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Among the available quantization methods for gauge field theories, the Becchi—Rouet—Stora—
Tyutin (BRST) procedure has emerged as the simplest one for non-Abelian field theories, and thus
the one that is systematically used in such cases. Our aim is to provide the reader with an accessible
introduction to this modern and elegant treatment of constrained systems through its application to
two simple mechanical models: a particle moving on a ring, and a particle on the surface of a sphere.
If the description of these models is made from a moving frame of reference, they constitute simple
analogs of gauge field theories. Notwithstanding their simplicity, these two applications display the
main features of the BRST method, dealing with Abelian and non-Abelian symmetries, respectively.
They also illustrate the solution of many-body problems in which broken symmetries are restored by
means of collective coordinates describing the motion of the moving frame. Both the Hamiltonian
and the Lagrangian formulations are presented, the latter using the antifield formalisoo2 ©
American Association of Physics Teachers.
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[. INTRODUCTION vector mesons of isotopic spin one. Gauge theories were fur-
ther generalized to arbitrary non-Abelian gauge groups. It
In the everyday world, we may perform certain operationseventually turned out that all the observed interactions be-
on physical objects which leave them unchanged. We callween elementary particles are generated by vector fields as-
these operationsymmetry operation8y extension, we may sociated with local gauge symmetries. Typical examples are
consider the mathematical operations acting on the entities @he standard models for electroweak and strong interactions.
a given theory that leave invariant the corresponding physi- The fundamental tool presently used in the quantization of
cal laws. gauge fields is based on the Becchi—Rouet—Stora—Tyutin
There areglobal invariances, in which the same transfor- (BRST) invariance®* because of its simplicity in non-
mations are carried out at all space—time points, and th@pelian cases. However, this simplicity is only relative to
(more interestinglocal invariances, in which different trans- other procedures. Our aim is to contribute to the understand-
formations are carried out at different points. An example Ofing of this procedure through its application to simple sys-
local transformations is in Maxwell's theory of electromag- yems. The possibility of such applications stems from the fact
netism. The electric and magnetic fiel@r,t) andB(r,t),  that “a gauge theory may be thought of as one in which the
may be obtained from the vector potentia(r,t) and the  dynamical variables are specified with respect to a reference
electrostatic potentiaV/(r,t). However, these potentials are frame whose choice is arbitrary at every instant of tinfe.”
not unique. The local transformations thfatandV may un-  This characterization applies, in particular, to mechanical
dergo while preserving andB are called gauge transforma- systems that are described from a moving frame of reference.
tions and the associated invariance of Maxwell's equations idMechanical systems may be considered as field systems in
called gauge invariance. (n+1) dimensions, where, the number of spatial dimen-
We may turn the formulation around and derive electro-sions, equals 0. Moreover, if their description is made from a
magnetism from the construction of a gauge invariant Lamoving frame of reference, they are the anak)gs of gauge
grangian under the local transformations of the particle fieldjeld systems, as shown in Sec. Il. The analogy between
W(r,t)— e A (r 1), (1) gauge fields and mephanical systems de_scribed from moving
frames of reference is extensively exploited in Ref. 5.
where e is the charge of the particle. The electromagnetic In contrast to the very general and complete treatment of
potentials, with adequate transformation properties, are introR€f. 4 (in which few applications, if any, are magewve
duced to satisfy the invariance requirement. Electromagneconfine our discussion to two simple toy models. The first
tism has been reborn as a manifestation of a locabne consists of a particle of massthat is allowed to move
invariance along a ring(Sec. ). This model already illustrates many
The transformations in Edq1) are calledAbelianbecause important features of the BRST procedure, which is outlined
two successive transformations may commute their sequende Sec. Il and applied to the simple model in Sec. IV. The
without altering the final result. In 1954 Yang and Mills used second model, the motion of a particle on the surface of a
a non-Abelian group of transformations, the group of isoto-sphere(Sec. V}, displays in addition the non-Abelian com-
pic spin rotationg. The vector fields generalizing the photon plications that are solved in such an elegant way through the
field were interpreted as the fields of strongly interactingBRST procedure. These two applications are made using the
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Hamiltonian formulation. As mentioned at the end of Sec. IV,
the BRST procedure is too powerful for the treatment of the
Abelian case and, as a consequence, some essential degrees
of freedom appear to be uncoupléhd thus unusedn the
final BRST Hamiltonian. On the other hand, many features,
which are also present in non-Abelian problems, may be un-
derstood already from the Abelian case. We illustrate the use
of the Lagrangian formalism in Sec. VI. fo 4AB
The formalism applied in this paper is purely algebraic y ¢
and thus, in particular, it does not rely on functional methods.
These methods constitute the framework of the usual presen-
tations. Their use allows to develop the full power of the 0 N
BRST procedure.

lab

Fig. 1. Intrinsic &,y) and laboratory X,.,Yan) COOrdinates of the generic
point P on a ring of radiug,. The two set of coordinates are related by a
transformatior{see Eq(4)], which depends only on the angular coordinate
Il. THE ABELIAN TOY MODEL ¢. Readers can easily convince themselves of the fact that the transforma-
tion between the intrinsic and laboratory frame does not depend explicitly

Let us consider a particle of mass that is allowed to  °" the value of the anglé.

move along a ring of radius,. The model thus has initial

cylindrical symmetry. Although the solution of this problem

is simple enough in the laboratory frame, it becomes even m m m m

simpler in a system of reference rotating with the particle. | = — (D x)2+ = (D,y)%== (X+ ¢y)2+ = (Y — ¢$X)2.
Such a frame may be defined, for instance, by the condition 2 2 2 2 ©

=0. 2
y. . . @ Such a Lagrangian is calleihgularbecause the determinant
lln this rotatlng{ fr?]me ‘?T rleferednqe, t_he sglu'uon_ of 'I[he Prob-of the matrix 02Llﬁziazj (z2=X,y,$) vanishes. There are
em (not merely the initial conditionsis written simply as three equations for the momenta, namely

X=rg, Ppy=0. () oL ,
However, this solution violates the original cylindrical sym-  Px= g5 = M(X+ ¢Y), (7a)
metry of the problem, and thus it may be characterized as
being adeformedsolution. Moreover, there is no restoring JL .
force in they direction. The absence of angular motion inthe ~ Py= 75, = MY~ ¢X), (70)
description of the moving frame must be compensated by the
introduction of the angular coordinatg describing the mo- L
tion of the rotating frame relative to the laboratory frame. I=—=xp,—yp=I. (70
Thus, in addition to thex degree of freedom, there is an d¢
;)nvcigggn&p,l;;e. set of variables associated with the angula'['erel is the generator of collective rotations, whilean be

recognized as the generator of intrinsic rotations. Although
Egs.(7a and(7b) yield the momenta, ,p, as a function of
the velocities, Eq(7c) is only a relation between the three

From here on we label allective coordinates the ones
relating the motion of the moving frame to the laboratory,

and adntrinsic coordinates those describing the motion with ta. Th Cable t | il N th
respect to the moving frame. momenta. Thus we are not able to solve simultaneously the

Let us further examine the present scenario. The intrinsi%hree equations of motion. This failure can be traced to the

coordinatesc,y are related to the coordinates in the labora-/2ct that the Lagrangian describing the system from the mov-

tory systemx, Voo by (see Fig. 1 ing frame does not contain information about the motion of
laby Ylab .

the frame itself. Instead, we obtain two momenta and a con-
X ( cos¢ sin¢>) (Xlab straint

y —sing cosd/ \Yiab

We takeD; to be the total time derivative of the position of Equation(8) expresses the obvious fact that if the particle is
the particle, and a dot to be the time derivative of the posimtateq by any angle relative to the moving fram_e, the corre-
tion with respect to the moving frame. Using E@), we  sponding description should be completely equivalent to the

: 4

F=I-1=0. ®

obtain one obtained by rotating the moving frame by the opposite
angle.
X The existence of constraints is also central to the analogy
Dex=x+ Ers =X+ Y, 53 peween gauge field theories and mechanical models that are

described from moving frames. Within the extended phase
(9_)/- . 5p space defined by the intrinsic and collective variables, and
b P=y—Px. (5b) their conjugate momenta, physical trajectories are restricted
) to a hypersurface defined by the constraB)t On this hy-
HereD, and ¢ are the analogs of a covariant derivative andpersurface there are families of trajectories that transform
of a gauge field, respectively. The Lagrangigh is into each other usin§ as a generator. IndeeH, represents

Diy=y+
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the generator of the gauge transformations that leave the sysaptures the original gauge invariance of the prob|é&m.

tem invariant. To select a gauge is to select one trajectory8)] and leads to a simpler formulation of the theory.

from the family of equivalent trajectories. The name ghost stems from the fact that they only appear
The physical variables are those that are independent af closed loops, that is, they can neither be experimentally

the local reference frame: physical variabl&sbservables’) produced or detected as free particlégthough the concept

are said to be gauge-independent. of ghosts was previously applied in quantum physics, it is
Our aim is to quantize this classical model. The following only with the advent of the BRST symmetry that they were
commutation relations hold: raised to the same prominence as other variables or fields,
_ _ . being mixed with them.
x.p=Ly.py]=L1]=1, ©) A fundamental quantity in the BRST formalism is the

wherefi =1 from here on. Because we have introduced newchargeQ, constructed as an operator linear in the constraints
variables that enlarge the vector space, we must expect the Q=— pF+7B (14)

presence ofunphysicalstates and operators, in addition to TR
physicalones. The constrairi8) is equivalent to the quantal In the same way thé is the generator of gauge transforma-

conditions tions, Q may be considered as the generator of BRST trans-
F|ph)=0, F|unph+0, (109  formations. Because the constrai(@ and(12) imply that
[F,0p]=0, [F,Oumpi#0, (10b) Q=0, (15)

where the label pHunph indicates physicalunphysical we should stay within a subspace invariant under BRST
states or operators. However, the separation between phydfansformations. ) o

cal and unphysical states is by no means a trivial operation, 1"€ operatoQ is nilpotent Q“=0) and Hermitian Q
except in Simp'e examp|es_ In Sec. Il we present a System.: Q) Similar to the .S|tuat|0n deSCI’Ibed at the end of Sec. ”,
atic procedure to accomplish the separation. there are now physical and unphysical states and operators.
Indeed, Egs(10a and (10b) continue to be valid upon the
replacement of the constraift by the chargeQ. However,
within the BRST formalism, there appear a new set of states

. : | x)=Qlunph. (16)
In the previous example, the existence of an overcomplete

set of two variables is compensated by the presence of Hsing the properties 0@, it is straightforward to demon-
constraint. The most natural thing to do would be to use thétrate that
constraint to reduce the number of variables to the initial _ _
number. However, “it is a remarkable occurrence that the Qlx)=0. (xIx)=0. (1
road to progress has invariably been toward enlarging théhat is, the| x) states are also annihilated Qyand have zero
number of variables and introducing a more powerful sym-norm. One may also define operat@s, mapping physical
metry, rather than conversely aiming at reducing the numbestates onto zero-norm states,
of variables and eliminating the symmetry.In this section

[lI. OUTLINE OF THE BRST SOLUTION FOR
ABELIAN CASES

we describe how this enlargement may be performed. OXE{Q’OU“N}’ OX|ph>= ) (18)
According to Dirac] we may replace the original Hamil-  As a consequence, it is possible to gl states to physi-
tonian by cal states an®, operators to physical operators,
Hoirac=H—\F, (11) ) —[phy+|x),  Opr—Opnt+ O, (19

which yields the same results bisfor physical states. Dirac 5 . i f th : i ,
introduced an additional boson variable, the Lagrange multiz gain making use of the properties @, we easily verify

plier A, with B as its conjugate partnefX,B]=i). The new that
constraint, (P ¢+ (x:)(Opnt O (I(PN)i) + | xi))

B=0, (12 =((ph)|Opr/ (ph);), (20

should hold in order to maintain the problem associated wittthat is, the transformationd9) do not change the value of

the original Hamiltonian. We do not attempt to solve thethe physical matrix elements. We construct the BRST Hamil-

problem ala Dirac here. tonian as a particular application of this freedom, by adding
Becchi, Rouet, Stora, and Tyutiment further in this di- to H an O, operator

rection by adding two fermion variableg, 7 and their con- _

jugate operatorsr, . These Hermitian, Grassman operators Herst=H+{p.Q}. (21)

are calledghosts Thus, they satisfy the anticommutation re- For any choice of the operatgr, Hgrgr Yields the same

lations physical eigenvalues as the origirtal
o ={mm=1, 13 The enlarged phase space, discussed at the end of Sec. II,
L mi={.m} - (133 has been further extended by the inclusion of Lagrange mul-
{n,nt={m7w}={n7w}={yw}=0, (13b  tipliers and ghost variables and their respective momenta.
o = Physical trajectories are now restricted by the condiid).
{nmy={n,n={m m={mm};=0. (130 wWithin the physical trajectories, there are families of equiva-

The complication introduced by the addition of new vari- lent trajectories that are obtained from each other ugiras
ables is only apparent, because there appears a new suptire generator of the BRST transformations or, equivalently,
symmetry involving boson and ghost variables. It completelyby varying p. Thus, the selection of is equivalent to the
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adoption of a gauge. One possible choice is motivated by an Hy=imm+ing, (260
analogy with the covariant gauge in Yang—Mills theory,

1 H.=A\I, (260
p=)\77+;(0—ﬂ5 . (22 1, 1 o
H’Eﬁpﬁ—)\l’—kr—x’my, (268
In this case, Eq(21) yields$ 0
1 wherex’=x—rqy andl’=x"py,—ypy.
Hgrst=H—AF+imm+B6— —B2+ 7] 6,F], (23 As is usual in field theory, we proceed first to diagonalize
2k the quadratic HamiltoniafEgs.(26b) and(260)], in order to

where 6, a function of the intrinsic variables, should not define a basis in terms of independent bosons and fermions.
commute with the constrair, and thus with the intrinsic The remaining Hamiltonian should be treated in perturbation

generatorl. The gauge has not been completely fixed yett eory. . : .

because, aside from the last requirement, we are still free to BY cOmPpleting squares iki,, we obtain

choose either the constaktor the functiond [see Eqs(25) 1 m 1 k \2 k

and (28) below]. The uncoupling of the different modes in |'|b=%(py—fmo7\)2+ Eyz— ﬂ( B— r—Y) - E)\z-

e 0
Eqg. (23), as well as the treatment of the negative “kinetic 27)
energy” term—B2?/2k, is also deferred to Sec. IV. ) )
Because the Hamiltoniad grsr (unlike H) does not com- Ve end the selection of the gauge by choosing

mute with the intrinsic generator, the microscopic cylindrical k= mrg, (28

symmetry is lost. On the other handgrst coOmmutes with o i ]

the collective generator: microscopic invariance has been réh€ moment of inertia of the system. With this choj¢e,

placed by macroscopic collective invariance. —mroh),(B— (k/ro) y)]=0, the two kinetic energy contri-
butions inH,, become mutually independent. The completion
of the squares has yielded, in addition, restoring forces to the

V. APPLICATION TO THE ABELIAN TOY MODEL two oscillators in Eq(27). Therefore, we may writél, in

) ) ) terms of two uncoupled bosons, namely
So far we have outlined a possible version of the BRST . .
formalism that is suitable for general Abelian transforma-  Hp=T"1I'1— ¥g70, (29
tions. Let us now confine ourselves to its application to the

T T ;
toy model. The collective space associated with it is givenWhereFl and ¥, are defined as

naturally by the eigenfunctions of the angular momentum in 1 m
two dimensions, namely ri= \/?(py—mro)\)+i \[Ey’ (309
m
v (</>)=Le“°"’- (24) 1 k
AN 7 ¥h=—1\ 5(B—mroy)+ \[gx, (309

The collective degree of freedogh which was introduced in
_Sec. Il as an artifact ass_ociated with the existence of a mov- [T’ 1,FI]=[70,7$]= 1. (300
ing frame, has been raised to the level of a real degree the expression foH, displays two oscillators: one has a

freedom.

Because in the present problem there is only one real dd2ositive frequency £1), the other a negative one-Q).
gree of freedom, and this role is taken by the collective on his fact is unpleasant, not the least because the ground state

[see Eq.(24)], the remaining ones are unphysical. Thus aP€comes many times degenerate. To get out of this inconve-

e b i
trade off has taken place: the intrinsic degree of freegom Niénce, we may replac€o=y,, I'o=7,, and therefore
associated with the angular motion, has been transferred #fite

the unphysical subspace. In the following we discuss in some [T T]=1 (313
detail the structure of this subspace. o
The classical, deformed solutiof3) is taken to be the Hb:r’{rl—rgro+ 1. (31b)

starting point for the motion in the intrinsic reference frame. ) o

The radius , constitutes the large magnitude of the problem!f the (new) vacuum state is annihilated Hy, [cf. Eq. (36)
(the order parameterand thus is much larger than any other below], all excitations o, become positive, at the expense
length magnitude. As part of the process of selecting #f working with the metric(319 for the 0-bosorf. Note the
gauge, we choosé to be the conjugate variable to the lead- difference from the usual metri@0c).

ing order term of (=rop,), The ghost sector may be written as

o=ylr,. (25) Hy=aa+bb—1, (32)
With this choice the moving frame becomes anchored to thavhere the following substitutions have been made:
particle, because the mean val(¢) =0 [cf. the classical 1
value in Eq.(2)], a=i t— ‘E(F_I 7]), (336)

HBRST:Hb+Hg+Hc+Hrr (26@

1 1 1 , 1 :
=~ p2- Z By— —B?2 b=—ia'l=—(7+i7), (33b)
Hy=5—pj—Tohpy+ rOBy 51 B% (26b) 2( 7)
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— 1 _ 1
ta.a}=ib.b}=1. B39 ALY =-L3NIne=1)(ng=1\)= 513, (39
Therefore the quadratic Hamiltonian of the unphysical sec-
tor, The correct moment of inertia has reappeared, yielding the
B N T — correct rotational energy. In E39) we have used the value
Hunpi=Hp+Hg=I'1I'1—I'gl'o+aa+ bb, (34 equal to unity for the intermediate excitation enefgf Eq.

is a supersymmetric Hamiltonian with a characteristic exci-34J: The fact that second-order perturbation theory yields a

tation energy equal to unity. The eigenvectorsiof,., define positive contribution to the ground state is due to the unusual
the subspace ' ph metric associated with the zero-phonon. Another instructive

example is the calculation of the expectation vall® = 0.
(I'HM (o The residual interaction i’ vanishes in the limit of a
[n1,Ng,Na,Np)= ﬁ ol rigid radial motion. However, we may allow some motion in
v o the x direction, as would be the case for a Mexican hat po-
wheren;,ny=0,1,2,... andc,,n,=0,1. tential. The Hamiltonian would display a physical, intrinsic
The vacuum state in this subspace satisfies the conditiordegree of freedom with a finite frequency, in addition to the
physical collective degree of freedof24) and to the un-

a"abM), (35)

I1])=Tol)=a[)=b[)=0. (36) physical sector35).
We immediately verify that the quadratic charge in Et), The BRST treatment of an Abelian model is somewhat of
_ an overkill. Indeed, the ghost degrees of freedom appear to
Q=—i(I'l+THa—(I'1+Ty)b, (37)  be completely decoupled in the Hamiltoni&?6a and, as a

inilates th tat d b this state | consequence, the ghosts never appear in the calculation, not
anniniiates the vacuum state and, because this stale IS NQGen iy jntermediate states. Nevertheless, through the Abe-

malizable, we conclude that it is a physical state. In fact, it ISian calculation we have been able to discuss :
. . properties of
the only physical state of the subspa@). The excited the BRST procedure that continue to be present in the non-

stateg35) are paired: they are either unphysical St##8sor  apejian case, such as the BRST symmetry, the existence of
have zero nornB=Q|A). For instance, the one-boson state the zero-norm subspace, the construction of the unphysical
I']|) is unphysical becaus®|n,=0)=—|n,=1)+0, while  subspace, and the feasibility of the perturbation expansion.
the state [n,=1) has zero norm, becausé|b'b|)
=—i(]ab|)=0 [cf. Eq.(333].

All the effects of the unphysical degrees of freedom ony, THE NON-ABELIAN TOY MODEL
any physical magnitude must cancel out. This cancellation
would not be possible to achieve if the unphysical subspace In analogy to the Abelian case, the non-Abelian model
(35 were made up from ordinary states in the Hilbert spaceconsists of a particle that is allowed to move on the surface
The present cancellation is due to the unusual properties @ff a sphere of radius,. We define an intrinsic system by the
the unphysical sector: the commutation relatiBta of the  ¢conditions
boson labeled by 0, and the fact that neither of the fermion
creation operators is the adjoint of the annihilation operator ~ X=Y=0, (40

a#a', b#b', cf. Egs.(333 and (33b)]. Nevertheless. all and thus the classical, deformed solution of the problem is

these operators are well defined and may be used without _ _

problems in subsequent mathematical manipulations. 2=ro, P=0. (4D)
As a consequence of the cylindrical symmetry, the originalAlthough the spherical symmetry of the original problem has

problem displays no restoring force in tlyedirection. In  disappeared from Eq§40) and(41), the axial symmetry has

other words, the existence of a zero-frequency mode leads taeen preserved.

the well-known problem of infrared divergencies, which pre- The generators of the transformations on the surface of a

vents the straightforward application of perturbation theorysphere satisfy the commutation relations

However, we mentioned at the end of Sec. Ill that the cylin- L 1 l=iel lical (i.].k) 42)

drical symmetry is lost at the intrinsic level. As a conse- [hiulj1=1eiplic cyclical (i.j.k),

quence, all the unphysical degrees of freedom have a finitghere ¢;;, are the structure constants of the group of trans-

frequency[Eq. (34)], and thus perturbation theory has be- formations. It is well known, since the early days of the

come feasible. This is a very important result of the formal-quantum treatment of the rotations of molecules, that the

ism. The small parameter in the perturbation expansion cagorresponding collective generators satisfy the same commu-

be chosen to begl. tation relations up to a sign, namely
We suggest that the reader perform, as an exercise, some 0= —ie] 43)
perturbative calculations. An interesting one is the following: R R

there is a link between the collective and the intrinsic sectorgherefore, the three constraints satisfy the same commutators
(24) and(34), given by the ternH_ in Eq. (26d), which isa  as the generatoi@?2), namely
Coriolis interaction. By inverting Eq.30b), we obtain .

y 9 q ) FiEIi_Ii! [Fi!Fj]:IEiijk! (44)

N= L(FTJFF ) (39) and thus they commute within the physical subspace.
J2k 0" =0k One of the most powerful attributes of the BRST proce-
dure is to take into account the geometry of the gauge trans-
BecauseH, is a small termO(r, '), it may be treated per- formations. Accordingly, the BRST charge displays an addi-
turbatively. Second-order perturbation theory yields tional term including the structure constants of the group of
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transformations. Note that there is no freedom in the deterQuite generally, there will be as many contributions to the
mination of the charge, contrary to the arbitrariness in theHamiltonian of the quadratic typ€34), as the number of

selection of a gauge, collective variables that have been introduced.
— . The remaining contributions,
Q=—nFi+ mB+ie€jninm. (45) g B
The ghost operators carrying different subindices anticom- Herst=Aulu =N+ i, [0, 17]
mute. The properties d stated in Sec. Il remain valid in +i2e€,iN (7 — ), (53

the non-Abelian case. ) )
The collective sector is described by the three Euler angleBlay be taken into account by means of perturbation theory.
Ulyﬁ,')’- A Comp|ete set of states is given by th@tationa} As discussed at the end of Sec. IV, this is Only pOSSIble

eigenfunctions of the axial-symmetric top, because the zero-frequency modes have been eliminated
from the unperturbed spectru(g2).
[2Lot+1 Lo Note that the ghost variables cannot be totally decoupled
q’LoMK: 82 Dyk(@.8.7), (46) as in the Abelian case, even in the absence of radial motion.

o ) In particular, the ghost operatorg , 7, are still coupled and
whereM andK are the projections of the collective angular \, winetic term is associated with them. Thus the ghost space
momentum over the laboratory and intrinsicaxis, respec-  may be split into two degenerate subspaces, corresponding to
tively. Because our system consists of a particle, it cannofhe two different states of the, ghost. However, there is no
rotate around an axis passing through itself, and thus thgoplem with the perturbation treatment, because the ghosts
eigenvalues of the operatorsand|, must be zero. There- are always excited in pairs in which at least one of them has
fore, the rotational functions reduce to the spherical harmong finite energy(Eq. (52)].
ICS The unperturbed vacuum state is also determined from
— conditions similar to Eq(36). However, this vacuum state is
Vigmik=0)=Yigu(Bia)- “n only annihilated by theqquadratic charf), but not by the
The disappearance gfexpresses the well-known fact that it higher order terms ifQ. To the extent that the states are
is not possible to collectively treat the rotation around a symimproved through the use of perturbation theory, the condi-
metry axis. Within the present framework this statement im+tion Q|ph)=0 becomes more satisfied.
plies that we should not fix the orientation of the moving The perturbative treatment of the Coup”ng temml ,
frame with respect to rotations around this axis. Thus wejje|ds, once again, the rotational energy
generalize Eq(21) only to thex,y directions

1
—1IN 0= 1= = 5 Lo(Lo+ D). (59)

1
m—ﬁ&» (48)

wherev=x,y and, therefore,=r,z. We again make use of VI. LAGRANGIAN FORMULATION. THE
the expansion in 1§ in order to separate the leading order ANTIFIELD FORMALISM
terms inl;, namely

p: WV)\VJ’_WV

The Hamiltonian BRST formalism leads to gauge-fixed
ly=—ropyt+l, ly=ropxtly, I.=1;. (49)  actions that can be used within the path integral formalism.
In principle, upon integration of the momenta, one may ob-
tain a Lagrangian form. However, in many cases, it is diffi-
cult to obtain a manifestly relativistic path integral. Fortu-

We choose the&), as the conjugate variable to the leading
order terms ifl,,,

1 1 nately, there exists a systematic method for directly writing

Ox== Y, Oy=—X (50)  down the correct covariant gauge-fixed Lagrangian. It is
0 0 known as the antifield approach to the BRST symm#Xty.

The resulting Hamiltonian reatls The antifield formalism is now considered to be the most

_ powerful method for the quantization of gauge theories. It

Hers=H+1{p.Q} (513 lets us treat problems other than those in which there is a Lie
1 1 (closed group of transformations, such as in E42). It may

= ﬁpﬁ—)\vlﬁ 0,B,— EBE‘FMTV?V deal also with those situations in which the commutator be-

tween two generators yield, in addition to a third generator,

1 o terms that are proportional to the equations of motiopen
+in,n,+ ﬁpﬁvL Nl + i, [6,,11] algebrag Supergravity theories constitute an example.
For simplicity, we confine the presentation only to the
+i2€,N (pimi— ). (51b Abelian model. We start from the classical Euclidean action
(that is, we use the complex time=it), obtained from the

The quadratic Hamiltonian is obtained by replacing the op
eratorsl, in line (51b) by their leading order expressions
(49). At this level, the Hamiltonian is separable in they , T S

degrees of freedom. For each the terms are of the same :f dr| 5 (Xt @y)*+ 5 (Y= éx)7), (55

form asHq,=Hp+Hg of the Abelian case, cf. Eq$26b) o . .

and(260. Therefore the same considerations may be applieMVh'Ch is invariant under the gauge transformations generated

here, leading to the supersymmetric quadratic Hamiltonian Py F [see Eq(8)].
The set of variablesx,y, ¢) is now enlarged by the intro-

Hunpi= T 11l — T lol ot @,a,+b,b, . (52 duction of the bosonic variable and by the fermionic ghost

‘Lagrangian(6),
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antivariable (x*,y*,¢*,b*,»*,7*) is introduced. If the
variable is a bosoffermion), the corresponding antivariable
is a fermion(boson. Therefore, the number of additional 1 }

pairs  and#. For each of the variablex(y, ¢,b,7,7), an 1 P .
Sy de 5 (Y=rod)"+inn—iny—ib Gy—cﬁ

. . . K 2
variables has once again been drastically increased. The dou- + o2 b (62
bling of the variables allows for the definition of a bracket
structure known as thantibracket The antibracket plays an By completing squares and eliminating the variablepon
analogous role to the Poisson bracket, because within thisitegration in the associated path integral, we find

structure variables are conjugate to antivariables. The anti-

. . : - 1 : 1 .
bracket of arbitrary functionals of the variables and antivari-g’ — | qA = (V=rad)2+ —(V—rad)2—inn—isnl. (63
ables is defined as Sy 75 (Y=Tod)™+ S (y=Tod)*=inn—inn|. (63
SA S'B SRA SB Although the Lagrange multipliex introduced in Eq(11)
(A,B)EJ d- - - — ) has been treated as a degree of freedom independent of the
00s(7) 895 (7) &g (7) 60s(T) collective coordinatep, it may be related through the com-
SRA 5B SA S'B mutation relation

56 Y :
(56) b=i[(H—\F),$]=iN[l,$]=\. (64)
wheregy() anda(7) denote boson and fermion variables, The inclusion of the nil termX — ¢)! and the replacement of
respectively. The super-indicds and R, appearing in the ¢ by \ in Eq. (63) yields

functional derivatives with respect to the fermion variables

T Soy(n) d0T () d0%(7) b0y’

indicate differentiation to the left and to the right, Sy = Sint Scon  Scoups (653
respectively? 1 1 _
Now, the so-callednasterequation, S —f dr E(y—ro)\)2+ E(—ro)\+y)2—i f;h—iﬁn}

($,9)=0, (57)

must be solved for a real boson functional of the variables ~ f dr
(x,y,¢,b,7,7) and the antivariables x{,y*,¢*,b*,

7*,7*), which becomes equal to the classical act®n oy d(y)\)_i— i
when the antivariables vanish. It can be verified that the fol- ° dr KO
lowing functionat®!*

1 2 :
S+ F (2R

"
2

2

1 . o - ..
_ =f dr §(y2+y2)+§(>\2+>\2)—H777—H'777}, (65b)
S=S’+f drl n(Xy* —yx* —¢*)—5*b] (58)
is a solution to Eq(57). Seoll= —IJ dr ¢l, (650
The actionS is the starting point for quantizing the theory,
for which a gauge fixing procedure must be implementedS :if dr (650)
With this aim we choose a functiolf, an imaginary fermion  ~°¢0UP '

functional of the variables, that is called tlgauge fixing . L . - .
fermion It plays a role analogous to that pfin Egs. (23) The actionS,, for the intrinsic variablesoriginal coordinate

and (48), y, Lagrange multipliei and ghostsy, ) contains the trans-
formed action(6), but with the Lagrange multipliers as the
) (N _ velocities of the moving frame. Note the elimination of the
V=i f dr(r—y— b+ ?b> 7, (59 total time derivative appearing in the second line. The action
0 0 St also includes the gauge fixing terms and the action for

and we fix the value of the antivariables by the conditions the ghosts. The intrinsic system is analogous to the unphysi-
cal sector(29) displaying two boson and two fermion modes,

. ov . oY all of which have the same excitation frequency one. The
ds T sqs Os = Sos’ (60) gauge fixing procedurfsee Egs(59) and (60)] was chosen
_ so as to give nonzero frequencies to these spurious modes.
We obtain Scon is the free action for the collective coordinates in
X*=0, 7*=0, (613 _Hamiltonian form. From iF we see th_at= 8Scon! 8¢ is to b.e
interpreted as the canonical collective momentum conjugate
i i to the angleg.
y* = iz 7= r—y—id)— ?b, (61b The coupling between collective and intrinsic degrees of
0 0 0 freedom is given byS;qyp.
1
*=—if, b*=——57. 61
¢ in 227 (610

. ) . VII. CONCLUSIONS
If we substitute these expressions in E§8), together

with the valuex=r,, we derive the gauge fixed action for We have applied the sophisticated tools currently em-
the motion along the ring, namely ployed in the quantization of gauge theories to very simple
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mechanical models, both within the Hamiltonian and La- fWe have not explicitly included the potential constraining the motion
grangian formulations. Such examples also illustrate the along the ring, because the present discussion concerns only velocity-
treatment of broken internal symmetries Thus they are aIsodependent terms, such as the kinetic energy. The radial motion in the

seful in many-body finite systentor example, moiecular Abelian toy model has been used, together with the constrainty=0,
usetul 1 y y ini Y xamplée, u to illustrate the BRST formalism in the paper by D. Nemeschansky, C. R.

and nuclearin which the concepts of symmetry transforma- Preitschopf, and M. Weinstein, “A BRST primer,” Ann. Phy@\.Y.) 183
tions and broken symmetries are also relevant. They replace26-268(1988. We thank the referee for mentioning to us the existence
more conventional and cumbersome projection techniques. of this reference.

’P. A. M. Dirac, Lecture Notes in Quantum Mechani@&shiva University,
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GORDON CONFERENCE ON PHYSICS RESEARCH AND EDUCATION:
QUANTUM MECHANICS

The 2002 Gordon Conference on Physics Research and Education will focus on quantum
mechanics and will be held on June 9-14, 2002 at Mount Holyoke College, South Hadley,
Massachusetts. The goal of the conference is to bring together researchers who study and apply
guantum mechanics, physics education researchers, and college and university level instructors of
guantum mechanics for the purpose of promoting innovation in all aspects of teaching quantum
mechanics throughout the undergraduate curriculum. The conference will include sessions and
discussions about the desired content and outcome of courses, curriculum development using
research on student understanding of topics in quantum mechanics, ways of approaching non-
intuitive aspects of quantum theory, and the results of current research in physics that can he used
to increase undergraduate student understanding of the concepts and applications of quantum
mechanics. More information can be found at http://www.grc.uri.edu/programs/2002/physres.htm.
Questions or suggestions about the Gordon Conference can be addressed to the organizers, Beth
Ann Thacker (batcam@spudhammer.phys.ttu.gdtdarvey Leff (hsleff@csupomona.egiu or
David Jackson(jacksond@dickinson.eglu
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