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Coherent states and the calculation of nuclear partition functions
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Coherent states are introduced as test functions to formulate the statistical mechanics of fermions and bosons
interacting via schematic forces. Finite temperature solutions to the Lipkin model and to thiteSEru
Providencia model are obtained by performing the statistical alian Hecht, e.g., by using coherent states.
Comparison between present and exacts results is discussed.
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[. INTRODUCTION at the end of Sec. Il A. The solution to the Stteuand Da

Providencia model is presented in Sec. Il B, within the same

The study of partition functions in the quantum many-approximations applied to discuss the Lipkin model. The ex-
body problem is a subject of interest, particularly in dealingponential and the Dyson boson mapping approximations are
with nuclear and hadronic properties at finite temperature§resented in Sec. 1B 1, and the variational approach is dis-
[1]. cussed in Sec. [IB2. In Sec. Il C we discuss the use of the
The main difficulty concerning the exact calculation of RPA approximation, in conjunction with the use of coherent
partition functions in realistic cases is the dimension of theStates, to calculate the partition function beyond the mean-

configuration space associated with the Hamiltonian of thdi€!d approximation. The formalisms corresponding to the
éjlpkln and the Schtie and Da Providencia model are pre-

system. In consequence, one has to resort to the use of a . .
proximations. Among them we have chosen the coheren ented in Sec._llCl and Sec. I!CZ, respectively. The' results
of the calculations are shown in Sec. lll, together with the

state representation of Hedl2{, as trial test functions. In the : . . .

. o comparison with the exact solutiof§,6]. Conclusions are
present work we focus on the calculation of partition func'drawn in Sec. IV.
tions, using coherent states, for the cases of the Lipgin As it will become evident to the reader, particularly in
and the Schite and Da Providencip4] models. Central to . inq through Sec. 11, we have presented all the mathemati-
these calculations is the use of coherent states t0 express gy steps that are relevant to the formalism. We have done it
matrix elements of the statistical density operaiere #™.  on purpose, in order to present the results in a form that can
We have ordered the approximations following a hierarchygeasily be applied to Hamiltonians others than the ones con-
that is, starting from the integral representation of the partisidered in this work. Also, for the benefit of the reader who
tion function and performing different approximations to may be willing to use the formalism, we are presenting the
compute the matrix elemen¢gle #"|z), where|z) is a co-  main results in the form of expressions that can straightfor-
herent state. The solutions are constructed in the mean-fieardly be computed numerically.
approximation, the random-phase approximati@RA), and
in a variational approach. The results of these approxima-
tions are compared with the exact solutions of each model, to
determine their degree of validity. The mathematical foundation of the coherent-state repre-

The paper has been organized as follows. The essentiaéentation can be found in the paper of Heldit This repre-
about the use of coherent states in statistical mechanics agentation has shown its utility in finding the solutions of
presented at the beginning of Sec. Il. The partition functionquantum mechanical systems by variational and path-
of the Lipkin SU2) model is presented in Sec. Il A. Section integration methods. In this section we will introduce coher-
IIA1 describes the approximations introduced to calculateent states as trial states in the calculation of partition func-
the matrix elements of the statistical operator acting on cotions. We have chosen, as illustrative cases, the Lip&in
herent states, namelfg) the exponential approximation and and the Schitle and Da Providencia moddld]. In the first
(b) the Dyson boson mapping. Next, in Sec. Il A2 and Secpart of this section, we shall briefly review the representation
I1A3 we show how to treat the Hamiltonian and the matrix of partition functions, for noninteracting systems, in terms of
elements of the density operator in the Weiss approximatiogoherent states. Next, we shall discuss the fermionic and
and in a variational approach, respectively. In all cases theosonic images of these Hamiltonians, and we shall focus on
coherent states are used as trial states to perform the statifre variational aspects of the problem. At the end of this
tical sum. The critical behavior of the solutions is presentedsection, we shall discuss the RPA approximation in the con-
text of coherent states.
To illustrate the use of coherent states, in the calculation

Il. FORMALISM

*Email address: civitare@venus.fisica.unlp.edu.ar of the partition function in quantum statistical mechanics, let
"Email address: reboiro@venus fisica.unlp.edu.ar us review the case oM independent oscillators, whose
*Email address: hess@nuclecu.unam.mx Hamiltonian is written
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M
H= 2 wkalak .
k=1

1)
As a trial state we introduce the coherent state
M o i
EARE
Z)= — i), 2
|>k1:[1ik§=:0\/m|k> ()

hereafter we shall follow the notatiar= pe'?. The expecta-

tion value of the unnormalized statistical operaper e~
on the trial statéz) reads

Mo e 2i
2 Rl .
(Ze Pzy=1] X %e’ﬁ“’k'k. 3)
k=1i=0 Ik
The canonical partition function is written
1 (2= o 2
z= —f d¢f dppe " (zle”""|2), (4)
mJo 0

as an integral on the space of paramejei@nd ¢. The co-
herent statéz) obeys the condition

1 (2= ©
1= ;fo d¢f0 dppe*”2|z><z|, (5

corresponding to the metric (&)e"’z. After performing the
integration in Eq.5), the canonical partition function reads

(6)
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eracy of the single fermion shell. The operat&sand S..
obey the commutation relations

[S+ 187]:2801
[SO-Si]:iSi- (9)

For this case we have chosen, as a trial state, the coherent
state

20 1/2
20
|z)=e25+|0)=n§=O z*”( . ) In).

(10
The state withn fermion pairs is written
In)=N,S}[0), S_[0)=0,
N = [(2Q—n)! 11
"N nl20)! (D

and the inner product of coherent states is defined by

(z|2)=(1+p?)D, (12)

The metric, in the parametric space, ¢), is the following:

(20+1)

7T(1+p2)(20+2) ' (13)

In order to calculate the grand partition function we must
determine the multiplicity of the irreducible representations
I's for different particle numbers, namely<N<4(). The
physical space is spanned by the vecféis

{l Elkl,Ezkz, P ,Enkn>,
€; 6{1,2},ki E{l, P ,Zl-i—l},
nef12,...,40},

which, of course, coincides with the well-known reqdlf of
the Bose-Einstein statistics for a finite number of oscillators.
The above results illustrate the convenience in the use of
coherent states in performing the statistical sum, and they
can be extended in order to describe systems with interacting
particles. In the following we shall discuss the structure ofwhere|e;ky,€.k,, . . . K,) represents the fermionic sub-
the coherent states, proposed as trial states in the sense of Ef@ace ¢; is the index corresponding to single particle levels,
(4), for different Hamiltonians. Generally speaking, we shallk represents substates, andtands for the partition with
focus on the value of the ratio particles whilen is the particle number of the configuration.
. For the fermionic subspace the number of vectors associated
(le"""|2) with a system with two levels, each of them witlf)2sub-
(z]lz) states and with a number of particles varying from 1 £,4
is equal to 2.

The fermionic subspace can be decomposed in terms of
invariant and irreducible subspaces. To show this, let us con-
sider a particular distribution of a given number of particles
on two levels, with sublevels characterized by numbers
andv,, i.e., v4 is the number of sublevels that are occupied
by particles in both lower and upper levels, whilg is the
number of sublevels that are unoccupied in the lower and

This Hamiltonian describes the interaction of pairs of fermi—uhppe(;. l?‘.’g'i: Thefquas;_spl)taof theﬁsta’;)el IS :jeterrrr]]mediby
ons moving in two single-particle levels and the operator§ € distribution of parlicles on =z Sublevels, where =

Sy, S, andS_ are written in terms of fermionic variables =20~ v, — v,. The number of particles in this configuration
and their definitions can be found in Rg5]. The dimension 'S n=2(r+wvy). Letus calll’y , the subspace of

of the representation is(2+1, where(} is half the degen-

ie{l,2,...n},
(14)

(@)

A. The Lipkin model

First let us consider the Hamiltonian of the Lipkin model
[3], written in terms of the generators of the @Jalgebra

\ 2 2
H=2eS— 5 (ST +S2). (8)

""" k2(T+V1)
states with »; occupied andv, unoccupied sublevels.
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The dimension of this subspace is 272 They (Z,_WH|Z,—)
are (2)V[(27) vy vyl ] different subspaces ol —(7—k)2e
Ti, k. .. kas, - EACh of these subspaces can be decom- TSk
posed into irreducible ones with multiplicity 1-p? +V[2(T— k)—1]
1+p? de
. (2! B (27)! ) 2
ST kr27=K)1  (k=D)!(2r—k+1)!" X(1+p2) cog24¢)|. (19
p

The exact grand partition function can be writ{ér}
Replacing this result in Eq17) and performing the integra-

20! tion on the angular variables one obtains
Z(B)=T%2 (27) vy vy
I fwz [2(7—k)+1]
X i, expl— BLEL “— 2u(r+ v}, o P (1 e
k m
1— 2
(15 xexd B(r—k)2¢l —2
1+ p?
whereE" ¥ is the energy of the configuration andis the 5 2
L_agrange multiplier that fixes the average number of par- X To| 2BV (7—K)[2(7— k)—l]( p 2) ,
ticles. 14p
The grand partition function in the coherent-state repre- 20
sentation is (20
_ whereZy(x) = Jy(ix) is a Bessel functiof8]. The integra-
Z(B)= 2, Weﬁﬂz(” "0 gil,_, (16)  tion of Eq.(20) can be performed numerically. By a change
TV V) V1 Vol k

of variablesx= p? andy= (1—x)/1+x, the interval of inte-
gration transforms from 9> to —1—1, and the argument
becomes a product of the form-e®YXP(y), where «
=2pBe(7—k) andP(y) is a polynomial in the variablg. For
numerical applications it suffices to expand the Bessel func-
tion Z,, keeping leading-order terms. High-order terms are
suppressed by the exponent.

where

[2(7—k)+1]
| =

a
om * <ZT—k|e_BH|ZT—k>

As a second approximation we shall write the above ex-
pressions starting from a boson image of the Hamiltodan
of Eq. (8). Accordingly, we shall transform the operat@s

and Sy by applying the Dyson boson mappif@]. We shall

In the above expression the integration must be performed offien write the Hamiltonian in the Dyson boson basis and

each partition, noticing that there is one coherent state pefefine a suitable trial coherent state. The Dyson boson map-
partition. ping of the generatorS. andS, leads to

1. Approximations S, —b'[2(7—k)—b'b],
So far, the above expressions are exact. In order to per-
form the integration of Eq(17) one should, of course, cal-

culate the expectation value of the density operator acting on S-—b,
the coherent state. As a first approximation we shall write the
expectation value of the density operator as Sy—b'b—(7—k). (22)

(Z,kle_BH|sz)~eX;< _B<ZT“<|H|ZT“<> (18  The boson operatois and b" obey the commutation rule

<Z7'7k|z7'7k> ,
. N [b,b']=1. (22)
which should be a good approximation for small values of
Be (and also ofBV).
The exponent on the right-hand side of Ef8) can be
calculated exactly, leading to the result

With the definitions of Eq.(21) the boson image of the
Hamiltonian can be written
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—ebtb—(r— o
Ho=e[b'b=(7=k)] IT*k:Jo dpze_pzexr{—BZ(T—k)e(pz—%H

- ![[2(7— k)]z( 1 b' 2+ b2
2 2(7=K) X To(2B\F1(p, 7= K folp, 7= K)). (30
+V[2(7— k)]{ ( 1— )b‘r 3h+pt 4b2} In this way, we have replaced the sum on the eigenvalues of
2(7=k) the Hamiltonian, for all possible representations, by a sum of
(23) integrals weighted by the multiplicity of each representation.
This is valid both for the fermionic, Eq8), and the bosonic,
We can define the coherent state Eq. (23), images of the Hamiltonian.
So far, in the above approximations, we have considered
|2, ) =Ne?S|0)— Ne?2(7=b'| gy | the complete expression of the Hamiltonian and we have
introduced coherent states to cast the statistical sum as an
(Z,4 :<o|32* b/, (24)  integration on the parametric space. We shall next discuss the

results of different approximations, which are operative at
whereNis a normalization. In this representation the expecthe level of the Hamiltonian.
tation value of bilinear boson operators is written

2. The Weiss approximation

tyn m — _ m_n+m ip(n—m) .
(2l (B1)"(0)"z, 9 =[2(7=K)]"p" X e F”(”Z"S) The Lipkin Hamiltonian may be treatealla Weiss[10],

by replacing pair operators by their expectation values
where

Y
min[2(r—k)~m2(r—K)-n] s H=2eS— 5 ((S4)S: +(S)S.), (31
p
Fam= 2 2= (20

where(S.. ) is the expectation value of the opera®r on
With this definition the normalization facto¥ can be calcu- the coherent state). These expectation values are written
lated and the result is

2(r—K) s <S+>:2(T—k)&lj,
N2 =Fo= 3, Erpa(r-koTe e
pe'?

et 20 + 1,27 k) p?) (S=2(r=k % (32

I'r2(r—k)+1]
(27)  The density operatoe #" can be written as a product of

. ) .. separable exponential operators, as shown by HEZht
The expectation value of the boson image of the HamiltoniaRp, ;s the integral of Eq17) yields

is, therefore, written

- F [2(7—k)+1]

2pd

Z,. «|Hplz, -
< T k| b| T k>_ 0 p(1+p2)[2(7*k)+2]

: B f(B,e,V,7), (33
(Z,- Wz =folp,7— k)+e? (ﬁfl(PaT k)

+e 2%f,(p, 7—K), (28)  Where

where 2k 2(7—k)
f(B,e,V,7)= Z:O pznagf(ffk) N

fo(p,7—K)=2(7— k)e( 2p2F—11— ),

Foo 2r K-n (2(7— K)—m)\ [ m+n
>
v m=0 m m
fa(p. 7= k)= —[2(r=kK) 5 p?
X(anr)m] (34
" 1_;)(@_ zF_sl) 4F_42}
2(7=k)/\Foo Foo Foo The quantitiesxy, a~, Yo, andy are the factors entering in
V F the separable form of the density operator
k)= — —K)2— 2%
f2(p17- k) [2(7- k)] 2p FOOI (29) eX[X)/OSO-I-y+S++y,S,)=e“—S—e“+S+e'n(“0), (35)
By replacing these results in E(L7) we obtain and their explicit expressions are the following:
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Jag=cosh )+ ;—;sinr( "

a+:,82(7'— KWV p Ja

Y 1+ p?

_B2(7— K\V p 1

Y 14+p% Jao

a_

PHYSICAL REVIEW C 64 054317

(== imm—p 2a (M~ M(m-n2=1),
(42)

with A=VQ/e. While ¢ must be equal to zero or, the
values of p are Ilimited in the interval &p

(36 <J(1—a)/1+ a, with a=(2€)/V(ny—n,). In this interval
we found two sets of solutions that correspond to two differ-
ent phases, whose structure is determined by the occupation

with numbers and by the excitation energies, as will be discussed
- _ next.
Vo=~ Bor, The average occupation numbersare determined by the
variation of the grand potential
Y+=— ,3< S+>: g P
E=(H-uN)-TS, (43)
y-=—pB(S-),
, where
Bw 4(r—k)V
y:—Tf I+ ——— (37 1
(1+p?) oy TS=— 3 2 2Q[n;Inn;+(1—npin(1—n)], (44
3. Variational approach such that
The expectation value of the Hamiltonian of Eg) can
also be expressed as a functional in the space of parameters =]
of the coherent state on 0. (45)
20 _4n L
z The above variation leads to two phases, namely, the normal
2)=e*10(8))= 2 SHl0(p)). (33 phase, where
Since G 20
1+ eXF(BE]) '
<280>:n2_n1, (39)
Ei=—u—e,
where the quantities; are the average occupation numbers ! pe
of each single particle level, the coherent state of (Bf) is E,=—pute, (46)

normalized in the sense of

2 L. T(—(2sp)+1)
(@2)= 2 |2 S —asy T

After a straightforward calculation we have obtained, for the
expectation value of the Hamiltonian, the expression

(Z]H—-uN|z)
T__G(nl_nZ)
_ 2
><1+p2—V(n1—n2)(nl—n2—1)
p?
xmcos{&ﬁ)—u(nﬁnz). (41)

A variation of this quantity with respect @ and ¢ gives

two solutions

(H)=—¢€(ny—ny),

~(1+ |Z|2)(n17n2)_

and the deformed one, where

20
(40) N 1T exp(BE))

1
M=M=3 €Q)
+

Bi=—uek 2Q) (n;—n,—1)2\°
1
M=N2=35 e
E,=— -+ e\ - . @)
2=k 20Q) (n;—n,—1)°\ (

As usual, the Lagrange multipligt is fixed by the particle
number condition

N=n;+n,. (48

The transition between both phases takes place at the critical
temperature
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o Inl)=NyS}b"|0),

T.=¢€l , (49

(29()\+1)+>\
N200—1)+x

and
for the caseN=2().

N [(2Q2—n)!
B. The Schitte and Da Providencia model "N o)

The techniques of Sec. Il A can be applied to the treat
ment of interactions between fermions and bosons. In thi
section we shall work with the Hamiltonid#|

;I'he statd z) is normalized

(22)=(1+ p?)@Der, (52)
H=wi(Sp+ Q)+ w,b'o+G(S,b"™+S_b), (50 _ o L

In this case the metric is defined as the product of fermionic

whereS.. andS, are the fermion operators defined in Eg). ~ and bosonic factors

andb™ (b) is a boson creatiofannihilation operator. 5

This is the Hamiltonian introduced by Sdteiand Da (2Q+1) e
Providencia to describe fermion-boson interactions, and it m(1+p2)@2+2) 7 :
has been applied successfully to cases of physical interest P

[11]. In the next two sections we shall introduce trial COher'As discussed in the previous section the expectation value of

ent states to calculate the matrix elements of the density olThe density operator on coherent states can be written as
erator corresponding to this Hamiltonian, in the exponentia
<ZT*k|H|ZT*k>

and variational approaches.
(Z,-dlz-) )

As a convenient ansatz we have chosen the coherent stag@d for the state, Eq51), one gets
as

(53

<sz|eﬁH|sz>~exp( -8 (54)

1. Approximations

el <ZT_k|H|Z’T—k> PZ
* * (Z;)l 20 2Q vz —:2(7-— k)Wf—+Wbp2
7) =% St b 0)= zFn nl). Zr—klZr- 2 °
| > | > IZZO \/|—| ngo f n | > < k| k> 1+pf
(51
o - | +40G " cog gy ). (55)
This form implies the use of fermionic and bosonic param- 1+pt

eters, i.e..ziy) = pr(p)€ ¥'®. The state|0) is the vacuum,
such thatS_|0)=b|0)=0. The other elements of the defini- With this expression the integrb)_, of Eq.(17), is written
tion of |z) are as

p? )( 2(r—K)G2B  p?

—2(r—K)Bos—— || 1-
[2(r—k)+1] [~ 2e><p( B | e ) 147

|
The form of this integral can be simplified, by changing thewhere
integration variable, as done with the integral of E20), .
and the resulting integral can easily be computed numeri- [bs,bi]=1. (58)

cally.
Xs done with the Lipkin Hamiltoniar(Sec. 1A D, the The transformed Hamiltonian is, therefore, written as

Dyson boson image of the Hamiltonian of E&0) is con-

—nt t bkt _hiZhpt
structed by transforming pairs of fermions as Hp= wibibs+wpbb+G2(7=k)bib'+bib=b¢"bsb1].

(59
S, —bl[2(7—k)—bbs],
In this representation the trial coherent state has the form

S_—bs,
f 2,1y =NexpzS, +2,b")|0)

So—bibi—(7—k), (57) —Nexd z;2(7—k)b]+z,b17]0), (60)
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noticing that the transformation is a non-Hermitian one the
coherent state is normalized as

2 2T[2(7—K)+1,2(7—Kk)pf]
-2_ 2(r—K)p
N efbe P F[2(r—K) +1] . (6D

With these definitions, the expectation value of the Hamil-
tonian reads

PHYSICAL REVIEW C 64 054317

(z|H—uN|z)
@y —wd(Ng—Ny)
1-pf
X —— + wp[ N+ pp(1+Np)?]
1+pf

+G4Q(n;—ny)(1+ny)

PtPp
choi it dp). (67)
@odbolzed (P L) :
(Z,—dZ,—) TTRON PR T ) T @ePpT AT The variation of the above ratio with respectgdp, ps, s,
X Gpypye (P90 +2(r—K) and ¢y, gives
et 2F1 _wa(nl_n2_1)+wbnb, (68)
X G e (ot b(l— —), 62
P1Po P Fo 62 for the normal phase, and
2
with 0wl Xinmnyzs 2
wbnb Q(l)f 2 (nl n2) +2X2 1 y (69)
2(7—K)p? _ 2
Fo= € v T2(r=k)+ 1,27 k)pf], for the deformed phase with=G\2Q/(w;wp). As shown
[2(7—k)]! I'[2(7—k)+1] in Sec. Il A3 the occupation numbers are determined from
the minimization of the grand potenti&. The correspond-
i 02(r-K)p? T[2(7—K),2(7—K)p?] ing results are
Y 2(r—k)—1]'  T[2(r—k)+1] (63 1

N1+ exp(BE;)
In this case the integrdl,_, is given by the following ex-

pression: _
Ei=—n—5
R R ]
—k— T T 5 exp —4(7— w —_—— =
k 1+ By Jo Pt fpfFO 2 Ezz—MJF%. (70
[2(—K)GBpil?( ,F:
XF{ 1+ Bop 1-pf Fol | (64)  for the normal phase, and
1
2. Variational approach n; :m,
j
The Hamiltonian of Eq(50) can be treated in a varia-
tional approach, as described in Sec. Il A3 but with the co- wf
herent state written as a product of fermion and boson op- Ei=—nu-— 2 X (N1 =ny),
erators. We shall define the coherent state as
T E=—,u,+ﬁ)(2(n —n,) (72
|2)= €€ [0(B)), (65) 2 24

for the deformed phase.
The Lagrange multiplieg is fixed by the number equa-
n

and with it we shall calculate the matrix elements of the
Hamiltonian. The coherent state is normalized by the inne[iO
product
N=n;+n,. (72)
(z|]2)= (1+pf2)29(n1—“2)e/3§(1+ ), (66)
C. Coherent states and the RPA

as before the occupation numbersandny,, are determined The Hamiltonian of Eq(1) describes free bosons and also
from the variation of the grand potential. the linear(RPA) version of a Hamiltonian with interactions,

The expectation value of the Hamiltonian on these coherregardless of the fermionic or bosonic nature of the elemen-
ent states is given by tary degrees of freedom. In this linear form
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Hrpa=Ho+ l''T. (73 2. The Schite and Da Providencia model

The Schtte and Da Providencia model, when treated in
e same way, has a solution that exhibits a phase transition
at the critical temperatur€., such that

The phonon operatorE™ and " obey boson commutation th
rules, and they are written as superposition of pairs of fermi
ons or boson$12]. Therefore, we can think of a coherent

state of the formz)=e?" T|0> and proceed to calculate the ®
partition function as done at the beginning of Sec. Il. In this X2tanr(—f) =1, (80)
fashion Eq.(6) yields the result odl T=T,
7 —e BH 1 (74) where w; is the energy of a pair of fermions. The constant
RPA 1—e Be’ Hyg, for this model, has the form

This shows again the convenience in the use of coherent

states in performing the statistical sum. Next we shall show  Hy=—w( tam(
how this procedure applies for the cases of the Lipkin's and

the Schite and Da Providencia’s models.

wg

1
aT + wa+wbnb— 5(26_ ).

(81)

1. The Lipkin model The RPA eigenvalue is given by

The Hamiltonian of Eq(8) has two solutionsti) the nor-

mal solution, which is valid at temperatur&s T, and(ii) or @ 71 20 ®) ]
the deformed one, which is valid fof<T.. The critical ” A
temperaturel ; is determined by the condition 16}
6 J—
x tan >T |T:Tc_1' (75 12f
In the normal phase the constaig of Eq. (73) has the form 8r
Ho= Q c ! 2 4r
o= —w¢{) tan >T E( €~ w),
with the RPA eigenvalue osg::
- \/ 1|22 i 76 il
W= W - m){tan ﬁ . ( )
1ok 60
In the deformed phase the corresponding values are
1 X E\?] 1 -20 ot
HO——wa §+§tanl‘(ﬁ) —E(ZE—LU), (77)
which is the constant appearing in E@3), and -30r 20}
a \2 1 ? a0k
w=2E 1- 29_1) 1+ﬁ , . . . . ‘ obuztd e —
x tan >T 0 1 2 3 4 0 1 2 3 4

(78) Tre Tie

FIG. 1. Results for the Lipkin model. The mean value of the
energyE/ e scaled by the single particle energyand the specific
heatC as functions of the scaled temperatiife. The upper boxes,
[OF € .
E=—x tanf(—) , (79 (a) and(b), are the results corresponding to the normal phase. Cases
2 2T (c) and(d) correspond to the deformed phase. The exact solution of
o ) o the model is shown with solid lines. Dashed and dotted lines cor-
which is the fermion excitation energy. respond to the exponential solution of H48) and to the Dyson
These expressions, for the RPA eigenvatuand for the  poson expansion of Eq21), respectively. The parameters of the
ground-state energily, determine the value dlgrps, EQ.  model areQd =10, N=20, ande=0.5 MeV. The coupling constant
(74), in an unique way in spite of the normal or deformed y=V(20Q—1)/2¢, was fixed at the valug=0.5 (normal solution,
character of the solution. upper boxel and y=4 (deformed solution, lower boxgs

which is the RPA eigenvalue, and
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0 i 20 i . T T T T . . .
(@ (b) 20 (b) |
-4 16 ; i
16
-8 12 ]
12
12} 1 s} : st
16} . 4 1 ar
20t . 0 . or
(8] R . R R R
i ——t—————— © —— t } } ; "
60 ]
i (d)
10 i
20} a0r El: l
0 ] 5;
201 & y
40} L" XS
- '| N “
0 - e e e = ]
0 1 2 3 4 0 ] 2 3 4 0 1 2 3 4 0 1 2 3 4

Tle T T (o, )" THo, ®,)"*
FIG. 2. Results for the Lipkin model. The mean value of the  F|G. 3. Results for the Sctie and Da Providencia model. The
energy,E/e, scaled by the single particle energyand the specific  mean value of the enerdy/(w;w,,)"/? scaled by the product of the
heatC as functions of the scaled temperatlie. The upper boxes, fermion and boson energies, and the specific feas functions of
(8 and(b), are the results corresponding to the normal phase. CasaRe scaled temperatufi® (w;w;,)*?. The upper boxega) and (b),
(c) and(d) correspond to the deformed phase. The exact results argre the results corresponding to the normal phase. Gesasd (d)
shown with solid lines. Dashed lines are the results of the RPAcorrespond to the deformed phase. The exact solution of the model
approximation, dotted-lines correspond to the Weiss approximatioris shown with solid lines. Dashed and dotted lines correspond to the
and dashed-dotted lines shows the results of the variational agexponential solution of Eq56) and to the Dyson boson expansion
proach, respectively. The parameters of the model are given in thgf Eq. (64), respectively. The parameters of the model @re 10,
caption of Fig. 1. N=20, w;=1 MeV, and w,=1 MeV. The coupling constant

x=G(2Q)/ w;w, Was fixed at the valug= 0.5 (normal solution,

1 1 w upper boxesand y=2 (deformed solution, lower boxgs
0= §|wf* wb| + 2\/(wf+ wb)2*4wfwb)(2 tanl‘( 4_|_)
(82) . (OF] 2 )'( E
E= 5 X tan o7/ (83

in the normal phase. The corresponding expressions for the

deformed regime are given by ) i ,
which are the constant term, the eigenvalue, and the fermion

excitation energy, respectively. The boson occupation num-

ber is defined as

HO:*(DfQ +wa+wbnb

1, [|E
)?‘FX tan ﬁ
1

Mo lonm 1 69

1
*E(ZE*w),

With these elements the partition function is written in the
form of Eq. (74).

In the next section we shall apply the results presented in
and this section, to illustrate the convenience of the method.

1
w= E\/E2+ w§*2wfwb,

054317-9
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agree rather well in the normal phase, although the exponen-
1 2or . tial approximation of Eq(20) is closer to the exact result.
@) (b) The Dyson boson mapping approximation seems to agree
with the exact result better than the exponential approach in
the deformed phase. Notice that in all cases the use of the
coherent states facilitates the otherwise cumbersome summa-
101 1 tion on the eigenstates of the Hamiltonian. Concerning the
other approximations introduced in the text, the results are
displayed in Fig. 2. One can see that the approximations that
go beyond the mean field yield a better agreement, both in
the normal and in the deformed phases. For the case of the
o 1 normal phase the results nearly coincide with the exact ones.
d o | : : : : Concerning the deformed phase the Weiss approximation
- | L ] gives better results at higher values of the scaled tempera-
(d) ture. These features are also exhibited by the results corre-
sponding to the model of Sctta and Da Providencia. Figure
3 shows the results corresponding to the mean-field-type of
approximations, while Fig. 4 shows the results corresponding
to the approximations which go beyond the mean field.
Again, for these cases the exact solutions are nearly repro-
duced by some of the approximations. Notice that in all cases
the use of coherent states, as trial states, has shown its power
in spite of the complications posed by the statistical sum.
Also, a very characteristic feature of the statistical mechanics
of systems with discrete spectrum, e.g., the Schottky effect
e R [13,14), present in both the Lipkin and the Sc¢teuand Da
6 1 2 3 14 6o 1 2 3 14 Providencia model, becomes manifest when coherent states
T (o, ©,)" THo, o)™ are used to calculate partition functions. This is clearly
shown by the calculated specific heat, for both models, as
FIG. 4. Results for the Sclie and Da Providencia model. The depicted in the figures.
mean value of the enerdy/ (w;w;,) 2 scaled by the product of the
fermion and boson energies, and the specific Reas functions of
the scaled temperatufi® (w;w,) 2. The upper boxega) and (b), IV. CONCLUSIONS
are the results corresponding to the normal phase. Gesand(d)
correspond to the deformed phase. The exact solution of the model In this work we have introduced coherent states to calcu-
is shown with solid lines. Dashed lines represent the results of th&ate the partition function and related derivatives, like the
RPA treatment and with dotted lines we have represented the resultaean value of the energy and the specific heat, associated to
of the variational approach. The parameters of the model are givefermion and boson Hamiltonians. We have taken the Hamil-
in the caption of Fig. 2. tonians of the Lipkin and the Sctie and Da Providencia
models, which have been studied intensively in the literature.
In addition to the use of coherent states we have also

i . i ) . performed mean field and RPA-like approximations. For the
We have applied the expressions obtained in the previoussse of the mean-field approaches the Dyson boson mapping

section to calculate the partition function for the consideredaploears to be a rather good approximation, while in the case
Hamiltonians. For the case of the Lipkin model, the paramf approximations that go beyond the mean field, the varia-
eters have been fixed at the values=2L MeV, =10, and  {jonal approach did show its power in reproducing exact val-
N=20 particles. We have defineg=V(2(1—1)/2¢ as the g5, Because in realistic situations, one does not have exact
dimensionless strength of the interaction. We' havg chosegy|utions at hand, one should necessarily rely upon approxi-
the valuesy=0.5 andx=4 to represent solutions in the mations. From the comparison shown in the present work we
normal and deformed phases, respectively. Figure 1 showgrongly support the use of coherent states in the statistical

the results corresponding to the energy and the specific heafeatment of realistic Hamiltonians, since for them exact so-
calculated with the partition function obtained by using thejytions are not always available.

various approximations discussed in the text. Figures 1

and 1b) correspond to the normal phasg=0.5) and Fig.

1(c) and Fig. 1d) correspond to the deformed phasg ( ACKNOWLEDGMENTS

=4). The exact solution, both for the energy and for the

specific heat, is shown together with the results obtained by This work has been partially supported by the CONACYT
using the exponential approximation and the Dyson bosofiMexico) and by the CONICETArgenting. M.R. acknowl-
mapping approximation. The results of these approximationsdges financial support of the Fundacion Antorchas.
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