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Abstract

The nuclear two-neutrino double-beta decay is a measured process that should be quantitatively
understood before the predictions on more exotic, non-standard, double-beta decay processes are
fully trusted. In most cases, the current framework for the description of 2νββ process includes
the quasiparticle and random phase approximation (RPA) procedures, which present instabilities in
the region of interest. From the point of view of many-body physics, the problem involved is to
disentangle the physical effects associated with the lack of conservation of the isospin symmetry in
the Hamiltonian, from those arising from the application of the Bogoliubov–Valatin transformation
between identical particles. In the present paper, the separation between both effects is accomplished
by introducing the collective subspace in isospin and gauge spaces, and restoring the symmetry
within such subspace. Explicit, real, isodipole and isoquadrupole mixing terms are subsequently
obtained. The problem of the over-completeness of the basis is solved by isolating the spurious sector
via the application of the Becchi–Rouet–Stora–Tyutin (BRST) symmetry. The formalism allows to
calculate Fermi double-beta-decay transitions which result—as expected—too small in order to be of
significance in the double-beta processes. The same procedure is applied to calculate Gamow–Teller
double-beta decay transitions and the already known sensitivity to model parameters is recovered.
We have calculated two-neutrino double-beta decay transitions in76Ge, as an example about the use
of the formalism. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fine detail nuclear structure calculations have become an issue, particularly those
related to the theoretical estimation of nuclear electroweak observables beyond the
standard model [1–3]. The interest in such a type of calculations is tied up to the continuous
experimental and theoretical efforts devoted to elucidate neutrino properties [4]. If one
focuses the attention on the theoretical description of nuclear double-beta decay transitions,
and particularizes on the two-neutrino double-beta decay modes [5], one finds that the
situation is not settled, in spite of the years elapsed since the first calculations were reported
(for details see [6,7]). The predicted matrix elements are still within factors of order two to
three from the experimentally extracted values [1]. Moreover, the large uncertainties in the
calculations diminish the significance of such discrepancies. The situation is also not very
clear in the analysis of the neutrinoless double-beta decay channel, due to the relatively
large number of the nuclear matrix elements that are involved [5,8].

The most immediate option for nuclear structure calculations is the shell model.
However, the availability of shell model results is restricted to a very small sample of
cases and the calculations are, naturally, affected by severe limitations in the single-particle
space. The most recent shell model result can be found in [9].

Most of the calculations aimed at the explanation of double-beta decay transitions
in medium and heavy mass systems [3,7,10], are based on the use of the quasiparticle
random phase approximation (QRPA). Although the theory has been tested extensively in
the description of the spectrum of even–even nuclei near shell closures, its validity in the
case of double-odd mass nuclei is less established due to the inherent complexity of the
spectrum built upon quasiproton–quasineutron pair excitations.

One notorious problem associated with the QRPA description of double-beta decay tran-
sitions is the instability found when renormalized components of the interaction between
quasiparticles are used in the proton–neutron channel [11]. The cause of this instability
has been traced down to the mean field isospin symmetry breaking induced by the separate
treatment of pairing correlations among protons and neutrons. For an isospin conserving
interaction there would appear an unormalized zero-frequency mode, as explained below.
This is an unavoidable fact of the quasiparticle plus RPA approximations and it cannot be
cured by supplementing the theory with higher-order corrections. Until now none of the
various approaches, including some bizarre ones, has given a satisfactory answer to the
problem of calculating proton–neutron pairing interactions near criticality [12].

The work of Ref. [13] has advanced the notion of using collective and intrinsic variables
in the treatment of isospin dependent nuclear excitations. This formalism has its own
interest, independently of the above mentioned applications. The perfect analogy to this
treatment is the use of intrinsic and collective degrees of freedom in the description of
nuclear deformations and space rotations [19]. Although such an analogy has been drawn
long ago [19–22], the microscopic theory of gauge and isospin collective phenomena
has not been discussed before in detail. The present availability of radioactive beams
and targets may also call for the application of the present formalism to explore nuclear
structure aspects of the excited states in double-odd mass nuclei.

The results obtained in Ref. [13] for the case of purely isovector (spin independent)
transitions are in perfect agreement with the available exact solutions, in contrast with
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the behavior of other approximations in the vicinity of the symmetry restoration. In the
present paper we present a detailed derivation of the formalism applied in Ref. [13].

There is a many-body problem of disentangling symmetry violations effects arising
from the original Hamiltonian from those artificially introduced by the formalism. This
problem has remained unsolved, although its existence was recognized long ago in
studies concerning analogue states and isospin impurities [23]. The neutron excess,
Tz = 1

2(Z − N), produces a symmetry violating Hartree–Fock Hamiltonian because,
in this approximation, only the componentTzτz of the scalar product is taken into
account. Moreover, the isospin-violating Coulomb interaction must be introduced between
symmetry violating states.1 In the present paper we solve an analogous problem through
the use of the collective formalism. To our knowledge, this was not accomplished before,
because collective variables have been usually introduced in order to restore, at the
macroscopic level, those symmetries that are lost in the microscopic description. This
implies that there are symmetries to start with, which are reflected in invariance properties
of the original Hamiltonian. However, as in the present case, the initial Hamiltonian may
not be scalar in isospin space (otherwise, there would not be double-Fermi transitions
between states differing in two units of isospin). Moreover, the inclusion of pairing between
identical particles contributes artificially to the breaking of the isospin symmetry.

We describe the steps that are followed in constructing the Hamiltonian and we extend
the formalism presented in [13] to encompass the case of severalj -shells. A brief
review of the treatment with collective variables is presented in Section 2. The pairing-
isospin Hamiltonian is constructed in Section 3, together with the mean field and RPA
approximations, which yield the basic set of states. The practically-oriented reader can
proceed directly to Section 5. However, a deeper understanding of the method is provided
in Section 4, which includes the essence of the procedure due to Becchi, Rouet, Stora and
Tyutin (BRST) [14,15], and the nature of the vacuum state and physical excitations that
are compatible with the constraints. The same procedure have been applied to many-body
physics in [16]. A pedagogical presentation can be found in [17]. A recent application to
the treatment of the center of mass problem has been reported in [18].

Calculations based on the results obtained in Section 3 are presented in Section 5, with
reference to Fermi and Gamow–Teller double-beta decay transitions. The comparison with
the available exact solutions and the result of realistic calculations are also presented in
Section 5. Conclusions are drawn in Section 6. All the accessories are presented in the
appendices.

2. The treatment with collective coordinates

Many systems can be described in terms of variables which are subject to transforma-
tions. Let us assume, for the time being, that the HamiltonianH is invariant against such

1 The following are entries taken from Ref. [24]:A severe limitation of any HF calculation inN > Z nuclei
is the appearance of spurious isospin mixing. . . ; this limitation cannot be avoided; and in their Discussion and
Summary:. . . and its[the result] main limitation is again the isospin mixing.
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transformations, and that it may split into two parts,H0 andHr , neither of which is in-
variant under those transformations. The basic set of eigenstates ofH0 will not carry, in
general, the quantum numbers associated with the original symmetry ofH .

The symmetry may be restored through the introduction of the collective formalism, i.e.,
the raising of the transformation parameters determining the orientation of the “intrinsic”
or “moving” frame of reference, to the level of collective coordinates. The total Hilbert
space is thus factorized into an intrinsic and a collective sector. This last one is labeled by
the quantum numbers associated with the original symmetries, which are thus restored at
the collective level. The symmetry violations take place in the intrinsic sector.

Since the calculations are carried out in the intrinsic frame of reference, any operator
must be first transformed to this frame before acting on the basic set of product states.

The overcompleteness of the basis poses a problem that is clarified through the
observation that a system, described as above, possesses a “gauge” symmetry. This
symmetry consists of the group of transformations which simultaneously move the intrinsic
frame of reference and the particle system so as to reproduce the same physical situation.
It is expressed by the constraints

τk − Tk = 0, (1)

where theτk and Tk are the particle and collective generators of the transformations,
respectively. They satisfy the following commutation relations

[τk, τl] = ickljτj , [Tk,Tl] = −ickljTj , [τk, Tl] = 0, (2)

wherecklj are the structure constants of the Lie group associated with the transformations.
The conditions (1) may be rigorously derived whenever we consider a Lagrangian
corresponding to a description from a moving frame, and we treat both the original
coordinates and the coordinates of the moving frame on an equal footing [25]. Such
Lagrangian is called singular, meaning that the velocities cannot be inverted as functions
of the coordinates and the momenta. As a consequence, the momenta are not independent
from each other: there appear relations (1) between them, which are called constraints.

At the quantum level, the constraints (1) imply that physical states should be annihilated
by them and physical operators should commute with them. Several procedures have been
developed in order to enforce these constraints for the case of gauge field theories. In
particular, the one based on the BRST invariance [14,15], has been adapted to many-body
problems in Ref. [16].

3. The pairing-isospin problem

The intrinsic generators of the transformations in gauge and isospin spaces are: (a) the
operator measuring the number of pairs of particles2

2 We use the Einstein convention that the repetition of an index on a given side of an equation implies
a summation over that index (for instance, there is a summation over the indexm in the second Eq. (3)).
Exceptions: (i) the index is repeated also on the other side of the equation, as for the indexj on the second
Eq. (3); (ii) whenever there is a limitation on the summation, as for the

∑
m>0 on Eqs. (8).



D.R. Bes, O. Civitarese / Nuclear Physics A 705 (2002) 297–334 301

τa =
∑
j

τaj , τaj = 1

2

(
c+
pjmcpjm + c+

njmcnjm
)

(3)

and (b) the isospin operators

τ0 =
∑
j

τ0j , τ0j = 1

2

(
c+
pjmcpjm − c+

njmcnjm
)
,

τ1 =
∑
j

τ1j , τ1j = − 1√
2
c+
pjmcnjm,

τ1̄ = −τ+
1 . (4)

Hereon we use the notationk = a, q , whereq = 0,±1 denotes the spherical labeling of
the vector components. Moreover,1̄ = −1. Alternatively, instead of the pair of quantum
numbers(q = 0, a), we may use the linear combinationsv (v = p,n), where the indices
(p,n) stand for proton and neutrons, respectively. Therefore

τp = τa + τ0, τn = τa − τ0 (5)

represent the number of protons and neutrons, respectively.
The structure constants of the pairing-isospin problem are obtained from the commuta-

tion relations

[τa, τq ] = 0, [τ0, τ±1] = ±τ±1, [τ1̄, τ1] = τ0. (6)

The operatorsTa,T0, T±1 denote the collective momenta corresponding to (3). More
details of the notation are given in Appendix A.

In the remaining part of this section we select a pairing Hamiltonian and we transform
it to the moving system (Subsection 3.1). Subsequently we discuss the collective Hilbert
space and the simplification inherent to the limit of large values ofT (Subsection 3.2). The
existence of largeorder parametersin the deformed solution associated with the intrinsic
system, permits the ordering of the terms in the Hamiltonian according to their magnitude.
The leading terms reproduce the usual BCS equations between identical particles. The
discussion of thepn excitations constitutes the central topic of the present contribution.
The formalism not only allows for the construction of the elementary modes of excitation,
carryingA, T andM as good quantum numbers, but also yields the matrix elements of the
Hamiltonian between states differing in the value ofT (Subsection 3.3).

3.1. The Hamiltonian

We choose a Hamiltonian that has been frequently used in the literature. It may be
written as

H =Hsp+Hpair +Hτ ,

Hsp= εvj τvj ,

Hpair = −gpS+
p Sp − gnS

+
n Sn − 1

2
g⊥S+

⊥S⊥,

Hτ = κ
(
τ2

0 − [τ1τ−1]+
)
, (7)
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whereεvj and τvj are the single-particle energy and number operator of the protons or
the neutrons in aj -shell. We denote byS+

p , S+
n andS+

⊥ the pairing operators creating a
proton pair, a neutron pair and a proton–neutron pair coupled to isospin one and angular
momentum zero

S+
v =

∑
m>0

c+
vjmc

+
vjm̃

, S+
⊥ =

∑
m>0

c+
pjmc

+
njm̃

+ c+
njmc

+
pjm̃

, (8)

where the symbol̃ indicates the time-reversal operation. The Hamiltonian allows for
the differences between proton and neutron single-particle energies and pairing strengths,
and for an arbitrary strength of the neutron–proton isoquadrupole pairing component. In
this paper we do not attempt to discuss the derivation of this effective interaction from
first principles, like Coulomb effects, neutron-proton mass differences, etc. The isospin
interaction which manifests, for instance, in the Weizsäcker semiempirical mass formula,
is constructed with the isospin operatorsτq . The case of isoscalar pairing is discussed in
Appendix F.

It would be a trivial yet cumbersome procedure to adapt the present formalism to
realistic interactions. In this work we value more the simplicity in the presentation
associated with separable forces, which makes more transparent the geometrical aspects
of the different transformation operations.

Although the Hamiltonian (7) is a scalar in gauge space, it is not so in isospace. In fact,
it splits into isoscalar, isovector and isoquadrupole terms (c.f. Appendix B), namely

H =H0 +H1 +H2,

H0 = εajτaj − g0

(
S+
p Sp + S+

n Sn + 1

2
S+

⊥S⊥
)

+ χ
(
τ2

0 − [τ1τ−1]+
)
,

H1 = ε0j τ0j − g1
(
S+
p Sp − S+

n Sn
)
,

H2 = −g2
(
S+
p Sp + S+

n Sn − S+
⊥S⊥

)
, (9)

where

g0 = 1

3
(gp + gn + g⊥), g1 = 1

2
(gp − gn), g2 = 1

6
(gp + gn − 2g⊥),

εaj = εpj + εnj , ε0j = εpj − εnj ,

τaj = 1

2
(τpj + τnj ), τ0j = 1

2
(τpj − τnj ). (10)

Since the calculations are performed in the intrinsic system, any operator should be
transformed to this frame. As usual [19], the transformation between laboratory (lab) and
intrinsic (int) tensor operators is expressed by

Olab
λµ =Dλ

µνOintr
λν , (11)

whereDλ
µν are the rotational matrices which are discussed in detail in the next subsection.

The operatorsOλµ are irreducible tensor operators carrying isospinλ andµ isospin-
projection (see Appendix B). Therefore also the Hamiltonian should be transformed, since
neither the single-particle nor the interaction terms are isoscalars in (9). We obtain for the
transformed Hamiltonian,
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H1 = ε0jD
1
0σ τσj − g1

(
D1

00

(
S+
p Sp − S+

n Sn
) − 1√

2
D1

01

(
S+
p S⊥ + S+

⊥Sn
)

+ 1√
2
D1

01̄

(
S+
n S⊥ + S+

⊥Sp
))

(12)

H2 = −g2

(
D2

00

(
S+
p Sp + S+

n Sn − S+
⊥S⊥

) +
√

3

2
D2

01

(
S+

⊥Sn − S+
p S⊥

)

+
√

3

2
D2

01̄

(
S+

⊥Sp − S+
n S⊥

) + √
6
(
D2

02S
+
p Sn +D2

02̄
S+
n Sp

))
, (13)

where the irreducible isotensor operators are defined in Appendix B. The termsH1 andH2
of the Hamiltonian (13) are physical operators, because they commute with the gauge
constraints (1). This is not the case for the componentsH1 andH2 in (9). In the usual case
the transformation is a scalar and thus naturally commutes with the constraints.

Apparently, we have only succeeded in complicating the problem through the substi-
tution of the Hamiltonian (9) by (13), which must be considered simultaneously with the
constraints (1). In the following we show that this is not the case, but rather it constitutes
the first step of a simplifying procedure.

3.2. The collective sector of the Hilbert space

As a needed detour in the construction of the Hamiltonian, we present hereafter the
structure of the collective space. The collective Hilbert space appropriate for isospin
conserving pairing interactions was originally introduced in Refs. [19,22]. A complete set
of states for this sector, carrying the appropriate symmetries, is

〈φ,φα,φβ,φγ |ATMK〉 =
√

2T + 1

16π3 exp

[
iA

2
φ

]
DT
MK(φα,φβ,φγ ). (14)

Hereφ is the collective angle in gauge space, andφα , φβ andφγ represent the Euler angles
in isospin space. The constant1

2A is the eigenvalue of the pair of particles operatorTa ,
while M andK are the eigenvalues of the isospin projection along the laboratory and
intrinsic frames of reference, respectively.

The problem may be solved in two limiting situations, according to whether the Coriolis
type of interaction1

I (−1)qTqτq̄ is taken into account perturbatively or is wholly included
in the intrinsic single-particle spectrum, as in the cranking model. The former solution is
to be preferred if the magnitude of the isospinT is smaller than other parameters of the
system, while the second solution is adopted for larger values ofT . In the present paper
we consider this second case.

The assumption of large values ofT suggests the use of the Marshalek generalization
of the Holstein–Primakoff representation [28]. Thus, the rotational isospin sector in (14)
may be expressed in terms of the boson creation operatorsΥ +, ξ+ andς+

|TMK〉 = (Υ +)2T√
(2T )!

(ξ+)m√
(m)!

(ς+)k√
(k)! |〉, m, k = 0,1,2, . . . , (15)



304 D.R. Bes, O. Civitarese / Nuclear Physics A 705 (2002) 297–334

where the quantum numbersm = 1
2(T + M) and k = 1

2(T + K) substitute the isospin
projectionsM andK, respectively. This representation is specially useful for values of
m/T , k/T � 1, which we assume to be the case.

We may also write down the expression for the matricesDλ
µδ acting on the states (15),

namely

Dλ
µ,δ =

∑
|s|�λ

√
2T + 1

2T + 2s + 1

√
m!

(m+ s +µ)!

√
k!

(k + s + δ)!
× 〈λ,µ;T ,−T +m|T + s,−T +m+µ〉
× 〈λ, δ;T ,−T + k|T + s,−T +m+ δ〉Υ 2s(ξ†)s+µ(

ς†)s+δ. (16)

The operators (16) are expanded in powers of 1/T , as shown in the Appendix C for the
cases of interest.

Within the same representation, the collective components of the isospin operators may
be written in terms of the bosonsς+, ς

T0 = −T + ς+ς, T1̄ = ς+
√
T − 1

2
ς+ς ≈ −√

T ς+

T1 = −T +
1̄

≈ √
T ς. (17)

Therefore, the constraints (1) are written to leading order in 1/T , as

τa = A

2
, τ0 = −T + ς+ς, τ1 = −√

T ς, τ1̄ = √
T ς+. (18)

We also define the isospin raising operatorβ

β2|T 〉 = |T + 1〉 ↔ β2 (Υ
+)2T√
(2T )! |〉 = (Υ +)2T+1

√
(2T + 1)! |〉. (19)

3.3. The treatment of the Hamiltonian in the intrinsic frame

Up to now the Hamiltonian (13), together with the constraints (1), constitutes an exact
reformulation of the initial problem. In particular, we have not introduced yet any violation
of the gauge and isospin symmetries due to the formalism. From here on we simplify the
treatment in the intrinsic system by fixing a convenient orientation of the body with respect
to the intrinsic frame. Since there are four angular variables in the collective subspace (14),
we may choose four conditions to fix such relative orientation. As usual we select3

Im〈Sp〉 = Im〈Sn〉 = 〈S⊥〉 = 0. (20)

This selection of a gauge leads to the usual Bogoliubov–Valatin transformation between
identical particles.4 Note that thepn-pairing is only neglected in the intrinsic frame, but

3 Other possible choices have been discussed [22].
4 Although the quasiparticles are labeled by the quantum numberv = p,n, the fact that we operate in an

intrinsic system implies that they do not strictly correspond to either neutrons or protons. The expressions
quasineutrons or quasiprotons should be more adequate to indicate their nature.
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wholly incorporated in the laboratory frame through the collective rotations in isospin and
gauge spaces.

The situation is identical to the one appearing in shape-deformed nuclei, for which
the conditions〈Q±1〉 = 0, holding in the intrinsic system, does not mean that any
part of the spherically symmetric quadrupole interaction is neglected in the laboratory
system.

The two remaining expectation values〈Sp〉 and〈Sn〉 are real and they are considered
to be the large quantities of the problem. This is consistent with the expansion implicit in
the RPA, which assumes thatO(〈S〉|>O(S(20)) > O(S(11)). It is convenient to unify this
expansion with the 1/T one by setting

O
(〈S〉) = T , O

(
S(20)) = √

T , O
(
S(11)) = 1,

O(gv)=O(g⊥)= 1/T . (21)

Combining the selection of the gauge (20) with the assumption (21), one may classify
the different terms in the Hamiltonian according to their order of magnitude. One thus
obtains the different contributions given in the Appendix D. By making intensive use of
the simplified constraints (18), the summation of the leading order contributions yields the
following terms

〈H 〉 = εvj 〈τvj 〉 − gv〈Sv〉2,

H (20) − 〈λv〉τ (20)
v = evj τ

(20)
vj − gv〈Sv〉

(
S+(20)
v + S(20)

v

)
,

H (11) − 〈λv〉τ (11)
v = evj τ

(11)
vj − gv〈Sv〉

(
S+(11)
v + S(11)

v

)
,

H‖ = −gvS+(20)
v S(20)

v ,

H⊥ = −g⊥
1

2
s+(20)s(20) +ωξξ

+ξ − g2
3

T
〈Sp〉〈Sn〉

(
β4ξ+2 + β−4ξ2)

−(
β2ξ+ζ+(20) + β−2ξζ (20)) − 1

2I⊥
[
τ
(20)
1 , τ

(20)
1̄

]
+. (22)

According to (21) the expectation value of the Hamiltonian is ofO(T ), the term with the
superindex(20) is of O(

√
T ) and the remaining terms are of orderO(1). The neglected

terms in the Hamiltonian are ofO(� 1/
√
T ).

We have included the Lagrange multipliers in the single-particle energies of Eq. (22)

−〈λv〉τ (20+11)
v = −〈λa〉τ (20+11)

a − 〈λ0〉τ (20+11)
0 ,

evj = εvj − 〈λv〉. (23)

The constants〈λv〉 are chosen such that〈τn〉 = N and 〈τp〉 = Z, respectively. The
single-particle energiesevj are measured from〈λv〉. However, note that within the
BRST formalism, the introduction of the Lagrange multiplier does not constitute an
additional improving approximation, but rather it is part of the exact formalism (c.f.
Eq. (53)).

The operatorsβ, ξ are defined in Subsection 3.2. The frequencyωξ and the moment of
inertiaI⊥ have the value
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ωξ = 3g2

T

(〈Sp〉2 + 〈Sn〉2) + g1

T

(〈Sp〉2 − 〈Sn〉2) − 1

T
ε0j 〈τ0j 〉,

I⊥ = − T

〈λ0〉 , (24)

respectively, while the two quasiparticle operatorζ (20) is defined in Eq. (84).
The HamiltonianH⊥ plus the (quadratic) RPA version ofH(11) − 〈λv〉τ (11)

v commutes
with the operatorsτ (20)

±1 , but for the last term in Eq. (22).
According to the Hamiltonians (7) and (13) we should also include the isospin

interactionHτ . Neglecting again terms proportional to the constraints and using the
approximation (17), we obtain

Hτ = κ
(
T 2

0 − [T1, T1̄]+
) = κT (T + 1). (25)

In the following we interpret the various terms appearing in the Hamiltonian (22).
We may already remark that all contributions conserve isospin, except for the terms
including βν in H⊥ (ν = ±2,±4). Thus, if we ignore for the time being these
last terms, the basic single-particle and boson modes constructed from (22) carry the
isospinT as a good quantum number. This is so in spite of the fact that not only the
isoscalar, but also the isovector and isoquadrupole components enter in the construction
of (22). This is explained because these last two components include isospin conserving
contributions, notwithstanding their tensor character. It happens that such contributions
are the leading order ones in the expansion ofDλ

0δ in powers ofT −1 (see Appendices C
and D).

3.3.1. The ground state energy
Following Appendix E we write

〈H 〉 = constant+ 1

2I(1)v

〈Tv〉2, (26)

where the moments of inertiaI(1)v are defined as

I(1)v = 〈Tv〉
〈λv〉 . (27)

The expression (26) is used in the construction of the spectrum (37).

3.3.2. The mean field approximation
The second and third lines of (22) may be treated within the Bogoliubov–Valatin

transformation between identical particles

α+
vjm =Uvjc

+
vjm − Vvj cvjm̄. (28)

We require

H(20) − 〈λv〉τ (20)
v = 0,

H (11) − 〈λv〉τ (11)
v =Evjνvj . (29)
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Hereνvj is the number of quasiparticles of typev in thej -shell (see Appendix A). We also
obtain the quasiparticle energies and gaps

Evj =
√
e2
vj +∆2

v, ∆v = gv〈Sv〉, (30)

and similarly the amplitudesUvj ,Vvj . The self-consistent conditions must be satisfied

4

gv
= 2j + 1

Evj

. (31)

It is a remarkable property of the expansion in 1/T that the single quasiparticle terms
are identical to those appearing in the naive treatment of the pairing interaction (7). These
terms conserve isospin, in spite of the fact that they originate from all isotensor components
of the Hamiltonian.

3.3.3. The quadratic Hamiltonian
The RPA solutions split into two branches, labeled asparallel (HRPA‖ ) andperpendicu-

lar (HRPA⊥ ). The parallel branch represents separate oscillations of quasiprotons and quasi-
neutrons, each of them displaying a zero-frequency root together with the finite-frequency
ones (ωvι > 0, ι = 2,3, . . .). The treatment of this branch is the same as for the case of
pairing between identical particles. One obtains to the RPA order

HRPA‖ = H(11) − 〈λv〉τ (11)
v + (H‖)RPA = ωvι

(
Γ +
vι Γvι +

1

2

)
+ 1

2Iv
(
τ (20)
v

)2
. (32)

The boson creation operatorsΓ +
vι are linear combinations of the operatorsγ+

vj , γvj
(Eq. (78)). The moments of inertiaIv for rotations in gauge space are calculated according
to the Marshalek–Weneser prescription [29]. A regularization procedure for taking into
account the inherent infrared problems is worked out in detail, as an example, in Chapter 7
of Ref. [16]. Therefore, in the present paper we confine the discussion to the inclusion
of the second term in the r.h.s. of (32) into the spurious sector (see Eq. (56) and
Appendix G).

We turn now our attention to the perpendicular branch of excitations.

HRPA⊥ =H(11) − 〈λv〉τ (11)
v + (H⊥)RPA. (33)

3.3.4. The real, intrinsic+ collective, sectors
The independent quasiparticle Hamiltonian plus the interaction in the first line ofH⊥

(Eq. (22)) yield the quadratic intrinsic Hamiltonian to be diagonalized

HRPA
int = (Epj +Enj )κ

+(20)
j κ

(20)
j − g⊥

2
s+(20)s(20)

= ω⊥ι
(
Γ +

⊥ιΓ⊥ι + 1

2

)
, ι= 2,3, . . . . (34)

The operatorsκ(20)
j and s(20) are given in Eqs. (82). They are independent of the

operatorsτ±1. The linearization equation
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(a) (b)

Fig. 1. Lowest energy states of a system with A nucleons. The set of quantum numbers(A,T ,M,nξ ,n⊥ι, n�ιµ)
needed to specify a state are indicated for each state. (a) displays the Hamiltonian matrix elements connecting
the different states, while (b) shows the Fermi single-beta decay transitions (solid arrows) and the Gamow–Teller
transitions (dashed arrows).

[
HRPA⊥ ,Γ +

⊥ι
] = ω⊥ιΓ +

⊥ι,
Γ +

⊥ι = λιj γ
+
⊥j −µιjγ⊥j , (35)

determines the finite frequenciesω⊥ι and the amplitudesλιj , µιj in the orthonormal
phononsΓ +

⊥ι. These last operators create the so-called antianalogue states in neighbor nu-
clei.5

In addition to these intrinsic excitations, the system displays the collective excitations
corresponding to a change in the number of particlesA, in the isospinT and in its
projectionM. According to the definition of the operatorξ+ in Subsection 3.2, it increases
the value ofM = m − T in one unit. Thus, the set of multiple I.A.S. is represented
by the vibrational band|m〉 = (1/

√
m!)(ξ+)m|0〉 with frequencyωξ (see Eq. (24)).

This frequency depends on the difference between proton and neutron single-particle
energiesε0j (not e0j ). As a result of the regularization procedure which is used in order
to take into account the gauge constraints (1), the role of the unphysical operatorsτ±1
is taken by the collective operatorsξ+, ξ . Fig. 1 represents the set of vibrational and
rotational excitations which are constructed on top of a state with the quantum numbers
(A, T , M = −T , m= 0, k = 0, n⊥ι = 0). All the states represented in this figure have the
same value ofA. The spectrum may be constructed by repeated applications of the intrinsic
creation operatorsΓ +

⊥ι and of the collective creation operatorsξ+. In addition, there may
be excitations carrying different symmetries. One example is the set of theIπ = 1+ states
in odd–odd nuclei (see the Appendix F). These states are denoted by the indices�, ι, µ
(ι= 1,2,3, . . . ; µ= 0,±1 is the magnetic quantum number).

5 The lack of sufficient intensity in the two-body transfer reactions populating antianalogue states has been
pointed out in Ref. [30].
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The spectrum is expanded by the basis

|A,T ,M,n⊥ι, n�ιµ〉 = 1√
2π

exp

[
iA

2
φ

]
|n�ιµ〉|n⊥ι〉|m〉

= 1√
2π

exp

[
iA

2
φ

]
(Γ +�ιµ)n�ιµ√

n�ιµ!
(Γ +

⊥ι)n⊥ι
√
n⊥ι!

(ξ+)m√
m! |0〉. (36)

The energy of the states (36) is written

E(A,T ,M,n⊥ι, n�ιµ)

= 1

2I+

(
A

2

)2

+
(
κ + 1

2I+

)
T (T + 1)+ 1

2I−
A

(
T + 1

2

)

+ωξ

(
m+ 1

2

)
+ω⊥ι

(
n⊥ι + 1

2

)
+ω�ι

∑
µ

(
n�ιµ + 1

2

)
, (37)

where the moments of inertia areI−1± = (I(1)n )−1 ± (I(1)p )−1. The derivation of the
rotational pairing sector is given in the Appendix E. Therefore, there is a contribution from
the pairing energy to the semiempirical mass termκT (T + 1), which should decrease the
effective value ofκ . Note that the linear termT in the productT (T + 1) originates from
the BRST treatment of the spurious sector (c.f. Eq. (63)).

3.3.5. The similitude with the self-consistent-cranking model (s.c.c.)
The model is equivalent to the s.c.c. model for rotations in ordinary space [31]. Since

we have chosen the expectation values〈λ±1〉 = 0, we are describing uniform rotations in
gauge space and around the 0-axis of the isospin space both in the laboratory and intrinsic
frames (they coincide). Note that the expectation values in the g.s. are

〈Tp〉 =Z, 〈Tn〉 =N, (38)

while in a representation conservingR±1, i.e., a rotation of 180◦ around an axis in the
xy plane, we should have the linear combinationsDT

MK ± DT

MK
. As a consequence, the

expectation values of the operatorT0 should vanish, which is not consistent with Eqs. (38).
The situation is analogous to the semiclassical limit for the motion of a particle in a
symmetric double well, where approximations based on small oscillations around one
minima yield good results. TheR±1 symmetry is of course restored by the exponentially
small tunelling between two solutions.

The fluctuations of the direction of rotation in the laboratory frame, i.e., the wobbling
motion, are represented by theξ+, ξ degree of freedom.

We also expect some sort of signature to exist, which should be associated with the
remaining point symmetries under the operatorsRq = exp[iπ(τq − Tq)]. In fact, the

HamiltonianH(20)+(11) − 〈λv〉τ (20)+(11)
v determining the unperturbed basic set of states

is invariant under theRa and R0 transformations or, equivalently, under separateRv
transformations. This expresses the well known conservation of the parity in the number of
particles for the case of pairing between identical particles. If we assume an even number
of protons and of neutrons in the g.s. band, application of the transformationsRp(n) to this
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band yields

Rp(n)|A,T ,M,n⊥ι = 0, n�ιµ = 0〉 = exp

[
iπ

(
T − 1

2
A

)]
|A,T ,M,0,0〉, (39)

and the selection rule for the g.s. band is

1 = (−1)T− 1
2A,

T = 1

2
A,

1

2
A− 2, . . . . (40)

The transformation of the boson excitation operators gives

Rvγ
+
vjR

+
v = γ+

vj ,

Rvγ
+
⊥jR

+
v = −γ+

⊥j ,

Rvγ
+
�j1j2µ

R+
v = −γ+

�j1j2µ
. (41)

Therefore we obtain the selection rule

1 = (−1)
∑

ι(n⊥ι+n�ιµ)+T− 1
2A, (42)

which is verified by the spectrum shown in Fig. 1.

3.3.6. The isospin mixing terms
The isospin mixing terms are included in the second and third lines ofH⊥ (Eq. (22)).

They conserve the number of particlesA and the projectionM in the laboratory frame,
since the product operatorβ2ξ+ increases both the value ofT andm by the same amount.

The product operatorβ4ξ+2 mixes the ground state of a nucleus having isospinT − 2
and projectionM = 2− T with the double I.A.S. with isospinT and the same projection.
It is proportional to the isoquadrupole strengthg2. The corresponding matrix elements are
labelled byφc in Fig. 1(a). They are due to the Hamiltonian

H
mixing
A = −φc

(
β4ξ+2 + β−4ξ2),

φc = g2
3

T
〈Sp〉〈Sn〉. (43)

According to (84), the operatorζ (20) is the sum of two terms,ζ (20)
f = ζfjγ

+
⊥j and

ζ
(20)
b = ζbj γ⊥j , creating and destroying two quasiparticles, respectively. Therefore the term

in the third line ofH⊥ splits into two contributions

H
mixing
B = −β2ξ+ζ+(20) − β−2ξζ (20)

= −(
β2ξ+γ⊥j + β−2ξγ+

⊥j
)
ζfj − (

β2ξ+γ+
⊥j + β−2ξγ⊥j

)
ζbj

= −φf ι
(
β2ξ+Γ⊥ι + β−2ξΓ +

⊥ι
) − φbι

(
β2ξ+Γ +

⊥ι + β−2ξΓ⊥ι
)
,

φf ι = λιjζbj +µιj ζfj , φbι = λιj ζfj +µιj ζbj . (44)

The first term in the r.h.s. of the second line of Eq. (44) annihilates (creates) two
quasiparticles while simultaneously increases (decreases) both the isospin and the number
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of ξ -bosons. The second term in the same line increases (decreases) the number of
quasiparticles, the isospin and the number ofξ -bosons. The existence of both types of
terms is preserved if the operatorsζ (20)

f,b are expressed in terms of the final RPA boson

operatorsΓ +
⊥ι, Γ⊥ι (ι= 2,3, . . .). Therefore, the operatorβ2ξ+Γ⊥ı mixes the antianalogue

states with the analogue state, in the neighbor odd–odd nucleus. The matrix elements
associated with these terms are labelled by the quantitiesφbι, andφf ι in Fig. 1(a). The non-

conserving isospin interactionHmixing
B not only depends on the isoquadrupole strength, but

also on the isodipole terms, since they both arise from the single-particle and the pairing
contributions.

The naive RPA defines phonons which carry a mixture of isospin values, leading to
unpredictable consequences. On the contrary, we have constructed a basic set of states
carrying the isospinT as good quantum number, and the isospin mixing terms act within
this basic set. Therefore, we have been able to disentangle the proper isospin mixing terms
from the spurious ones through the application of the collective formalism.

3.3.7. The spurious intrinsic sector
While the operatorsγ+(20)

⊥j constitute a complete set of operators creating two

quasiparticles coupled to zero angular momentum, the set of operatorsκ+
j is not complete.

According to its definition (82) it should be supplemented by a phonon related to the
isospin operatorsτ±1, which are orthogonal to theκ+

j ’s. Thus, it is natural to choose

Γ +
⊥1 = 1√

T
τ
(20)
1 , Γ⊥1 = − 1√

T
τ
(20)
1̄

, (45)

and therefore

λ1j = −
√

2j + 1

2T
UpjVnj , µ1j =

√
2j + 1

2T
VpjUnj . (46)

The non-vanishing commutation of the Hamiltonian withΓ +
⊥1 proceeds through the last

term6 in (22)

H spurious= − 1

2I⊥
[
τ
(20)
1 , τ

(20)
1̄

]
+ = ω⊥1

(
Γ +

⊥1Γ⊥1 + 1

2

)
,

ω⊥1 = T

I⊥
= −〈λ0〉 (47)

(c.f. Eqs. (24)). Although the term inH spuriousplays a similar role as the RPA rotational
term in (32), there is a difference given by the fact that the frequencyω⊥1 in (47) is finite
and it has a physical meaning. The inclusion of theH spuriouswithin the spurious sector is
deferred to Section 4.

6 The origin of this term may be traced back to the Lagrange multiplier term introduced in (23). It is
straightforward to verify that (23) yields the commutation (47).
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4. The BRST formalism

4.1. The BRST charge and Hamiltonian

So far the overcompleteness inherent to a description in terms of particle and collective
degrees of freedom has been taken care through the assumption that the constrains (1)
or, more precisely, their quadratic version (13), hold. If this is the case, the quadratic
approximation to the Hamiltonian (13) is given by (22). The reader may be satisfied with
the knowledge that physical states are annihilated by (1), in particular the vacuum state.
He may perform many calculations as those presented in the Section 5. On the other
hand, a deeper understanding of the problem, as well as more complicated calculations
involving, for instance, higher orders of perturbation theory, requires the content of the
present section.

A gauge theory has an underlying invariance under transformations generated by the
chargeQ. This is a hermitian and nilpotent operator that is linear in the constrains and
which includes information about the group of gauge transformations (1), through the
presence of the structure constantscklj

Q = π̄vBv − ηk(τk − Tk)+ i

2
ckljηkηlπj

= π̄vBv − ηv(τv − Tv)+ η1(τ1̄ − T1̄)+ η1̄(τ1 − T1)

+ 1

2
η1̄η1(πn − πp)+ (π1̄η1 − π1η1̄)(ηn − ηp). (48)

In addition to the constant term〈λv〉, already introduced in (23), the Lagrange multipliers
λv include a boson componentλ′

v

λv = 〈λv〉 + λ′
v. (49)

The operatorsBv in (48) are conjugate to theλ′
v . The chargeQ also contains fermion ghost

operatorsηk , π̄v with conjugate momentaπk, η̄v ,

−i[λ′
v,Bw] = [η̄v, π̄w]+ = [ηv,πw]+ = δvw,

[η1,π1̄]+ = [η1̄,π1]+ = −1. (50)

The constrains are automatically taken into account by operating within the subspace
carrying zero charge. However, this subspace of states consists of physical states plus states
|χ〉 = Q|unphysical〉, having zero-norm. Both physical operators and operators mapping
physical states into zero-norm states, henceforth nil operatorsOχ , commute with the
chargeQ. Consequently, there are families of equivalent states and equivalent operators,
namely

|physical〉 → |physical〉 + |χ〉, Ophysical→ Ophysical+Oχ , (51)

which yield the same matrix elements as physical operators between physical states.
The strategy is to add to the Hamiltonian a convenient nil operator that simplifies the

treatment of the spurious sector. In particular, the operator obtained by anticommuting an
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arbitrary operatorρ—the “gauge fixing function”—with the chargeQ is a nil operator. We
may choose as gauge fixing function7

ρ = λvπv +ω2
vη̄v

(
θv − 1

2Iv
Bv

)
, (52)

where θv = θ
(20)
v are the RPA angles conjugate toτ (20)

v . They are obtained, together
with the moment of inertiaIv , by applying the Marshalek–Weneser prescription [29].
The parametersωv are arbitrary and should disappear from any physical expression. The
gauge fixing function (52) privileges the degrees of freedom associated with the quantum
numbersv. The idea underlying this gauge is that, because of the finite value of the
frequenciesω⊥1, one may use straightforwardly the RPA solutions corresponding to the
⊥-degrees of freedom, without worrying in this case about infrared divergencies. This
choice facilitates the BRST treatment of the⊥-sector.

Using (52) we may construct the nil operator to be added to the original HamiltonianH

in order to obtain the (equivalent) BRST Hamiltonian.

HBRST = H + [ρ,Q]+
= H + iπvπ̄v − λv(τv − Tv)+ω2

v

(
Bvθ

(20)
v − 1

2Iv
B2
v

)
+ω2

vηwη̄v
[
θ(20)
v , τw

] +ω2
vη̄v

(
η1

[
θ(20)
v , τ1̄

] + η1̄

[
θ(20)
v , τ1

])
− λ0(π1̄η1 − π1η1̄). (53)

4.2. The quadratic BRST Hamiltonian

We consider first the Lagrange multiplier terms−λv(τv − Tv), whereλv is given in
Eq. (49). The differences〈τv〉− 〈Tv〉 vanish by construction and the terms−〈λv〉τ (20)+(11)

v

have been already introduced in the single-particle terms of the Hamiltonian (22). Thus the
two remaining quadratic contributions of the Lagrange multiplier term are (c.f. Eq. (17))

〈λ0〉ς+ς − λ′
vτ

(20)
v . (54)

With the choice ofθv as the RPA angles,[
θ(20)
v , τw

] = iδvw + [
θ(20)
v , τw

](r)
,[

θ(20)
v , τ±1

] = [
θ(20)
v , τ±1

](r)
, (55)

where the contribution of the terms labeled by(r) is smaller than unity(� O(T −1/2)).
Therefore the last but one line in the Hamiltonian (53) only contributes through the first
term to the quadratic Hamiltonian, giving rise to the termiω2

vηvη̄v .
The quadratic BRST Hamiltonian is distributed into the two branches,‖ and ⊥. By

adding the‖-terms toHRPA‖ (Eq. (32)) we obtain

7 There is a large latitude in the determination of the gauge fixing function. In previous treatments of the
cranking model, we have used a more complicatedρ, including also the componentsθ±1 [32]. The gauge fixing
function used in this paper was suggested by J.P. Garrahan [33]. To our knowledge, it has not been applied before.
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HRPA‖,BRST

= ωvι

(
Γ +
vι Γvι +

1

2

)
+ 1

2Iv
(
τ (20)
v

)2

− λ′
vτ

(20)
v +ω2

v

(
Bvθ

(20)
v − 1

2Iv
B2
v

)
+ i

(
πvπ̄v +ω2

vηvη̄v
)

= ωvι

(
Γ +
vι Γvι+

1

2

)
+ωv

(
Γ +
v1Γv1−Γ +

v0Γv0+ āvav + b̄vbv
)
, ι=2,3, . . . . (56)

Thus this Hamiltonian includes a real sector, corresponding to the finite-frequency RPA
bosons, and a supersymmetric spurious sector. The zero-frequency term proportional terms
(τ

(20)
v )2 are incorporated into this spurious sector, which is diagonalized in Appendix G.

The following commutation relations are satisfied8

[
Γv1,Γ

+
v1

] = [
Γ +
v0,Γv0

] = [āv, av]+ = [b̄v, bv]+ = 1. (57)

The vacuum state satisfies the conditions

Γvι|0〉 = Γv1|0〉 = Γv0|0〉 = av|0〉 = bv|0〉 = 0. (58)

It is a physical state, unlike the excited states of the spurious sector.
We consider now the⊥-branch. It includes the contribution (47).

HRPA⊥,BRST = ωξ

(
ξ+ξ + 1

2

)
+ω⊥ι

(
Γ +

⊥ιΓ⊥ι + 1

2

)

− 1

2I⊥
[
τ
(20)
1 , τ

(20)
1̄

]
+ + 〈λ0〉

(
ς+ς + π1η1̄ − π1̄η1

)
. (59)

Making use of the transformation

π1 = iā⊥, π1̄ = b⊥, η1 = −b̄⊥, η1̄ = ia⊥,
[ā⊥, a⊥]+ = [b̄⊥, b⊥]+ = 1, (60)

we obtain

HRPA⊥,BRST = ωξ

(
ξ+ξ + 1

2

)
+ω⊥ι

(
Γ +

⊥ιΓ⊥ι − 1

2

)

+ω⊥1

(
Γ +

⊥1Γ⊥1 − ς+ς + ā⊥a⊥ + b̄⊥b⊥ − 1

2

)
. (61)

The quadratic term−ω⊥1ς
+ς amounts to a negative energy boson. This leads to the (at

least cumbersome) situation of a degenerate vacuum state. The problem may be eliminated
through the transformation

Γ +
⊥0 = −ς,[
Γ⊥0,Γ

+
⊥0

] = −1, (62)

8 This is the same case as in electromagnetism, where an indefinite metric associated with the Lagrange
multiplier is used.
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at the expense of working again with the indefinite metric (62) (cf. Eq. (57)). The final
quadratic Hamiltonian has the form

HRPA⊥,BRST = ωξ

(
ξ+ξ + 1

2

)
+ω⊥ι

(
Γ +

⊥ιΓ⊥ι + 1

2

)

+ω⊥1

(
Γ +

⊥1Γ⊥1 −Γ +
⊥0Γ⊥0 + ā⊥a⊥ + b̄⊥b⊥ + 1

2

)
. (63)

The vacuum state has been redefined through the transformations (60) and (62). It is
annihilated by the operators

Γ⊥ι|0〉 = ξ |0〉 = Γ⊥1|0〉 = Γ⊥0|0〉 = a⊥|0〉 = b⊥|0〉 = 0. (64)

Using the previous transformations, the leading (quadratic) terms in the charge associated
with the⊥-degrees of freedom are given by

Q
(2)
⊥ = −i

√
I⊥ a⊥

(
Γ +

⊥1 + Γ +
⊥0

) +
√
I⊥ b̄⊥(Γ⊥1 + Γ⊥0), (65)

which clearly annihilates the vacuum state, according to (64).
The spurious spectrum is constructed by repeated applications of the spurious

supersymmetric quartet of creation operatorsΓ +
⊥1, Γ +

⊥0, ā⊥, b̄⊥

|spurious〉 = |n⊥1〉|n⊥0〉|n⊥a〉|n⊥b〉
=

∏
d=0,1

(Γ +
⊥d)n⊥d

√
n⊥d !

∏
c=a,b

(c̄⊥)n⊥c |0〉, (66)

with n⊥d = 0,1,2, . . . , andn⊥c = 0,1. It may be shown that all the states (66) are either
unphysical or nil states, but the vacuum state (64) (see Ref. [16]). Therefore, the word
spurioushas a definite meaning here.

We note the similitude between the spurious sector of the Hamiltonian (63) and those
associated with either protons or neutrons in the‖-branch (Eq. (56)). There are also some
differences, consisting on the fact that the frequenciesωv are arbitrary (and thus should
not appear in any physical result), while the frequencyω⊥1 has physical meaning, and
on the existence of a vacuum energy1

2ω⊥1 in (63). In fact, this energy is incorporated
to the rotational energy in Eq. (37). The treatment beyond the RPA order is discussed in
Appendix H.

5. Double-beta decay transitions

5.1. Fermi double-beta decay transitions

The Fermi operator is written

β(F−) = √
2τ1. (67)

As we proceeded in the case of the Hamiltonian, we must transform the operatorβ(F−) to
the intrinsic frame
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β(F−) → √
2
(
D1

11τ1 +D1
10τ0 +D1

1(−1)τ−1
)

= √
2D1

10〈τ0〉 + nil operator+O
(
T −1/2)

= −√
2T ξ+ + nil operator+O

(
T −1/2). (68)

This is another instance where, as a result of the renormalization procedure, the badly-
behaved operatorτ1 is replaced by the well-behaved collective operatorξ+ creating the
sequence of analogue states. The allowed Fermi transitions, for single-beta decay virtual
transitions, are represented in Fig. 1(b).

The Fermi double-beta decay requires the existence in the Hamiltonian of terms that do
not preserve the isobaric symmetry. Thus, the interactions discussed in Subsection 3.3.6
are needed. Table 1 displays the matrix elements of the mixing Hamiltonian (44) between
one-phonon states in the intermediate odd–odd nucleus with the isospin projectionM =
−T + 1, consistently with the selection rule (42). Table 2 shows the corresponding
matrix elements between zero and two-phonon states in theM = −T + 2 (final) system.
They are extracted from Eqs. (43) and (44). The unperturbed energies are obtained from
expression (37). The quantum numbers shown in the tables are (T ,nξ , n⊥ι).

After the diagonalization, the states in the intermediate system are labelled byι′, with
energiesωι′ . Subsequently, we obtain the beta-decay amplitudesM

(F)

T g.s.;ι′ (|T g.s.〉 → |ι′〉)
andM(F)

ι′;(T−2)g.s. (|ι′〉 → |(T − 2)g.s.〉) for the transitions involved in the double-beta
decay through the application of the operator (68), satisfying the selection ruleInξ = ±1
between unperturbed states. The matrix element of the allowed double-Fermi decay, in the
two-neutrino channel, is written

M
(F)
2ν =

M
(F)

T g.s.;ι′M
(F)

ι′;(T−2)g.s.

∆+ωι′
, (69)

where∆ is the energy released during the decay [5].

Table 1
The matrix elements of the Hamiltonian corresponding to the states carrying
M = −T + 1

T − 1,0,1 T ,1,0

T − 1,0,1 ω⊥ι −φf ι
T ,1,0 −φf ι ωξ + 2κT

Table 2
The matrix elements of the Hamiltonian corresponding to the states carrying
M = −T + 2

T − 2,0,0 T − 1,1,1 T ,2,0

T − 2,0,0 0 −φbι −√
2φc

T − 1,1,1 −φbι ωξ +ω⊥ι + 2κ(T − 1) −√
2φf ι

T ,2,0 −√
2φc −√

2φf ι 2ωξ + κ(4T − 2)
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5.2. Schematic models

We center the discussion of this section on the results presented in Ref. [13], where
the case of a singlej -shell has been assumed. Since in this model antianalogue states are
not present, the interactionHmixing

B does not enter in the calculation. The values given in
Table 3 are the parameters used in the calculations of Ref. [13], together with the relation
g = gn = gp .

The Fig. 1 of Ref. [13] displays the energyωξ of the I.A.S. (Eq. (24)), as a function of
g2/g. It is seen that the point whereωξ vanishes and the point where the isospin symmetry
is restored are different. This exact result cannot be reproduced by other approximations.
The amplitudeM1 of the Fermi transition to the intermediate I.A.S.(T ,1,0) and the
amplitudeM2 between the I.A.S. and the final state(T − 2,0,0) are displayed in the
lower boxes of the Fig. 1 of Ref. [13]. As it has been shown there, the matrix element
M2 is proportional to the admixture of the double I.A.S.(T ,2,0) in the final state. Such
admixtures have been obtained in perturbation theory by using the matrix elements given
in Table 2. Fig. 2 of Ref. [13], shows Fermi double-beta decay matrix elements. In addition
to the exact and collective values of these matrix elements, we have included the results

Table 3
The value of the quantum numbersj , A, T and of the parameters
ε0, g used in the schematic calculations. The value of the isorotational
parameterκ is fixed atκ = 0 for all cases

j A T ε0 g

9/2 10 3 0.8 MeV 0.4 MeV
19/2 20 4 0.63 MeV 0.2 MeV

Fig. 2. Matrix elements for allowed double Fermi transitions, as a function of the coupling constantg2. The upper
three boxes correspond tog1 = 0, while the lower ones tog1 = 0.026 MeV. Insets (a) are obtained withφc = 0;
(b) with φbι = φf ι = 0 and (c) with all matrix elements different from zero. The matrix elements are given in

units of MeV−1.



318 D.R. Bes, O. Civitarese / Nuclear Physics A 705 (2002) 297–334

obtained by means of other approximations. As expected,providedT is conserved, the
exact results show the suppression of the matrix elements around the pointg2 = 0. The
result is reproduced by the naive RPA (QRPA) and by the collective approach,but not
by the so-called renormalized RPA (RQRPA). On the other side, the naive RPA cannot be
extended beyond the unstable region of smallg2 values. Ikeda’s sum rule is also reproduced
by the collective approach and by the QRPA, but not by the RQRPA.

5.3. Realistic calculations

We have performed a realistic calculation for the two-neutrino double-beta-decay mode
in 76Ge. Single-particle energies are obtained from the parametrization of the Wood–Saxon
potential recommended in [19], including the proton electrostatic field. The valence energy
levels are listed in Appendix I. The values∆v , 〈λv〉 are also given in Appendix I, for each
value of the proton or neutron strength parametergv that is used.

The calculation has been performed for two values ofg1, i.e., g1 = 0 MeV and
g1 = 0.026 MeV. In correspondence to the first value we have takengn = gp = 0.289 MeV;
while for the second one we have takengn = 0.289 MeV andgp = 0.342 MeV, so that
the proton gap becomes slightly larger than the neutron one. The isorotational parameter
has the valueκ = 1 MeV. The Fermi amplitudes are represented as a function of the
isoquadrupole strengthg2. The results of the calculations are shown in Fig. 2. We note that:

(i) both interactionsHmixing
A andHmixing

B yield contributions which are of similar orders
of magnitude, with the same sign ifg2 < 0 and with the opposite sign ifg2 > 0;

(ii) the interactionHmixing
A is mainly responsible for the amplitude through the intermedi-

ate I.A.S. state, while the one labelled byHmixing
B yields the amplitudes that proceed

via the intermediate antianalogue states. This can be easily seen by diagonalizing the
matrices of Tables 1 and 2 in perturbation theory (c.f. Appendix J);

(iii) although the contribution via the interactionHmixing
B predominates, its effects are only

due to the splitting between intermediate states, since they would be cancelled for
intermediate degenerate states (c.f. Appendix J). As a consequence of this cancellation
the predicted values tend to be suppressed;

(iv) estimates of the magnitude ofg2 are given in Appendix K. They range in the region
0 � g2 � 0.007 MeV. Within this region the curves (c) of Fig. 2 display an additional
cancellation because the contributions (a) and (b) add incoherently (c.f. (i)). As a
consequence, the results are stable and too small to be of significance in the 2νββ

processes;
(v) dipole effects are also negligible for realistic differences between neutron and proton

Hamiltonians.

5.4. Gamow–Teller double-beta decay transitions

In the case of allowed Gamow–Teller transitions, the operator is defined as

β(GT−)
q = σ1q ≡ 1√

3

∑
l

〈j1‖σ‖j2〉
[
c+
pj1
cnj2

]1
q
, (70)
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where〈j1‖σ‖j2〉 is the reduced matrix element of the spin operator. The transformation to
the intrinsic system, leads to

β(GT−)
q → D1

11σ1q +D1
10σ0q +D1

1(−1)σ(−1)q

= D1
11σ1q +O

(
T −1/2)

= β−2σ1q +O
(
T −1/2). (71)

Each time that a phonon is created or destroyed through the operatorσ
(20)
1q , the operator

β−2 decreases the isospin by one unit. This is consistent with the selection rules of Eq. (42).
Moreover, we may elaborate the(20) terms of the Gamow–Teller operator

σ
(20)
1q = −〈j1‖σ‖j2〉√

3

(
Upj1Vnj2γ

+
�j1j2q

+ (−1)qVpj1Unj2γ�j1j2(−q)
)

= σf ιΓ
+�ιq + (−1)qσbιΓ�ι(−q), (72)

where

σf ι = M�
T g.s.;(T−1)ιq = −〈j1‖σ‖j2〉√

3
(Upj1Vnj2λιj1j2 + Vpj1Unj2µιj1j2),

σbι = M�
(T−1)ιq;(T−2)g.s. = −〈j1‖σ‖j2〉√

3
(Vpj1Unj2λιj1j2 +Upj1Vnj2µιj1j2). (73)

The amplitudesλιj1j2 andµιj1j2 are obtained within the RPA, as discussed in Appendix F.
Therefore, the double Gamow–Teller matrix element contributing to the two-neutrino

mode is written

M
(GT)
2ν =

(−1)qM�
T g.s.;(T−1)ιqM

�
(T−1)ι(−q);(T−2)g.s.

∆+ω�ι
= 3σf ισbι
∆+ω�ι

. (74)

For the sake of comparison, we show in Fig. 3 the values of the matrix element (74)
as a function of the isoscalar pairing interactiongd (see Appendix F). The strength of the

Fig. 3. Matrix elements for allowed double Gamow–Teller g.s. to g.s. transitions in76Ge, as a function ofg� (see
the text) and for two values ofg1. The matrix elements are given in units of MeV−1.
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isospin-spin interaction was fixed atχ = 0.030 MeV for the casegd = 0 and changed asgd
increases so that the energy weighted sum rule[

S+�q , [H,S�q ]
]= ω�ι

(
σ 2
f ι + σ 2

b

)
(75)

stays constant.
Since the results are an order of magnitude larger than those of the Fermi contributions,

the present comparison confirms the dominance of the allowed Gamow–Teller transitions
in the amplitude for the two-neutrino double-beta decay channel.

In this discussion of the matrix elements of the two-neutrino double-beta decay process
we have disregarded the effects associated with the lack of overlap between the initial and
final states.

6. Conclusions

We have presented in detail a suitable formalism for the description of proton–neutron
excitations in superfluid nuclei in which, at first sight, pairing effects are included only
between identical particles. However, this violation of the symmetry is only performed in
the intrinsic frame. We have shown that the introduction of the overcomplete set of intrinsic
and collective variables constitutes an adequate tool to treat such excitations, provided the
appropriate constraints are simultaneously taken into account.

Briefly, one transforms the Hamiltonian to the moving frame and simplifies the
subsequent expression by adding nil contributions. At the quadratic approximation,
one obtains two set of real excitations: (a) the parallel excitations, involving identical
quasiparticles, which have been previously treated within the BRST framework; and
(b) perpendicular excitations, involving proton–neutron configurations, which are the
central topic of the present contribution. The resulting states carry the number of
particlesA, the isospinT and its laboratory projectionM, as good quantum numbers. They
are also labelled by the number of different well-behaved physical bosons associated with
the I.A.S. band, with the antianalogue states and with states carrying different symmetries.
Moreover, matrix elements of the Hamiltonian between states differing in one and two units
of T are explicitly obtained. Thus, the formalism is able to disentangle the physical effects
arising from the lack of symmetry of the original Hamiltonian from those unphysical
effects originated from the application of the BCS formalism for identical particles.

The spurious effects appear concentrated in the Hamiltonian on a term depending on
the isospin componentsτ±1. We may ignore this term if we are satisfied with calculations
to leading order, for instance, with those presented in this paper concerning allowed
double-Fermi and double-Gamow–Teller beta-decay transitions. Nevertheless, it is also
possible to transfer such an isospin dependent term to the spurious sector via a rigorous
procedure based on the BRST invariance. The BRST spurious sector may be expressed as
a supersymmetric system of two bosons and two fermions, which is very similar to the
one appearing in the BRST treatment of pairing interactions between identical particles.
Higher order corrections would demand the inclusion of all these spurious sectors in the
mathematical manipulations.
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Within the physical sector, the badly-behaved operatorsτ
(20)
±1 become systematically

replaced by the well-behaved operatorsξ+, ξ , creating and destroying the states within the
I.A.S. band. This is apparent in the expression for the Fermiβ-decay operator, after being
transformed to the intrinsic frame.

The results concerning the value of the I.A.S. frequencyωξ , the β-decay matrix
elements and the 2νββ amplitudes have been checked against the predictions of an exact
calculation. These last ones are very well reproduced. This should not be a surprise, since
our calculation is exact, within a perturbation framework. This result is at variance with
those of other, often arbitrary, modifications of the RPA, which have appeared in the
literature.

Realistic calculations have been made, displaying also a dependence with the isoquadru-
pole strengthg2. The empirical value of this parameter yields an upper limit for the contri-
bution of the Fermi transitions to the two-neutrino double-beta decay processes. Moreover,
the existence of at least two cancellations further decrease the predicted amplitude. Thus,
the final results in76Ge are (as expected) too small to be of significance, both relative to
the empirical value and to the Gamow–Teller contribution.
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Appendix A. Notation and definitions

The operatorsS+
pj , S

+
nj andS+

⊥j create a proton pair, a neutron pair and a proton–neutron
pair. In all cases the pairs are created in time-reversed states(m, m̃)

S+
vj =

∑
m>0

c+
vjmc

+
vjm̃

, S+
⊥j =

∑
m>0

(
c+
pjmc

+
njm̃

+ c+
njmc

+
pjm̃

)
. (76)

Moreover,

τk =
∑
j

τkj , S+
ρ =

∑
j

S+
ρj , (77)

with k = a, q ; q = 0,±1, andρ = v,⊥.
We use the quasiparticle operators

νvj = α+
vjmαvjm, νvwj = α+

wjmαvjm,

γ+
vj =

√
2

2j + 1

∑
m>0

α+
vjmα

+
vjm̃

,

γ+
⊥j = 1√

2j + 1

∑
m>0

(
α+
njmα

+
pjm̃

+ α+
pjmα

+
njm̃

)
. (78)
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The operators (3), (4), (76) may be written in terms of the operators (78)

τ
(00)
vj = V 2

vj (2j + 1), τ
(00)
1 = 0,

S
(00)
vj =

(
j + 1

2

)
UvjVvj , S

(00)
⊥j = 0, (79)

τ
(11)
vj = (

U2
vj − V 2

vj

)
νvj ,

τ
(11)
1j = − 1√

2
(UnjUpjνpnj − VnjVpjνpnj ),

S
+(11)
vj = −UvjVvj νvj ,

S
+(11)
⊥j = −UpjVnj νpnj −UnjVpjνpnj , (80)

τ
(20)
vj = 2

√
j + 1

2
UvjVvj

(
γ+
vj + γvj

)
,

τ
(20)
1j = −

√
j + 1

2

(
UpjVnjγ

+
⊥j + VpjUnjγ⊥j

)
,

S
+(20)
vj =

√
j + 1

2

(
U2
vj γ

+
vj − V 2

vj γvj
)
,

S
+(20)
⊥j = √

2j + 1
(
UnjUpjγ

+
⊥j − VnjVpjγ⊥j

)
. (81)

It is convenient to extract the terms which are proportional toτ
(20)
±1 , from the operators

γ+
⊥j , τ (20)

±1j andS+(20)
⊥j . Using (6) we obtain

κ
+(20)
j = γ+

⊥j +
√
j + 1/2

T

(
UpjVnj τ

(20)
1 + VpjUnj τ

(20)
1̄

)
= γ+

⊥j −
√
(j + 1/2)(j ′ + 1/2)

T

((
UpjVnjUpj ′Vnj ′ − VpjUnjVpj ′Unj ′

)
γ+
⊥j ′

+ (
UpjVnjVpj ′Unj ′ − VpjUnjUpj ′Vnj ′

)
γ⊥j

)
,

t
(20)
1j = τ

(20)
1j + 〈τ0j 〉

T
τ
(20)
1

= −
(
δj j ′ + 〈τ0j 〉

T

)(
Upj ′Vnj ′γ+

⊥j ′ + Vpj ′Unj ′γ⊥j ′
)
,

s
+(20)
j = S

+(20)
⊥j +

√
2

T

(〈Snj 〉τ (20)
1 + 〈Spj 〉τ (20)

1̄

)
= √

2j ′ + 1

(
UnjUpj δj j ′ − 〈Snj 〉

T
Upj ′Vnj ′ + 〈Spj 〉

T
Vpj ′Unj ′

)
γ+
⊥j ′

− √
2j ′ + 1

(
VnjVpjδj j ′ + 〈Snj 〉

T
Vpj ′Unj ′ − 〈Spj 〉

T
Upj ′Vnj ′

)
γ⊥j ′ , (82)

where[
κ+
j , τ±1

](00) = [t1j , τ±1](00) = [
s+j , τ±1

](00) = 0. (83)
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We define the operatorsh(20), s+(20) andζ (20)

h(20) = h
(20)
f + h

(20)
b , s(20) = s

(20)
f + s

(20)
b ,

ζ (20) = ζ
(20)
f + ζ

(20)
b , (84)

where

h
(20)
f = −

(
ε0j + 1

T
ε0j ′ 〈τ0j ′ 〉

)√
2j + 1UpjVnjγ

+
j ,

h
(20)
b = −

(
ε0j + 1

T
ε0j ′ 〈τ0j ′ 〉

)√
2j + 1VpjUnjγj ,

s
+(20)
f = √

2j + 1

(
−VpjVnj − 〈Sn〉

T
VpjUnj + 〈Sp〉

T
UpjVnj

)
γj ,

s
+(20)
b = √

2j + 1

(
UpjUnj − 〈Sn〉

T
UpjVnj + 〈Sp〉

T
VpjUnj

)
γ+
j ,

ζ
(20)
f = ζfjγ

+
⊥j

= h
(20)
f + (g1 + 3g2)〈Sp〉s+(20)

b + (g1 − 3g2)〈Sn〉s(20)
f ,

ζ
(20)
b = ζbj γ⊥j

= h
(20)
b + (g1 + 3g2)〈Sp〉s+(20)

f + (g1 − 3g2)〈Sn〉s(20)
b . (85)

Appendix B. Irreducible isotensor operators

In this appendix we give the irreducible isotensor operatorsOλµ constructed from the
pairing operatorsS+

p , S+
n andS+

⊥ , and their hermitian conjugate expressions.

The irreducible operatorsS+
p ,S

+
n and 1

2S
+
⊥ carry isospinλ = 1 and projectionsµ= 1,

−1 and 0. Therefore, the product of two of them is a linear combination of terms with
isospinλ= 0,1 and 2. By taking a linear combination of the products indicated in Table 4
one may easily verified that only the indicated value ofλ survives.

Table 4
Irreducible isotensor operators

λ,µ Oλµ λ,µ Oλµ

0,0 S+
p Sp + S+

n Sn + 1
2S

+
⊥S⊥ 2,2

√
6S+pSn

2,1
√

3/2
(
S+
⊥Sn − S+

p S⊥
)

1,1 −1/
√

2
(
S+
p S⊥ + S+

⊥Sn
)

2,0 S+
p Sp + S+

n Sn − S+
⊥S⊥

1,0 S+
p Sp − S+

n Sn 2,−1
√

3/2
(
S+
⊥Sp − S+

n S⊥
)

1,−1 1/
√

2
(
S+
n S⊥ + S+

⊥Sp
)

2,−2
√

6S+
n Sp
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Appendix C. The collective operators

In this appendix we briefly present a derivation of the relations used to express the
collective operators in terms of creation and annihilation operators. In general

Dλ
µ,δD

T−T+m,−T+k
=

∑
|s|�λ

〈λ,µ;T ,−T +m|T + s,−T +m+µ〉

× 〈λ, δ;T ,−T + k|T + s,−T + k + δ〉DT+s
−T+m+µ,−T+k+δ. (86)

Using the Holstein–Primakoff representation of the rotational wave functions as extended
by Marshalek, we can express the SU(2)-Wigner functions as

DT+s
−T+m+µ,−T+k+δ =

√
2T + 1

2T + 2s + 1

√
m!

(m+ s +µ)!

√
k!

(k + s + δ)!
× β2s (

ξ+)s+µ(
ς+)s+δ

DT−T+m,−T+k. (87)

Therefore, we can identify

Dλ
µ,δ =

∑
|s|�λ

√
2T + 1

2T + 2s + 1

√
m!

(m+ s +µ)!

√
k!

(k + s + δ)!
× 〈λ,µ;T ,−T +m|T + s,−T +m+µ〉
× 〈λ, δ;T ,−T + k|T + s,−T + k + δ〉β2s(ξ†)s+µ(

ς†)s+δ. (88)

Expanding this relation in powers of 1/T for the cases of interest, we obtain:

(a) Hamiltonian dipole operators

D
(1)
0,1 = (

ς† − β−2ξ
)
T −1/2 +O

(
T −3/2),

D
(1)
0,0 = 1− (

1+ ς†ς + ξ†ξ − β−2ςξ − β2ς†ξ†)T −1 +O
(
T −2),

D
(1)
0,1̄

= −(
ς − β2ξ+)

T −1/2 +O
(
T −3/2). (89)

(b) Hamiltonian quadrupole operators

D
(2)
0,2 =

√
3

2

((
ς†)2 − 2β−2ς†ξ + β−4ξ2)T −1 +O

(
T −2),

D
(2)
0,1 = √

3
(
ς† − β−2ξ

)
T −1/2 +O

(
T −3/2),

D
(2)
0,0 = 1− 3

(
1+ ς†ς + ξ†ξ − β−2ςξ − β2ς†ξ†)T −1 +O

(
T −2),

D
(2)
0,1̄

= −√
3
(
ς − β2ξ†)T −1/2 +O

(
T −3/2),

D
(2)
0,2̄

=
√

3

2

(
ς2 − 2β2ςξ† + β4(ξ†)2)

T −1 +O
(
T −2). (90)
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(c) Transition dipole operators

D
(1)
1,1 = β−2 − (

β−2(1+ ς†ς + ξ†ξ
) − ς†ξ†)T −1 +O

(
T −2),

D
(1)
1,0 = (

ξ† − β−2ς
)
T −1/2 +O

(
T −3/2),

D
(1)
1,1̄

= 1

2

(
β−2ς2 − 2ςξ† + β2(ξ†)2)

T −1 +O
(
T −2). (91)

Appendix D. The expansion of the different contributions to the Hamiltonian (13)

The terms are ordered according to the combined powers of 1/〈Sv〉 and 1/T . The
largest ones are included as expectation values(O(T )); the following ones carry the
superindex (20) and are proportional to one-body operators creating and destroying two
quasiparticles(O(

√
T )); the remaining terms include the (11) component of one-body

operators and/or two interacting quasibosons9 (O(T 0)).
The first subindex denotes the origin of the term, i.e., whether it arises from the single-

particle or the pairing Hamiltonian. The second subindex denotes the isotensor order.
Whenever a third subindex is present, it indicates the number of operatorsτ±1 appearing
in it.

Each term is correct up to a (null) contribution which is proportional to the operators
(ς + τ

(20)
1 /

√
T ) or (ς+ − τ

(20)
1̄

/
√
T ) acting on the vacuum state|0〉.

To start with, we consider the single-particle isoscalar term

Hsp,0 = eajτaj ,

〈Hsp,0〉 = eaj 〈τaj 〉,
H

(20)
sp,0 = eajτ

(20)
aj ,

Hsp,0,0 = eajτ
(11)
aj . (92)

This term includes contributions from the single-particle Hamiltonian (7) and from the
Lagrange multiplier term (23).

The following are the isovector terms of the single-particle Hamiltonian

Hsp,1 = ε0j τqjD
1
0q − 〈λ0〉τ0 = e0j τqjD

1
0q + 〈λ0〉

(
τqD

1
0q − τ0

)
,

〈Hsp,1〉 = e0j 〈τ0j 〉,
H

(20)
sp,1 = e0j τ

(20)
0j ,

Hsp,1,0 = e0j τ
(11)
0j − ε0j 〈τ0j 〉

T
ξ+ξ − 1√

2T

(
β2ξ+h+(20) + β−2ξh(20)),

Hsp,1,1 = 1

T

(
τ
(20)
1̄

t(20) − τ
(20)
1 t+(20)),

Hsp,1,2 = −ε0j 〈τ0j 〉
2T 2

[
τ
(20)
1 , τ

(20)
1̄

]
+. (93)

9 The procedure also yields constant terms of(O(T 0)), which are not included, since there are other
contributions of the same order.
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As said before, these terms include the contribution from the single-particle Hamil-
tonian (7) and from the Lagrange multiplier term (23). The operatorh(20) is defined
in (84).

The pairing Hamiltonian gives the isoscalar terms

Hpair,0 = −g0

(
S+
p Sp + S+

n Sn + 1

2
S+

⊥S⊥
)
,

〈Hpair,0〉 = −g0
(〈Sp〉2 + 〈Sn〉2),

H
(20)
pair,0 = −g0

(〈Sp〉(S+(20)
p + S(20)

p

) + 〈Sn〉
(
S+(20)
n + S(20)

n

))
,

Hpair,0,0 = −g0

(
〈Sp〉(S+(11)

p + S(11)
p

) + 〈Sn〉
(
S+(11)
n + S(11)

n

)

+ S+(20)
p S(20)

p + S+(20)
n S(20)

n + 1

2
s+(20)s(20)

)
,

Hpair,0,1 = −g0
1

T
√

2

(
〈Sn〉

(
s+(20)τ

(20)
1̄

− s(20)τ
(20)
1

)
+ 〈Sp〉(s+(20)τ

(20)
1 − s(20)τ

(20)
1̄

))
,

Hpair,0,2 = g0
1

2T 2

((〈Sp〉2 + 〈Sn〉2)[τ (20)
1̄

, τ
(20)
1

]
+2〈Sn〉〈Sp〉((τ (20)

1

)2 + (
τ
(20)
1̄

)2))
.

(94)

The isovector pairing terms are

Hpair,1 = −g1

(
D1

00

(
S+
p Sp − S+

n Sn
) − 1√

2
D1

01

(
S+
p S⊥ + S+

⊥Sn
)

+ 1√
2
D1

01̄

(
S+
n S⊥ + S+

⊥Sp
))
,

〈Hpair,1〉 = −g1
(〈Sp〉2 − 〈Sn〉2),

H
(20)
pair,1 = −g1

(〈Sp〉(S+(20)
p + S(20)

p

) − 〈Sn〉
(
S+(20)
n + S(20)

n

))
,

Hpair,1,0 = −g1

(
〈Sp〉(S+(11)

p + S(11)
p

) − 〈Sn〉
(
S+(11)
n + S(11)

n

) − 1

T

(〈Sp〉2 − 〈Sn〉2)
+ S+(20)

p S(20)
p −S+(20)

n S(20)
n + 1√

2T
〈Sp〉(β−2ξs(20)+β2ξ+s+(20))

+ 1√
2T

〈Sn〉
(
β−2ξs+(20) + β2ξ+s(20))),

Hpair,1,1 = g1
1

T
√

2

(〈Sn〉(s+(20)τ
(20)
1̄

− s(20)τ
(20)
1

)〈Sp〉(s(20)τ
(20)
1̄

− s+(20)τ
(20)
1

))
,

Hpair,1,2 = g1
1

2T 2

(〈Sp〉2 − 〈Sn〉2)[τ (20)
1 , τ

(20)
1̄

]
+. (95)
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Finally, the isoquadrupole pairing interaction yields

Hpair,2 = −g2

(
D2

00

(
S+
p Sp + S+

n Sn − S+
⊥S⊥

) + √
6
(
D2

02S
+
p Sn +D2

02̄
S+
n Sp

)

+
√

3

2
D2

01

(
S+

⊥Sn − S+
p S⊥

) +
√

3

2
D2

01̄

(
S+

⊥Sp − S+
n S⊥

))
,

〈Hpair,2〉 = −g2
(〈Sp〉2 + 〈Sn〉2),

Hpair,2 = −g2
(〈Sp〉(S+(20)

p + S(20)
p

) + 〈Sn〉
(
S+(20)
n + S(20)

n

))
,

Hpair,2,0 = −g2

(
〈Sp〉(S+(11)

p + S(11)
p

) + 〈Sn〉
(
S+(11)
n + S(11)

n

)
+ S+(20)

p S(20)
p + S+(20)

n S(20)
n − s+(20)s(20) − 3

T

(〈Sp〉2 + 〈Sn〉2)ξ+ξ

+ 3

T
〈Sp〉〈Sn〉

(
β−4ξ2 + β4ξ+2) + 3√

2T
〈Sp〉(β−2ξs(20) + β2ξ+s+(20))

− 3√
2T

〈Sn〉
(
β−2ξs+(20) + β2ξ+s(20))),

Hpair,2,1=−g2
1

T
√

2

(〈Sn〉(s+(20)τ
(20)
1̄

− s(20)τ
(20)
1̄

)+〈Sp〉(s+(20)τ
(20)
1 + s(20)τ

(20)
1̄

))
,

Hpair,2,2=g2
1

T 2

(
〈Sn〉〈Sp〉((τ (20)

1

)2 + (
τ
(20)
1̄

)2)+ 1

2

(〈Sp〉2 +〈Sn〉2)[τ (20)
1 , τ

(20)
1̄

]
+

)
.

(96)

As for the quadratic terms in the case of pairing between identical particles, we include
a contribution arising from the independent quasiparticle term, which may be written as
H

′(11) =Evjνvj ≈ (Enj +Epj )γ
+
j γj , which yields

Hqp,⊥,0 = (Epj +Enj )κ
+
j κj ,

Hqp,⊥,1 =
√
j + 1/2

T
(Epj +Enj )

(
UpjVnj

(
κ+
j τ

(20)
1̄

− κj τ
(20)
1

)
+ VpjUnj

(
κ+
j τ

(20)
1 − κj τ

(20)
1̄

))
= − 1

T

(
t(20)τ

(20)
1̄

− t+(20)τ
(20)
1

)
+ (g0 + g2)

1

T
√

2

(
〈Sp〉(s+(20)τ

(20)
1 − s(20)τ

(20)
1̄

)
+ 〈Sn〉

(
s+(20)τ

(20)
1̄

− s(20)τ
(20)
1

))
+ g1

1

T
√

2

(
〈Sp〉(s+(20)τ

(20)
1 − s(20)τ

(20)
1̄

)
+ 〈Sn〉

(
s(20)τ

(20)
1 − s+(20)τ

(20)
1̄

))
,
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Hqp,⊥,2 = −2j + 1

4T 2 (Epj +Enj )
(
2UpjVpjUnjVpj

((
τ
(20)
1

)2 + (
τ
(20)
1̄

)2)
+ (

U2
pjV

2
nj +U2

njV
2
pj

)[
τ
(20)
1 , τ

(20)
1̄

]
+
)

= 1

2T 2

(
e0j 〈τ0j 〉 − (g0 + g2)

(〈Sp〉2 + 〈Sn〉2)
− g1

(〈Sp〉2 − 〈Sn〉2))[τ (20)
1 , τ

(20)
1̄

]
+

− 1

T 2 (g0 + g2)〈Sp〉〈Sn〉
((
τ
(20)
1

)2 + (
τ
(20)
1̄

)2)
. (97)

The final form of H(2)
qp,⊥,1 and H

(2)
qp,⊥,2 are derived through conventional algebraic

manipulations which involve the self-consistency conditions.

Appendix E. The rotational pairing energy

The self-consistent conditions (31) are obtainable from the minimization of the
Hamiltonians

δ
〈(
H ′ − 〈λv〉τv

)〉 = 0. (98)

The expectation values of the Lagrange multipliers〈λv〉 are such that

〈τp〉 =Z, 〈τn〉 =N. (99)

Thus, the invariance (98) yields

〈λp〉 = ∂

∂Z

〈
H ′〉 = Z

I(1)p

, 〈λn〉 = ∂

∂N

〈
H ′〉 = N

I(1)n

, (100)

defining the moments of inertiaI(1)v . Therefore, the expectation value of the Hamiltonian
includes the rotational energies

1

2
Z〈λp〉 + 1

2
N〈λn〉 = 1

2I(1)p

Z2 + 1

2I(1)n

N2. (101)

In addition, the BRST Hamiltonian (63) provides the term

1

2
ω⊥1 = −1

2
〈λp〉 + 1

2
〈λn〉 = − 1

2I(1)p

Z + 1

2I(1)n

N. (102)

Adding (101) and (102) yields the rotational energy given in (37).

Appendix F. The RPA associated with the isoscalar pairing Hamiltonian

We here discuss some possible manifestations of an isoscalar pairing interaction within
our formalism, although so far there has not appeared any positive evidence regarding
the strengthg� of this force in medium and heavy mass nuclei (see Refs. [26,27]). In
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addition, we also introduce a repulsive spin-isospin force, in order to keep the Gamow–
Teller resonance at its empirical energy,

H� = −gdS+�qS�q ,
Hστ = χσ+

q σq, (103)

where

S+�q = 1√
3

∑
l

〈j1‖σ‖j2〉
[
c+
pj1
c+
nj2

]1
q
,

σ+
q = 1√

3

∑
l

〈j1‖σ‖j2〉
[
c+
pj1
cnj2

]1
q
. (104)

Within the RPA, the two-particle coupled creation operators and the particle–hole coupled
operators yield[

c+
pj1
c+
nj2

]1(RPA)
q

=Upj1Unj2γ
+
�j1j2q

+ (−1)qVpj1Vnj2γ�j1j2(−q),[
c+
pj1
cnj2

]1(RPA)
q

= −Upj1Vnj2γ
+
�j1j2q

+ (−1)qVpj1Unj2γ�j1j2(−q), (105)

the coupled two-quasiparticle operators being defined as

γ+
�j1j2q

= [
α+
pj1
α+
nj2

]1
q
,[

γ�j1j2q, γ
+
�j ′

1j
′
2q

′
] = δj1j

′
1
δj2,j

′
2
δqq ′ . (106)

Since bothH� andHστ are isoscalar operators that conserve the number of particles,
their transformation to the intrinsic system is trivial. The RPA treatment of this Hamiltonian
yields the uncoupled bosonsΓ +

♦ιq with frequenciesω�ι and amplitudesλιj1j2,µιj1j2. There
is no problem here associated with spurious components, because these phonons carry a
different symmetry from those originating the condensate. Since these phonons also have
a single proton and a single neutron, the selection rule associated with them is the same as
for the⊥-phonons discussed earlier (c.f. Eqs. (42))

Γ +�ιq =
∑
j1j2

(
λιj1j2γ

+
�j1j2q

− (−1)qµιj1j2γ�j1j2(−q)
)
,

ω�ιΓ +�ιqΓ�ιq =H(11) − 〈λv〉τ (11)
v +HRPA� +HRPA

στ . (107)

Appendix G. The diagonalization of the spurious sector in the ‖-quadratic
Hamiltonian

One applies the following transformations

τ (20)
v =

√
Ivωv

2

(
Γ +
v1 + Γv1 + Γ +

v0 + Γv0
)
,

θ (20)
v = −i 1√

2Ivωv
(
Γ +
v1 − Γv1

)
,
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Bv = −i
√

Iv
2ωv

(
Γ +
v1 − Γv1 + Γ +

v0 − Γv0
)
,

λ′
v =

√
ωv

2Iv
(
Γ +
v0 + Γv0

)
, (108)

ηv = 1√
2ωv

(iav + b̄v),

πv =
√
ωv

2
(bv − iāv),

η̄v = 1√
2ωv

(−ibv + āv),

π̄v =
√
ωv

2
(av + ib̄v) (109)

with the commutation relations given in (57). Note also thata+
v �= āv andb+

v �= b̄v .

Appendix H. Beyond the RPA

Up to now we have treated the terms creating or destroying two quasiparticles in a
somewhat cavalier way, since a termO(20) behaves like a pure boson term only to the RPA
order. Beyond such order we should distinguish two contributions

O(20) =O ′ +O(r), (110)

whereO ′ is a pure single-boson term and the remaining partO(r) is at leastT −1/2 times
smaller. As an example, the l.h.s. of the two first lines in Eqs. (108) should readτ ′

v and
θ ′
v , respectively,([θ ′

v, τ
′
v]) = i. The explicit inclusion of both terms (110) in the BRST

Hamiltonian (53) yields the residual Hamiltonian. For instance, from the BRST[ρ,Q]+
contribution we obtain the terms of O(� T −1/2)

[ρ,Q]+ → −λ′
v τ

(11+r)
w +ω2

vBvθ
(r)
v + λ′

0

(
ξ+ξ + π1η1̄ − π1̄η1

)
−ω2

vη̄v
(
ηw

[
θ(r)v , τw

] + ηwl[θ ′
v, τ

(11+r)
w

] − η1
[
θ(20)
v , τ1̄

]
− η1̄

[
θ(20)
v , τ1

])
. (111)

Here, the boson operatorsλ′
v , λ′

0, Bv , ς must be replaced by their expression in terms of
the final phonons (Eqs. (108) and (62)). Similarly the ghost operators are to be substituted
according to Eqs. (109) and (60). The residual Hamiltonian should be treated with one of
the well-known procedures to go beyond the RPA, such as the NFT [34] or the boson
expansions [35]. Although care must be taken concerning the indefinite metric of the
bosonsΓv0, Γ⊥0, this is by no means a difficult complication. In fact, the two loop
correction to the g.s. and one-phonon state has been worked in detail, for the case of
pairing between identical particles, in Chapter 7 of Ref. [16]. In the present case of isospin
pairing, it is straightforward, albeit cumbersome, to expandH while simultaneously being
consistent with the order of magnitude of the terms that are retained. This program includes
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the use of Eq. (16) and the expansion of the functionsD1 andD2 to the appropriate order,
following the procedure illustrated in Appendix C.

Appendix I. Parameters used in the realistic calculation

Table 5
The single-particle levels used in the calculation

n l j εn [MeV] εp [MeV]

1 1 3/2 −11.52 −6.79
0 3 5/2 −10.72 −9.01
0 3 7/2 −15.52 −8.21
2 0 1/2 −2.17 −13.97
1 2 3/2 −0.80 1.61
1 2 5/2 −3.30 3.07
0 4 7/2 −0.18 −0.27
0 4 9/2 −7.03 3.05
0 5 11/2 1.65 −5.31
0 5 9/2 5.00 7.00

Table 6
The strength of the interaction, the gap and the expectation value of the Lagrange
multiplier for the relevant numbers of particles. The values are given in units of MeV

N = 24 N = 22 Z = 12 Z = 14 Z = 12 Z = 14

gv 22/A 22/A 22/A 22/A 26/A 26/A
∆v 2.18 2.07 1.61 1.82 2.24 2.52
〈λv 〉 −7.39 −8.08 −9.10 −8.53 −9.41 −8.75

Appendix J. Perturbation treatment of the Fermi amplitude

In this appendix we diagonalize the matrices of Tables 1 and 2 in perturbation theory.
The change in the unperturbed wave functions corresponding to the states (36) is

δ|T ,nξ = 1,0〉 = −fι|(T − 1),0, n⊥ι = 1〉,
δ|T − 1,0, n⊥ι = 1〉 = fι|T ,nξ = 1,0〉,
δ|T − 2, 〉 = bι|T − 1, nξ = 1, n⊥ι = 1〉 + c|T ,nξ = 2,0〉, (112)

where the coefficients are given by

fι = − φf ι

ω⊥ι − 2κT −ωξ
,

bι = φbι

2κ(T − 1)+ωξ +ω⊥ι
,

c = φc√
2T (κ(2T − 1)+ωξ )

. (113)
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Therefore the relevant transition matrix elements become

M
(F)
T g.s.;I.A.S. = 〈T ,1,0|β(F−)|T ,0,0〉 = −√

2T ,

M
(F)
T g.s.;(T−1),0,n⊥ι = 〈T − 1,0, n⊥ι = 1|β(F−)|T ,0,0〉 = −√

2T fι,

M
(F)
I.A.S.;T−2,0,0 = 〈T − 2,0,0|β(F−)| I.A.S.〉 = −√

2T (c− fιbι),

M
(F)
T−1,0,n⊥ι=1;T−2,0,0 = 〈T − 2,0,0|β(F−)|T − 1,0,1〉 = −√

2T bι. (114)

The double decay matrix element is written

M
(F)
2ν = M

(F)
T g.s.;I.A.S.M

(F)
I.A.S.;T−2,0,0

∆+E(I.A.S.)
+ M

(F)
T g.s.;T−1,0,n⊥ιM

(F )
T−1,0,n⊥ι;T−2,0,0

∆+ω⊥ι
. (115)

Appendix K. The empirical value of the strength g2

The present determination of the empirical value is based on the Isobaric Multiplet Mass
Equation (IMME) [36], which expresses the energy of a given isomultiplet as

E(T ,M)= a + bM + cM2. (116)

We must obtain the expectation value of the isoquadrupole Hamiltonian

H2 = −g2
(
S2
p + S2

n

)
D2

00 ≈ −g2

(
∆

g0

)2

D2
00 ≈ g2

A

2
D2

00, (117)

where we have used the values∆ = 11 MeV/
√
A; g0 = 22 MeV/A, as in ([19]).

Therefore, forT = 1 states,

g2 = 3.3

A
cpairing. (118)

The pairing contribution can be determined by subtracting the Coulomb contribution,

ECoulomb= 3

5

Z2e2

Rc
→ 0.70M2 MeV/A1/3, (119)

from the empirical value ofcM2 in 0+ states, and ascribing the residual value ofcM2

to pairing effects. This would yield an upper limit forcpairing (column 4 of Table 6 ).
Alternatively, we note that the empirical value of the coefficientc is systematically larger
for the Iπ = 0+ g.s., than for theIπ �= 0+ excited states in the same nucleus. Therefore
we may attribute to pairing effects the difference in the value ofc between the g.s. and the
excited states. For each nucleus, the average value of the last one is listed in column 5 of
Table 7 and the values ofcpairing thus obtained are given in the last column.

The two resultant values ofg2 are 538 keV/A and 236 keV/A (c.f. Eq. (118)), which are
much too small to yield significant Fermi contributions to the double beta-decay process.
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Table 7
Empirical values of the contribution from pairing effects to the
coefficientc in the Eq. (116). All values are given in units of keV

Nucleus cempirical ECoulomb cpairing cexcited states cpairing

He6 335 266 69
Be10 362 228 134 299 63
C14 337 193 144 258 79
Ne18 347 170 177 223 124
Ne22 314 154 160 246 68
Al26 302 141 160 228 74
Se30 275 131 144 210 65
S34 286 123 163 233 53
Ar38 284 117 167 199 85
Ca42 287 111 176 211 76
Ti46 276 196 170
Cr50 259 102 157
Fe54 276 98 178
Ni58 260 94 166

163± 14 71± 19
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