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Fermion-boson interactions and quantum algebras
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Quantum algebragy(algebrag are used to describe interactions between fermions and bosons. Particularly,
the concept of a g((2) dynamical symmetry is invoked in order to reproduce the ground state properties of
systems of fermions and bosons interacting via schematic forces. The structure of the prop@etiamil-
tonians, and the meaning of the corresponding deformation parameters, are discussed.
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[. INTRODUCTION g analogs(see Ref[18] and references thergirAn example
of this “direct g-deformation”approach for a quantum opti-
Group-theoretical methods have contributed significantlycal fermion-boson Hamiltonian was given in RE21]. The
to the study of the nuclear quantum-many-body problemphonon spectrum irfHe has been also described by using a
Classical examples are the Lipkin mod#], the Elliot sy3) g analog of aN-oscillator Hamiltonian in Ref[22].
model [2], the various realizations of Arima and lachello  Although the mathematical meaning of the deformation
Interacting Boson ModelIBM) [3], the Schitte and Da parameter §) which characterizes the commutatiganti-
Providencia mode[4], and the bi-fermion algebraic model commutation relations between the generators of a given
of Geyeret al.[5], among other important contributions. We algebraic structure is self-evidenii4—17, the physical
refer the reader to the review article of Klein and Marshalekmeaning of it is less known. We recall that the exact
[6], for a comprehensive presentation of the problem. g-deformed su(2) symmetry underlies the complete integra-
Models based on the coupling between bi-fermions andility of quantum systems like th&XZ Heisenberg chain
bosons have been introduced long 4@¢B]. These models [17,23—23 and Bloch electrons in a magnetic fidla6]. In
are particularly suitable to describe condensation phenomenauclear models, except for the quantum harmonic oscillator
and transitions from Fermionic to Bosonic phases. In particuand the quantum rotd18] whereq may be interpreted as a
lar, the model proposed by Da Providencia and ‘®ehu stretching parameter of the corresponding spectra, little is
(DPS is a solvable model which exhibits a phase transitionknown about the potentiality af algebras in more realistic
between nucleonic and pionic condensdtds Similar ideas cases.
have been applied to mock up the fundamentals of the non- With the above motivation in mind, and as a complemen-
perturbative, low energy, regime of Q(dB,10]. Recently, an tary tool to standard nonperturbative many-body techniques
extension of the Lipkin(LE) model was proposed to take [13], in this paper we propose the use of quantum algebras in
into account the interaction of pairs of bi-fermiofguark-  the construction of effective Hamiltonians. We shall show
antiquark pairs with external bosonggluon pair$ [11].  that the quantum algebrag@) [27] can be used to define,
These constructions may help, as toy models, to understand a natural way, new effective Hamiltonians which repro-
interactions between fermions and bosons in hadron physicuce the same ground state properties and the spectrum of
[12]. All these models share the nonperturbative nature of théhe ones based on fermion-boson interactions. Advances in
approximationg 13]. the same direction have been achieved in quantum optics,
In addition to the conventional group theoretical ap-where the interaction term of the Dicke model has been de-
proach, the literature is rich in different realizations of de-scribed through a g02) effective Hamiltoniarj 28].
formed algebras( algebras whose mathematical founda-  We would like to stress that such a quantum algebra ap-
tions can be found, i.e., in Ref§l4-17. Applications of  proach introduces a remarkable simplification of the models
concepts related tq algebras to some selected quantum mewithout any significant loss of physical content. Explicitly,
chanical examples can be found in Rgf8]. Recently pub-  we shall show how the DPS and LE Hamiltonians, originally
lished works onq algebras, in connection with quantum defined on a su(2) h; Lie algebra, where su(2) is the alge-
many-body Hamiltoniangl9,20, have shown the suitability bra of quasispin fermion operators and the Heisenberg alge-
of the concept. bra h; accounts for the boson degrees of freedom, can be
Several g-deformed versions of different schematic defined on the g2) algebra alone. It is found that the new
nuclear models have been previously introduced through theffective sy(2) Hamiltonians reproduce accurately the
substitution of the symmetries of the original models by theirphysical properties of the su(2h; models, provided the
deformation parametey is suitably fitted in terms of physi-
cal constraints.

*Email address: angelb@ubu.es We are confident that the present treatment can be suc-
TEmail address: civitare@venus fisica.unlp.edu.ar cessfully applied to describe other physical systems, where
*Email address: fiherranz@ubu.es the effective motion is determined by the interaction between
SEmail address: reboiro@venus fisica.unlp.edu.ar elementary fermion and boson degrees of freedom. The cor-
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respondence between the spectra of interacting fermiorand the following bi-linear combinations of fermion opera-
boson systems and effectivedeformed purely Fermionic tors

systems, which we demonstrate in this work for some se-

lected examples, may be a general feature common to oth? ZE albl, T =(T,'

fermion ® boson systems. Such is the case, for example, of * 4« “1 -1 - T

nucleons interacting stronglyia nuclear\ -pole fields, which

may also be represented as free nucleons moving in a de- o

formed central potentigl29]. Similarly, the nonperturbative T,= §(V+ v)—Q, (3
domain of QCD, which is the theory of the interactions be-
tween quark and gluons, may be viewed as an effective )
theory of confined fermionsl1,12, without gluons. To sum- are the generators of the su(2) algebra:

marize, this paper is devoted to the study of the equivalence
p p y q [T01T+]=T+1 [TOny]z_Tfy [T+,T,]=2T0.

between systems of interacting fermions and bosons and sys- 4)
tems ofg-deformed fermions. Clearly, we shall not deal with
the transformation of a given Hamiltonian ontg-aleformed The Hamiltonian of Eq(1) commutes with the operator

space, since this procedure leads, in general, to a completely
different Hamiltonian. 1

The paper is organized as follows. In Sec. Il we present P=B'B- §(V+ v)=BB—(Ty+Q). (5)
the basic aspects of the fermion-boson interaction models

considered in the work, and construct the associated deI=herefore the matrix elements &f can be calculated in a

Lorrr]neq eff?cm/e Hamtllton||atns. In t?te(':. l(Ijl fvve t?_:scg_sﬁs thetbasis labeled by the eigenvalues of the number operators for
ehavior of the exact solutions obtained for the differenty s a0 fermions, as shown in R,

Hamiltonians. Conclusions are drawn in Sec. IV.

Q—mg)!
Il. FORMALISM Img.n>=\/(mﬂiﬂ)!(g)ﬂ)!mﬂm(z (BN 0). (6)

In this section we shall briefly review the essentials of the ] ] ) )
DPS and LE schematic models and discuss their realizatiorl this basis the eigenvalues Bfare given by

in the framework of deformed algebrésereon referred to as
q algebrag P|mg,n)=(n—mg—Q)[mg,n). ()

In particular, we shall diagonalizél in the subspace
spanned by the statgs ,L +mqg+Q)=|mq;L,Q) which
The DPS model4] consists ofN=2() fermions moving have a fixed eigenvaluke of P,
in two single shells. Each shell has a degeneraQy and its
substates are labeled by the index1, . ..,2). The energy Plmq;L,Q)=L|mq;L,Q). (8)
difference between shells is fixed by the energy seale
The creation and annihilation operators of particles belongin this subspace, the nonzero matrix elementsi ire
ing to the upper level, are denoted h{P and a;, respec-
tively, while in the lower level, the creation and annihilation ~ {Mq;L,Q[H|mg;L,Q) = wpl + (05+ wp)(Q+mg),
operators for holes are denoted It»,S/and b,. The fermions (9a)
are coupled to an external boson field represented by the
creation(annihilation operatorsB' (B) and by the energy (Ma+1:L.Q[H|mg;L,Q)
wyp, respectively. The DPS model Hamiltonian can be inter- . —
prk:ated a?s the one describing a systenNdermions (either =GV(Q+mo+1)(Q—mg)(L+Q+mg+1).  (9b)
nucleons or quarksbelonging to an isospifftavor) multip-
let andN spin projectiongcolors in interaction with bosons
(either pions or gluonsin a hadron(QCD) scenario. The
DPS Hamiltonian readgt]

A. DPS model

The dimension of the finite-dimensional subspace associated
to each fixed eigenvaluke varies depending on the positive
or the negative character bf ForL=0 the quantum number
m can take the values

H=wiTy+Q)+w,B'B+G(T,.B"+T_B), 1
oi(To+ Q)+ oy (T ) (1) mo=—-Q,-Q+1,...Q, (10

whereG is the strength of the interaction in the particle-hole
g P and the Hilbert's subspace has dimensidh-21. In the case

channel.
. — ) <
The particle ¢) and hole ¢) number operators are given L<0, the values thamg can take are
by mo=—-L-Q,-L-Q+1,... 0, (12)
= ala,, = b/by, ) and accordingly, the dimension of the Hilbert's subspace is
[ [ 20+L+1.
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DPS and effectivesu,(2) Hamiltonians which cannot be obtained from E({) through any transfor-
mation. The main result of this procedure is that the Bosonic
degrees of freedom included in EG.) may be absorbed by
the g deformation in Eq(15) provided thaf is defined as an
appropriate function of botk) andL, a tradeoff leading to
the purely Fermionic structure of E¢L5). In this way it is
possible to regartll, as an effective Hamiltonian with physi-
cal properties similar to those &i. In particular, we shall
determine numerically the optimal values of the deformation
parametelq by imposing that the spectrum of tlieHamil-
tonian of Eq.(15) be as close as possible to that of EL). In

(13) so doing, the functiory(g) has been chosen as

The quantum algebra g(2) is a Hopf algebra deforma-

tion of su(2)[27] whose generators afle. andT,, and obey
the commutation rules

[To,Tol==T., [T, T-1=[2Tol,. 12

Here theq analog[ x|, of a given objeck (either ac number
or an operatoris defined by

q*—q " sinh(zx)
q—q_l B Sinr(Z) ’

[X]q:

GVL+Q+md+1(Q+md+1)(Q—md)

Throughout the paper we shall use alternativgland z (q)=
. x(q (MO+172) fio 0 — 0

(whereq=e?) as the deformation parameter, furthermore we q VI +mP+ 1] —m],

shall assume thaj is real. Recall that the su(2) algebra of (18)

Eq. (4) is recovered from Eq(12) in the limit g—1 (z o0 o .

—0). where mg, is the value ofmg that maximizes the matrix
Whenq is not a root of unity, the irreducible representa- elerrgent of Eq.(9b), and m°=m, for L=0, while m°

tions of sy(2) are obtained as a straightforward generaliza-= Mg+ L/2 for L<0. This choice ensures that the maximum

tion of those of su(2]14,17. Namely, values of the interaction terms of the HamiltonidhandH
B coincide(see Ref[28]), as it is shown in Sec. Ill.
Tolj,my=m [j,m), The main role of the exponentiatg °/2 in Eq. (15) is to

break them« —m symmetry of the effective model, since
this is one of the main effects of the nonlinearity introduced
by the fermion-boson coupling in E@L). This effect could

be reproduced, also, through functions others than exponen-

tials of theT, operator. The effective fermionic Hamiltonian

The matrix elements of E49) correspond to a tridiagonal could also be defined by using more involved.functions.on.
finite dimensional matrix. Let us consider an effective the nondeformed su(2) algebra, since the main constrain is
Hamiltonian, sharing the same property, which is defined afhe block structure of Eq1). Nevertheless, we would like to

the following function of the sy(2) generators: stress that the essential advantage of using both th@)su
operators of Eq(14) and the exponential form of the effec-

Ho= ol + (oot o) (Trt Q)+ To2F, +T_)qTo2, tive Hamiltonian of Eq.(15) is that the eigenvalues of the
q= wpL +(wpt 0f)(To+ Q)+ x(a)g (T +T_)q (% interaction term

Tolismy=[i+m+1][j—m]q [i,m+1),

T_li.my=\[i—m+1][j+m]lq [j.m—1). (19

wherex(q) is a scalar function anHl, will be realized in a Hi(;“: qror2(T,.+T_)q"0? (19
sy,(2) irreducible representation with the same dimension as

the subspace spanned R ;L.Q) [therefore withj  are just theq numbers[2m], (m=—j, ..., +j), and its
=j(Q,L)]. From Eq. (14), the nonvanishing matrix ele- eigenvectors are known in analytic form. They are related to
ments of Eq.(15) read g-Krawtchouk polynomialg28]. Therefore the results here

presented seem to indicate that certain interactions between
fermions and bosons can be accurately described by wsing
fermions as quasiparticldgge., effective Fermionic degrees
(J.m+1[Hglj,my=x(a)q™* ¥2\[j+m+1][j —m],. of freedom under the exactly solvable interaction given by
the HamiltonianH".

(J,m[Hqlj,m)=wpL + (¢ + wp)(M+Q), (16a

(16b
In order to fit the dimensions, in the previous equations we B. Extended Lipkin models
take j=( andm=m for the effectiveL=0 model, while As a second example of Hamiltonians including Fermi-
for L<O0, j=Q+L/2 andm=mq+L/2. onic and Bosonic degrees of freedom, let us introduce the

Note that, apparently, the Hamiltoniakkof Eq. (1) and  Lipkin-type Hamiltonian
Hq of Eq. (15) seem to be quite different, since the latter has

no Bosonic degrees of freedom. In fact, the nondeformed H=wi(To+ Q)+ w,B'B+G(TZB+T2B"). (20
limit g—1 of Eq. (15) is the nondeformed su(2) Hamil-
tonian The fermion sector of the model is described by two levels,

with energies* w¢/2 and degeneracies(2 The fermions
H=w,L+(wp+ o) (Tog+ Q)+ x(1)(T,+T_). (17) interact with bosons of energy, .
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The Hamiltonian of Eq(20) commutes with the operator values ofP ., are given by

[30]
4o, L Py|Mg,ny= n+£(Q+m ) ||mg ,n) (22
P(+)=B'B+5(To+0), (21) (R 2 QFJrEe T
therefore the matrix elements ¢f can be calculated in a we shall consider the subspace spanned by the stated with
basis labeled by the eigenvalueshof fixed |mg ,L—3(Q+mg))=|mg;L,Q).
If we consider the basis of E¢6), we find that the eigen- Hence the nonzero matrix elementstbfread

(Q+mg), (239

1
(mQ;L,Q|H|mQ;L,Q>=wa+(wf—Ewb

1
(Mmo+2;L,QH|mq;L,Q)=G+/L— §(Q+mﬂ)>< VQ+mo+2)(Q+mo+1)(Q—mg)(Q—mg—1), (23b)

with is another Lipkin-type Hamiltonian, which differs from Eq.

) (20) in the ground state correlatioh$l]. Since it commutes

L>QO,L halfinteger, to L
P(_):B B_E(TO‘FQ), (26)
mQ+Q=l,3, e ,Zl—l,
its matrix elements can be calculated in a basis labeled by the
L<Q,L integer, mo+Q0=0,2,...,2, eigenvalues oP_,. Once again this basis is just E@®),
where the eigenvalues & read
L<Q,L halfinteger,

1
me+Q=02,...,2-1. (24) P(>|ma,n>=<n—§(ﬂ+m9) Img.n),  (27)
The Hamiltonian and we shall compute the matrix elements in the subspace

spanned by the statelsng,L+3(Q+mg))=|mq;L,Q).
H=0i(To+ Q)+ w,B'B+G(TZB"™+T2B) (25 The nonzero matrix elements bf are given by

(Q+mg), (283

1
<mQ;L,Q|H|mQ;L,Q>=wb|—+(wf+ 5 @b

(mQ+2;L,Q|H|mQ;L,Q>=G\/L+%(Q+m9)+l>< VQ+mo+2)(Q+mo+1)(Q—mg)(Q—mg—1), (28b
where the dimension of the subspace depends and(} in the form
L=0, L integer, mo+Q=0,2,...,2),
L>0, L halfinteger,
mo+0=13,... 21,
L<0, L integer, mo+Q=-2L,-2L+2,...,2),

L<0, L halfinteger,

mo+Q=-2L,—-2L+2,...,20—1, (29)
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1. Extended Lipkin andsu,(2) effective Hamiltonians

As for the case of the DPS model, we introduce an effective Hamiltonian fof2Bg.which is again defined on the £2)
generators,

Ho= wpl + (Fo+ Q)+ x(@)qTo(F2 +F2)qo. (30)

ws— Ewb
This Hamiltonian has the following nonvanishing matrix elements

(Q+m), (313

(J»m[Hglj,m)=wpL +| wi— 2 @b

(1,m+2[Hglj,m)=x() @™ J[j+m+2]g[j + m+1]g[ —m]e[j —m— 1], (31b)

[As the first step in order to fit the dimensions of Eg0) and of Eq.(30) we have to find the appropriate relatign
=j(Q,L) and, as a consequeneces= m(mg ,{),L). Afterwards, we consider as the effective Hamiltonian the restriction of the
matrix elements of Eq(313 to the invariant subspace spanned|pyn) with m=—j,—j+2,...j—2,j. In this way we
obtain the effective matrix elements

(J.m+2[Hglj,m)=x(q)h(L,Q2,mg). (32

For values ofL=0Q (L integep, we findj=Q, m=mq and the functiorh(L,Q,mg) is

h(L,Q,mg)=q?™* 1 J[Q+mg+2][Q+mg+1][Q—mg][Q—mg—1],. (33

WhenL<( (L intege), we have thaj=L+3, m=mg+Q—L—3%, and

h(L,Q,mg)=q2Ma*2=L+12) [+ mg — 2L [ [+ Mg — 2L — 1] V[Q+ Mg+ 1][Q+ Mg+ 2], (34)

The functiony(q) is defined by

1 VEQ+md+2)(Q+md+1)(Q—m)(Q—md—1)
=G\/L—— Q+md)
x(q) 2( +mg) h(L.0.m0)

, (39

Wherem% is chosen as the value of,, that maximizes Eq23b). Following the arguments presented in subsection A we shall
search for values of thg=dependent couplinfpf Egs.(30) and Eq.(35)] which may absorb Bosonic degrees of freedom of Eq.
(20) and yields a comparable spectrum for the purely Fermigrdeformed Hamiltonian of Eq.30).

Similarly, for the Hamiltonian of Eq(25), we can write the effective §(2) coupling

L o] (Fo02 To(T2 +72)qT0 36
wit+ s op | (To+ Q)+ x(q)q o(TL+TZ)g o (36)

2

HqubL+

Now the matrix elements dfi, are given by

(Q+m), (379

1
wf—i- Ewb

(J.m[Hg|j,m)=wpL +

(1,m+2[Hglj,m)=x()a®™ D J[j+m+2]g[j +m+1]g[j —m]e[j —m— 1], (37b)

Note that the Hamiltonians of Eq$30) and (36) differ in the unperturbed sector, and that once again we have to fit the
dimension of the g|{2) operator through the appropriate choice of the quantum numkeerd m. For values ofL=0 (L
integed, we findj=Q andm=m,. In the casd.<0 (L integey, we havej=L+Q+3% andm=mg+L+ 3. We recall that
the effective sy(2) matrix is given by the matrix elements of H§7) computed within the subspace spannedjbs) where
m=—j,—j+2,...j-2,].

Finally, the adopted expression fgfq), in Eq. (36) is

(Q+m+2)(Q+m+1)(Q—md)(Q—md—1)
[+ mO+2]g[j +mP+ 1]g[j —mPg[j —m®—1],

1
x(@)=Gg 2" D) \/L+§(Q+mg)+1 (38)
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and m% is chosen as the value ofi, that maximizes Eq. sl . ]
(28b), accordingly,m®=m9 for L=0, andm®=mJ+L+3 + (@) 8t ) (b) T
for L<O. 2ar % T

Before ending with this section, we shall summarize the — ,,1 %
main steps of the above formalism. We have written, for 3 on 8T
different fermion® boson Hamiltoniangg-deformed purely o 16T % 1%
Fermionic Hamiltonians where the information about boson™! 121 - I = 4l
degrees of freedom is absorbed in the definition of the K s
g-dependent strengtly(q). The actual value ofy(q) de- 8r % s
pends on the deformation parameter, which may be deter al CR ol .
mined from the comparison between the spectra of the fer- o
mion ® boson andg-deformed fermion Hamiltonians. We o v —
shall discuss the feasibility of this procedure in the next sec- ettt '
tion. 28, ) | 5t ()]

24¢ 7
ll. RESULTS AND DISCUSSION 20F % al

We have calculated the spectra of the Hamiltonians intro- _ 16 % N
duced in the previous section. The calculations have beems 42} % { ‘o 3}
performed by fixing the following set of parameters; sl E -
=wyp=1, in arbitrary units of energy, and foi=20 =230 % ol
particles, unless stated. The parameteiG/2Q/ w;wy,, Was ar 1
taken as the dimensionless coupling between fermions an o 2 1
bosons, for the case of Hamiltonian of E({.), and it is ab Ew i N
defined ax=G(4Q/w;wy), for the case of the Hamilto- i ]
nians of Egs.(20) and (25). As we shall discuss later on, T 3020100 10 20 30 20 10 0 10 20
actual values ok are indicative of the phase preferred by the L L

system(in the sense of the dominance of the Fermionic or
Bosonic degrees of freedom on the structure of the ground FIG. 1. Ground state enerd, in arbitrary units, and deforma-
statg [30]. In general, we shall talk of aormal phase, of tion parameterz=In(q), as a function ot. Insets(a) and(b) show
any of the fermion® boson Hamiltonians of the previous results for the caseN=20=30, o;=1, w,=1, and X
section, when the correlated ground state is the eigenstate 6fGv2()/w;w,=0.5, while insets(c) and (d) correspond tox
the symmetry operatd? with the eigenvalu¢.=0. The de- =1.5. The exact ground state energy corresponding to the DPS
nominationdeformedphase will be assigned to cases wheremedel of Eq.(1) is denoted by crosses while the one corresponding
the correlated ground state is an eigenstat® wfith eigen- to the effective sy(2) model of Eq.(15) is denoted by circles.
valueL#0. The Bosonic or Fermionic structure of the de-
formed phase is determined by the signLoffollowing the  effective Hamiltonian of Eq(15). The scaling of Eq(18)
corresponding definition aP. was performed as indicated in the text. These results support
Let us start with the DPS model. The couplimg=0.5 nicely the adopted procedure, since the agreement between
yields a normal solution of the DPS Hamiltonian. The valueboth set of matrix elements is rather acceptable.
x=1.5 is consistent with a deformed solution of it. Figure 1, Figure 4 shows the results of the integrated Hamiltonian
cases(a) and (c), shows the evolution of the ground state energy density, corresponding to the Hhamiltonias of Egs.
upon L. In the same figure we present the results of thgl) and(15). Again in this case the agreement between both
g-deformed Hamiltonian corresponding to the DPS Hamil-set of results was verified within the computer accuracy.
tonian. Figure 1, casdéb) and(d), shows the behavior of the The above results, shown in Figs. 1-4, demonstrate that
deformed parameter=In(q), as a function of., which re-  both the ground state energy and the spectrum of the DPS
produces the ground state energies of the inG@tand (c). model can be represented by the effectivg(2h Hamil-
The values oz have been chosen so that the ground statetonian of Eq.(15), by fixing the value ofz(q), which is the
energies of the DPS model and the ones of th¢Zueffec-  parameter related with theg deformation.
tive model of Eq(15) differ in less than 1%. Figure 2 shows A similar analysis can be performed for the LE models of
the evolution of the values df, zand x(q), at the absolute Sec. Il B. Figure 5 represents the ground state energy of the
ground state, for different values of the coupling constant fermion ® boson Hamiltonian of Eq(20), and the behavior
Two different phases can be identified, depending on thef the parameter of the corresponding-deformed version,
value of x. The normal phase corresponds to valuesxof Eg.(30). Also, in the same figure, the ground state energy of
=<1, with L=0 andz almost constant, and the deformed the g-deformed HamiltoniafEq. (30)] is given as a function
phase corresponds to valuesyof 1, with values ofL>0 of L. The insetda) and(b) of Fig. 5 show the results corre-
and decreasing values of sponding tox= 0.5 (normal phasg while insets(c) and (d)
Figure 3 displays the comparison between the matrix eleshow the results obtained witt= 1.5 (deformed phageAs
ments of the DPS model and the ones obtained with théor the case of the DPS model, we have chogsn that the
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FIG. 2. Values ofL [inset(a)], z[inset(b)], andy [inset(c)], at
the absolute ground state energy, as a functiorx.ofhe figure
displays the results corresponding to the chise30, w;=1, and
wp,=1 for different values ok, and for the Hamiltonians of Eqél)
and(15) (see Fig. 1
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100 F——————— 3
75 [
50

25 [

[ L=20,2=0.014 \]
0 = 1 " 1 " 1 " 1 " 1 " 1 M 1 P
16 -12 -8 -4 0 4 8 12 16

FIG. 3. Scaling procedure of E418). The matrix elements of
Eqg. (9b) (solid line and Eqg.(16b) (dashed ling are shown as a
function of them-quantum number. The values bfandz are indi-
cated in the insets.

[ p(xydx

1 " 1 " 1 " 1 1
0 300 600 900 1200

E

FIG. 4. Integrated density of states, as a function of the energy,

corresponding to the Hamiltonians of E@) (solid line) and of Eq.

(15) (dashed ling Both results coincide in the curve shown in the
figure. The calculations were performed fr=200, w;=1, wy,

=1, andx=1.5. For the DPS model, E{l), the valueL =34 was
used. The spectrum of the effective,&2) Hamiltonian of Eq(15)

was calculated witlz=0.004. Both curves coincide within the reso-
lution of the diagram.

ground state energy of the Hamiltonian of E0) and that
of Eq. (30) coincide within 1%, for each value &f.

Figure 6 displays the behavior &f z and x(q), at the
absolute ground state energy, for different values of the cou-
pling constank, for the Hamiltonians of Eq$20) and (30).

As for the case of the DPS model, the results shown in this
figure correspond to two different phases, which can be iden-
tified by the value ofx. Similarly to the case of Fig. 2, the
normal phase corresponds xe<1, L=0, andz(q) nearly
constant. The deformed phase corresponds>d, L+0,

and increasing values afq).

Figure 7 displays the comparison between the spectrum of
the Hamiltonian of Eq(20) and the spectrum of the effective
Hamiltonian of Eq.(30). As done for the cases of Eqdl)
and (15) (see Fig. 4 we have calculated the integrated
Hamiltonian energy densitfnumber of eigenvalues per unit
energy interval Also in this case, the scaling procedure
yields almost identical results, within computer accuracy, as
compared to the original Hamiltonian.

Finally, the ground state energies, theleformation pa-
rameter, theg-depending coupling, and the comparison be-
tween the spectra, for the case of the Hamiltonians of Egs.
(25) and (36), are shown in Figs. 8-10, respectively. From
the results shown in Fig. 8, casé® and(d), it is seen that
there is a particular value af, for which z(q)~0. It means
that, for this particular value af(q), the su(2) symmetry is
dynamically restored. Figure 9 shows the behaviok $in-
set(a)], z(q) [inset(b)] and x(q) [inset (c)], taken at the
absolute ground state energy, as a functiorx.ofigure 10
displays the comparison between the spectrum of the Hamil-
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151 & - o [
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S5r# e o -6 |
ofF -0} T s L
10 [
op, or
i W 0.6 |
al . (c) ] 2t (d) 1 |
It ; X 04 F
N 41
N
° 4 o 0.2
w -8r 4; o
a ™ '6 =
* 0
2 ol
E “T X
-16} W 1 10} - FIG. 6. Idem as Fig. 2, for the LE model of EQO), and for the

L. N sw,(2) Hamiltonian of Eq.(30). The values of the parametels
10 20 30 40 50 10 20 30 40 50 w¢, andw,, are the same as those given in the captions to Fig. 5.
L L

FIG. 5. Ground state energies and In(qg) for the LE model of
Eqg. (20) are shown as a function df. Insets(a) and (b) show
results for the castl=2(0=30, w;=1 MeV, w,=1 MeV, andx L L L
=G(4Q/Jwswp)=0.5, while insets(c) and (d) correspond tax
=1.5. The exact ground state energies corresponding to the LE
model of Eq.(20) are denoted by crosses while the one correspond-
ing to its associated effective g2) Hamiltonian of Eq.(30) are
denoted by circles.

tonian of Eq.(25) and the one obtained with the effective
Hamiltonian of Eq.(36), with z=0.00440.

A systematic feature emerges from the above discussed
series of results and it is related with the replacement of the
boson degrees of freedom, which are present in the consid- L
ered initial Hamiltonians, by the effectiv@dependent cou-
pling. In the three cases which we have considered, the spec-
trum of the fermion® boson system and the spectrum of the
g-deformed purely fermionic system agree, for certain non-
trivial values of theg-deformation parametea(q). The pro-
cedure works reasonably, for the rotorlike structure of the
DPS Hamiltonian, as well as for the vibrational-like structure T
of the LE Hamiltonians. There is a trend in the dependence 0 2000 4000 6000 8000
of z(g) uponL, which is the parameter associated to the
symmetry in the fermior® boson space. It is symmetric for E
the case of the DPS Hamiltonian and almost asymmetric for 5 ;. Integrated density of states for the LE model of &)
the case of the_Llpkm Hamiltonians. Alsa(q) resembles (solid line) and for the effective g(2) Hamiltonian of Eq.(30)
more the behavior of an order parameter for the case of thgjashed ling The values oN, w;, andw, are the same as those
Lipkin Hamiltonians than for the DPS one. Concerning rela-given in the caption to Fig. 4. The results corresponding to the
tives values ofz(q), the g-deformed versions of the Hamil-  Hamiltonian of Eq(20) have been obtained wittv2Q1=7. For the
tonians of Egs.(1) and (20) required values ofz(q)  effective sy(2) Hamiltonian of Eq.(30) the valuez=—0.0009.
(=~0.03) which are larger than the valuezgf]) correspond- Both curves coincide within the resolution of the figure.

fp(x)dx
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Y . FIG. 9. Idem as Fig. 2, for the LE model of E5) and its
16} W ] ol i correspondenq.anal.og of Eq.($6). The \(alues olN, w;, and wy,
are the ones given in the captions to Fig. 8.

40 0 10 20 30 10 0 10 20 30
L L tion of hadronic system§31] and the nice agreement ob-

FIG. 8. Ground state energies and In(q) for the LE model of tained with theg-deformed version of it, we are confident

Eq. (25), are shown as a function df. Insets(a and (b) show _about the pote_ntlahty oq-pleformed representations in more

results for the cas®dl=20 =30, w;=1 MeV, w,=1 MeV, andx involved _ph_ySICaI scenarios. . .

=G(40/Jorwy)=0.5, while insets(c) and (d) correspond tax Work is in progress concerning the extension of the pre-

=1.5. The exact ground state energies corresponding to the LEeNted formalism to nonperturbative QCD.

model of Eq.(25) are denoted by crosses while the one correspond-

ing to the associated effective $d) Hamiltonian of Eq.(36) are 120
denoted by circles. I (@ (b)

ing to the g-deformed version of Hamiltonian of E@25). 100+

This result shows the sensitivity of the chosen valuez of
upon the vibrational or rotational-like character of the fer- 80|
mion ® boson picture.

IV. CONCLUSONS %0 - -
w —_ P
In this work we have shown that effective,$8) Hamil- a0t _ _ i
tonians can be introduced in order to reproduce the ground - _
state properties and the spectrum of different interacting — .
fermion-boson Hamiltonians. In this respect, the Bosonic 20r — — T
part of the interactions can be effectively embedded as an - -
appropriateq deformation of the su(2) Fermionic algebra. ol - - i
The results presented at this work show the existence of a — —
close relation between the deformation parametéq), - -
which fixes the strengthy(q) of the purely Fermionic -20
g-deformed Hamiltonians, and the eigenvaluef the sym- FIG. 10. The spectrum for the LE model of E5) and for the

metry operatoP, associated to the fermion boson Hamil- sy,(2) Hamiltonian of Eq.(36). The values oN, o, andw, are

tonians. Bothz(q), in the case of the g(2) effective mod-  the same as those of Fig. 8. The spectrum denotedabgorre-

els, andL, for the fermion-boson interactions, display a sponds to the one obtained from the Hamiltonian of &%), for

critical behavior as a function of the coupling constant L=22. The spectrum denoted lly) is obtained from the effective
Because of the relevance of the DPS model in the descripsy,(2) Hamiltonian of Eq(36), with z=0.0044.
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