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Among the available quantization methods for gauge field theories, the Becchi–Rouet–Stora–
Tyutin ~BRST! procedure has emerged as the simplest one for non-Abelian field theories, and thus
the one that is systematically used in such cases. Our aim is to provide the reader with an accessible
introduction to this modern and elegant treatment of constrained systems through its application to
two simple mechanical models: a particle moving on a ring, and a particle on the surface of a sphere.
If the description of these models is made from a moving frame of reference, they constitute simple
analogs of gauge field theories. Notwithstanding their simplicity, these two applications display the
main features of the BRST method, dealing with Abelian and non-Abelian symmetries, respectively.
They also illustrate the solution of many-body problems in which broken symmetries are restored by
means of collective coordinates describing the motion of the moving frame. Both the Hamiltonian
and the Lagrangian formulations are presented, the latter using the antifield formalism. ©2002

American Association of Physics Teachers.
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I. INTRODUCTION

In the everyday world, we may perform certain operatio
on physical objects which leave them unchanged. We
these operationssymmetry operations. By extension, we may
consider the mathematical operations acting on the entitie
a given theory that leave invariant the corresponding ph
cal laws.

There areglobal invariances, in which the same transfo
mations are carried out at all space–time points, and
~more interesting! local invariances, in which different trans
formations are carried out at different points. An example
local transformations is in Maxwell’s theory of electroma
netism. The electric and magnetic fields,E(r ,t) andB(r ,t),
may be obtained from the vector potentialA(r ,t) and the
electrostatic potentialV(r ,t). However, these potentials ar
not unique. The local transformations thatA andV may un-
dergo while preservingE andB are called gauge transforma
tions and the associated invariance of Maxwell’s equation
called gauge invariance.

We may turn the formulation around and derive elect
magnetism from the construction of a gauge invariant
grangian under the local transformations of the particle fi

C~r ,t !→eieL(r ,t)C~r ,t !, ~1!

where e is the charge of the particle. The electromagne
potentials, with adequate transformation properties, are in
duced to satisfy the invariance requirement. Electromag
tism has been reborn as a manifestation of a lo
invariance.1

The transformations in Eq.~1! are calledAbelianbecause
two successive transformations may commute their sequ
without altering the final result. In 1954 Yang and Mills us
a non-Abelian group of transformations, the group of iso
pic spin rotations.2 The vector fields generalizing the photo
field were interpreted as the fields of strongly interact
548 Am. J. Phys.70 ~5!, May 2002 http://ojps.aip.org/aj
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vector mesons of isotopic spin one. Gauge theories were
ther generalized to arbitrary non-Abelian gauge groups
eventually turned out that all the observed interactions
tween elementary particles are generated by vector fields
sociated with local gauge symmetries. Typical examples
the standard models for electroweak and strong interactio1

The fundamental tool presently used in the quantization
gauge fields is based on the Becchi–Rouet–Stora–Ty
~BRST! invariance,3,4 because of its simplicity in non
Abelian cases. However, this simplicity is only relative
other procedures. Our aim is to contribute to the understa
ing of this procedure through its application to simple sy
tems. The possibility of such applications stems from the f
that ‘‘a gauge theory may be thought of as one in which
dynamical variables are specified with respect to a refere
frame whose choice is arbitrary at every instant of time.4

This characterization applies, in particular, to mechani
systems that are described from a moving frame of refere
Mechanical systems may be considered as field system
(n11) dimensions, wheren, the number of spatial dimen
sions, equals 0. Moreover, if their description is made from
moving frame of reference, they are the analogs of ga
field systems, as shown in Sec. II. The analogy betw
gauge fields and mechanical systems described from mo
frames of reference is extensively exploited in Ref. 5.

In contrast to the very general and complete treatmen
Ref. 4 ~in which few applications, if any, are made!, we
confine our discussion to two simple toy models. The fi
one consists of a particle of massm that is allowed to move
along a ring~Sec. II!. This model already illustrates man
important features of the BRST procedure, which is outlin
in Sec. III and applied to the simple model in Sec. IV. T
second model, the motion of a particle on the surface o
sphere~Sec. V!, displays in addition the non-Abelian com
plications that are solved in such an elegant way through
BRST procedure. These two applications are made using
548p/ © 2002 American Association of Physics Teachers
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Hamiltonian formulation. As mentioned at the end of Sec.
the BRST procedure is too powerful for the treatment of
Abelian case and, as a consequence, some essential de
of freedom appear to be uncoupled~and thus unused! in the
final BRST Hamiltonian. On the other hand, many featur
which are also present in non-Abelian problems, may be
derstood already from the Abelian case. We illustrate the
of the Lagrangian formalism in Sec. VI.

The formalism applied in this paper is purely algebra
and thus, in particular, it does not rely on functional metho
These methods constitute the framework of the usual pre
tations. Their use allows to develop the full power of t
BRST procedure.

II. THE ABELIAN TOY MODEL

Let us consider a particle of massm that is allowed to
move along a ring of radiusr 0 . The model thus has initia
cylindrical symmetry. Although the solution of this proble
is simple enough in the laboratory frame, it becomes e
simpler in a system of reference rotating with the partic
Such a frame may be defined, for instance, by the condi

y50. ~2!

In this rotating frame of reference, the solution of the pro
lem ~not merely the initial conditions! is written simply as

x5r 0 , px50. ~3!

However, this solution violates the original cylindrical sym
metry of the problem, and thus it may be characterized
being adeformedsolution. Moreover, there is no restorin
force in they direction. The absence of angular motion in t
description of the moving frame must be compensated by
introduction of the angular coordinatef, describing the mo-
tion of the rotating frame relative to the laboratory fram
Thus, in addition to thex degree of freedom, there is a
overcomplete set of variables associated with the ang
motion (y,f).

From here on we label ascollectivecoordinates the one
relating the motion of the moving frame to the laborato
and asintrinsic coordinates those describing the motion w
respect to the moving frame.

Let us further examine the present scenario. The intrin
coordinatesx,y are related to the coordinates in the labo
tory systemxlab,ylab by ~see Fig. 1!

S x
yD5S cosf sinf

2sinf cosf D S xlab

ylab
D . ~4!

We takeDt to be the total time derivative of the position o
the particle, and a dot to be the time derivative of the po
tion with respect to the moving frame. Using Eq.~4!, we
obtain

Dtx5 ẋ1
]x

]f
ḟ5 ẋ1ḟy, ~5a!

Dty5 ẏ1
]y

]f
ḟ5 ẏ2ḟx. ~5b!

HereDt andḟ are the analogs of a covariant derivative a
of a gauge field, respectively. The Lagrangian is6
549 Am. J. Phys., Vol. 70, No. 5, May 2002
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L5
m

2
~Dtx!21

m

2
~Dty!25

m

2
~ ẋ1ḟy!21

m

2
~ ẏ2ḟx!2.

~6!

Such a Lagrangian is calledsingularbecause the determinan
of the matrix ]2L/]zi]zj (zi5 ẋ,ẏ,ḟ) vanishes. There are
three equations for the momenta, namely

px[
]L

] ẋ
5m~ ẋ1ḟy!, ~7a!

py[
]L

] ẏ
5m~ ẏ2ḟx!, ~7b!

I[
]L

]ḟ
5xpy2ypx[ l . ~7c!

HereI is the generator of collective rotations, whilel can be
recognized as the generator of intrinsic rotations. Althou
Eqs.~7a! and~7b! yield the momentapx ,py as a function of
the velocities, Eq.~7c! is only a relation between the thre
momenta. Thus we are not able to solve simultaneously
three equations of motion. This failure can be traced to
fact that the Lagrangian describing the system from the m
ing frame does not contain information about the motion
the frame itself. Instead, we obtain two momenta and a c
straint

F[ l 2I 50. ~8!

Equation~8! expresses the obvious fact that if the particle
rotated by any angle relative to the moving frame, the cor
sponding description should be completely equivalent to
one obtained by rotating the moving frame by the oppos
angle.

The existence of constraints is also central to the anal
between gauge field theories and mechanical models tha
described from moving frames. Within the extended ph
space defined by the intrinsic and collective variables, a
their conjugate momenta, physical trajectories are restric
to a hypersurface defined by the constraint~8!. On this hy-
persurface there are families of trajectories that transfo
into each other usingF as a generator. Indeed,F represents

Fig. 1. Intrinsic (x,y) and laboratory (xlab ,ylab) coordinates of the generic
point P on a ring of radiusr 0 . The two set of coordinates are related by
transformation@see Eq.~4!#, which depends only on the angular coordina
f. Readers can easily convince themselves of the fact that the transfo
tion between the intrinsic and laboratory frame does not depend expli
on the value of the angleu.
549D. R. Bes and O. Civitarese
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the generator of the gauge transformations that leave the
tem invariant. To select a gauge is to select one trajec
from the family of equivalent trajectories.

The physical variables are those that are independen
the local reference frame: physical variables~‘‘observables’’!
are said to be gauge-independent.

Our aim is to quantize this classical model. The followi
commutation relations hold:

@x,px#5@y,py#5@f,I #5 i , ~9!

where\51 from here on. Because we have introduced n
variables that enlarge the vector space, we must expec
presence ofunphysicalstates and operators, in addition
physicalones. The constraint~8! is equivalent to the quanta
conditions

Fuph&50, Fuunph&Þ0, ~10a!

@F,Oph#50, @F,Ounph#Þ0, ~10b!

where the label ph~unph! indicates physical~unphysical!
states or operators. However, the separation between p
cal and unphysical states is by no means a trivial operat
except in simple examples. In Sec. III we present a syst
atic procedure to accomplish the separation.

III. OUTLINE OF THE BRST SOLUTION FOR
ABELIAN CASES

In the previous example, the existence of an overcomp
set of two variables is compensated by the presence
constraint. The most natural thing to do would be to use
constraint to reduce the number of variables to the ini
number. However, ‘‘it is a remarkable occurrence that
road to progress has invariably been toward enlarging
number of variables and introducing a more powerful sy
metry, rather than conversely aiming at reducing the num
of variables and eliminating the symmetry.’’4 In this section
we describe how this enlargement may be performed.

According to Dirac,7 we may replace the original Hamil
tonian by

HDirac[H2lF, ~11!

which yields the same results asH for physical states. Dirac
introduced an additional boson variable, the Lagrange mu
plier l, with B as its conjugate partner (@l,B#5 i ). The new
constraint,

B50, ~12!

should hold in order to maintain the problem associated w
the original Hamiltonian. We do not attempt to solve t
problem àla Dirac here.

Becchi, Rouet, Stora, and Tyutin3 went further in this di-
rection by adding two fermion variablesh,h̄ and their con-
jugate operatorsp,p̄. These Hermitian, Grassman operato
are calledghosts. Thus, they satisfy the anticommutation r
lations

$h,p%5$h̄,p̄%51, ~13a!

$h,h̄%5$p,p̄%5$h,p̄%5$h̄,p%50, ~13b!

$h,h%5$h̄,h̄%5$p,p%5$p̄,p̄%50. ~13c!

The complication introduced by the addition of new va
ables is only apparent, because there appears a new s
symmetry involving boson and ghost variables. It complet
550 Am. J. Phys., Vol. 70, No. 5, May 2002
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captures the original gauge invariance of the problem@Eq.
~8!# and leads to a simpler formulation of the theory.

The name ghost stems from the fact that they only app
in closed loops, that is, they can neither be experiment
produced or detected as free particles.1 Although the concept
of ghosts was previously applied in quantum physics, it
only with the advent of the BRST symmetry that they we
raised to the same prominence as other variables or fie
being mixed with them.

A fundamental quantity in the BRST formalism is th
chargeQ, constructed as an operator linear in the constra

Q[2hF1p̄B. ~14!

In the same way thatF is the generator of gauge transform
tions,Q may be considered as the generator of BRST tra
formations. Because the constraints~8! and ~12! imply that

Q50, ~15!

we should stay within a subspace invariant under BR
transformations.

The operatorQ is nilpotent (Q250) and Hermitian (Q†

5Q). Similar to the situation described at the end of Sec.
there are now physical and unphysical states and opera
Indeed, Eqs.~10a! and ~10b! continue to be valid upon the
replacement of the constraintF by the chargeQ. However,
within the BRST formalism, there appear a new set of sta

ux&[Quunph&. ~16!

Using the properties ofQ, it is straightforward to demon-
strate that

Qux&50, ^xux&50, ~17!

that is, theux& states are also annihilated byQ and have zero
norm. One may also define operatorsOx , mapping physical
states onto zero-norm states,

Ox[$Q,Ounph%, Oxuph&5ux&. ~18!

As a consequence, it is possible to addux& states to physi-
cal states andOx operators to physical operators,

uph&→uph&1ux&, Oph→Oph1Ox . ~19!

Again making use of the properties ofQ, we easily verify
that

~^~ph! f u1^x f u!~Oph1Ox!~ u~ph! i&1ux i&!

5^~ph! f uOphu~ph! i&, ~20!

that is, the transformations~19! do not change the value o
the physical matrix elements. We construct the BRST Ham
tonian as a particular application of this freedom, by add
to H an Ox operator

HBRST[H1$r,Q%. ~21!

For any choice of the operatorr, HBRST yields the same
physical eigenvalues as the originalH.

The enlarged phase space, discussed at the end of Se
has been further extended by the inclusion of Lagrange m
tipliers and ghost variables and their respective mome
Physical trajectories are now restricted by the condition~15!.
Within the physical trajectories, there are families of equiv
lent trajectories that are obtained from each other usingQ as
the generator of the BRST transformations or, equivalen
by varying r. Thus, the selection ofr is equivalent to the
550D. R. Bes and O. Civitarese



a

ot

ye
e

n
tic

a

r

S
a

th
e
i

o
e

d
n
a

d
m

e
m

er

d-

th

ze

ons.
ion

on
the

a

state
ve-

e

adoption of a gauge. One possible choice is motivated by
analogy with the covariant gauge in Yang–Mills theory,

r5lp1h̄S u2
1

2k
BD . ~22!

In this case, Eq.~21! yields8

HBRST5H2lF1 ipp̄1Bu2
1

2k
B21hh̄@u,F#, ~23!

where u, a function of the intrinsic variables, should n
commute with the constraintF, and thus with the intrinsic
generatorl . The gauge has not been completely fixed
because, aside from the last requirement, we are still fre
choose either the constantk or the functionu @see Eqs.~25!
and ~28! below#. The uncoupling of the different modes i
Eq. ~23!, as well as the treatment of the negative ‘‘kine
energy’’ term2B2/2k, is also deferred to Sec. IV.

Because the HamiltonianHBRST ~unlike H! does not com-
mute with the intrinsic generator, the microscopic cylindric
symmetry is lost. On the other hand,HBRST commutes with
the collective generator: microscopic invariance has been
placed by macroscopic collective invariance.

IV. APPLICATION TO THE ABELIAN TOY MODEL

So far we have outlined a possible version of the BR
formalism that is suitable for general Abelian transform
tions. Let us now confine ourselves to its application to
toy model. The collective space associated with it is giv
naturally by the eigenfunctions of the angular momentum
two dimensions, namely

CL0
~f!5

1

A2p
eiL 0f. ~24!

The collective degree of freedomf, which was introduced in
Sec. II as an artifact associated with the existence of a m
ing frame, has been raised to the level of a real degre
freedom.

Because in the present problem there is only one real
gree of freedom, and this role is taken by the collective o
@see Eq.~24!#, the remaining ones are unphysical. Thus
trade off has taken place: the intrinsic degree of freedomy,
associated with the angular motion, has been transferre
the unphysical subspace. In the following we discuss in so
detail the structure of this subspace.

The classical, deformed solution~3! is taken to be the
starting point for the motion in the intrinsic reference fram
The radiusr 0 constitutes the large magnitude of the proble
~theorder parameter! and thus is much larger than any oth
length magnitude. As part of the process of selecting
gauge, we chooseu to be the conjugate variable to the lea
ing order term ofl (5r 0py),

u5y/r 0 . ~25!

With this choice the moving frame becomes anchored to
particle, because the mean value^y&50 @cf. the classical
value in Eq.~2!#,

HBRST5Hb1Hg1Hc1Hr , ~26a!

Hb[
1

2m
py

22r 0lpy1
1

r 0
By2

1

2k
B2, ~26b!
551 Am. J. Phys., Vol. 70, No. 5, May 2002
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Hg[ ipp̄1 ihh̄, ~26c!

Hc[lI , ~26d!

H8[
1

2m
px

21l l 81
1

r 0
x8hh̄, ~26e!

wherex8[x2r 0 and l 85x8py2ypx .
As is usual in field theory, we proceed first to diagonali

the quadratic Hamiltonian@Eqs.~26b! and~26c!#, in order to
define a basis in terms of independent bosons and fermi
The remaining Hamiltonian should be treated in perturbat
theory.

By completing squares inHb , we obtain

Hb5
1

2m
~py2mr0l!21

m

2
y22

1

2k S B2
k

r 0
yD 2

2
k

2
l2.

~27!

We end the selection of the gauge by choosing

k5mr0
2 , ~28!

the moment of inertia of the system. With this choice@(py

2mr0l),(B2 (k/r 0) y)#50, the two kinetic energy contri-
butions inHb become mutually independent. The completi
of the squares has yielded, in addition, restoring forces to
two oscillators in Eq.~27!. Therefore, we may writeHb in
terms of two uncoupled bosons, namely

Hb5G1
†G12g0

†g0 , ~29!

whereG1
† andg0

† are defined as

G1
†[

1

A2m
~py2mr0l!1 iAm

2
y, ~30a!

g0
†[2 iA 1

2k
~B2mr0y!1Ak

2
l, ~30b!

@G1 ,G1
†#5@g0 ,g0

†#51. ~30c!

The expression forHb displays two oscillators: one has
positive frequency (11), the other a negative one (21).
This fact is unpleasant, not the least because the ground
becomes many times degenerate. To get out of this incon
nience, we may replaceG0[g0

† , G0
†5g0 , and therefore

write

@G0
† ,G0#51, ~31a!

Hb5G1
†G12G0

1G011. ~31b!

If the ~new! vacuum state is annihilated byG0 @cf. Eq. ~36!
below#, all excitations ofHb become positive, at the expens
of working with the metric~31a! for the 0-boson.9 Note the
difference from the usual metric~30c!.

The ghost sector may be written as

Hg5āa1b̄b21, ~32!

where the following substitutions have been made:

a5 i b̄†[
1

&
~p̄2 ih!, ~33a!

b52 i ā†[
1

&
~p1 i h̄ !, ~33b!
551D. R. Bes and O. Civitarese
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$ā,a%5$b̄,b%51. ~33c!

Therefore the quadratic Hamiltonian of the unphysical s
tor,

Hunph[Hb1Hg5G1
†G12G0

†G01āa1b̄b, ~34!

is a supersymmetric Hamiltonian with a characteristic ex
tation energy equal to unity. The eigenvectors ofHunphdefine
the subspace

un1 ,n0 ,na ,nb&[
~G1

†!n1

An1!

~G0
†!n0

An0!
ānab̄nbu&, ~35!

wheren1 ,n050,1,2, . . . andna ,nb50,1.
The vacuum state in this subspace satisfies the condit

G1u&5G0u&5au&5bu&50. ~36!

We immediately verify that the quadratic charge in Eq.~14!,

Q52 i ~G1
†1G0

†!a2~G11G0!b̄, ~37!

annihilates the vacuum state and, because this state is
malizable, we conclude that it is a physical state. In fact, i
the only physical state of the subspace~35!. The excited
states~35! are paired: they are either unphysical statesuA& or
have zero normB[QuA&. For instance, the one-boson sta
G1

†u& is unphysical becauseQun150&52unb51&Þ0, while

the state unb51& has zero norm, becausêub̄†b̄u&
52 i ^uab̄u&50 @cf. Eq. ~33a!#.

All the effects of the unphysical degrees of freedom
any physical magnitude must cancel out. This cancella
would not be possible to achieve if the unphysical subsp
~35! were made up from ordinary states in the Hilbert spa
The present cancellation is due to the unusual propertie
the unphysical sector: the commutation relation~31a! of the
boson labeled by 0, and the fact that neither of the ferm
creation operators is the adjoint of the annihilation operat@

āÞa†, b̄Þb†, cf. Eqs. ~33a! and ~33b!#. Nevertheless. al
these operators are well defined and may be used wit
problems in subsequent mathematical manipulations.

As a consequence of the cylindrical symmetry, the origi
problem displays no restoring force in they direction. In
other words, the existence of a zero-frequency mode lead
the well-known problem of infrared divergencies, which pr
vents the straightforward application of perturbation theo
However, we mentioned at the end of Sec. III that the cy
drical symmetry is lost at the intrinsic level. As a cons
quence, all the unphysical degrees of freedom have a fi
frequency@Eq. ~34!#, and thus perturbation theory has b
come feasible. This is a very important result of the form
ism. The small parameter in the perturbation expansion
be chosen to ber 0

21.
We suggest that the reader perform, as an exercise, s

perturbative calculations. An interesting one is the followin
there is a link between the collective and the intrinsic sec
~24! and~34!, given by the termHc in Eq. ~26d!, which is a
Coriolis interaction. By inverting Eq.~30b!, we obtain

l5
1

A2k
~G0

†1G0!. ~38!

BecauseHc is a small termO(r 0
21), it may be treated per

turbatively. Second-order perturbation theory yields
552 Am. J. Phys., Vol. 70, No. 5, May 2002
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D~L0!52L0
2^ulun051&^n051ulu&5

1

2k
L0

2 . ~39!

The correct moment of inertia has reappeared, yielding
correct rotational energy. In Eq.~39! we have used the valu
equal to unity for the intermediate excitation energy@cf. Eq.
~34!#. The fact that second-order perturbation theory yield
positive contribution to the ground state is due to the unus
metric associated with the zero-phonon. Another instruct
example is the calculation of the expectation value^ l 2&50.

The residual interaction inH8 vanishes in the limit of a
rigid radial motion. However, we may allow some motion
the x direction, as would be the case for a Mexican hat p
tential. The Hamiltonian would display a physical, intrins
degree of freedom with a finite frequency, in addition to t
physical collective degree of freedom~24! and to the un-
physical sector~35!.

The BRST treatment of an Abelian model is somewhat
an overkill. Indeed, the ghost degrees of freedom appea
be completely decoupled in the Hamiltonian~26a! and, as a
consequence, the ghosts never appear in the calculation
even in intermediate states. Nevertheless, through the A
lian calculation we have been able to discuss propertie
the BRST procedure that continue to be present in the n
Abelian case, such as the BRST symmetry, the existenc
the zero-norm subspace, the construction of the unphys
subspace, and the feasibility of the perturbation expansio

V. THE NON-ABELIAN TOY MODEL

In analogy to the Abelian case, the non-Abelian mod
consists of a particle that is allowed to move on the surf
of a sphere of radiusr 0 . We define an intrinsic system by th
conditions

x5y50, ~40!

and thus the classical, deformed solution of the problem

z5r 0 , pz50. ~41!

Although the spherical symmetry of the original problem h
disappeared from Eqs.~40! and~41!, the axial symmetry has
been preserved.

The generators of the transformations on the surface
sphere satisfy the commutation relations

@ l i ,l j #5 i e i jk l k cyclical ~ i , j ,k!, ~42!

wheree i jk are the structure constants of the group of tra
formations. It is well known, since the early days of th
quantum treatment of the rotations of molecules, that
corresponding collective generators satisfy the same com
tation relations up to a sign, namely

@ I i ,I j #52 i e i jk I k . ~43!

Therefore, the three constraints satisfy the same commuta
as the generators~42!, namely

Fi[ l i2I i , @Fi ,F j #5 i e i jkFk , ~44!

and thus they commute within the physical subspace.
One of the most powerful attributes of the BRST proc

dure is to take into account the geometry of the gauge tra
formations. Accordingly, the BRST charge displays an ad
tional term including the structure constants of the group
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transformations. Note that there is no freedom in the de
mination of the charge, contrary to the arbitrariness in
selection of a gauge,

Q[2h iFi1p̄ iBi1 i e i jkh ih jpk . ~45!

The ghost operators carrying different subindices antico
mute. The properties ofQ stated in Sec. III remain valid in
the non-Abelian case.

The collective sector is described by the three Euler an
a,b,g. A complete set of states is given by the~rotational!
eigenfunctions of the axial-symmetric top,

CL0MK5A2L011

8p2 DMK
L0 ~a,b,g! , ~46!

whereM andK are the projections of the collective angul
momentumI over the laboratory and intrinsicz axis, respec-
tively. Because our system consists of a particle, it can
rotate around an axis passing through itself, and thus
eigenvalues of the operatorsl z and I z must be zero. There
fore, the rotational functions reduce to the spherical harm
ics

CL0M (K50)5YL0M~b,a!. ~47!

The disappearance ofg expresses the well-known fact that
is not possible to collectively treat the rotation around a sy
metry axis. Within the present framework this statement
plies that we should not fix the orientation of the movi
frame with respect to rotations around this axis. Thus
generalize Eq.~21! only to thex,y directions

r5pnln1h̄nS un2
1

2k
BnD , ~48!

wheren5x,y and, therefore,i 5n,z. We again make use o
the expansion in 1/r 0 in order to separate the leading ord
terms inl i , namely

l x52r 0py1 l x8 , l y5r 0px1 l y8 , l z5 l z8 . ~49!

We choose theun as the conjugate variable to the leadi
order terms inl n ,

ux52
1

r 0
y, uy5

1

r 0
x. ~50!

The resulting Hamiltonian reads8

HBRST[H1$r,Q% ~51a!

5
1

2m
pn

22lnl n1unBn2
1

2k
Bn

21 ipnp̄n

1 ihnh̄n1
1

2m
pz

21lvI v1h i h̄n@un ,l i8#

1 i2en i j ln~h ip j2h jp i !. ~51b!

The quadratic Hamiltonian is obtained by replacing the
eratorsl n in line ~51b! by their leading order expression
~49!. At this level, the Hamiltonian is separable in thex,y
degrees of freedom. For eachn, the terms are of the sam
form asHunph5Hb1Hg of the Abelian case, cf. Eqs.~26b!
and~26c!. Therefore the same considerations may be app
here, leading to the supersymmetric quadratic Hamiltonia

Hunph5Gn1
† Gn12Gn0

† Gn01ānan1b̄nbn . ~52!
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Quite generally, there will be as many contributions to t
Hamiltonian of the quadratic type~34!, as the number of
collective variables that have been introduced.

The remaining contributions,

HBRST8 5lnI n2lnl n81h i h̄n@un ,l i8#

1 i2en i j ln~h ip j2h jp i !, ~53!

may be taken into account by means of perturbation the
As discussed at the end of Sec. IV, this is only possi
because the zero-frequency modes have been elimin
from the unperturbed spectrum~52!.

Note that the ghost variables cannot be totally decoup
as in the Abelian case, even in the absence of radial mot
In particular, the ghost operatorshz ,pz are still coupled and
no kinetic term is associated with them. Thus the ghost sp
may be split into two degenerate subspaces, correspondin
the two different states of thehz ghost. However, there is no
problem with the perturbation treatment, because the gh
are always excited in pairs in which at least one of them
a finite energy@Eq. ~52!#.

The unperturbed vacuum state is also determined fr
conditions similar to Eq.~36!. However, this vacuum state i
only annihilated by the quadratic charge~37!, but not by the
higher order terms inQ. To the extent that the states a
improved through the use of perturbation theory, the con
tion Quph&50 becomes more satisfied.

The perturbative treatment of the coupling termlnI n
yields, once again, the rotational energy

2I n
2^ulnunn051&^nn051ulnu&5

1

2k
L0~L011!. ~54!

VI. LAGRANGIAN FORMULATION. THE
ANTIFIELD FORMALISM

The Hamiltonian BRST formalism leads to gauge-fix
actions that can be used within the path integral formalis
In principle, upon integration of the momenta, one may o
tain a Lagrangian form. However, in many cases, it is di
cult to obtain a manifestly relativistic path integral. Fort
nately, there exists a systematic method for directly writi
down the correct covariant gauge-fixed Lagrangian. It
known as the antifield approach to the BRST symmetry.10,11

The antifield formalism is now considered to be the m
powerful method for the quantization of gauge theories
lets us treat problems other than those in which there is a
~closed! group of transformations, such as in Eq.~42!. It may
deal also with those situations in which the commutator
tween two generators yield, in addition to a third genera
terms that are proportional to the equations of motion~open
algebras!. Supergravity theories constitute an example.

For simplicity, we confine the presentation only to th
Abelian model. We start from the classical Euclidean act
~that is, we use the complex timet5 i t !, obtained from the
Lagrangian~6!,

S85E dtS 1

2
~ ẋ1ḟy!21

1

2
~ ẏ2ḟx!2D , ~55!

which is invariant under the gauge transformations genera
by F @see Eq.~8!#.

The set of variables (x,y,f) is now enlarged by the intro
duction of the bosonic variableb and by the fermionic ghos
553D. R. Bes and O. Civitarese
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pairsh and h̄. For each of the variables (x,y,f,b,h,h̄), an
antivariable (x* ,y* ,f* ,b* ,h* ,h̄* ) is introduced. If the
variable is a boson~fermion!, the corresponding antivariabl
is a fermion ~boson!. Therefore, the number of additiona
variables has once again been drastically increased. The
bling of the variables allows for the definition of a brack
structure known as theantibracket. The antibracket plays an
analogous role to the Poisson bracket, because within
structure variables are conjugate to antivariables. The a
bracket of arbitrary functionals of the variables and antiva
ables is defined as

~A,B![E dtS dA

dqs~t!

dLB

dqs* ~t!
2

dRA

dqs* ~t!

dB

dqs~t!
.

1
dRA

dss~t!

dB

dss* ~t!
2

dA

dss* ~t!

dLB

dss~t! D , ~56!

whereqs(t) andss(t) denote boson and fermion variable
respectively. The super-indicesL and R, appearing in the
functional derivatives with respect to the fermion variabl
indicate differentiation to the left and to the righ
respectively.12

Now, the so-calledmasterequation,

~S,S!50, ~57!

must be solved for a real boson functional of the variab
(x,y,f,b,h,h̄) and the antivariables (x* ,y* ,f* ,b* ,
h* ,h̄* ), which becomes equal to the classical actionS8
when the antivariables vanish. It can be verified that the
lowing functional13,14

S5S81E dt@h~xy* 2yx* 2f* !2h̄* b# ~58!

is a solution to Eq.~57!.
The actionS is the starting point for quantizing the theor

for which a gauge fixing procedure must be implement
With this aim we choose a functionC, an imaginary fermion
functional of the variables, that is called thegauge fixing
fermion. It plays a role analogous to that ofr in Eqs. ~23!
and ~48!,

C5 i E dtS 1

r 0
y2f̈1

i

2r 0
2 bD h̄ , ~59!

and we fix the value of the antivariables by the condition

qs* 5
dC

dqs
, ss* 5

dC

dss
. ~60!

We obtain

x* 50, h* 50, ~61a!

y* 5
i

r 0
h̄, h̄* 5

i

r 0
y2 i f̈2

1

2r 0
2 b, ~61b!

f* 52 ihJ , b* 52
1

2r 0
2 h̄. ~61c!

If we substitute these expressions in Eq.~58!, together
with the valuex5r 0 , we derive the gauge fixed action fo
the motion along the ring, namely
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SC5E dtF 1

2
~ ẏ2r 0ḟ !21 ihh̄2 ihhJ 2 ibS 1

r 0
y2f̈ D

1
1

2r 0
2 b2G . ~62!

By completing squares and eliminating the variableb upon
integration in the associated path integral, we find

SC8 5E dtF1

2
~ ẏ2r 0ḟ !21

1

2
~y2r 0f̈ !22 i h̄h2 ihG ḣ G . ~63!

Although the Lagrange multiplierl introduced in Eq.~11!
has been treated as a degree of freedom independent o
collective coordinatef, it may be related through the com
mutation relation

ḟ5 i @~H2lF !,f#5 il@ I ,f#5l. ~64!

The inclusion of the nil term (l2ḟ)I and the replacement o

ḟ by l in Eq. ~63! yields

SC9 5Sint1Scoll1Scoup, ~65a!

Sint5E dtF1

2
~ ẏ2r 0l!21

1

2
~2r 0l̇1y!22 ihG ḣ2 i h̄hG

5E dtF1

2
~y21 ẏ2!1

r 0
2

2
~l21l̇2!

2r 0

d~yl!

dt
2 i h̄h2 ihG ḣG

5E dtF1

2
~y21 ẏ2!1

r 0
2

2
~l21l̇2!2 i h̄h2 ihG ḣG , ~65b!

Scoll52 i E dt ḟI , ~65c!

Scoup5 i E dt lI . ~65d!

The actionSint for the intrinsic variables~original coordinate
y, Lagrange multiplierl and ghostsh,h̄! contains the trans-
formed action~6!, but with the Lagrange multipliers as th
velocities of the moving frame. Note the elimination of th
total time derivative appearing in the second line. The act
Sint also includes the gauge fixing terms and the action
the ghosts. The intrinsic system is analogous to the unph
cal sector~29! displaying two boson and two fermion mode
all of which have the same excitation frequency one. T
gauge fixing procedure@see Eqs.~59! and ~60!# was chosen
so as to give nonzero frequencies to these spurious mod

Scoll is the free action for the collective coordinates

Hamiltonian form. From it we see thatI 5dScoll /dḟ is to be
interpreted as the canonical collective momentum conjug
to the anglef.

The coupling between collective and intrinsic degrees
freedom is given byScoup.

VII. CONCLUSIONS

We have applied the sophisticated tools currently e
ployed in the quantization of gauge theories to very sim
554D. R. Bes and O. Civitarese
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mechanical models, both within the Hamiltonian and L
grangian formulations. Such examples also illustrate
treatment of broken internal symmetries. Thus they are a
useful in many-body finite systems~for example, molecular
and nuclear! in which the concepts of symmetry transform
tions and broken symmetries are also relevant. They rep
more conventional and cumbersome projection techniqu
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