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Fermion-boson interactions and quantum algebras

A. Ballesteros,1,* O. Civitarese,2,† F. J. Herranz,1,‡ and M. Reboiro,1,2,§

1Departamento de Fı´sica, Universidad de Burgos, Pza. Misael Ban˜uelos, E-09001 Burgos, Spain
2Departamento de Fı´sica, Universidad Nacional de La Plata, c.c. 67 1900, La Plata, Argentine

~Received 19 June 2002; published 30 December 2002!

Quantum algebras (q algebras! are used to describe interactions between fermions and bosons. Particularly,
the concept of a suq(2) dynamical symmetry is invoked in order to reproduce the ground state properties of
systems of fermions and bosons interacting via schematic forces. The structure of the proposed suq(2) Hamil-
tonians, and the meaning of the corresponding deformation parameters, are discussed.
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I. INTRODUCTION

Group-theoretical methods have contributed significan
to the study of the nuclear quantum-many-body proble
Classical examples are the Lipkin model@1#, the Elliot su~3!
model @2#, the various realizations of Arima and Iachel
Interacting Boson Model~IBM ! @3#, the Schu¨tte and Da
Providencia model@4#, and the bi-fermion algebraic mode
of Geyeret al. @5#, among other important contributions. W
refer the reader to the review article of Klein and Marsha
@6#, for a comprehensive presentation of the problem.

Models based on the coupling between bi-fermions a
bosons have been introduced long ago@7,8#. These models
are particularly suitable to describe condensation phenom
and transitions from Fermionic to Bosonic phases. In parti
lar, the model proposed by Da Providencia and Sch¨tte
~DPS! is a solvable model which exhibits a phase transit
between nucleonic and pionic condensates@4#. Similar ideas
have been applied to mock up the fundamentals of the n
perturbative, low energy, regime of QCD@9,10#. Recently, an
extension of the Lipkin~LE! model was proposed to tak
into account the interaction of pairs of bi-fermions~quark-
antiquark pairs! with external bosons~gluon pairs! @11#.
These constructions may help, as toy models, to unders
interactions between fermions and bosons in hadron phy
@12#. All these models share the nonperturbative nature of
approximations@13#.

In addition to the conventional group theoretical a
proach, the literature is rich in different realizations of d
formed algebras (q algebras! whose mathematical founda
tions can be found, i.e., in Refs.@14–17#. Applications of
concepts related toq algebras to some selected quantum m
chanical examples can be found in Ref.@18#. Recently pub-
lished works onq algebras, in connection with quantu
many-body Hamiltonians@19,20#, have shown the suitability
of the concept.

Several q-deformed versions of different schemat
nuclear models have been previously introduced through
substitution of the symmetries of the original models by th
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q analogs~see Ref.@18# and references therein!. An example
of this ‘‘direct q-deformation’’approach for a quantum opt
cal fermion-boson Hamiltonian was given in Ref.@21#. The
phonon spectrum in4He has been also described by using
q analog of aN-oscillator Hamiltonian in Ref.@22#.

Although the mathematical meaning of the deformati
parameter (q) which characterizes the commutation~anti-
commutation! relations between the generators of a giv
algebraic structure is self-evident@14–17#, the physical
meaning of it is less known. We recall that the exa
q-deformed su(2) symmetry underlies the complete integ
bility of quantum systems like theXXZ Heisenberg chain
@17,23–25# and Bloch electrons in a magnetic field@26#. In
nuclear models, except for the quantum harmonic oscilla
and the quantum rotor@18# whereq may be interpreted as
stretching parameter of the corresponding spectra, little
known about the potentiality ofq algebras in more realistic
cases.

With the above motivation in mind, and as a compleme
tary tool to standard nonperturbative many-body techniq
@13#, in this paper we propose the use of quantum algebra
the construction of effective Hamiltonians. We shall sho
that the quantum algebra suq(2) @27# can be used to define
in a natural way, new effective Hamiltonians which repr
duce the same ground state properties and the spectru
the ones based on fermion-boson interactions. Advance
the same direction have been achieved in quantum op
where the interaction term of the Dicke model has been
scribed through a suq(2) effective Hamiltonian@28#.

We would like to stress that such a quantum algebra
proach introduces a remarkable simplification of the mod
without any significant loss of physical content. Explicitl
we shall show how the DPS and LE Hamiltonians, origina
defined on a su(2)% h3 Lie algebra, where su(2) is the alge
bra of quasispin fermion operators and the Heisenberg a
bra h3 accounts for the boson degrees of freedom, can
defined on the suq(2) algebra alone. It is found that the ne
effective suq(2) Hamiltonians reproduce accurately th
physical properties of the su(2)% h3 models, provided the
deformation parameterq is suitably fitted in terms of physi-
cal constraints.

We are confident that the present treatment can be
cessfully applied to describe other physical systems, wh
the effective motion is determined by the interaction betwe
elementary fermion and boson degrees of freedom. The
©2002 The American Physical Society17-1
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respondence between the spectra of interacting ferm
boson systems and effectiveq-deformed purely Fermionic
systems, which we demonstrate in this work for some
lected examples, may be a general feature common to o
fermion ^ boson systems. Such is the case, for example
nucleons interacting stronglyvia nuclearl-pole fields, which
may also be represented as free nucleons moving in a
formed central potential@29#. Similarly, the nonperturbative
domain of QCD, which is the theory of the interactions b
tween quark and gluons, may be viewed as an effec
theory of confined fermions@11,12#, without gluons. To sum-
marize, this paper is devoted to the study of the equivale
between systems of interacting fermions and bosons and
tems ofq-deformed fermions. Clearly, we shall not deal wi
the transformation of a given Hamiltonian onto aq-deformed
space, since this procedure leads, in general, to a compl
different Hamiltonian.

The paper is organized as follows. In Sec. II we pres
the basic aspects of the fermion-boson interaction mo
considered in the work, and construct the associated
formed effective Hamiltonians. In Sec. III we discuss t
behavior of the exact solutions obtained for the differe
Hamiltonians. Conclusions are drawn in Sec. IV.

II. FORMALISM

In this section we shall briefly review the essentials of
DPS and LE schematic models and discuss their realizat
in the framework of deformed algebras~hereon referred to a
q algebras!.

A. DPS model

The DPS model@4# consists ofN52V fermions moving
in two single shells. Each shell has a degeneracy 2V, and its
substates are labeled by the indexl 51, . . . ,2V. The energy
difference between shells is fixed by the energy scalev f .
The creation and annihilation operators of particles belo
ing to the upper level, are denoted byal

† and al , respec-
tively, while in the lower level, the creation and annihilatio
operators for holes are denoted bybl

† andbl . The fermions
are coupled to an external boson field represented by
creation~annihilation! operatorsB† (B) and by the energy
vb , respectively. The DPS model Hamiltonian can be int
preted as the one describing a system ofN fermions~either
nucleons or quarks!, belonging to an isospin-~flavor! multip-
let andN spin projections~colors! in interaction with bosons
~either pions or gluons!, in a hadron~QCD! scenario. The
DPS Hamiltonian reads@4#

H5v f~T01V!1vbB†B1G~T1B†1T2B!, ~1!

whereG is the strength of the interaction in the particle-ho
channel.

The particle (n) and hole (n̄) number operators are give
by

n5(
l

al
†al , n̄5(

l
bl

†bl , ~2!
06431
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and the following bi-linear combinations of fermion oper
tors

T15(
l

al
†bl

† , T25~T1!†,

T05
1

2
~n1 n̄ !2V, ~3!

are the generators of the su(2) algebra:

@T0 ,T1#5T1 , @T0 ,T2#52T2 , @T1 ,T2#52T0 .
~4!

The Hamiltonian of Eq.~1! commutes with the operator

P5B†B2
1

2
~n1 n̄ !5B†B2~T01V!. ~5!

Therefore the matrix elements ofH can be calculated in a
basis labeled by the eigenvalues of the number operators
bosons and fermions, as shown in Ref.@4#,

umV ,n&5A ~V2mV!!

~mV1V!! ~2V!!n!
T

1

V1mV ~B†!nu0&. ~6!

In this basis the eigenvalues ofP are given by

PumV ,n&5~n2mV2V!umV ,n&. ~7!

In particular, we shall diagonalizeH in the subspace
spanned by the statesumV ,L1mV1V&[umV ;L,V& which
have a fixed eigenvalueL of P,

PumV ;L,V&5LumV ;L,V&. ~8!

In this subspace, the nonzero matrix elements ofH are

^mV ;L,VuHumV ;L,V&5vbL1~v f1vb!~V1mV!,
~9a!

^mV11;L,VuHumV ;L,V&

5GA~V1mV11!~V2mV!~L1V1mV11!. ~9b!

The dimension of the finite-dimensional subspace associ
to each fixed eigenvalueL varies depending on the positiv
or the negative character ofL. ForL>0 the quantum numbe
mV can take the values

mV52V,2V11, . . . ,V, ~10!

and the Hilbert’s subspace has dimension 2V11. In the case
L,0, the values thatmV can take are

mV52L2V,2L2V11, . . . ,V, ~11!

and accordingly, the dimension of the Hilbert’s subspace
2V1L11.
7-2
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DPS and effectivesuq„2… Hamiltonians

The quantum algebra suq(2) is a Hopf algebra deforma
tion of su(2)@27# whose generators areT̃6 andT̃0, and obey
the commutation rules

@ T̃0 ,T̃6#56T̃6 , @ T̃1 ,T̃2#5@2T̃0#q . ~12!

Here theq analog@x#q of a given objectx ~either ac number
or an operator! is defined by

@x#q5
qx2q2x

q2q21
5

sinh~zx!

sinh~z!
. ~13!

Throughout the paper we shall use alternativelyq and z
~whereq5ez) as the deformation parameter, furthermore
shall assume thatq is real. Recall that the su(2) algebra
Eq. ~4! is recovered from Eq.~12! in the limit q→1 (z
→0).

Whenq is not a root of unity, the irreducible represent
tions of suq(2) are obtained as a straightforward generali
tion of those of su(2)@14,17#. Namely,

T̃0u j ,m&5m u j ,m&,

T̃1u j ,m&5A@ j 1m11#q@ j 2m#q u j ,m11&,

T̃2u j ,m&5A@ j 2m11#q@ j 1m#q u j ,m21&. ~14!

The matrix elements of Eq.~9! correspond to a tridiagona
finite dimensional matrix. Let us consider an effecti
Hamiltonian, sharing the same property, which is defined
the following function of the suq(2) generators:

Hq5vbL1~vb1v f !~ T̃01V!1x~q!qT̃0/2~ T̃11T̃2!qT̃0/2,
~15!

wherex(q) is a scalar function andHq will be realized in a
suq(2) irreducible representation with the same dimension
the subspace spanned byumV ;L,V& @therefore with j
5 j (V,L)]. From Eq. ~14!, the nonvanishing matrix ele
ments of Eq.~15! read

^ j ,muHqu j ,m&5vbL1~v f1vb!~m1V!, ~16a!

^ j ,m11uHqu j ,m&5x~q!q(m11/2)A@ j 1m11#q@ j 2m#q.

~16b!

In order to fit the dimensions, in the previous equations
take j 5V andm5mV for the effectiveL>0 model, while
for L,0, j 5V1L/2 andm5mV1L/2.

Note that, apparently, the HamiltoniansH of Eq. ~1! and
Hq of Eq. ~15! seem to be quite different, since the latter h
no Bosonic degrees of freedom. In fact, the nondeform
limit q→1 of Eq. ~15! is the nondeformed su(2) Hami
tonian

H5vbL1~vb1v f !~T01V!1x~1!~T11T2!. ~17!
06431
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which cannot be obtained from Eq.~1! through any transfor-
mation. The main result of this procedure is that the Boso
degrees of freedom included in Eq.~1! may be absorbed by
theq deformation in Eq.~15! provided thatq is defined as an
appropriate function of bothV and L, a tradeoff leading to
the purely Fermionic structure of Eq.~15!. In this way it is
possible to regardHq as an effective Hamiltonian with physi
cal properties similar to those ofH. In particular, we shall
determine numerically the optimal values of the deformat
parameterq by imposing that the spectrum of theq Hamil-
tonian of Eq.~15! be as close as possible to that of Eq.~1!. In
so doing, the functionx(q) has been chosen as

x~q!5
GAL1V1mV

0 11A~V1mV
0 11!~V2mV

0 !

q(m011/2)A@ j 1m011#q@ j 2m0#q

,

~18!

where mV
0 is the value ofmV that maximizes the matrix

element of Eq.~9b!, and m05mV
0 for L>0, while m0

5mV
0 1L/2 for L,0. This choice ensures that the maximu

values of the interaction terms of the HamiltoniansH andHq
coincide~see Ref.@28#!, as it is shown in Sec. III.

The main role of the exponentialsqT̃0/2 in Eq. ~15! is to
break them↔2m symmetry of the effective model, sinc
this is one of the main effects of the nonlinearity introduc
by the fermion-boson coupling in Eq.~1!. This effect could
be reproduced, also, through functions others than expo
tials of theT̃0 operator. The effective fermionic Hamiltonia
could also be defined by using more involved functions
the nondeformed su(2) algebra, since the main constra
the block structure of Eq.~1!. Nevertheless, we would like to
stress that the essential advantage of using both the suq(2)
operators of Eq.~14! and the exponential form of the effec
tive Hamiltonian of Eq.~15! is that the eigenvalues of th
interaction term

Hq
int5qT̃0/2~ T̃11T̃2!qT̃0/2 ~19!

are just theq numbers@2m#q (m52 j , . . . ,1 j ), and its
eigenvectors are known in analytic form. They are related
q-Krawtchouk polynomials@28#. Therefore the results her
presented seem to indicate that certain interactions betw
fermions and bosons can be accurately described by usiq
fermions as quasiparticles~i.e., effective Fermionic degree
of freedom! under the exactly solvable interaction given b
the HamiltonianHq

int .

B. Extended Lipkin models

As a second example of Hamiltonians including Ferm
onic and Bosonic degrees of freedom, let us introduce
Lipkin-type Hamiltonian

H5v f~T01V!1vbB†B1G~T1
2 B1T2

2 B†!. ~20!

The fermion sector of the model is described by two leve
with energies6v f /2 and degeneracies 2V. The fermions
interact with bosons of energyvb .
7-3
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The Hamiltonian of Eq.~20! commutes with the operato
@30#

P(1)5B†B1
1

2
~T01V!, ~21!

therefore the matrix elements ofH can be calculated in a
basis labeled by the eigenvalues ofP.

If we consider the basis of Eq.~6!, we find that the eigen-
06431
values ofP(1) are given by

P(1)umV ,n&5S n1
1

2
~V1mV! D umV ,n&, ~22!

we shall consider the subspace spanned by the states wL
fixed umV ,L2 1

2 (V1mV)&[umV ;L,V&.
Hence the nonzero matrix elements ofH read
^mV ;L,VuHumV ;L,V&5vbL1S v f2
1

2
vbD ~V1mV!, ~23a!

^mV12;L,VuHumV ;L,V&5GAL2
1

2
~V1mV!3 A~V1mV12!~V1mV11!~V2mV!~V2mV21!, ~23b!
.

the

ace
with

L>V,L integer, mV1V50,2, . . . ,2V,

L.V,L half integer,

mV1V51,3, . . . ,2V21,

L,V,L integer, mV1V50,2, . . . ,2L,

L,V,L half integer,

mV1V50,2, . . . ,2L21. ~24!

The Hamiltonian

H5v f~T01V!1vbB†B1G~T1
2 B†1T2

2 B! ~25!
is another Lipkin-type Hamiltonian, which differs from Eq
~20! in the ground state correlations@11#. Since it commutes
with the operator

P(2)5B†B2
1

2
~T01V!, ~26!

its matrix elements can be calculated in a basis labeled by
eigenvalues ofP(2) . Once again this basis is just Eq.~6!,
where the eigenvalues ofP(2) read

P(2)umV ,n&5S n2
1

2
~V1mV! D umV ,n&, ~27!

and we shall compute the matrix elements in the subsp
spanned by the statesumV ,L1 1

2 (V1mV)&[umV ;L,V&.
The nonzero matrix elements ofH are given by
^mV ;L,VuHumV ;L,V&5vbL1S v f1
1

2
vbD ~V1mV!, ~28a!

^mV12;L,VuHumV ;L,V&5GAL1
1

2
~V1mV!113 A~V1mV12!~V1mV11!~V2mV!~V2mV21!, ~28b!

where the dimension of the subspace depends onL andV in the form

L>0, L integer, mV1V50,2, . . . ,2V,

L.0, L half integer,

mV1V51,3, . . . ,2V21,

L,0, L integer, mV1V522L,22L12, . . . ,2V,

L,0, L half integer,

mV1V522L,22L12, . . . ,2V21, ~29!
7-4



the

hall
q.

the

FERMION-BOSON INTERACTIONS AND QUANTUM ALGEBRAS PHYSICAL REVIEW C66, 064317 ~2002!
1. Extended Lipkin andsuq„2… effective Hamiltonians

As for the case of the DPS model, we introduce an effective Hamiltonian for Eq.~20!, which is again defined on the suq(2)
generators,

Hq5vbL1S v f2
1

2
vbD ~ T̃01V!1x~q!qT̃0~ T̃1

2 1T̃2
2 !qT̃0. ~30!

This Hamiltonian has the following nonvanishing matrix elements

^ j ,muHqu j ,m&5vbL1S v f2
1

2
vbD ~V1m!, ~31a!

^ j ,m12uHqu j ,m&5x~q!q2(m11) A@ j 1m12#q@ j 1m11#q@ j 2m#q@ j 2m21#q. ~31b!

@As the first step in order to fit the dimensions of Eq.~20! and of Eq.~30! we have to find the appropriate relationj
5 j (V,L) and, as a consequence,m5m(mV ,V,L). Afterwards, we consider as the effective Hamiltonian the restriction of
matrix elements of Eq.~31a! to the invariant subspace spanned byu j ,m& with m52 j ,2 j 12, . . . ,j 22,j . In this way we
obtain the effective matrix elements

^ j ,m12uHqu j ,m&5x~q!h~L,V,mV!. ~32!

For values ofL>V (L integer!, we find j 5V, m5mV and the functionh(L,V,mV) is

h~L,V,mV!5q2(mV11) A@V1mV12#q@V1mV11#q@V2mV#q@V2mV21#q. ~33!

WhenL,V (L integer!, we have thatj 5L1 1
2 , m5mV1V2L2 1

2 , and

h~L,V,mV!5q2(mV1V2L11/2) A@V1mV22L#q@V1mV22L21#q A@V1mV11#q@V1mV12#q. ~34!

The functionx(q) is defined by

x~q!5GAL2
1

2
~V1mV

0 !
A~V1mV

0 12!~V1mV
0 11!~V2mV

0 !~V2mV
0 21!

h~L,V,mV
0 !

, ~35!

wheremV
0 is chosen as the value ofmV that maximizes Eq.~23b!. Following the arguments presented in subsection A we s

search for values of theq-dependent coupling@of Eqs.~30! and Eq.~35!# which may absorb Bosonic degrees of freedom of E
~20! and yields a comparable spectrum for the purely Fermionicq-deformed Hamiltonian of Eq.~30!.

Similarly, for the Hamiltonian of Eq.~25!, we can write the effective suq(2) coupling

Hq5vbL1S v f1
1

2
vbD ~ T̃01V!1x~q!qT̃0~ T̃1

2 1T̃2
2 !qT̃0. ~36!

Now the matrix elements ofHq are given by

^ j ,muHqu j ,m&5vbL1S v f1
1

2
vbD ~V1m!, ~37a!

^ j ,m12uHqu j ,m&5x~q!q2(m11) A@ j 1m12#q@ j 1m11#q@ j 2m#q@ j 2m21#q. ~37b!

Note that the Hamiltonians of Eqs.~30! and ~36! differ in the unperturbed sector, and that once again we have to fit
dimension of the suq(2) operator through the appropriate choice of the quantum numbersj and m. For values ofL>0 (L
integer!, we find j 5V andm5mV . In the caseL,0 (L integer!, we havej 5L1V1 1

2 andm5mV1L1 1
2 . We recall that

the effective suq(2) matrix is given by the matrix elements of Eq.~37! computed within the subspace spanned byu j ,m& where
m52 j ,2 j 12, . . . ,j 22,j .

Finally, the adopted expression forx(q), in Eq. ~36! is

x~q!5Gq22(m011) AL1
1

2
~V1mV

0 !11A~V1mV
0 12!~V1mV

0 11!~V2mV
0 !~V2mV

0 21!

@ j 1m012#q@ j 1m011#q@ j 2m0#q@ j 2m021#q

, ~38!
064317-5
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and mV
0 is chosen as the value ofmV that maximizes Eq.

~28b!, accordingly,m05mV
0 for L>0, andm05mV

0 1L1 1
2

for L,0.
Before ending with this section, we shall summarize

main steps of the above formalism. We have written,
different fermion^ boson Hamiltonians,q-deformed purely
Fermionic Hamiltonians where the information about bos
degrees of freedom is absorbed in the definition of
q-dependent strengthx(q). The actual value ofx(q) de-
pends on the deformation parameter, which may be de
mined from the comparison between the spectra of the
mion ^ boson andq-deformed fermion Hamiltonians. W
shall discuss the feasibility of this procedure in the next s
tion.

III. RESULTS AND DISCUSSION

We have calculated the spectra of the Hamiltonians in
duced in the previous section. The calculations have b
performed by fixing the following set of parameters:v f
5vb51, in arbitrary units of energy, and forN52V530
particles, unless stated. The parameterx5GA2V/v fvb, was
taken as the dimensionless coupling between fermions
bosons, for the case of Hamiltonian of Eq.~1!, and it is
defined asx5G(4V/Av fvb), for the case of the Hamilto
nians of Eqs.~20! and ~25!. As we shall discuss later on
actual values ofx are indicative of the phase preferred by t
system~in the sense of the dominance of the Fermionic
Bosonic degrees of freedom on the structure of the gro
state! @30#. In general, we shall talk of anormal phase, of
any of the fermion^ boson Hamiltonians of the previou
section, when the correlated ground state is the eigensta
the symmetry operatorP with the eigenvalueL50. The de-
nominationdeformedphase will be assigned to cases whe
the correlated ground state is an eigenstate ofP with eigen-
value LÞ0. The Bosonic or Fermionic structure of the d
formed phase is determined by the sign ofL, following the
corresponding definition ofP.

Let us start with the DPS model. The couplingx50.5
yields a normal solution of the DPS Hamiltonian. The val
x51.5 is consistent with a deformed solution of it. Figure
cases~a! and ~c!, shows the evolution of the ground sta
upon L. In the same figure we present the results of
q-deformed Hamiltonian corresponding to the DPS Ham
tonian. Figure 1, cases~b! and~d!, shows the behavior of the
deformed parameterz5 ln(q), as a function ofL, which re-
produces the ground state energies of the insets~a! and ~c!.
The values ofz have been chosen so that the ground sta
energies of the DPS model and the ones of the suq(2) effec-
tive model of Eq.~15! differ in less than 1%. Figure 2 show
the evolution of the values ofL, z andx(q), at the absolute
ground state, for different values of the coupling constanx.
Two different phases can be identified, depending on
value of x. The normal phase corresponds to values ox
<1, with L50 and z almost constant, and the deforme
phase corresponds to values ofx.1, with values ofL.0
and decreasing values ofz.

Figure 3 displays the comparison between the matrix
ments of the DPS model and the ones obtained with
06431
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effective Hamiltonian of Eq.~15!. The scaling of Eq.~18!
was performed as indicated in the text. These results sup
nicely the adopted procedure, since the agreement betw
both set of matrix elements is rather acceptable.

Figure 4 shows the results of the integrated Hamilton
energy density, corresponding to the Hhamiltonias of E
~1! and ~15!. Again in this case the agreement between b
set of results was verified within the computer accuracy.

The above results, shown in Figs. 1–4, demonstrate
both the ground state energy and the spectrum of the D
model can be represented by the effective suq(2) Hamil-
tonian of Eq.~15!, by fixing the value ofz(q), which is the
parameter related with theq deformation.

A similar analysis can be performed for the LE models
Sec. II B. Figure 5 represents the ground state energy of
fermion ^ boson Hamiltonian of Eq.~20!, and the behavior
of the parameterz of the correspondingq-deformed version,
Eq. ~30!. Also, in the same figure, the ground state energy
theq-deformed Hamiltonian@Eq. ~30!# is given as a function
of L. The insets~a! and~b! of Fig. 5 show the results corre
sponding tox50.5 ~normal phase!, while insets~c! and ~d!
show the results obtained withx51.5 ~deformed phase!. As
for the case of the DPS model, we have chosenz so that the

FIG. 1. Ground state energyE0 in arbitrary units, and deforma
tion parameter,z5 ln(q), as a function ofL. Insets~a! and~b! show
results for the caseN52V530, v f51, vb51, and x
5GA2V/v fvb50.5, while insets~c! and ~d! correspond tox
51.5. The exact ground state energy corresponding to the D
model of Eq.~1! is denoted by crosses while the one correspond
to the effective suq(2) model of Eq.~15! is denoted by circles.
7-6
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FIG. 2. Values ofL @inset~a!#, z @inset~b!#, andx @inset~c!#, at
the absolute ground state energy, as a function ofx. The figure
displays the results corresponding to the caseN530, v f51, and
vb51 for different values ofx, and for the Hamiltonians of Eqs.~1!
and ~15! ~see Fig. 1!.

FIG. 3. Scaling procedure of Eq.~18!. The matrix elements of
Eq. ~9b! ~solid line! and Eq.~16b! ~dashed line! are shown as a
function of them-quantum number. The values ofL andz are indi-
cated in the insets.
06431
ground state energy of the Hamiltonian of Eq.~20! and that
of Eq. ~30! coincide within 1%, for each value ofL.

Figure 6 displays the behavior ofL, z, andx(q), at the
absolute ground state energy, for different values of the c
pling constantx, for the Hamiltonians of Eqs.~20! and~30!.
As for the case of the DPS model, the results shown in
figure correspond to two different phases, which can be id
tified by the value ofx. Similarly to the case of Fig. 2, the
normal phase corresponds tox<1, L50, andz(q) nearly
constant. The deformed phase corresponds tox.1, LÞ0,
and increasing values ofz(q).

Figure 7 displays the comparison between the spectrum
the Hamiltonian of Eq.~20! and the spectrum of the effectiv
Hamiltonian of Eq.~30!. As done for the cases of Eqs.~1!
and ~15! ~see Fig. 4! we have calculated the integrate
Hamiltonian energy density~number of eigenvalues per un
energy interval!. Also in this case, the scaling procedu
yields almost identical results, within computer accuracy,
compared to the original Hamiltonian.

Finally, the ground state energies, theq-deformation pa-
rameter, theq-depending coupling, and the comparison b
tween the spectra, for the case of the Hamiltonians of E
~25! and ~36!, are shown in Figs. 8–10, respectively. Fro
the results shown in Fig. 8, cases~b! and ~d!, it is seen that
there is a particular value ofL, for which z(q)'0. It means
that, for this particular value ofz(q), the su(2) symmetry is
dynamically restored. Figure 9 shows the behavior ofL @in-
set ~a!#, z(q) @inset ~b!# and x(q) @inset ~c!#, taken at the
absolute ground state energy, as a function ofx. Figure 10
displays the comparison between the spectrum of the Ha

FIG. 4. Integrated density of states, as a function of the ene
corresponding to the Hamiltonians of Eq.~1! ~solid line! and of Eq.
~15! ~dashed line!. Both results coincide in the curve shown in th
figure. The calculations were performed forN5200, v f51, vb

51, andx51.5. For the DPS model, Eq.~1!, the valueL534 was
used. The spectrum of the effective suq(2) Hamiltonian of Eq.~15!
was calculated withz50.004. Both curves coincide within the reso
lution of the diagram.
7-7
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tonian of Eq.~25! and the one obtained with the effectiv
Hamiltonian of Eq.~36!, with z50.00440.

A systematic feature emerges from the above discus
series of results and it is related with the replacement of
boson degrees of freedom, which are present in the con
ered initial Hamiltonians, by the effectiveq-dependent cou-
pling. In the three cases which we have considered, the s
trum of the fermion̂ boson system and the spectrum of t
q-deformed purely fermionic system agree, for certain n
trivial values of theq-deformation parameterz(q). The pro-
cedure works reasonably, for the rotorlike structure of
DPS Hamiltonian, as well as for the vibrational-like structu
of the LE Hamiltonians. There is a trend in the depende
of z(q) upon L, which is the parameter associated to t
symmetry in the fermion̂ boson space. It is symmetric fo
the case of the DPS Hamiltonian and almost asymmetric
the case of the Lipkin Hamiltonians. Also,z(q) resembles
more the behavior of an order parameter for the case of
Lipkin Hamiltonians than for the DPS one. Concerning re
tives values ofz(q), theq-deformed versions of the Hamil
tonians of Eqs. ~1! and ~20! required values ofz(q)
('0.03) which are larger than the value ofz(q) correspond-

FIG. 5. Ground state energies andz5 ln(q) for the LE model of
Eq. ~20! are shown as a function ofL. Insets ~a! and ~b! show
results for the caseN52V530, v f51 MeV, vb51 MeV, andx
5G(4V/Av fvb)50.5, while insets~c! and ~d! correspond tox
51.5. The exact ground state energies corresponding to the
model of Eq.~20! are denoted by crosses while the one correspo
ing to its associated effective suq(2) Hamiltonian of Eq.~30! are
denoted by circles.
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FIG. 6. Idem as Fig. 2, for the LE model of Eq.~20!, and for the
suq(2) Hamiltonian of Eq.~30!. The values of the parametersN,
v f , andvb are the same as those given in the captions to Fig.

FIG. 7. Integrated density of states for the LE model of Eq.~20!
~solid line! and for the effective suq(2) Hamiltonian of Eq.~30!
~dashed line!. The values ofN, v f , andvb are the same as thos
given in the caption to Fig. 4. The results corresponding to
Hamiltonian of Eq.~20! have been obtained withL/2V57. For the
effective suq(2) Hamiltonian of Eq.~30! the valuez520.0009.
Both curves coincide within the resolution of the figure.
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ing to theq-deformed version of Hamiltonian of Eq.~25!.
This result shows the sensitivity of the chosen value oz
upon the vibrational or rotational-like character of the fe
mion ^ boson picture.

IV. CONCLUSONS

In this work we have shown that effective suq(2) Hamil-
tonians can be introduced in order to reproduce the gro
state properties and the spectrum of different interac
fermion-boson Hamiltonians. In this respect, the Boso
part of the interactions can be effectively embedded as
appropriateq deformation of the su(2) Fermionic algebra

The results presented at this work show the existence
close relation between the deformation parameter,z(q),
which fixes the strengthx(q) of the purely Fermionic
q-deformed Hamiltonians, and the eigenvalueL of the sym-
metry operatorP, associated to the fermion̂ boson Hamil-
tonians. Bothz(q), in the case of the suq(2) effective mod-
els, andL, for the fermion-boson interactions, display
critical behavior as a function of the coupling constantx.

Because of the relevance of the DPS model in the desc

FIG. 8. Ground state energies andz5 ln(q) for the LE model of
Eq. ~25!, are shown as a function ofL. Insets~a! and ~b! show
results for the caseN52V530, v f51 MeV, vb51 MeV, andx
5G(4V/Av fvb)50.5, while insets~c! and ~d! correspond tox
51.5. The exact ground state energies corresponding to the
model of Eq.~25! are denoted by crosses while the one correspo
ing to the associated effective suq(2) Hamiltonian of Eq.~36! are
denoted by circles.
06431
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tion of hadronic systems@31# and the nice agreement ob
tained with theq-deformed version of it, we are confiden
about the potentiality ofq-deformed representations in mo
involved physical scenarios.

Work is in progress concerning the extension of the p
sented formalism to nonperturbative QCD.E
-

FIG. 9. Idem as Fig. 2, for the LE model of Eq.~25! and its
correspondentq analog of Eq.~36!. The values ofN, v f , andvb

are the ones given in the captions to Fig. 8.

FIG. 10. The spectrum for the LE model of Eq.~25! and for the
suq(2) Hamiltonian of Eq.~36!. The values ofN, v f , andvb are
the same as those of Fig. 8. The spectrum denoted by~a! corre-
sponds to the one obtained from the Hamiltonian of Eq.~25!, for
L522. The spectrum denoted by~b! is obtained from the effective
suq(2) Hamiltonian of Eq.~36!, with z50.0044.
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