, withjunctions in the lower-energy state. The time evolution of
respect to the exact solution, is rather acceptable. Howeveg(t) from Fig. 2 shows a phase facter2, as compared with
in order to qualify the approximations, the information aboutthe time evolution of5(t) from Fig. 1. Figures 3 and 4 shows
the eigenvalues must be complemented by the correspondirige comparison between the results of the eXattet (a)]
values of the intensity and EWSS. TDA [inset(b)], and boson expansidimset(c)] methods for

TABLE V. Same as Table | foN=80, L=6, {=—0.015, and\ =0.002.

R

E.(exac)  E,(TDA) E.(BM) B(S)exact ~ B(S)tpa B(S)em  EWSSuact EWSSpa EWSSGy

1 —33.79542 —33.79567 —33.79686  1543.24353  1543.45239  1542.75439 0.00000 0.00000 0.00000
2 —33.38527 —33.38111 —33.38829 0.63366 0.62844 0.63848 0.25989 0.26052 0.26087
3 —32.98071 —32.96656 —32.98528 0.00007 0.00000 0.00007 0.00006 0.00000 0.00006
4 —32.58156 —32.55200 —32.58764 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 —32.18764 —32.13744 —32.19518 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 —31.79874 —31.72289 —31.80772 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 —31.41466 —31.30833 —31.42503 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1543.877 1544.081 1543.393 0.260 0.261 0.261
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FIG. 1. Time evolution of the population of atoms in the excited o _
stateS(t) as a function ot. The time is measured in units af; *, FIG. 3. §(t) for N=4 junctions andL=6. The coupling be-
and the results correspond to the cabe?2 [inset(a)], andN=4 tween junctions is fixed at=0. The initial state has six photons in
[inset(b)]. The initial state consists of a single atom in its excited the resonator and all the junctions are in their ground states. Insets
state and all other junctions and the cavity boson in their ground®. (b), and(c) show the results of the exact treatment, the TDA,
states. Solid lines show the results of the exact diagonalizatiorB"d the boson mapping, respectively.

Dotted lines show the results of the boson mapping of Sec. IID.
in the lower-energy state. Only the exact resliitsets(a)

and(c)] and the ones of the boson expansjorsets(b) and
(d)] are shown. The agreement between both sets of results is
ther good over the extended time evolution.

S(t), with and without the inclusion of the site-site interac-
tion (cf. Ref. 2, the extended Dicke modeAs seen from
these results, the agreement between the TDA approximatid’rfi1
and the exact solution improves if the site-site interaction is
present, but, in general, the agreement between the bosonic IV. CONCLUSIONS
approximation and the exact solution is much better. Figures
5 and 6 show the time evolution &(t), for N=8 andN
=80 junctions. In both cases, we have calculagt) by
consideringL =6 bosons in the initial state and all junctions

In this work we have studied some alternatives to the
exact diagonalization of the problem posed by a system of
N-Josephson junctions interacting with a photon field and
among themselves. The conventional treatment makes use of

10k (a) i a [ T T T T T (a) T ]
0.8 4
0.6 L o ]
0.4 . o | J
02} . a L T T T T T (b) T ]
= 0.0} -
S [ + i + [l n [l + [l + i
w 1'0 | T L) L) L) I(b) L) i E 2 | a
7]
08 1 0} b
0.6 . ——t——t——t——t——
a L (c) |
04} E
0.2 L 2 | 4
0.0 4
1 N 1 N 1 L 1 " 1 " 1 0 L -
00 02 04 06 08 1.0 L ) ) ] ) !
10°1 0 1 2 3 4 5
. : , _ _ _ 10°1
FIG. 2. Same as Fig. 1, with one cavity boson in the first excited
state and all junctions in their ground states. FIG. 4. Same as Fig. 3 for=0.002.
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FIG. 5. S(t) for the caseN=8, L=6. The initial state has six 10-3 t
photons in the first excited state and all the junctions in their ground ) ) )
state. Inset$a) and(c) show the exact results, and inséts and(d) FIG. 6. Same as Fig. 5 fdd=80 junctions.

show the results of the boson mapping. The values of the strangth

: ; - ) . function and EWSS provides a good indication about the
used in the calculations are indicated in each inset.

validity of the approximations. This is also true for the case
of the results corresponding to the time evolution of the
the isomorphism between the atomic excitations, by the abpopulation of atoms in the excited state. The time evolution
sorption and emission of the optical photon, and a quantur@f S(t), over a large number of periods, shows that the boson
mechanical systems oN two-level, pseudospin-1/2-like €xpansion accurately describes the features of the exact so-
qubits?27 The Hamiltonian of the system belongs to the !ution.

familiar Dicke’s structure and its extended version, which [N View of these results we conclude that the use of the
includes a long-range site-site interaction. We have advancePSON €xpansion, in the treatment of Hamiltonians belonging
the notion of a superposition between the photon and thi t_he class of Dicke's Hamiltonians may be a suitable alter-
excitation of the atomic levels, as in the case of a spin wav&2tive (@nd perhaps the only one applicable an exact di-

in the Heisenberg spin-spin interaction in presence of an exa_tgonahzanon. From a more physical oriented point of view,

ternal magnetic field. We have applied two different bosonthe validity of the boson expansion underlines the collective

techniques, namelya) the TDA linear approximation, and structure of the motion inducgd by_ the scattering of the op-
(b) a boson expansion method. We have found that the bosdif@! Photon by the system of junctions.

expansion reproduces rather satisfactory, the exact, results,
even for a relatively large number of junctions. The agree-
ment between the TDA and exact results is not as good as This work has been partially supported by the MCyT and
that of the agreement between the exact and boson expansidonta de Castilla y Lao(Espam, Project Nos. BFM2000-
methods, but still the TDA shows the correct trend of the1055 and BU04/0Band by the CONICETArgenting. M.R.
exact solution. We have noted that the comparison of thés grateful to the Universidad de Burgos for hospitality, and
eigenvalues does not suffice for a qualification of the apacknowledges financial support of the Fundacion Antorchas
proximations, and that the information about the strengtrand of Universidad de Burgdsnvited Professors Program
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