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Abstract

The nuclear two-neutrino double-beta decay is a measured process that should be quantitatively
understood before the predictions on more exotic, non-standard, double-beta decay processes are
fully trusted. In most cases, the current framework for the descriptiorvgg Jrocess includes
the quasiparticle and random phase approximation (RPA) procedures, which present instabilities in
the region of interest. From the point of view of many-body physics, the problem involved is to
disentangle the physical effects associated with the lack of conservation of the isospin symmetry in
the Hamiltonian, from those arising from the application of the Bogoliubov—Valatin transformation
between identical particles. In the present paper, the separation between both effects is accomplished
by introducing the collective subspace in isospin and gauge spaces, and restoring the symmetry
within such subspace. Explicit, real, isodipole and isoquadrupole mixing terms are subsequently
obtained. The problem of the over-completeness of the basis is solved by isolating the spurious sector
via the application of the Becchi—Rouet—Stora—Tyutin (BRST) symmetry. The formalism allows to
calculate Fermi double-beta-decay transitions which result—as expected—too small in order to be of
significance in the double-beta processes. The same procedure is applied to calculate Gamow-Teller
double-beta decay transitions and the already known sensitivity to model parameters is recovered.
We have calculated two-neutrino double-beta decay transitiofQe, as an example about the use
of the formalismJ 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fine detail nuclear structure calculations have become an issue, particularly those
related to the theoretical estimation of nuclear electroweak observables beyond the
standard model [1-3]. The interestin such a type of calculations is tied up to the continuous
experimental and theoretical efforts devoted to elucidate neutrino properties [4]. If one
focuses the attention on the theoretical description of nuclear double-beta decay transitions,
and particularizes on the two-neutrino double-beta decay modes [5], one finds that the
situation is not settled, in spite of the years elapsed since the first calculations were reported
(for details see [6,7]). The predicted matrix elements are still within factors of order two to
three from the experimentally extracted values [1]. Moreover, the large uncertainties in the
calculations diminish the significance of such discrepancies. The situation is also not very
clear in the analysis of the neutrinoless double-beta decay channel, due to the relatively
large number of the nuclear matrix elements that are involved [5,8].

The most immediate option for nuclear structure calculations is the shell model.
However, the availability of shell model results is restricted to a very small sample of
cases and the calculations are, naturally, affected by severe limitations in the single-particle
space. The most recent shell model result can be found in [9].

Most of the calculations aimed at the explanation of double-beta decay transitions
in medium and heavy mass systems [3,7,10], are based on the use of the quasiparticle
random phase approximation (QRPA). Although the theory has been tested extensively in
the description of the spectrum of even—even nuclei near shell closures, its validity in the
case of double-odd mass nuclei is less established due to the inherent complexity of the
spectrum built upon quasiproton—quasineutron pair excitations.

One notorious problem associated with the QRPA description of double-beta decay tran-
sitions is the instability found when renormalized components of the interaction between
quasiparticles are used in the proton—neutron channel [11]. The cause of this instability
has been traced down to the mean field isospin symmetry breaking induced by the separate
treatment of pairing correlations among protons and neutrons. For an isospin conserving
interaction there would appear an unormalized zero-frequency mode, as explained below.
This is an unavoidable fact of the quasiparticle plus RPA approximations and it cannot be
cured by supplementing the theory with higher-order corrections. Until now none of the
various approaches, including some bizarre ones, has given a satisfactory answer to the
problem of calculating proton—neutron pairing interactions near criticality [12].

The work of Ref. [13] has advanced the notion of using collective and intrinsic variables
in the treatment of isospin dependent nuclear excitations. This formalism has its own
interest, independently of the above mentioned applications. The perfect analogy to this
treatment is the use of intrinsic and collective degrees of freedom in the description of
nuclear deformations and space rotations [19]. Although such an analogy has been drawn
long ago [19-22], the microscopic theory of gauge and isospin collective phenomena
has not been discussed before in detail. The present availability of radioactive beams
and targets may also call for the application of the present formalism to explore nuclear
structure aspects of the excited states in double-odd mass nuclei.

The results obtained in Ref. [13] for the case of purely isovector (spin independent)
transitions are in perfect agreement with the available exact solutions, in contrast with
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the behavior of other approximations in the vicinity of the symmetry restoration. In the
present paper we present a detailed derivation of the formalism applied in Ref. [13].

There is a many-body problem of disentangling symmetry violations effects arising
from the original Hamiltonian from those artificially introduced by the formalism. This
problem has remained unsolved, although its existence was recognized long ago in
studies concerning analogue states and isospin impurities [23]. The neutron excess,
T, = %(Z — N), produces a symmetry violating Hartree—Fock Hamiltonian because,
in this approximation, only the componefitz, of the scalar product is taken into
account. Moreover, the isospin-violating Coulomb interaction must be introduced between
symmetry violating stateIn the present paper we solve an analogous problem through
the use of the collective formalism. To our knowledge, this was not accomplished before,
because collective variables have been usually introduced in order to restore, at the
macroscopic level, those symmetries that are lost in the microscopic description. This
implies that there are symmetries to start with, which are reflected in invariance properties
of the original Hamiltonian. However, as in the present case, the initial Hamiltonian may
not be scalar in isospin space (otherwise, there would not be double-Fermi transitions
between states differing in two units of isospin). Moreover, the inclusion of pairing between
identical particles contributes artificially to the breaking of the isospin symmetry.

We describe the steps that are followed in constructing the Hamiltonian and we extend
the formalism presented in [13] to encompass the case of seyeshélls. A brief
review of the treatment with collective variables is presented in Section 2. The pairing-
isospin Hamiltonian is constructed in Section 3, together with the mean field and RPA
approximations, which yield the basic set of states. The practically-oriented reader can
proceed directly to Section 5. However, a deeper understanding of the method is provided
in Section 4, which includes the essence of the procedure due to Becchi, Rouet, Stora and
Tyutin (BRST) [14,15], and the nature of the vacuum state and physical excitations that
are compatible with the constraints. The same procedure have been applied to many-body
physics in [16]. A pedagogical presentation can be found in [17]. A recent application to
the treatment of the center of mass problem has been reported in [18].

Calculations based on the results obtained in Section 3 are presented in Section 5, with
reference to Fermi and Gamow-Teller double-beta decay transitions. The comparison with
the available exact solutions and the result of realistic calculations are also presented in
Section 5. Conclusions are drawn in Section 6. All the accessories are presented in the
appendices.

2. Thetreatment with collective coor dinates

Many systems can be described in terms of variables which are subject to transforma-
tions. Let us assume, for the time being, that the Hamiltodiais invariant against such

1 The following are entries taken from Ref. [24):severe limitation of any HF calculation iN > Z nuclei
is the appearance of spurious isospin mixing this limitation cannot be avoide@nd in their Discussion and
Summary.... and its[the result main limitation is again the isospin mixing.
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transformations, and that it may split into two park and H,, neither of which is in-
variant under those transformations. The basic set of eigenstatés will not carry, in
general, the quantum numbers associated with the original symmetty of

The symmetry may be restored through the introduction of the collective formalism, i.e.,
the raising of the transformation parameters determining the orientation of the “intrinsic”
or “moving” frame of reference, to the level of collective coordinates. The total Hilbert
space is thus factorized into an intrinsic and a collective sector. This last one is labeled by
the quantum numbers associated with the original symmetries, which are thus restored at
the collective level. The symmetry violations take place in the intrinsic sector.

Since the calculations are carried out in the intrinsic frame of reference, any operator
must be first transformed to this frame before acting on the basic set of product states.

The overcompleteness of the basis poses a problem that is clarified through the
observation that a system, described as above, possesses a “gauge” symmetry. This
symmetry consists of the group of transformations which simultaneously move the intrinsic
frame of reference and the particle system so as to reproduce the same physical situation.
It is expressed by the constraints

7 — Tk =0, 1)

where thet;, and 7} are the particle and collective generators of the transformations,
respectively. They satisfy the following commutation relations

[t, Tl = icujT), [Tk, Ti1 = —icu; T}, [t, T11=0, 2

wherecy;; are the structure constants of the Lie group associated with the transformations.
The conditions (1) may be rigorously derived whenever we consider a Lagrangian
corresponding to a description from a moving frame, and we treat both the original
coordinates and the coordinates of the moving frame on an equal footing [25]. Such
Lagrangian is called singular, meaning that the velocities cannot be inverted as functions
of the coordinates and the momenta. As a consequence, the momenta are not independent
from each other: there appear relations (1) between them, which are called constraints.

At the quantum level, the constraints (1) imply that physical states should be annihilated
by them and physical operators should commute with them. Several procedures have been
developed in order to enforce these constraints for the case of gauge field theories. In
particular, the one based on the BRST invariance [14,15], has been adapted to many-body
problems in Ref. [16].

3. Thepairing-isospin problem

The intrinsic generators of the transformations in gauge and isospin spaces are: (a) the
operator measuring the number of pairs of partitles

2 We use the Einstein convention that the repetition of an index on a given side of an equation implies
a summation over that index (for instance, there is a summation over the imdaxthe second Egq. (3)).
Exceptions: (i) the index is repeated also on the other side of the equation, as for the indethe second
Eq. (3); (i) whenever there is a limitation on the summation, as fodthe. 5 on Egs. (8).
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1
Ta = Z Taj> Taj = E (C;jmcl’jm + C:jrncn./m) (3)
J

and (b) the isospin operators

1
_2 . = (ct R .
0= 705> T0j = 2 (cpjmcplm anmcnlm)’
7

1 +
lezfljs 1 = ——=C,imCnjm,
. 27

J [

i=-1. 4)

Hereon we use the notatidn= a, g, whereq = 0, £1 denotes the spherical labeling of
the vector components. Moreovér= —1. Alternatively, instead of the pair of quantum
numbers(g = 0, a), we may use the linear combinationgv = p, n), where the indices
(p, n) stand for proton and neutrons, respectively. Therefore

T, = T4 + 70, T, =T, — 10 (5)

represent the number of protons and neutrons, respectively.
The structure constants of the pairing-isospin problem are obtained from the commuta-
tion relations

[Tas Tq] = Os [T01 T:I:l] = :i:‘[:tlv [Tiv Tl] = TO' (6)

The operatord,, To, T+1 denote the collective momenta corresponding to (3). More
details of the notation are given in Appendix A.

In the remaining part of this section we select a pairing Hamiltonian and we transform
it to the moving system (Subsection 3.1). Subsequently we discuss the collective Hilbert
space and the simplification inherent to the limit of large values (Bubsection 3.2). The
existence of largerder parametersn the deformed solution associated with the intrinsic
system, permits the ordering of the terms in the Hamiltonian according to their magnitude.
The leading terms reproduce the usual BCS equations between identical particles. The
discussion of thepn excitations constitutes the central topic of the present contribution.
The formalism not only allows for the construction of the elementary modes of excitation,
carryingA, T andM as good quantum numbers, but also yields the matrix elements of the
Hamiltonian between states differing in the valuegfofSubsection 3.3).

3.1. The Hamiltonian

We choose a Hamiltonian that has been frequently used in the literature. It may be
written as

H= Hsp+ Hpair+ H:,
Hsp= €)7o,
1
Hpair= —gpS;rSp - 8nS,?LSn - E gJ_SISJ_,
Hy =k (§ — [t1r-1]4), (7)
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wheree,; andr,; are the single-particle energy and number operator of the protons or
the neutrons in g-shell. We denote b;s;, S, and Sir the pairing operators creating a
proton pair, a neutron pair and a proton—neutron pair coupled to isospin one and angular
momentum zero

St = c:}mcjj,h, Sj_' = c;jmc}j},h + c;}mc;;jrh, (8)

m=>0 m=>0

where the symbol indicates the time-reversal operation. The Hamiltonian allows for
the differences between proton and neutron single-particle energies and pairing strengths,
and for an arbitrary strength of the neutron—proton isoquadrupole pairing component. In
this paper we do not attempt to discuss the derivation of this effective interaction from
first principles, like Coulomb effects, neutron-proton mass differences, etc. The isospin
interaction which manifests, for instance, in the Weizsacker semiempirical mass formula,
is constructed with the isospin operatays The case of isoscalar pairing is discussed in
Appendix F.

It would be a trivial yet cumbersome procedure to adapt the present formalism to
realistic interactions. In this work we value more the simplicity in the presentation
associated with separable forces, which makes more transparent the geometrical aspects
of the different transformation operations.

Although the Hamiltonian (7) is a scalar in gauge space, it is not so in isospace. In fact,
it splits into isoscalar, isovector and isoquadrupole terms (c.f. Appendix B), namely

H = Ho+ Hy+ H>,
1
Ho = €4jT4j — go(S,J;Sp + 5SS+ 35 SISJ_) +x(§ — [rar-1l4),
Hy = €0jt0; — 81(S, Sp — S Su),
Hy=—g2(S}Sp+ S Sy —STS1), 9)

where

1 1 1
gozé(gp +gn+8g1), g1=§(g,;—gn), 3226(3P+g”_2gl)’

€aj = €pj T+ €njs €0j = €pj ~ €nj>
1 1
Taj =3 (tpj + ™)), ] =5 (Tpj — Tnj)- (10)

Since the calculations are performed in the intrinsic system, any operator should be
transformed to this frame. As usual [19], the transformation between laboratory (lab) and
intrinsic (int) tensor operators is expressed by

O =D}, o, (11)

whereD?, , are the rotational matrices which are discussed in detail in the next subsection.
The operatorgD,,, are irreducible tensor operators carrying isospi@nd p isospin-
projection (see Appendix B). Therefore also the Hamiltonian should be transformed, since
neither the single-particle nor the interaction terms are isoscalars in (9). We obtain for the
transformed Hamiltonian,
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1

1
+ 7 Dy (S SL+ SjS,,)) (12)

3
Hp = —g2<D§O(S;Sp +878 - STSL) + \@ D§,(STSy— Sy S1)

Hy = €0; Dg, Toj — 81<Dc1>o(53 Sp—8,8:) -

3 2 2
+ \/; DG (STSy — S, S1) +V/6(DES,) S + DOZS;TS[:)) (13)

where the irreducible isotensor operators are defined in Appendix B. The igransd Ho

of the Hamiltonian (13) are physical operators, because they commute with the gauge

constraints (1). This is not the case for the componghtand Hy in (9). In the usual case

the transformation is a scalar and thus naturally commutes with the constraints.
Apparently, we have only succeeded in complicating the problem through the substi-

tution of the Hamiltonian (9) by (13), which must be considered simultaneously with the

constraints (1). In the following we show that this is not the case, but rather it constitutes

the first step of a simplifying procedure.

3.2. The collective sector of the Hilbert space

As a needed detour in the construction of the Hamiltonian, we present hereafter the
structure of the collective space. The collective Hilbert space appropriate for isospin
conserving pairing interactions was originally introduced in Refs. [19,22]. A complete set
of states for this sector, carrying the appropriate symmetries, is

2T +1 _ [iA 1.
(6. G Pp, Gy |ATMK) =\ 73 exp[? ¢>} Diyk (bas &8, Dy). (14)

Hereg is the collective angle in gauge space, @adgg and¢, represent the Euler angles
in isospin space. The consta%m is the eigenvalue of the pair of particles operatpr
while M and K are the eigenvalues of the isospin projection along the laboratory and
intrinsic frames of reference, respectively.

The problem may be solved in two limiting situations, according to whether the Coriolis
type of interaction%(—l)‘f T, is taken into account perturbatively or is wholly included
in the intrinsic single-particle spectrum, as in the cranking model. The former solution is
to be preferred if the magnitude of the isosfiins smaller than other parameters of the
system, while the second solution is adopted for larger valuds ¢ the present paper
we consider this second case.

The assumption of large values Bfsuggests the use of the Marshalek generalization
of the Holstein—Primakoff representation [28]. Thus, the rotational isospin sector in (14)
may be expressed in terms of the boson creation operatorg™ and¢™

(rH2 &t (g*)k
VT /(m)! /(k)!

ITMK) = mk=0,1,2,..., (15)



304 D.R. Bes, O. Civitarese / Nuclear Physics A 705 (2002) 297-334

where the quantum numbers = %(T + M) andk = %(T + K) substitute the isospin
projectionsM and K, respectively. This representation is specially useful for values of
m/T, k/T <« 1, which we assume to be the case.

We may also write down the expression for the matrib% acting on the states (15),
namely

N 2T +1 m! k!
Dis = 2.
He 2T +2s+1\ (im+s+ '\ (k+s5+9)!

Is|<A
XA, u; T, =T +m|T +s,—T +m+ u)
X (0, 8; T, =T +KIT +5, =T +m + 8> (&7 ()™ (16)

The operators (16) are expanded in powers 4f las shown in the Appendix C for the
cases of interest.

Within the same representation, the collective components of the isospin operators may
be written in terms of the bosons™, ¢

1
TO:—T+S'+S', Ti=g+ T_§§+§%_ﬁ§+

Ti=-T}~VTgq. 17)
Therefore, the constraints (1) are written to leading ordey'ifi,las
A
W= o=-T+c¢"g, n=—+Tg, =vT¢". (18)
We also define the isospin raising operator
2 (T+)2T B (T+)2T+1

BAT) =T +1) < B 1)

V2D J@T +1)! - (19)

3.3. The treatment of the Hamiltonian in the intrinsic frame

Up to now the Hamiltonian (13), together with the constraints (1), constitutes an exact
reformulation of the initial problem. In particular, we have not introduced yet any violation
of the gauge and isospin symmetries due to the formalism. From here on we simplify the
treatment in the intrinsic system by fixing a convenient orientation of the body with respect
to the intrinsic frame. Since there are four angular variables in the collective subspace (14),
we may choose four conditions to fix such relative orientation. As usual we $elect

Im(S,) =1m(S,) = (S1) =0. (20)

This selection of a gauge leads to the usual Bogoliubov—Valatin transformation between
identical particle$. Note that thepn-pairing is only neglected in the intrinsic frame, but

3 Other possible choices have been discussed [22].

4 Although the quasiparticles are labeled by the quantum numbep, n, the fact that we operate in an
intrinsic system implies that they do not strictly correspond to either neutrons or protons. The expressions
guasineutrons or quasiprotons should be more adequate to indicate their nature.
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wholly incorporated in the laboratory frame through the collective rotations in isospin and
gauge spaces.

The situation is identical to the one appearing in shape-deformed nuclei, for which
the conditions(Q+1) = 0, holding in the intrinsic system, does not mean that any
part of the spherically symmetric quadrupole interaction is neglected in the laboratory
system.

The two remaining expectation valués,) and(S,) are real and they are considered
to be the large quantities of the problem. This is consistent with the expansion implicit in
the RPA, which assumes that((S)| > 0(5@9) > 0(s®). Itis convenient to unify this
expansion with the AT one by setting

os)=1. 0(s*)=vT, o(s")=1
O(g)=0(g) =1/T. -

Combining the selection of the gauge (20) with the assumption (21), one may classify
the different terms in the Hamiltonian according to their order of magnitude. One thus
obtains the different contributions given in the Appendix D. By making intensive use of
the simplified constraints (18), the summation of the leading order contributions yields the
following terms

(H) = €yj (1)) — &u(S0)?,

20
H(ZO) _ <)"U)‘51520) — ertlfj ) g (SU)(S;HZO) 4 Sl()ZO))’

11

Hj = —g,5 29570,

H| = -2l %S+(20)S(20) +C()§E+E — g2 ; (Sp><Sn>(,B4g+2 _I_'Bf4€2)

_ 1
_(’325+§+(20) ! 2€§(20)) 5 [11(20), Ti(20>]+' 22)
According to (21) the expectation value of the Hamiltonian i$Xf"), the term with the
superindex20) is of O(+/T) and the remaining terms are of ord@rf1). The neglected
terms in the Hamiltonian are @ (< 1//7T).
We have included the Lagrange multipliers in the single-particle energies of Eq. (22)

20411
— ()T P = — ()7 PO — (0)7g Y,

€yj = €yj — (Av). (23)

The constantg,) are chosen such thdt,) = N and (r,) = Z, respectively. The
single-particle energies,; are measured fron{x,). However, note that within the
BRST formalism, the introduction of the Lagrange multiplier does not constitute an
additional improving approximation, but rather it is part of the exact formalism (c.f.
Eq. (53)).

The operatorg, £ are defined in Subsection 3.2. The frequengyand the moment of
inertiaZ | have the value
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2 1
wg = % ((Sp)% + (50)%) + % ((5p)* = (80)%) — — €o0j (o)),
T
o T 24
T o) 0

respectively, while the two quasiparticle operatti® is defined in Eq. (84).

The HamiltonianH | plus the (quadratic) RPA version &f(1D — (Av)réll) commutes
with the operatorsflo), but for the last term in Eq. (22).

According to the Hamiltonians (7) and (13) we should also include the isospin
interaction H;. Neglecting again terms proportional to the constraints and using the

approximation (17), we obtain
Hy =« (T¢ — [T1, Tjl4) =« T(T +1). (25)

In the following we interpret the various terms appearing in the Hamiltonian (22).
We may already remark that all contributions conserve isospin, except for the terms
including 8 in H; (v = £2,44). Thus, if we ignore for the time being these
last terms, the basic single-particle and boson modes constructed from (22) carry the
isospinT as a good quantum number. This is so in spite of the fact that not only the
isoscalar, but also the isovector and isoquadrupole components enter in the construction
of (22). This is explained because these last two components include isospin conserving
contributions, notwithstanding their tensor character. It happens that such contributions
are the leading order ones in the expansion])gg‘ in powers ofT~1 (see Appendices C
and D).

3.3.1. The ground state energy
Following Appendix E we write

1
(H) = constantr —— (T,)2, (26)
21

where the moments of inerﬁéﬂl) are defined as
7 _ (T}

T ()

The expression (26) is used in the construction of the spectrum (37).

: (27)

3.3.2. The mean field approximation
The second and third lines of (22) may be treated within the Bogoliubov—Valatin
transformation between identical particles

+ _ o o
avjm - Uv/ Cvjm Vv./Cv./m- (28)

We require
H® — ()19 =0,
HY — )t = Eyjvy). (29)



D.R. Bes, O. Civitarese / Nuclear Physics A 705 (2002) 297-334 307

Herev,; is the number of quasiparticles of typén the j-shell (see Appendix A). We also
obtain the quasiparticle energies and gaps

Evj =\/95j +A51 Ay = gu{Sv), (30)

and similarly the amplitudes,;, V,,;. The self-consistent conditions must be satisfied

4 2j+1
4_4atd (31)
8v Evj

It is a remarkable property of the expansion jfi'lthat the single quasiparticle terms
are identical to those appearing in the naive treatment of the pairing interaction (7). These
terms conserve isospin, in spite of the fact that they originate from all isotensor components
of the Hamiltonian.

3.3.3. The quadratic Hamiltonian
The RPA solutions split into two branches, labelegagallel (H*™) andperpendicu-

lar (HEPA). The parallel branch represents separate oscillations of quasiprotons and quasi-
neutrons, each of them displaying a zero-frequency root together with the finite-frequency
ones (,, > 0,:=2,3,...). The treatment of this branch is the same as for the case of
pairing between identical particles. One obtains to the RPA order

HEPA = HOY ()0 4 ()P = o, <FJFW n %) + 2%(%520))2. (32)
v
The boson creation operatof§ are linear combinations of the operatqrﬁ, Yoj
(Eq. (78)). The moments of inerti, for rotations in gauge space are calculated according
to the Marshalek—\Weneser prescription [29]. A regularization procedure for taking into
account the inherent infrared problems is worked out in detail, as an example, in Chapter 7
of Ref. [16]. Therefore, in the present paper we confine the discussion to the inclusion
of the second term in the r.h.s. of (32) into the spurious sector (see Eq. (56) and
Appendix G).
We turn now our attention to the perpendicular branch of excitations.

3.3.4. The real, intrinsiet+ collective, sectors
The independent quasiparticle Hamiltonian plus the interaction in the first lidg of
(Eq. (22)) yield the quadratic intrinsic Hamiltonian to be diagonalized

RPA +(0), (200 8L (20 (20
Hip ™ = (Epj—i-Enj)Kj K —7s (20420

1
sz_L<FEFJ_L+§>, 1=2,3,.... (34)

The operatorSKJ(.zo) and s?9 are given in Egs. (82). They are independent of the

operatorgj. The linearization equation
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T,2,0,0
T100 _—
T2,0,0 1000 __—"
T,1,0,0 -
T,0,0,0
V20, \
<l> \ T-1,1,1,0
3 S _ .1.te
| 1110 . T1010 7
T-1,0,1,0 T-1,1,0,1
I RERT SIS N T001 7
T-1,0,0,1 <
q)m AN
N
.
N
N
\\
| 72000 N _T2000
A, M=T A, M=-T+1 A, M=-T+2 A M=-T A, M=-T+1 A, M=-T+2

@ (b)

Fig. 1. Lowest energy states of a system with A nucleons. The set of quantum nuUMbELSV, ng, n 1, noy)

needed to specify a state are indicated for each state. (a) displays the Hamiltonian matrix elements connecting
the different states, while (b) shows the Fermi single-beta decay transitions (solid arrows) and the Gamow-Teller
transitions (dashed arrows).

RPA
[HJ_ 7FE]=wJ_LFE7
rf =y —wjvij, (35)

determines the finite frequencies,, and the amplitudes.;, u,; in the orthonormal
phononsl“jl. These last operators create the so-called antianalogue states in neighbor nu-
clei®

In addition to these intrinsic excitations, the system displays the collective excitations
corresponding to a change in the number of particlesn the isospinT and in its
projectionM . According to the definition of the operatpt in Subsection 3.2, itincreases
the value of M = m — T in one unit. Thus, the set of multiple 1.LA.S. is represented
by the vibrational bandm) = (1/+/m!)(+)™|0) with frequencyw: (see Eq. (24)).
This frequency depends on the difference between proton and neutron single-particle
energieso; (noteg;). As a result of the regularization procedure which is used in order
to take into account the gauge constraints (1), the role of the unphysical operators
is taken by the collective operatogs, £. Fig. 1 represents the set of vibrational and
rotational excitations which are constructed on top of a state with the quantum numbers
(A, T,M=-T,m=0,k=0,n,, =0). All the states represented in this figure have the
same value ofi. The spectrum may be constructed by repeated applications of the intrinsic
creation operators“fl and of the collective creation operatdrs. In addition, there may
be excitations carrying different symmetries. One example is the set éFteel™ states
in odd—odd nuclei (see the Appendix F). These states are denoted by the indices
(t=1,2,3,...; u=0,x1is the magnetic quantum number).

5 The lack of sufficient intensity in the two-body transfer reactions populating antianalogue states has been
pointed out in Ref. [30].
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The spectrum is expanded by the basis
1 iA

AT, M, , = ——exp —
| nj, nOL/J.) «/E 2

qs]mwmmm)
_ 1 exp[ﬂ ¢>] (Fop)"™ (Df)™ ()"
B \/Z 2 \/nom! Vi \/nj

The energy of the states (36) is written

|0). (36)

E(A5T7M7nllvn<>L},L)
1 (4 2+ 42 T(T +1)+ Loa(r+t
27, \2 “T o 27 2
+ N N > . (37)
wg |\ m 2 Wl |\ Nl 2 Wo, . Now 2 )

where the moments of inertia a@;l = (I,El))*1 + (Iél))*l. The derivation of the
rotational pairing sector is given in the Appendix E. Therefore, there is a contribution from
the pairing energy to the semiempirical mass teff(T + 1), which should decrease the
effective value ofc. Note that the linear terri in the product? (T + 1) originates from

the BRST treatment of the spurious sector (c.f. Eq. (63)).

3.3.5. The similitude with the self-consistent-cranking model (s.c.c.)

The model is equivalent to the s.c.c. model for rotations in ordinary space [31]. Since
we have chosen the expectation val@es;) = 0, we are describing uniform rotations in
gauge space and around the 0-axis of the isospin space both in the laboratory and intrinsic
frames (they coincide). Note that the expectation values in the g.s. are

(Tp) =2, (Tn) =N, (38)

while in a representation conserviy 1, i.e., a rotation of 180around an axis in the
xy plane, we should have the linear combinatia}])%,( + DT _. As a consequence, the
expectation values of the operafyrshould vanish, which is not consistent with Egs. (38).
The situation is analogous to the semiclassical limit for the motion of a particle in a
symmetric double well, where approximations based on small oscillations around one
minima yield good results. Th&.1 symmetry is of course restored by the exponentially
small tunelling between two solutions.

The fluctuations of the direction of rotation in the laboratory frame, i.e., the wobbling
motion, are represented by the, £ degree of freedom.

We also expect some sort of signature to exist, which should be associated with the
remaining point symmetries under the operat®s= exfin(t, — T,)]. In fact, the

Hamiltonian #20+1D _ 13 1z 20+D getermining the unperturbed basic set of states

is invariant under theR, and Rp transformations or, equivalently, under separte
transformations. This expresses the well known conservation of the parity in the number of
particles for the case of pairing between identical particles. If we assume an even number
of protons and of neutrons in the g.s. band, application of the transforma&jgnso this



310 D.R. Bes, O. Civitarese / Nuclear Physics A 705 (2002) 297-334

band yields
1
RymA, T,M,n1,=0,ns, =0)= exp[in <T ~5 A)}|A, T,M,Q0,0), (39)

and the selection rule for the g.s. band is

1= (1734,
1 1
T=3A 5A-2... (40)

The transformation of the boson excitation operators gives
RvajR;r Z_ijv

+ +_ o+
Ry VojljzuRv = VYojrjon (41)
Therefore we obtain the selection rule

1: (_1)ZL(nLL+nOL}L)+T—%A’ (42)

which is verified by the spectrum shown in Fig. 1.

3.3.6. The isospin mixing terms

The isospin mixing terms are included in the second and third lind§,0{Eq. (22)).
They conserve the number of particlasand the projectionM in the laboratory frame,
since the product operatfét increases both the value Bfandm by the same amount.

The product operatgs“& t2 mixes the ground state of a nucleus having isogpia 2
and projectionM = 2 — T with the double I.A.S. with isospiff and the same projection.
It is proportional to the isoquadrupole strength The corresponding matrix elements are
labelled byg, in Fig. 1(a). They are due to the Hamiltonian

Hy"™ = —g. (8% 2 + p%2),
3
¢c':gZT<Sp><Sn>- (43)
According to (84), the operatar®? is the sum of two termsg}zo) = ¢yjv]; and
%(20) = ¢pjyLj, Creating and destroying two quasiparticles, respectively. Therefore the term

in the third line of H, splits into two contributions
Hgixing = B2t @0 _ g2 ,(20
= —(/32‘§+nj + ﬁfzéyfj)é“fj - (ﬁ2€+7/f,~ + B2y 1) e
=—¢s (B TL+ B %) — ¢n (BT + B2 L),
Gro=Mjlpj + il oo = hij S fj A+ M Cpj- (44)

The first term in the r.h.s. of the second line of Eq. (44) annihilates (creates) two
quasiparticles while simultaneously increases (decreases) both the isospin and the number
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of &-bosons. The second term in the same line increases (decreases) the number of
quasiparticles, the isospin and the numbeg dfosons. The existence of both types of

terms is preserved if the operatqrgbo) are expressed in terms of the final RPA boson

operatorsl“ﬁ, ry, (t=2,3,...). Therefore, the operatqﬂzgﬂl, mixes the antianalogue
states with the analogue state, in the neighbor odd—odd nucleus. The matrix elements
associated with these terms are labelled by the quangisieande ¢, in Fig. 1(a). The non-
conserving isospin interactidii; " ° not only depends on the isoquadrupole strength, but
also on the isodipole terms, since they both arise from the single-particle and the pairing
contributions.

The naive RPA defines phonons which carry a mixture of isospin values, leading to
unpredictable consequences. On the contrary, we have constructed a basic set of states
carrying the isospirT’ as good quantum number, and the isospin mixing terms act within
this basic set. Therefore, we have been able to disentangle the proper isospin mixing terms
from the spurious ones through the application of the collective formalism.

3.3.7. The spurious intrinsic sector

While the operatorszfzo) constitute a complete set of operators creating two

quasiparticles coupled to zero angular momentum, the set of operat@ssot complete.
According to its definition (82) it should be supplemented by a phonon related to the
isospin operatorsy1, which are orthogonal to the/.*’s. Thus, it is natural to choose

1 (20 1 o
rt ="+ , Ni=—15.°""7, 45
1= s ! (45)
and therefore
2j+1 2j+1
)\1/ == T Upj V}’l/v Hij = T VP./U"./' (46)

The non-vanishing commutation of the Hamiltonian ijl proceeds through the last
ternf in (22)

i 1 @0 (0 + 1
g SPurious_ _a [rl . ]+ =wipa| 1T+ )
T
wl]l= z = —(A0) (47)

(c.f. Egs. (24)). Although the term i/ SPUoUSplays a similar role as the RPA rotational
term in (32), there is a difference given by the fact that the frequenayin (47) is finite
and it has a physical meaning. The inclusion of Hi#°U°USwithin the spurious sector is
deferred to Section 4.

6 The origin of this term may be traced back to the Lagrange multiplier term introduced in (23). It is
straightforward to verify that (23) yields the commutation (47).
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4. The BRST formalism
4.1. The BRST charge and Hamiltonian

So far the overcompleteness inherent to a description in terms of particle and collective
degrees of freedom has been taken care through the assumption that the constrains (1)
or, more precisely, their quadratic version (13), hold. If this is the case, the quadratic
approximation to the Hamiltonian (13) is given by (22). The reader may be satisfied with
the knowledge that physical states are annihilated by (1), in particular the vacuum state.
He may perform many calculations as those presented in the Section 5. On the other
hand, a deeper understanding of the problem, as well as more complicated calculations
involving, for instance, higher orders of perturbation theory, requires the content of the
present section.

A gauge theory has an underlying invariance under transformations generated by the
chargeQ. This is a hermitian and nilpotent operator that is linear in the constrains and
which includes information about the group of gauge transformations (1), through the
presence of the structure constanis

_ i
QO = myBy —m(t — Ti) + > CKLTKTITE
= By — ny(ty — Ty) + (v — T7) + ni(v1 — T1)

1
+ E ninl(nn —7p) + (771771 - nlni)(nn —nNp). (48)

In addition to the constant terf, ), already introduced in (23), the Lagrange multipliers
Xy include a boson componehj

Ao = (o) + Al (49)

The operators®, in (48) are conjugate to the . The charge also contains fermion ghost
operatorsy, 7, with conjugate momentay, 7,,

_i[)\;, Byl = [0y, Twl+ = [, 7w+ = dvw,
[n1, 7il+ = [ng, maly = -1 (50)

The constrains are automatically taken into account by operating within the subspace
carrying zero charge. However, this subspace of states consists of physical states plus states
|x) = Qlunphysica)l, having zero-norm. Both physical operators and operators mapping
physical states into zero-norm states, henceforth nil operdigrscommute with the
charge@. Consequently, there are families of equivalent states and equivalent operators,
namely

|physical — |physica) + [x), Ophysical—> Ophysicalt Oy, (51)

which yield the same matrix elements as physical operators between physical states.
The strategy is to add to the Hamiltonian a convenient nil operator that simplifies the
treatment of the spurious sector. In particular, the operator obtained by anticommuting an
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arbitrary operatop—the “gauge fixing function”—with the charg@ is a nil operator. We
may choose as gauge fixing function

_ 1
0 = ATy “l‘wgnu <9v - EBU>1 (52)

where 69, = 1520) are the RPA angles conjugate tézo). They are obtained, together

with the moment of inertia,,, by applying the Marshalek—Weneser prescription [29].
The parameters, are arbitrary and should disappear from any physical expression. The
gauge fixing function (52) privileges the degrees of freedom associated with the quantum
numbersv. The idea underlying this gauge is that, because of the finite value of the
frequenciesv 1, one may use straightforwardly the RPA solutions corresponding to the
1 -degrees of freedom, without worrying in this case about infrared divergencies. This
choice facilitates the BRST treatment of thesector.

Using (52) we may construct the nil operator to be added to the original Hamiltéhian
in order to obtain the (equivalent) BRST Hamiltonian.

Hprst = H +[p, Ol+

_ 1
= H+imiy —Ay(ty — Ty) +w§<Bv9§2°> ~ 5 33)

v
+oimuiio[02%, ] + of o (11[02% . 7] + n1[62%, ma])
— Ao(mrinL — m1ng)- (53)

4.2. The quadratic BRST Hamiltonian

We consider first the Lagrange multiplier terms., (r, — Ty), wherex, is given in
Eq. (49). The differences,) — (T,) vanish by construction and the term$xv)r,§20)+(1l)
have been already introduced in the single-particle terms of the Hamiltonian (22). Thus the
two remaining quadratic contributions of the Lagrange multiplier term are (c.f. Eq. (17))

(ho)sts — 70 (54)
With the choice ob, as the RPA angles,

[9520)’ Tw] — iy, + [9520)’ Tw](r)’

[9520)’ T:t]_] _ [9520)’ Tﬂ](r), (55)

where the contribution of the terms labeled ty is smaller than unit(< 0(7~1/2)).
Therefore the last but one line in the Hamiltonian (53) only contributes through the first
term to the quadratic Hamiltonian, giving rise to the teedn, i, .

The quadratic BRST Hamiltonian is distributed into the two branchesd L. By
adding thel|-terms toH P (Eq. (32)) we obtain

7 There is a large latitude in the determination of the gauge fixing function. In previous treatments of the
cranking model, we have used a more complicatethcluding also the components.1 [32]. The gauge fixing
function used in this paper was suggested by J.P. Garrahan [33]. To our knowledge, it has not been applied before.
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RPA
Hy'BrsT

1 1
= wy (F;jrm + 5) + o (ISZO))Z
v

1 - _
Py +w5<Bu9,§20) ~ o Bu2> +i (T Ty + 021077y )
v

2

Thus this Hamiltonian includes a real sector, corresponding to the finite-frequency RPA

bosons, and a supersymmetric spurious sector. The zero-frequency term proportional terms
(1520))2 are incorporated into this spurious sector, which is diagonalized in Appendix G.

The following commutation relations are satisfled

1 _ _
= Wy, (r,jrm - —) + oy (M M — TgTo+avay +byby), 1=2,3,.... (56)

[, T =16 Tvo] = [av, avly = [bv, byly = 1. (57)

v

The vacuum state satisfies the conditions
th|0>=Fv1|0>=Fv0|0>=av|0>=bv|0>=0- (58)

It is a physical state, unlike the excited states of the spurious sector.
We consider now thée -branch. It includes the contribution (47).

1 1
H[rsT = ¢ (é*é + 5) +ou (Fflnt + 5)
1 @ 0
— Z[rl T
Making use of the transformation

1 + ho)(sT s + mang — wim). (59)

mi=iday, mi=bl, n=-by, ni=iay,
[a1,a1l+ =[b1,b1ly =1, (60)
we obtain
RPA te, L + 1
Higrst = ¢\ 6§76 + 5 | +ou| 1L -5
+ - - 1
toi( ' 1—¢ s+atal +b1by — ) (61)

The quadratic term-w, 1¢ ¢ amounts to a negative energy boson. This leads to the (at
least cumbersome) situation of a degenerate vacuum state. The problem may be eliminated
through the transformation

+ _
FJ_o—_S',

[0 I'y]=-1. (62)

8 This is the same case as in electromagnetism, where an indefinite metric associated with the Lagrange
multiplier is used.
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at the expense of working again with the indefinite metric (62) (cf. Eq. (57)). The final
quadratic Hamiltonian has the form

1 1
HE,FI;ARST = <§+§ + E) +wy, <FE1L + E)

_ - 1
+a)J_1(Ff11"J_1—FfOFJ_O-i-aJ_aJ_—i-bJ_bJ_-i-E). (63)

The vacuum state has been redefined through the transformations (60) and (62). It is
annihilated by the operators

I'1,10) = §[0) = I'11]0) = I'10/0) = a1 |0) =5, |0) = 0. (64)

Using the previous transformations, the leading (quadratic) terms in the charge associated
with the L-degrees of freedom are given by

0P = —iVIia (Mfy+ I} +VILbi(Ii1+ o). (65)

which clearly annihilates the vacuum state, according to (64).
The spurious spectrum is constructed by repeated applications of the spurious
supersymmetric quartet of creation operatﬂfg, Ffo, ai, by

Ispuriou$ = [n11)nio)|nia)lnis)

— 1_[ m 1_[ (¢.1)"|0) (66)
g=01 Vniat 2., ’

withn;4=0,1,2,...,andn . =0, 1. It may be shown that all the states (66) are either
unphysical or nil states, but the vacuum state (64) (see Ref. [16]). Therefore, the word
spurioushas a definite meaning here.

We note the similitude between the spurious sector of the Hamiltonian (63) and those
associated with either protons or neutrons in tHaranch (Eq. (56)). There are also some
differences, consisting on the fact that the frequeneigsre arbitrary (and thus should
not appear in any physical result), while the frequengy has physical meaning, and
on the existence of a vacuum eneréyml in (63). In fact, this energy is incorporated
to the rotational energy in Eq. (37). The treatment beyond the RPA order is discussed in
Appendix H.

5. Double-beta decay transitions

5.1. Fermi double-beta decay transitions

The Fermi operator is written
g =21 (67)

As we proceeded in the case of the Hamiltonian, we must transform the opgéfatorto
the intrinsic frame
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B — V2(Diyri + Digro+ Dy _yyT-1)
= +/2Diy(0) + nil operator+ O(T~2)
= —/2T & 4 nil operatort- O (T ~Y?). (68)

This is another instance where, as a result of the renormalization procedure, the badly-
behaved operaton is replaced by the well-behaved collective opergtorcreating the
sequence of analogue states. The allowed Fermi transitions, for single-beta decay virtual
transitions, are represented in Fig. 1(b).

The Fermi double-beta decay requires the existence in the Hamiltonian of terms that do
not preserve the isobaric symmetry. Thus, the interactions discussed in Subsection 3.3.6
are needed. Table 1 displays the matrix elements of the mixing Hamiltonian (44) between
one-phonon states in the intermediate odd—odd nucleus with the isospin projéfction
—T + 1, consistently with the selection rule (42). Table 2 shows the corresponding
matrix elements between zero and two-phonon states iMthe —T + 2 (final) system.

They are extracted from Egs. (43) and (44). The unperturbed energies are obtained from
expression (37). The quantum numbers shown in the tableg ane (1 1,).
After the diagonalization, the states in the intermediate system are labell&dnagh

energiesy,. Subsequently, we obtain the beta-decay amplitlmggs‘ﬂ, (ITg.s)— )

and ML(,?T_Z) < (I = (T —2)g.s)) for the transitions involved in the double-beta
decay through the application of the operator (68), satisfying the selectionmgle- £1
between unperturbed states. The matrix element of the allowed double-Fermi decay, in the

two-neutrino channel, is written

(F) (F)
M(F) - MTg.S;L/ML’;(T—Z) g.s. 69
2v T A +(X)/ ( )

'

whereA is the energy released during the decay [5].

Table 1
The matrix elements of the Hamiltonian corresponding to the states carrying
M=-T+1

T-101 7,1,0
T-101 Wl _¢fL

7,1,0 -7 wg + 2T
Table 2
The matrix elements of the Hamiltonian corresponding to the states carrying
T-200 T-1,11 T,2,0

7-20,0 0 —bh —V2¢c
T-1,11 —Pp wg +o, +2(T -1 —V2¢y,

T,2,0 —V2¢c —V2¢5, 2wg + k(4T — 2)
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5.2. Schematic models

We center the discussion of this section on the results presented in Ref. [13], where
the case of a singlg-shell has been assumed. Since in this model antianalogue states are
not present, the interactial ;" ° does not enter in the calculation. The values given in
Table 3 are the parameters used in the calculations of Ref. [13], together with the relation
8§=8n=E8p-

The Figl.7 1 of Ref. [13] displays the energy of the I.A.S. (Eq. (24)), as a function of
g2/g. Itis seen that the point whetg vanishes and the point where the isospin symmetry
is restored are different. This exact result cannot be reproduced by other approximations.
The amplitudeM; of the Fermi transition to the intermediate 1.A.&,1,0) and the
amplitude M> between the I.A.S. and the final stat€ — 2,0, 0) are displayed in the
lower boxes of the Fig. 1 of Ref. [13]. As it has been shown there, the matrix element
M3> is proportional to the admixture of the double I.A@., 2, 0) in the final state. Such
admixtures have been obtained in perturbation theory by using the matrix elements given
in Table 2. Fig. 2 of Ref. [13], shows Fermi double-beta decay matrix elements. In addition
to the exact and collective values of these matrix elements, we have included the results

Table 3

The value of the quantum numbejs A, T and of the parameters
€0, g used in the schematic calculations. The value of the isorotational
parametek is fixed at« = O for all cases

j A T €0 g
9/2 10 3 0.8 MeV 0.4 MeV
19/2 20 4 0.63 MeV 0.2 MeV
a Cc
00 (@) o.04 (b) 0.0 (c)
0.00 0.1
-0.1
-0.2
-0.04
0.2 0.3
£ -0.08 0.4
<5 004 -002 000 002 004 004 -002 000 002 004 004 002 000 002 0.04
0. (a) o004 (b) 0.0 (c)
0.1
-0.1 0.00
-0.2
-0.04
0.2 03
-0.08 04
03 004 -002 000 002 004 004 -002 000 002 004 -004 -002 000 002 0.04
g, [MeV]

Fig. 2. Matrix elements for allowed double Fermi transitions, as a function of the coupling cogistaiie upper
three boxes correspond gg = 0, while the lower ones tg; = 0.026 MeV. Insets (a) are obtained with = 0;

(b) with ¢y, = ¢ ¢, = 0 and (c) with all matrix elements different from zero. The matrix elements are given in
units of Mev—1.
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obtained by means of other approximations. As expeqiamjided T is conservedthe

exact results show the suppression of the matrix elements around thegpeir@. The

result is reproduced by the naive RPA (QRPA) and by the collective apprbatimot

by the so-called renormalized RPA (RQRPA). On the other side, the naive RPA cannot be
extended beyond the unstable region of smallalues. Ikeda’s sum rule is also reproduced

by the collective approach and by the QRPA, but not by the RQRPA.

5.3. Realistic calculations

We have performed a realistic calculation for the two-neutrino double-beta-decay mode
in 78Ge. Single-particle energies are obtained from the parametrization of the Wood—Saxon
potential recommended in [19], including the proton electrostatic field. The valence energy
levels are listed in Appendix I. The values,, (1,) are also given in Appendix I, for each
value of the proton or neutron strength parametethat is used.

The calculation has been performed for two valuesggfi.e., g2 = 0 MeV and
g1 =0.026 MeV. In correspondence to the first value we have tgkea g, = 0.289 MeV,
while for the second one we have takgn= 0.289 MeV andg, = 0.342 MeV, so that
the proton gap becomes slightly larger than the neutron one. The isorotational parameter
has the valuec =1 MeV. The Fermi amplitudes are represented as a function of the
isoquadrupole strengi. The results of the calculations are shown in Fig. 2. We note that:

(i) both interactiongdy° andHy <" yield contributions which are of similar orders
of magnitude, with the same signg$ < 0 and with the opposite sign ¢ > 0;

(i) the interactionH/ZmXi"g is mainly responsible for the amplitude through the intermedi-

ate .A.S. state, while the one labelled By, " yields the amplitudes that proceed
via the intermediate antianalogue states. This can be easily seen by diagonalizing the
matrices of Tables 1 and 2 in perturbation theory (c.f. Appendix J);

(iii) although the contribution via the interactidi,  ° predominates, its effects are only
due to the splitting between intermediate states, since they would be cancelled for
intermediate degenerate states (c.f. Appendix J). As a consequence of this cancellation
the predicted values tend to be suppressed;

(iv) estimates of the magnitude g$ are given in Appendix K. They range in the region
0 < g2 £ 0.007 MeV. Within this region the curves (c) of Fig. 2 display an additional
cancellation because the contributions (a) and (b) add incoherently (c.f. (i)). As a
consequence, the results are stable and too small to be of significance iwBthe 2
processes;

(v) dipole effects are also negligible for realistic differences between neutron and proton
Hamiltonians.

5.4. Gamow-Teller double-beta decay transitions

In the case of allowed Gamow-Teller transitions, the operator is defined as

_ 1 : . 1
BT =0y, = 7 > Gallollj2) e, eni],» (70)
[
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where(j1|lo || j2) is the reduced matrix element of the spin operator. The transformation to
the intrinsic system, leads to

GT- 1 1 1
/3(5 ) — Diyo14 + Digoog + Dy _1y0(-1)¢
= Dijo1, + O(T7Y?)
= B %01, +O(T71?). (71)

Each time that a phonon is created or destroyed through the opefé?brthe operator

B2 decreases the isospin by one unit. This is consistent with the selection rules of Eq. (42).
Moreover, we may elaborate tf# terms of the Gamow—Teller operator

(20) (Jilloll j2) I

Y =TT 5 (UpiVaiaVois ing ™ C DIV Unjavo jrjo )

= 05 Loy + (=D 0p oy (—g)» (72)

where
(alloll j2)
Ofe = Mﬁg.s.;(Tfl)tq == \/§ (Upjl Vﬂjz)‘tjljz + Vle Uﬂjzrutjljz)v
(fallo |l j2)

b = Mr_1)4:7-2gs = 5 (VpjsUnjorijrjo + Upj Vajottijijn)- - (73)

The amplitudes.,, ;, andu,j, j, are obtained within the RPA, as discussed in Appendix F.
Therefore, the double Gamow-Teller matrix element contributing to the two-neutrino
mode is written
(_1)qM%g‘s‘;(Tfl)th(onl)t(*q);(T72)g‘S‘ _ 30.0m
A+ wo, A+

For the sake of comparison, we show in Fig. 3 the values of the matrix element (74)
as a function of the isoscalar pairing interactign(see Appendix F). The strength of the

CD _

oy = (74)

0.3 4

Gamow-Teller Transitions
0.2
o1 ~~.._ 9,=0.0263 [MeV]
@7
MZ\‘
0.0+
9,=0

.01 -
02 T T T T T

0.00 0.02 0.04 0.06 0.08 0.10

g, [MeV]

Fig. 3. Matrix elements for allowed double Gamow—Teller g.s. to g.s. transitioffia, as a function of., (see
the text) and for two values qf;. The matrix elements are given in units of Me¥.
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isospin-spin interaction was fixed at= 0.030 MeV for the casg,; = 0 and changed ag
increases so that the energy weighted sum rule

(S5, [H. Soql]= 0o (07, + o)) (75)

stays constant.

Since the results are an order of magnitude larger than those of the Fermi contributions,
the present comparison confirms the dominance of the allowed Gamow-Teller transitions
in the amplitude for the two-neutrino double-beta decay channel.

In this discussion of the matrix elements of the two-neutrino double-beta decay process
we have disregarded the effects associated with the lack of overlap between the initial and
final states.

6. Conclusions

We have presented in detail a suitable formalism for the description of proton—neutron
excitations in superfluid nuclei in which, at first sight, pairing effects are included only
between identical particles. However, this violation of the symmetry is only performed in
the intrinsic frame. We have shown that the introduction of the overcomplete set of intrinsic
and collective variables constitutes an adequate tool to treat such excitations, provided the
appropriate constraints are simultaneously taken into account.

Briefly, one transforms the Hamiltonian to the moving frame and simplifies the
subsequent expression by adding nil contributions. At the quadratic approximation,
one obtains two set of real excitations: (a) the parallel excitations, involving identical
quasiparticles, which have been previously treated within the BRST framework; and
(b) perpendicular excitations, involving proton—neutron configurations, which are the
central topic of the present contribution. The resulting states carry the number of
particlesA, the isospir?” and its laboratory projectioM, as good quantum numbers. They
are also labelled by the number of different well-behaved physical bosons associated with
the I.A.S. band, with the antianalogue states and with states carrying different symmetries.
Moreover, matrix elements of the Hamiltonian between states differing in one and two units
of T are explicitly obtained. Thus, the formalism is able to disentangle the physical effects
arising from the lack of symmetry of the original Hamiltonian from those unphysical
effects originated from the application of the BCS formalism for identical particles.

The spurious effects appear concentrated in the Hamiltonian on a term depending on
the isospin componentg 1. We may ignore this term if we are satisfied with calculations
to leading order, for instance, with those presented in this paper concerning allowed
double-Fermi and double-Gamow-Teller beta-decay transitions. Nevertheless, it is also
possible to transfer such an isospin dependent term to the spurious sector via a rigorous
procedure based on the BRST invariance. The BRST spurious sector may be expressed as
a supersymmetric system of two bosons and two fermions, which is very similar to the
one appearing in the BRST treatment of pairing interactions between identical particles.
Higher order corrections would demand the inclusion of all these spurious sectors in the
mathematical manipulations.
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Within the physical sector, the badly-behaved operafﬁ@ become systematically
replaced by the well-behaved operatérs &, creating and destroying the states within the
I.A.S. band. This is apparent in the expression for the F@ruiécay operator, after being
transformed to the intrinsic frame.

The results concerning the value of the LLA.S. frequengy the g-decay matrix
elements and thevgg amplitudes have been checked against the predictions of an exact
calculation. These last ones are very well reproduced. This should not be a surprise, since
our calculation is exact, within a perturbation framework. This result is at variance with
those of other, often arbitrary, modifications of the RPA, which have appeared in the
literature.

Realistic calculations have been made, displaying also a dependence with the isoquadru-
pole strengtly2. The empirical value of this parameter yields an upper limit for the contri-
bution of the Fermi transitions to the two-neutrino double-beta decay processes. Moreover,
the existence of at least two cancellations further decrease the predicted amplitude. Thus,
the final results if8Ge are (as expected) too small to be of significance, both relative to
the empirical value and to the Gamow-Teller contribution.
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Appendix A. Notation and definitions

The operators™, S andSL create a proton pair, a neutron pair and a proton—neutron

] pj’ “nj
pair. In all cases the pairs are created in time-reversed siates)
+ _ + .+ + _ + + ot
S/ - chjmcvjrh’ SJ_j - Z(Cp/m n/m +c n/m p/m) (76)
m=>0 m>0

Moreover,
=Y T, Z e (77)
J

withk=a,q;q =0, £1, and,o =v, L.
We use the quasiparticle operators

— T . gt .
Voj = i Qujm; Vowj = &y iy Xvjms

+ _
ij_ 2]—{—12 vjm v/m’

at +
yJ'/ «/2 +1 Z “njm Pj’n+aplmarljrn)' (78)
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The operators (3), (4), (76) may be written in terms of the operators (78)

(00) _ V2 2j+1), 11(00) —0.
S(oo> < n ;) UV, 5% =0, 79)
) = (UZ = Vv,

= VG (UnjUpjvpnj = Vnj Vpjvpnj),

S+(1l) —UyjVyjvu;s

51511) =—UpjVujvpnj = UnjVpjVpn;. (80)

20 [, 1

15] )_2 J+§Uvvaj(V;;-—l-ij),
20 o1

r1(/ = /T3 (UpiVajv i + VojUnjvij),
+eo_ .1 2

S J+s5 2 (leyv] Vv'yv./)v

+(20
SJ_( ) =v2j+ 1(U"IU17/VJ_] Vij VpivLj)- (81)
It is convenient to extract the terms which are proportionaij[ ), from the operators

Mj Tflo,) andSL(zo) Using (6) we obtain

+(20) VJi+1/2 (20 20
K; = ij T (UpiVajrg + VpjUnj7y )

VG412 +1/2)
=y - = ((Upj Vi Upjt Vajr = VpiUnj Vo Unjr) v

+ (Upj Vaj Vpj Unjr = VpjUnj U,,j/an/)nj),

20 _ (20) L () {10/} (20)

(o) +
= —<5jj’+—T (UpjVaj v Ly + Vit Unjrvajr)s
. (Snj) (Spj)
= \/21/+1<UnjUpj8jj’ ;J UpjrVinjr + —— p/ VpjrUnjr ij’

: (Snj) (S )
—V2j + 1(an Vpidjj+ ;j VpjrUnjr = % Uﬁj/vn./’>yl./” (82)

20 20 \/E 20 20
57 = STV 4 5 (S (S )

where

00 00
[K;-L,T:I:l]( )=[t1j,fi1](00)=[sj+,fi1]( '—o0. (83)
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We define the operatots2?, s720 and; 20

h(zo) h(20) +h(20) S(ZO) 23(1"20) +S}§20),
20 20
20 _ C( ) 420, (84)
where
20 1
h(f )=—<EO]‘+ 7 <o/ (t0;7) >\/21+ UpJVnJV; ;
1
hl()20) = —(60j + ?eo, (Toj >\/2J +1VpiUnjvi,
(Sn) (Sp)
+(20) /21+1< %ijUnj-i-TpUijnj Vi
S, (Sp)
+(20) /2J +1(Up/Un/ (;> U[;j an + 7{7 V[,/Un/>yj+a
20
;“( )—s“f:iyfj
=17 + (e1+382)(S,)55 %% + (81— 3g) (Su)s 77,
20
C,,( )=ijnj
20 0 20
— 1?0 + (g1 + 352)(Sp)s T2 + (g1 — 3g2)(Su)s 0. (85)

Appendix B. Irreducibleisotensor operators

In this appendix we give the irreducible isotensor operatdys constructed from the
pairing operat0r§;;, A andSI, and their hermitian conjugate expressions.

The irreducible operatorslf, S, and%Sir carry isospin. = 1 and projectiong = 1,
—1 and 0. Therefore, the product of two of them is a linear combination of terms with
isospini =0, 1 and 2. By taking a linear combination of the products indicated in Table 4
one may easily verified that only the indicated value. gurvives.

Table 4
Irreducible isotensor operators

A O A O
0,0  SESp+Sisu+3stsy 22 V65t pS),
21 V32(Sfsu—S5s1)

L1 —1V2(SESL+5TS) 20 SyS,+8s,—Sts,
1,0 SESp— S S 2,-1  J32(STs,—-SFs1)

L-1  YV2(SFs +STsy)

2,2 NGRS
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Appendix C. The collective operators

In this appendix we briefly present a derivation of the relations used to express the
collective operators in terms of creation and annihilation operators. In general

s T
DIL,5D7T+m,7T+k

=Y i T.=T+m|T+s,—T +m+pu)
Is|<h
. T+s
x (A& T,—T +k|T+s,—T +k +8>D—Tfi-m+;/,,—T+k+8' (86)

Using the Holstein—Primakoff representation of the rotational wave functions as extended
by Marshalek, we can express the SU(2)-Wigner functions as

DT+ [ 2r+1 m! k!
TTmt TS TN 2T + 25+ 1\ (mA s+ )| (k+ s+ 6)!

x B2 (§+)S+M(§+)S+5DZT+m,—T+k' (87)

Therefore, we can identify

N 2T +1 m! k!
Dis = 2.
He 2T +2s+1\ (im+s+ '\ (k+s5+98)!

[s|<A
x A, u; T,=T+m|T +5,—T +m+ p)
X (0, 8; T, =T +KIT 45, =T +k + 8)p% (1) (). (88)

Expanding this relation in powers of T for the cases of interest, we obtain:

(a) Hamiltonian dipole operators

Doy=(s" = %) T2+ 01,

Dy =1-(1+¢Te +&% — p2ct — g2 TENT 1+ O(T72),

Déﬂ = (¢ —pEN)T V24 O(T7%?). (89)
(b) Hamiltonian quadrupole operators

3
D= @ ((sTY — 282" + g2 T2 - O(172),

DY =V3(s" - )T 0 ),

D =1-3(1+c"s + &' — p26E — p2TENT L+ O(172),
Dit=—v3(s - BN T2+ O(17%),

Dég:\/g(& —28%ceT + pA(EN) T L+ O(T72). (90)
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(c) Transition dipole operators
DY =p2— (p2(1+ s +5%) — cTeN T+ O(T72),
DI = (67— p20) T2+ O(17%?),

Dy = % (62s% - 25¢" + B2(N) T+ O(T 7). (91)

Appendix D. The expansion of the different contributionsto the Hamiltonian (13)

The terms are ordered according to the combined powery @,1and I/ T. The
largest ones are included as expectation valu®ér)); the following ones carry the
superindex (20) and are proportional to one-body operators creating and destroying two
quasiparticleg O (+~/T)); the remaining terms include the (11) component of one-body
operators and/or two interacting quasibo$of@(79)).

The first subindex denotes the origin of the term, i.e., whether it arises from the single-
particle or the pairing Hamiltonian. The second subindex denotes the isotensor order.
Whenever a third subindex is present, it indicates the number of opetatoeppearing
in it.

Each term is correct up to a (null) contribution which is proportional to the operators
(c +129/JT) or (¢ — 7?9 //T) acting on the vacuum stal®).

To start with, we consider the single-particle isoscalar term

Hspo = €4ja),
(Hspo) = €qj{Taj)s

(200 __ (20
HSp,O - e‘UTaj ’
11

HSp,O,O = eaj 'L’;j ). (92)

This term includes contributions from the single-particle Hamiltonian (7) and from the
Lagrange multiplier term (23).
The following are the isovector terms of the single-particle Hamiltonian

Hsp1=€0)1y4j Dtl,q — (A0)TO = €0, Tyj Dtl,q + (ko)(tchl)q — ro),
(Hspl) = €Q; (TOj)a

(20 (20
Hspl =€0jTg; »
Hsp10=eo,~r(1.l) _ €0j(70;) e 1 (B%*h* 20 4 p=26),20)
’ /70 T V2T
1 20,20  _20,+@0
HSp1,1=7(Ti t( )—Tl t ( )),

€0j{T0j) r_(200 _(20)
572 (1 . ]+.

Hsp 12=— (93)

9 The procedure also yields constant terms(6f(70)), which are not included, since there are other
contributions of the same order.
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As said before, these terms include the contribution from the single-particle Hamil-
tonian (7) and from the Lagrange multiplier term (23). The operaté? is defined
in (84).

The pairing Hamiltonian gives the isoscalar terms

1
Hpair,0 = —8O<S;Sp +S5S + > SISJ_>1

(Hpair0) = —80((Sp)? + (Sn)?).

Hyairo = —80((5p) (5727 + 870) + (5,) (5?0 + 5,2)).

Hpair0.0 = —go<<sp>(S;<“> +SE) + (Su) (8,74 + 551)
1
+ S;—(ZO)SISZO) +5F@0 520 5 s+(20)s(20)>’

1 20 20
Hpair,O,l =—go0 T—ﬁ (<Sn>(s+(20)l'i( ) — S(ZO)T](_ ))

+ (Sp) (5T - 520 20)),

1
Hpaino.2 = 80 5 (5% + (5n)%) [ 7™ 20800 (5) () + (7))

(94)
The isovector pairing terms are

1
Hpair1 = —81 (DéO(S;{S,, — S, Sn) = 7 Dgy(SySL+ ST Sn)

1
+ Lo ess))
(Hpair,1) = —gl((Sp)2 - (S,,)Z),

Hoany = —81(1Sp) (552 + 52%) = (82)(5, 0 + 5,29).

1

1 _

ver

+ (Sn>(}372§s+(20) +}32€+S(20))),

1
V2T
1 20 20 20 20
Hpair,l,l =g1 Tﬁ ((Sn)(s+(20)1_i( ) _ S(ZO)T](_ )) (Sp)(S(ZO).L_i( ) _ S+(20)'L'](_ )))’

1
Hpair1.2= 815705 ((50)7 = (50)%) [ 71" . (95)
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Finally, the isoquadrupole pairing interaction yields

Hpair2 = — g2<D§O(S;S,, + 85,78y — STS1) +v6(DgS, Sy + DS, S))

3 3
+\/;D(2,1(SISH—S;SL)+\/; D% (STS, S,‘fSl)>,

(Hpair2) = —82((Sp)? + (Sn)?).
Hpair2 = —g2((Sp) (S50 + S29) + (8,) (8,727 + 5{29)),

3

T
3 4.2 | phet2 i 20200 | 26+ .+(20)
+T<Sp><sn>(ﬁ £°+ B )+Jﬁ ) (BEsY + gt st
3
— = (S % T 4 ﬂ25+s<2°>)),
1
Hpair2,1=—82 —T«/E ((Sn )(s+(20) ri(ZO) — 50 ri(ZO)) + (Sp)(s+(20) r1(20) + 50 11(20))),
1 1
Hpair,z,z=gzﬁ(<sn><s ) ((72)? +(r{2°>)2)+§(<sp>2+<sn>2)[r1‘2°%r{2°>]+).

(96)

As for the quadratic terms in the case of pairing between identical particles, we include
a contribution arising from the independent quasiparticle term, which may be written as

H'®D = Eyjv; ~ (Eyj + E )y y;, which yields

Hgp 1,0 = (Epj + Enj)k [ &},

vJj+1/2 20 20
qu,l,l:f(Em +E”J)<UPJV"J( ; i : "171( ))
20 20
+ijUnJ(’<+71( ) "in( )))

1 .0_20 _ 120 (20

(t( )z s )1:] )
1 + 20 20

+ (g0 +82) —\/_ ((S,,)(s (Zo)r]( ) _ (0 ))

20 20
+ (Sn)(s+(20)ri( ) _ s(20)t1( ))>

+(20) _(20) (20) _(20)
(85 (@220 — 507 29)

1
+ g1
811 /2

s

+ (Sn>(s(20)1’1(20) _ S+(20)'L’j(_20))>
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2j+1 , )
Hap.1.2= =5~ (Epj + En./)(ZUp./ VpiUni Vi ((7129) + (22%))

+ (U5 V5 UGV [ Ti<20>]+)

1
~— (e0j{70j) — (g0 + £2)((Sp)2 + (S)?9)

~ 212
— 81((8p)% = (50 [0, 1207,
1
— 7 80+ 828, (S ((£27) + (7). (97)

The final form of Héﬁ)ll and Héz)lz are derived through conventional algebraic
manipulations which involve the seﬁ‘-consistency conditions.
Appendix E. Therotational pairing energy

The self-consistent conditions (31) are obtainable from the minimization of the
Hamiltonians

8((H' = (o)1) =0. (98)
The expectation values of the Lagrange multipligrg are such that
(tp) =12, (tn) = N. (99)
Thus, the invariance (98) yields
d, . Z 3, . N
()‘p>=ﬁ(H>=Ev (An>=m<H>—ﬁ, (100)

defining the moments of inertiﬁfl)

includes the rotational energies

. Therefore, the expectation value of the Hamiltonian

1 1 1, T
ZZ0p)+ S N(y) = —= 22+ —= N2 (101)
2 2 2

In addition, the BRST Hamiltonian (63) provides the term
1 1 1 1 1
Son=—>M)+ >0 =——5Z+—5N. (102)
2 2 2 21{(}) 27D

Adding (101) and (102) yields the rotational energy given in (37).

Appendix F. The RPA associated with the isoscalar pairing Hamiltonian

We here discuss some possible manifestations of an isoscalar pairing interaction within
our formalism, although so far there has not appeared any positive evidence regarding
the strengthg, of this force in medium and heavy mass nuclei (see Refs. [26,27]). In
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addition, we also introduce a repulsive spin-isospin force, in order to keep the Gamow—
Teller resonance at its empirical energy,

H, = —gdS;Lq S<>q7

Hyr = xa;aq, (103)

where

1
Saq IZ ilolieg, el

1

of = ﬁ ;<jl||a||jz>[c;1cn.,~z]q. (104)

Within the RPA, the two-particle coupled creation operators and the particle—hole coupled
operators yield

1(RPA)
[ehicnils

+ 1(RPA) +
[cpneniel, = =UpitVaiaVoy jpg + (D VpjaUnjaVojsja(—q)» (105)

the coupled two-quasiparticle operators being defined as

+
=UpiiUnjp Vo) jog T DI Vpjs Vajo Vo jrja(—a)-

+ +
J/<>/1/2q [aﬂjlanjz]q’

[yojlqu yoj/j/q ] 8/1/;{_812 /éaqq (106)

Since bothH,, and H,, are isoscalar operators that conserve the number of particles,
their transformation to the intrinsic system is trivial. The RPA treatment of this Hamiltonian
yields the uncoupled bosom‘% with frequencieso,, and amplitudes,j, j,, i1, j,- There
is no problem here assomated with spurious components, because these phonons carry a
different symmetry from those originating the condensate. Since these phonons also have
a single proton and a single neutron, the selection rule associated with them is the same as
for the L-phonons discussed earlier (c.f. Egs. (42))

Iy =Y (jnp¥eiyjng — CD i pYoio—a))»
J1j2
wo T Torg = HY — (3,)t 1V + HRPA 4 HRPA (107)

olg

Appendix G. The diagonalization of the spurious sector in the ||-quadratic
Hamiltonian

One applies the following transformations

[Ty
r1520)= UZU(FUE+FU1+FU-6+FUO)7

1
09 = —i ——— (I} — [),
v m( vl ”1)
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Ty
B, =— o, (I — L+ I — L),
Wy
Xi;:,/E(FUJBJFFvO)’ (108)
1
nvz\/—(lav‘i‘bv)
Ty = ,/ = (by — idy),
nv—m( iby +ay),

Ty = /% (ay + iby) (109)

with the commutation relations given in (57). Note also #jat a, andb;r # b,.

Appendix H. Beyond the RPA

Up to now we have treated the terms creating or destroying two quasiparticles in a
somewhat cavalier way, since a te¥?? behaves like a pure boson term only to the RPA
order. Beyond such order we should distinguish two contributions

0?9 =0"+0", (110)

where 0’ is a pure single-boson term and the remaining géft is at leastr ~1/2 times
smaller. As an example the I.h.s. of the two first lines in Egs. (108) shouldzfeadd
0;, respectively([0,, t,;]) = i. The explicit inclusion of both terms (110) in the BRST
Hamlltonlan (53) yields the residual Hamiltonian. For instance, from the BRS D]+
contribution we obtain the terms of@ 7-1/2)

[0, 01y — —A, T+ w2B, 0 + 1g(6FE + mang — i)
— 27y ([0, Tw ] + null8], 7] = m [0, ]
—n3[0%%, 71]). (111)

Here, the boson operatak$, A, By, ¢ must be replaced by their expression in terms of
the final phonons (Egs. (108) and (62)). Similarly the ghost operators are to be substituted
according to Egs. (109) and (60). The residual Hamiltonian should be treated with one of
the well-known procedures to go beyond the RPA, such as the NFT [34] or the boson
expansions [35]. Although care must be taken concerning the indefinite metric of the
bosonsrlo, o, this is by no means a difficult complication. In fact, the two loop
correction to the g.s. and one-phonon state has been worked in detail, for the case of
pairing between identical particles, in Chapter 7 of Ref. [16]. In the present case of isospin
pairing, it is straightforward, albeit cumbersome, to expahahile simultaneously being
consistent with the order of magnitude of the terms that are retained. This program includes
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the use of Eq. (16) and the expansion of the functibhAsind D? to the appropriate order,
following the procedure illustrated in Appendix C.

Appendix |. Parametersused in therealistic calculation

Table 5

The single-particle levels used in the calculation

n 1 j en [MeV] €p [MeV]
1 1 3/2 —1152 —6.79
0 3 5/2 -10.72 -9.01
0 3 7/2 —1552 -821
2 0 1/2 —-2.17 —-1397
1 2 3/2 —-0.80 161
1 2 5/2 —-3.30 307
0 4 7/2 —-0.18 -0.27
0 4 9/2 —7.03 305
0 5 112 165 -531
0 5 9/2 5.00 7.00
Table 6

The strength of the interaction, the gap and the expectation value of the Lagrange
multiplier for the relevant numbers of particles. The values are given in units of MeV

N=24 N=22 Z=12 Z=14 z=12 z=14
o 22/A 22/A 22/A 22/A 26/A 26/A
Ay 2.18 207 161 182 224 252
(M) ~7.39 —8.08 -9.10 -853 -9.41 -8.75

Appendix J. Perturbation treatment of the Fermi amplitude

In this appendix we diagonalize the matrices of Tables 1 and 2 in perturbation theory.
The change in the unperturbed wave functions corresponding to the states (36) is

8|T,ng =1,0)=—fI(T =1),0,n1, =1),
8IT—1,0,n1,=1)= f,|T,ng =1,0),

8IT —2,)=b|T —Lng=1n,,=1)+c|T,ng =2,0), (112)
where the coefficients are given by
¢ft
flz_a)J_L—ZKT—a)S’
_ Pn.
(T D) s+,
O

= . 113
¢ V2T (k2T — 1) + wt) (113)
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Therefore the relevant transition matrix elements become

Mydaas = (T, 1085 2|T,0,0)= —V2T,
M =(T—1,0,n., =18%|T,0,0)= —2T ¥,

Tg.s;(T-1),0,ny, —
MR 1 200=(T 20,087 1LAS) = —V2T (c - fib),
M(TF)loMlT 200=(T—=20,08"T —1,0,1) = V2T b,. (114)

The double decay matrix element is written

(F) (F) (F) (F)
M(F) MTgs IASMI.A.S.;T—Z,O,O + MTg.S.;T—l,O,nl,MT—l,O,nl,;T—Z,O,O (115)
d A+ E(I.A.S) At+wl, '

Appendix K. The empirical value of the strength g»

The present determination of the empirical value is based on the Isobaric Multiplet Mass
Equation (IMME) [36], which expresses the energy of a given isomultiplet as

E(T,M)=a+bM +cM>. (116)

We must obtain the expectation value of the isoquadrupole Hamiltonian

2
A A
Hy = —g(S5 + S7) Do~ — g2<g> D3y~ g2 = 5 D3y, (117)

where we have used the valuegs= 11 MeV/VA; go = 22 MeV/A, as in ([19]).
Therefore, foIT = 1 states,

3.3
7 Cpairing: (118)

The pairing contribution can be determined by subtracting the Coulomb contribution,

82=

722

Ecoulomb= 5 — 0.70M*MeV/A3, (119)

C
from the empirical value of M2 in 0t states, and ascribing the residual value: df?
to pairing effects. This would yield an upper limit fopairing (column 4 of Table 6 ).
Alternatively, we note that the empirical value of the coefficierg systematically larger
for the I™ = 0™ g.s., than for thd”™ + 0™ excited states in the same nucleus. Therefore
we may attribute to pairing effects the difference in the value leétween the g.s. and the
excited states. For each nucleus, the average value of the last one is listed in column 5 of
Table 7 and the values ofairing thus obtained are given in the last column.

The two resultant values @b are 538 ke A and 236 keY A (c.f. Eq. (118)), which are
much too small to yield significant Fermi contributions to the double beta-decay process.
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Table 7
Empirical values of the contribution from pairing effects to the
coefficientc in the Eq. (116). All values are given in units of keV

Nucleus  cempirical ECoulomb  Cpairing Cexcited states Cpairing

Heb 335 266 69
Bel® 362 228 134 299 63
cl4 337 193 144 258 79
Nel8 347 170 177 223 124
Ne?2 314 154 160 246 68
Al26 302 141 160 228 74
se0 275 131 144 210 65
s34 286 123 163 233 53
Ar38 284 117 167 199 85
ca*? 287 111 176 211 76
Ti46 276 196 170
crs0 259 102 157
Feot 276 98 178
Ni°8 260 94 166

163+ 14 71+£19
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