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Coherent states and the calculation of nuclear partition functions
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Coherent states are introduced as test functions to formulate the statistical mechanics of fermions and bosons
interacting via schematic forces. Finite temperature solutions to the Lipkin model and to the Schu¨tte–Da
Providencia model are obtained by performing the statistical sumà la Hecht, e.g., by using coherent states.
Comparison between present and exacts results is discussed.
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I. INTRODUCTION

The study of partition functions in the quantum man
body problem is a subject of interest, particularly in deali
with nuclear and hadronic properties at finite temperatu
@1#.

The main difficulty concerning the exact calculation
partition functions in realistic cases is the dimension of
configuration space associated with the Hamiltonian of
system. In consequence, one has to resort to the use o
proximations. Among them we have chosen the coher
state representation of Hecht@2#, as trial test functions. In the
present work we focus on the calculation of partition fun
tions, using coherent states, for the cases of the Lipkin@3#
and the Schu¨tte and Da Providencia@4# models. Central to
these calculations is the use of coherent states to expres

matrix elements of the statistical density operatorr̂5e2bH.
We have ordered the approximations following a hierarc
that is, starting from the integral representation of the pa
tion function and performing different approximations
compute the matrix elements^zue2bHuz&, whereuz& is a co-
herent state. The solutions are constructed in the mean-
approximation, the random-phase approximation~RPA!, and
in a variational approach. The results of these approxim
tions are compared with the exact solutions of each mode
determine their degree of validity.

The paper has been organized as follows. The essen
about the use of coherent states in statistical mechanics
presented at the beginning of Sec. II. The partition funct
of the Lipkin SU~2! model is presented in Sec. II A. Sectio
II A 1 describes the approximations introduced to calcul
the matrix elements of the statistical operator acting on
herent states, namely,~a! the exponential approximation an
~b! the Dyson boson mapping. Next, in Sec. II A 2 and S
II A 3 we show how to treat the Hamiltonian and the mat
elements of the density operator in the Weiss approxima
and in a variational approach, respectively. In all cases
coherent states are used as trial states to perform the s
tical sum. The critical behavior of the solutions is presen
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at the end of Sec. II A. The solution to the Schu¨tte and Da
Providencia model is presented in Sec. II B, within the sa
approximations applied to discuss the Lipkin model. The
ponential and the Dyson boson mapping approximations
presented in Sec. II B 1, and the variational approach is
cussed in Sec. II B 2. In Sec. II C we discuss the use of
RPA approximation, in conjunction with the use of cohere
states, to calculate the partition function beyond the me
field approximation. The formalisms corresponding to t
Lipkin and the Schu¨tte and Da Providencia model are pr
sented in Sec. II C 1 and Sec. II C 2, respectively. The res
of the calculations are shown in Sec. III, together with t
comparison with the exact solutions@5,6#. Conclusions are
drawn in Sec. IV.

As it will become evident to the reader, particularly
going through Sec. II, we have presented all the mathem
cal steps that are relevant to the formalism. We have don
on purpose, in order to present the results in a form that
easily be applied to Hamiltonians others than the ones c
sidered in this work. Also, for the benefit of the reader w
may be willing to use the formalism, we are presenting
main results in the form of expressions that can straight
wardly be computed numerically.

II. FORMALISM

The mathematical foundation of the coherent-state rep
sentation can be found in the paper of Hecht@2#. This repre-
sentation has shown its utility in finding the solutions
quantum mechanical systems by variational and pa
integration methods. In this section we will introduce coh
ent states as trial states in the calculation of partition fu
tions. We have chosen, as illustrative cases, the Lipkin@3#
and the Schu¨tte and Da Providencia models@4#. In the first
part of this section, we shall briefly review the representat
of partition functions, for noninteracting systems, in terms
coherent states. Next, we shall discuss the fermionic
bosonic images of these Hamiltonians, and we shall focus
the variational aspects of the problem. At the end of t
section, we shall discuss the RPA approximation in the c
text of coherent states.

To illustrate the use of coherent states, in the calculat
of the partition function in quantum statistical mechanics,
us review the case ofM independent oscillators, whos
Hamiltonian is written
©2001 The American Physical Society17-1
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H5 (
k51

M

vkak
†ak . ~1!

As a trial state we introduce the coherent state

uz&5)
k51

M

(
i k50

` uzku2i k

Ai k!
u i k&, ~2!

hereafter we shall follow the notationz5reif. The expecta-
tion value of the unnormalized statistical operatorr̂5e2bH

on the trial stateuz& reads

^zue2bHuz&5)
k51

M

(
i k50

` uzku2i k

i k!
e2bvki k. ~3!

The canonical partition function is written

Z5
1

pE0

2p

dfE
0

`

drre2r2
^zue2bHuz&, ~4!

as an integral on the space of parametersr andf. The co-
herent stateuz& obeys the condition

15
1

pE0

2p

dfE
0

`

drre2r2
uz&^zu, ~5!

corresponding to the metric (1/p)e2r2
. After performing the

integration in Eq.~5!, the canonical partition function read

Z5)
k51

M
1

12e2bvk
, ~6!

which, of course, coincides with the well-known result@7# of
the Bose-Einstein statistics for a finite number of oscillato
The above results illustrate the convenience in the use
coherent states in performing the statistical sum, and t
can be extended in order to describe systems with interac
particles. In the following we shall discuss the structure
the coherent states, proposed as trial states in the sense o
~4!, for different Hamiltonians. Generally speaking, we sh
focus on the value of the ratio

^zue2bHuz&

^zuz&
. ~7!

A. The Lipkin model

First let us consider the Hamiltonian of the Lipkin mod
@3#, written in terms of the generators of the SU~2! algebra

H52eS02
V

2
~S1

2 1S2
2 !. ~8!

This Hamiltonian describes the interaction of pairs of ferm
ons moving in two single-particle levels and the operat
S0 , S1 , andS2 are written in terms of fermionic variable
and their definitions can be found in Ref.@5#. The dimension
of the representation is 2V11, whereV is half the degen-
05431
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eracy of the single fermion shell. The operatorsS0 and S6

obey the commutation relations

@S1 ,S2#52S0 ,

@S0 ,S6#56S6 . ~9!

For this case we have chosen, as a trial state, the cohe
state

uz&5ezS1u0&5 (
n50

2V

z* nS 2V

n D 1/2

un&. ~10!

The state withn fermion pairs is written

un&5NnS1
n u0&, S2u0&50,

Nn5A~2V2n!!

n! ~2V!!
, ~11!

and the inner product of coherent states is defined by

^zuz&5~11r2!(2V). ~12!

The metric, in the parametric space (r,f), is the following:

~2V11!

p~11r2!(2V12)
. ~13!

In order to calculate the grand partition function we mu
determine the multiplicity of the irreducible representatio
GS for different particle numbers, namely, 0,N<4V. The
physical space is spanned by the vectors@5#

ˆue1k1 ,e2k2 , . . . ,enkn&,

e iP$1,2%,kiP$1, . . . ,2V11%, i P$1,2, . . . ,n%,

nP$1,2, . . . ,4V%‰, ~14!

where ue1k1 ,e2k2 , . . . ,enkn& represents the fermionic sub
space,e i is the index corresponding to single particle leve
k represents substates, andi stands for the partition withi
particles whilen is the particle number of the configuration
For the fermionic subspace the number of vectors associ
with a system with two levels, each of them with 2V sub-
states and with a number of particles varying from 1 to 4V,
is equal to 24V.

The fermionic subspace can be decomposed in term
invariant and irreducible subspaces. To show this, let us c
sider a particular distribution of a given number of particl
on two levels, with sublevels characterized by numbersn1
andn2, i.e., n1 is the number of sublevels that are occupi
by particles in both lower and upper levels, whilen2 is the
number of sublevels that are unoccupied in the lower a
upper levels. The quasispinS of the state is determined b
the distribution of particles on 2t sublevels, where 2t
52V2n12n2. The number of particles in this configuratio
is n52(t1n1). Let us callGk1 ,k2 , . . . ,k2(t1n1)

the subspace o

states with n1 occupied andn2 unoccupied sublevels
7-2
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The dimension of this subspace is 22t. They
are (2V)!/ @(2t)!n1!n2! # different subspaces
Gk1 ,k2 , . . . ,k2(t1n1)

. Each of these subspaces can be deco

posed into irreducible ones with multiplicity

gk
t5

~2t!!

k! ~2t2k!!
2

~2t!!

~k21!! ~2t2k11!!
.

The exact grand partition function can be written@5#

Z~b!5 (
tn1n2

2V!

~2t!!n1!n2!

3(
k

gk
t(

m
exp$2b@Em

t2k22m~t1n1!#%,

~15!

whereEm
t2k is the energy of the configuration andm is the

Lagrange multiplier that fixes the average number of p
ticles.

The grand partition function in the coherent-state rep
sentation is

Z~b!5 (
tn1n2

2V!

~2t!!n1!n2!
ebm2(t1n1)(

k
gk

tI t2k , ~16!

where

I t2k5
@2~t2k!11#

p

3E
0

2p

dftE
0

`

drtrt

^zt2kue2bHuzt2k&

~11rt
2! [2(t2k)12]

. ~17!

In the above expression the integration must be performe
each partition, noticing that there is one coherent state
partition.

1. Approximations

So far, the above expressions are exact. In order to
form the integration of Eq.~17! one should, of course, ca
culate the expectation value of the density operator acting
the coherent state. As a first approximation we shall write
expectation value of the density operator as

^zt2kue2bHuzt2k&'expS 2b
^zt2kuHuzt2k&

^zt2kuzt2k&
D , ~18!

which should be a good approximation for small values
be ~and also ofbV).

The exponent on the right-hand side of Eq.~18! can be
calculated exactly, leading to the result
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^zt2kuHuzt2k&

^zt2kuzt2k&
52~t2k!2e

3F12r2

11r2
1

V@2~t2k!21#

4e

3S 2r

11r2D 2

cos~2f!G . ~19!

Replacing this result in Eq.~17! and performing the integra
tion on the angular variables one obtains

I t2k'E
0

`

2rdr
@2~t2k!11#

~11r2! [2(t2k)12]

3expFb~t2k!2eS 12r2

11r2D G
3I0F2bV~t2k!@2~t2k!21#S 2r

11r2D 2G ,

~20!

whereI0(x)5J0( ix) is a Bessel function@8#. The integra-
tion of Eq. ~20! can be performed numerically. By a chang
of variables,x5r2 andy5(12x)/11x, the interval of inte-
gration transforms from 0→` to 21→1, and the argumen
becomes a product of the form'eay3P(y), where a
52be(t2k) andP(y) is a polynomial in the variabley. For
numerical applications it suffices to expand the Bessel fu
tion I0, keeping leading-order terms. High-order terms a
suppressed by the exponent.

As a second approximation we shall write the above
pressions starting from a boson image of the HamiltonianH
of Eq. ~8!. Accordingly, we shall transform the operatorsS6

andS0 by applying the Dyson boson mapping@9#. We shall
then write the Hamiltonian in the Dyson boson basis a
define a suitable trial coherent state. The Dyson boson m
ping of the generatorsS6 andS0 leads to

S1→b†@2~t2k!2b†b#,

S2→b,

S0→b†b2~t2k!. ~21!

The boson operatorsb andb† obey the commutation rule

@b,b†#51. ~22!

With the definitions of Eq.~21! the boson image of the
Hamiltonian can be written
7-3
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Hb5e@b†b2~t2k!#

2
V

2 F @2~t2k!#2S 12
1

2~t2k! Db† 21b2G
1V@2~t2k!#F S 12

1

2~t2k! Db† 3b1b† 4b2G .
~23!

We can define the coherent state

uzt2k&5NezS1u0&→Nez2(t2k)b†
u0& ,

^zt2ku5^0uez* bN, ~24!

whereN is a normalization. In this representation the exp
tation value of bilinear boson operators is written

^zt2ku~b†!n~b!muzt2k&5@2~t2k!#mrn1m3eif(n2m)Fnm ,
~25!

where

Fnm5 (
s50

min[2(t2k)2m,2(t2k)2n]
r2s

s!
@2~t2k!#s. ~26!

With this definition the normalization factorN can be calcu-
lated and the result is

N 225F005 (
s50

2(t2k)
r2s

s!
@2~t2k!#s

5e2(t2k)r2 G@2~t2k!11,2~t2k!r2#

G@2~t2k!11#
.

~27!

The expectation value of the boson image of the Hamilton
is, therefore, written

^zt2kuHbuzt2k&

^zt2kuzt2k&
5 f 0~r,t2k!1e2if f 1~r,t2k!

1e22if f 2~r,t2k!, ~28!

where

f 0~r,t2k!52~t2k!eS 2r2
F11

F00
21D ,

f 1~r,t2k!52@2~t2k!#2
V

2
r2

3F S 12
1

2~t2k! D S F20

F00
22r2

F31

F00
D1r4

F42

F00
G ,

f 2~r,t2k!52@2~t2k!#2
V

2
r2

F02

F00
. ~29!

By replacing these results in Eq.~17! we obtain
05431
-

n

I t2k5E
0

`

dr2e2r2
expF2b2~t2k!eS r22

1

2D G
3I0~2bAf 1~r,t2k! f 2~r,t2k!!. ~30!

In this way, we have replaced the sum on the eigenvalue
the Hamiltonian, for all possible representations, by a sum
integrals weighted by the multiplicity of each representatio
This is valid both for the fermionic, Eq.~8!, and the bosonic,
Eq. ~23!, images of the Hamiltonian.

So far, in the above approximations, we have conside
the complete expression of the Hamiltonian and we h
introduced coherent states to cast the statistical sum a
integration on the parametric space. We shall next discuss
results of different approximations, which are operative
the level of the Hamiltonian.

2. The Weiss approximation

The Lipkin Hamiltonian may be treatedà la Weiss@10#,
by replacing pair operators by their expectation values

H>2eS02
V

2
~^S1&S11^S2&S2!, ~31!

where^S6& is the expectation value of the operatorS6 on
the coherent stateuz&. These expectation values are writte

^S1&52~t2k!
re2 if

11r2
,

^S2&52~t2k!
reif

11r2
. ~32!

The density operatore2bH can be written as a product o
separable exponential operators, as shown by Hecht@2#.
Thus, the integral of Eq.~17! yields

I t2k5E
0

`

2rdr
@2~t2k!11#

~11r2! [2(t2k)12]
f ~b,e,V,t!, ~33!

where

f ~b,e,V,t!5 (
n50

2(t2k)

r2na0
n2(t2k)S 2~t2k!

n D
3F (

m50

2(t2k)2n S 2~t2k!2m

m D S m1n

m D
3~a2a1!mG . ~34!

The quantitiesa0 , a6 , g0, andg are the factors entering in
the separable form of the density operator

exp~g0S01g1S11g2S2!5ea2S2ea1S1eln(a0), ~35!

and their explicit expressions are the following:
7-4
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Aa05cosh~g!1
g0

2g
sinh~g!,

a15
b2~t2k!V

g

r

11r2
Aa0,

a25
b2~t2k!V

g

r

11r2

1

Aa0

, ~36!

with

g052bv f ,

g152b^S1&,

g252b^S2&,

g52
bv f

2
A11S 4~t2k!V

~11r2!v f
D 2

. ~37!

3. Variational approach

The expectation value of the Hamiltonian of Eq.~8! can
also be expressed as a functional in the space of param
of the coherent state

uz&5ezS1u0~b!&5 (
n50

2V
z* n

n!
S1

n u0~b!&. ~38!

Since

^2S0&5n22n1 , ~39!

where the quantitiesnj are the average occupation numbe
of each single particle level, the coherent state of Eq.~38! is
normalized in the sense of

^zuz&5(
n

2V

uzu2n
G~2^2S0&11!

n! G~2^2S0&2n11!
'~11uzu2!(n12n2).

~40!

After a straightforward calculation we have obtained, for t
expectation value of the Hamiltonian, the expression

^zuH2mNuz&

^zuz&
52e~n12n2!

3
12r2

11r2
2V~n12n2!~n12n221!

3
r2

~11r2!2
cos~2f!2m~n11n2!. ~41!

A variation of this quantity with respect tor andf gives
two solutions

^H&52e~n12n2!,
05431
ers

e

and

^H&52
Ve

l

~n12n2!

~n12n221!
2

el

4V
~n12n2!~n12n221!,

~42!

with l5VV/e. While f must be equal to zero orp, the
values of r are limited in the interval 0<r
<A(12a)/11a, with a5(2e)/V(n12n2). In this interval
we found two sets of solutions that correspond to two diff
ent phases, whose structure is determined by the occupa
numbers and by the excitation energies, as will be discus
next.

The average occupation numbersnj are determined by the
variation of the grand potential

J5^H2mN&2TS, ~43!

where

TS52
1

b (
j

2V j@nj ln nj1~12nj !ln~12nj !#, ~44!

such that

dJ

dni
50. ~45!

The above variation leads to two phases, namely, the nor
phase, where

nj5
2V

11exp~bEj !
,

E152m2e,

E252m1e, ~46!

and the deformed one, where

nj5
2V

11exp~bEj !
,

E152m2el

S n12n22
1

2D
2V

1
eV

~n12n221!2l
,

E252m1el

S n12n22
1

2D
2V

2
eV

~n12n221!2l
. ~47!

As usual, the Lagrange multiplierm is fixed by the particle
number condition

N5n11n2 . ~48!

The transition between both phases takes place at the cr
temperature
7-5
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Tc5eF lnS 2V~l11!1l

2V~l21!1l D G21

, ~49!

for the caseN52V.

B. The Schütte and Da Providencia model

The techniques of Sec. II A can be applied to the tre
ment of interactions between fermions and bosons. In
section we shall work with the Hamiltonian@4#

H5v f~S01V!1vbb†b1G~S1b†1S2b!, ~50!

whereS6 andS0 are the fermion operators defined in Eq.~9!
andb† (b) is a boson creation~annihilation! operator.

This is the Hamiltonian introduced by Schu¨tte and Da
Providencia to describe fermion-boson interactions, an
has been applied successfully to cases of physical inte
@11#. In the next two sections we shall introduce trial coh
ent states to calculate the matrix elements of the density
erator corresponding to this Hamiltonian, in the exponen
and variational approaches.

1. Approximations

As a convenient ansatz we have chosen the coherent
as

uz&5ezf* S1ezb* b†
u0&5(

l 50

`
~zb* ! l

Al !
(
n50

2V

zf*
nS 2V

n D 1/2

unl&.

~51!

This form implies the use of fermionic and bosonic para
eters, i.e.,zf (b)5r f (b)e

if f (b). The stateu0& is the vacuum,
such thatS2u0&5bu0&50. The other elements of the defin
tion of uz& are
he

er

05431
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is

it
st

-
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l
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-

unl&5NnlS1
n b†l u0&,

and

Nnl5A ~2V2n!!

n! l ! ~2V!!
.

The stateuz& is normalized

^zuz&5~11r f
2!(2V)erb

2
. ~52!

In this case the metric is defined as the product of fermio
and bosonic factors

~2V11!

p~11r f
2!(2V12)

e2rb
2

p
. ~53!

As discussed in the previous section the expectation valu
the density operator on coherent states can be written a

^zt2kue2bHuzt2k&'expS 2b
^zt2kuHuzt2k&

^zt2kuzt2k&
D , ~54!

and for the state, Eq.~51!, one gets

^zt2kuHuzt2k&

^zt2kuzt2k&
52~t2k!wf

r2

11r f
2

1wbrb
2

14VG
rbr f

11r f
2
cos~fb1f f !. ~55!

With this expression the integralI t2k , of Eq. ~17!, is written
as
I t2k5
@2~t2k!11#

11bvb
E

0

`

dr f
2

expS 22~t2k!bv f

r f
2

11r f
2D S 12

2~t2k!G2b

v f~11vbb!

r f
2

11r f
2D

~11r f
2!(2(t2k)12)

. ~56!
The form of this integral can be simplified, by changing t
integration variable, as done with the integral of Eq.~20!,
and the resulting integral can easily be computed num
cally.

As done with the Lipkin Hamiltonian~Sec. II A 1!, the
Dyson boson image of the Hamiltonian of Eq.~50! is con-
structed by transforming pairs of fermions as

S1→bf
†@2~t2k!2bf

†bf #,

S2→bf ,

S0→bf
†bf2~t2k!, ~57!
i-

where

@bf ,bf
†#51. ~58!

The transformed Hamiltonian is, therefore, written as

Hb5v fbf
†bf1vbb†b1G@2~t2k!bf

†b†1bfb2bf
†2bfb

†#.

~59!

In this representation the trial coherent state has the form

uzt2k&5N exp~zfS11zbb†!u0&

→N exp@zf2~t2k!bf
†1zbb†#u0&, ~60!
7-6
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noticing that the transformation is a non-Hermitian one
coherent state is normalized as

N 225erb
2
e2(t2k)r f

2 G@2~t2k!11,2~t2k!r f
2#

G@2~t2k!11#
. ~61!

With these definitions, the expectation value of the Ham
tonian reads

^zt2kuHbuzt2k&

^zt2kuzt2k&
52~t2k!v f S r f

2 F1

F0
2

1

2D1vbrb
212~t2k!

3Gr frbei (f f1fb)12~t2k!

3Gr frbe2 i (f f1fb)S 12r f
2 F1

F0
D , ~62!

with

F05
e2(t2k)r f

2

@2~t2k!#!

G@2~t2k!11,2~t2k!r f
2#

G@2~t2k!11#
,

F15
e2(t2k)r f

2

@2~t2k!21#!

G@2~t2k!,2~t2k!r f
2#

G@2~t2k!11#
. ~63!

In this case the integralI t2k is given by the following ex-
pression:

I t2k5
1

11bvb
E

0

`

dr f
2 expF22~t2k!bv f S r f

2 F1

F0
2

1

2D G
3expF @2~t2k!Gbr f #

2

11bvb
S 12r f

2 F1

F0
D G . ~64!

2. Variational approach

The Hamiltonian of Eq.~50! can be treated in a varia
tional approach, as described in Sec. II A 3 but with the
herent state written as a product of fermion and boson
erators. We shall define the coherent state as

uz&5ezfS1ezbb†
u0~b!&, ~65!

and with it we shall calculate the matrix elements of t
Hamiltonian. The coherent state is normalized by the in
product

^zuz&5~11r f
2!2V(n12n2)erb

2(11nb), ~66!

as before the occupation numbersnj andnb are determined
from the variation of the grand potentialJ.

The expectation value of the Hamiltonian on these coh
ent states is given by
05431
e
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-
p-

r

r-

^zuH2mNuz&

^zuz&
52v fV~n12n2!

3
12r f

2

11r f
2

1vb@nb1rb
2~11nb!2#

1G4V~n12n2!~11nb!

3
r frb

~11r f
2!2

cos~f f1fb!. ~67!

The variation of the above ratio with respect tor f , r f , f f ,
andfb gives

2v fV~n12n221!1vbnb , ~68!

for the normal phase, and

vbnb2Vv fS x2

2
~n12n2!21

1

2x2
21D , ~69!

for the deformed phase withx5GA2V/(v fvb). As shown
in Sec. II A 3 the occupation numbers are determined fr
the minimization of the grand potentialJ. The correspond-
ing results are

nj5
1

11exp~bEj !
,

E152m2
v f

2
,

E252m1
v f

2
, ~70!

for the normal phase, and

nj5
1

11exp~bEj !
,

E152m2
v f

2
x2~n12n2!,

E252m1
v f

2
x2~n12n2!, ~71!

for the deformed phase.
The Lagrange multiplierm is fixed by the number equa

tion

N5n11n2 . ~72!

C. Coherent states and the RPA

The Hamiltonian of Eq.~1! describes free bosons and al
the linear~RPA! version of a Hamiltonian with interactions
regardless of the fermionic or bosonic nature of the elem
tary degrees of freedom. In this linear form
7-7
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HRPA5H01vG†G. ~73!

The phonon operatorsG† and G obey boson commutation
rules, and they are written as superposition of pairs of fer
ons or bosons@12#. Therefore, we can think of a cohere
state of the formuz&5ezG†

u0& and proceed to calculate th
partition function as done at the beginning of Sec. II. In t
fashion Eq.~6! yields the result

ZRPA5e2bH0
1

12e2bv
. ~74!

This shows again the convenience in the use of cohe
states in performing the statistical sum. Next we shall sh
how this procedure applies for the cases of the Lipkin’s a
the Schu¨tte and Da Providencia’s models.

1. The Lipkin model

The Hamiltonian of Eq.~8! has two solutions:~i! the nor-
mal solution, which is valid at temperaturesT.Tc , and~ii !
the deformed one, which is valid forT,Tc . The critical
temperatureTc is determined by the condition

x tanhS e

2TD uT5Tc
51. ~75!

In the normal phase the constantH0 of Eq. ~73! has the form

H052v fV tanhS e

2TD2
1

2
~2e2v!,

with the RPA eigenvalue

v5v fA12F 2V

2V21
x tanhS e

2TD G2

. ~76!

In the deformed phase the corresponding values are

H052v fVF 1

2x
1

x

2
tanhS E

2TD 2G2
1

2
~2E2v!, ~77!

which is the constant appearing in Eq.~73!, and

v52EA12S V

2V21D 2S 11
1

Fx tanhF S E

2TD G2D 2

,

~78!

which is the RPA eigenvalue, and

E5
v f

2
x tanhS e

2TD , ~79!

which is the fermion excitation energy.
These expressions, for the RPA eigenvaluev and for the

ground-state energyH0, determine the value ofZRPA, Eq.
~74!, in an unique way in spite of the normal or deform
character of the solution.
05431
i-

nt
w
d

2. The Schu¨ tte and Da Providencia model

The Schu¨tte and Da Providencia model, when treated
the same way, has a solution that exhibits a phase trans
at the critical temperatureTc , such that

x2tanhS v f

4TD U
T5Tc

51, ~80!

wherev f is the energy of a pair of fermions. The consta
H0, for this model, has the form

H052v fV tanhS v f

4TD1v fV1vbnb2
1

2
~2e2v!.

~81!

The RPA eigenvalue is given by

FIG. 1. Results for the Lipkin model. The mean value of t
energyE/e scaled by the single particle energye and the specific
heatC as functions of the scaled temperatureT/e. The upper boxes,
~a! and~b!, are the results corresponding to the normal phase. C
~c! and~d! correspond to the deformed phase. The exact solutio
the model is shown with solid lines. Dashed and dotted lines c
respond to the exponential solution of Eq.~18! and to the Dyson
boson expansion of Eq.~21!, respectively. The parameters of th
model areV510, N520, ande50.5 MeV. The coupling constan
x5V(2V21)/2e, was fixed at the valuex50.5 ~normal solution,
upper boxes!, andx54 ~deformed solution, lower boxes!.
7-8



t

ion
m-

he

d in

he

,
as
a
P

tio
a
t

e

odel
the
n

t

COHERENT STATES AND THE CALCULATION OF . . . PHYSICAL REVIEW C 64 054317
v5
1

2
uv f2vbu1

1

2
A~v f1vb!224v fvbx2 tanhS v f

4TD
~82!

in the normal phase. The corresponding expressions for
deformed regime are given by

H052v fVF 1

x2
1x2 tanhS E

2TD G1v fV1vbnb

2
1

2
~2E2v!,

v5
1

2
AE21vb

222v fvb,

and

FIG. 2. Results for the Lipkin model. The mean value of t
energy,E/e, scaled by the single particle energye and the specific
heatC as functions of the scaled temperatureT/e. The upper boxes
~a! and~b!, are the results corresponding to the normal phase. C
~c! and~d! correspond to the deformed phase. The exact results
shown with solid lines. Dashed lines are the results of the R
approximation, dotted-lines correspond to the Weiss approxima
and dashed-dotted lines shows the results of the variational
proach, respectively. The parameters of the model are given in
caption of Fig. 1.
05431
he

E5
v f

2
x2 tanhS E

2TD , ~83!

which are the constant term, the eigenvalue, and the ferm
excitation energy, respectively. The boson occupation nu
ber is defined as

nb5
1

e(vb /T)21
. ~84!

With these elements the partition function is written in t
form of Eq. ~74!.

In the next section we shall apply the results presente
this section, to illustrate the convenience of the method.

es
re
A
n,
p-
he

FIG. 3. Results for the Schu¨tte and Da Providencia model. Th
mean value of the energyE/(v fvb)(1/2) scaled by the product of the
fermion and boson energies, and the specific heatC as functions of
the scaled temperatureT/(v fvb)(1/2). The upper boxes,~a! and~b!,
are the results corresponding to the normal phase. Cases~c! and~d!
correspond to the deformed phase. The exact solution of the m
is shown with solid lines. Dashed and dotted lines correspond to
exponential solution of Eq.~56! and to the Dyson boson expansio
of Eq. ~64!, respectively. The parameters of the model areV510,
N520, v f51 MeV, and vb51 MeV. The coupling constan
x5GA(2V)/v fvb was fixed at the valuex50.5 ~normal solution,
upper boxes! andx52 ~deformed solution, lower boxes!.
7-9
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III. RESULTS AND DISCUSSION

We have applied the expressions obtained in the prev
section to calculate the partition function for the conside
Hamiltonians. For the case of the Lipkin model, the para
eters have been fixed at the values 2e51 MeV, V510, and
N520 particles. We have definedx5V(2V21)/2e as the
dimensionless strength of the interaction. We have cho
the valuesx50.5 andx54 to represent solutions in th
normal and deformed phases, respectively. Figure 1 sh
the results corresponding to the energy and the specific h
calculated with the partition function obtained by using t
various approximations discussed in the text. Figures 1~a!
and 1~b! correspond to the normal phase (x50.5) and Fig.
1~c! and Fig. 1~d! correspond to the deformed phasex
54). The exact solution, both for the energy and for t
specific heat, is shown together with the results obtained
using the exponential approximation and the Dyson bo
mapping approximation. The results of these approximati

FIG. 4. Results for the Schu¨tte and Da Providencia model. Th
mean value of the energyE/(v fvb)(1/2) scaled by the product of the
fermion and boson energies, and the specific heatC as functions of
the scaled temperatureT/(v fvb)(1/2). The upper boxes,~a! and~b!,
are the results corresponding to the normal phase. Cases~c! and~d!
correspond to the deformed phase. The exact solution of the m
is shown with solid lines. Dashed lines represent the results of
RPA treatment and with dotted lines we have represented the re
of the variational approach. The parameters of the model are g
in the caption of Fig. 2.
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agree rather well in the normal phase, although the expon
tial approximation of Eq.~20! is closer to the exact result
The Dyson boson mapping approximation seems to ag
with the exact result better than the exponential approac
the deformed phase. Notice that in all cases the use of
coherent states facilitates the otherwise cumbersome sum
tion on the eigenstates of the Hamiltonian. Concerning
other approximations introduced in the text, the results
displayed in Fig. 2. One can see that the approximations
go beyond the mean field yield a better agreement, both
the normal and in the deformed phases. For the case o
normal phase the results nearly coincide with the exact o
Concerning the deformed phase the Weiss approxima
gives better results at higher values of the scaled temp
ture. These features are also exhibited by the results co
sponding to the model of Schu¨tte and Da Providencia. Figur
3 shows the results corresponding to the mean-field-type
approximations, while Fig. 4 shows the results correspond
to the approximations which go beyond the mean fie
Again, for these cases the exact solutions are nearly re
duced by some of the approximations. Notice that in all ca
the use of coherent states, as trial states, has shown its p
in spite of the complications posed by the statistical su
Also, a very characteristic feature of the statistical mechan
of systems with discrete spectrum, e.g., the Schottky ef
@13,14#, present in both the Lipkin and the Schu¨tte and Da
Providencia model, becomes manifest when coherent st
are used to calculate partition functions. This is clea
shown by the calculated specific heat, for both models,
depicted in the figures.

IV. CONCLUSIONS

In this work we have introduced coherent states to cal
late the partition function and related derivatives, like t
mean value of the energy and the specific heat, associate
fermion and boson Hamiltonians. We have taken the Ham
tonians of the Lipkin and the Schu¨tte and Da Providencia
models, which have been studied intensively in the literatu

In addition to the use of coherent states we have a
performed mean field and RPA-like approximations. For
case of the mean-field approaches the Dyson boson map
appears to be a rather good approximation, while in the c
of approximations that go beyond the mean field, the va
tional approach did show its power in reproducing exact v
ues. Because in realistic situations, one does not have e
solutions at hand, one should necessarily rely upon appr
mations. From the comparison shown in the present work
strongly support the use of coherent states in the statis
treatment of realistic Hamiltonians, since for them exact
lutions are not always available.

ACKNOWLEDGMENTS

This work has been partially supported by the CONACY
~Mexico! and by the CONICET~Argentina!. M.R. acknowl-
edges financial support of the Fundacion Antorchas.

el
e
lts

en
7-10



on

e

n-

COHERENT STATES AND THE CALCULATION OF . . . PHYSICAL REVIEW C 64 054317
@1# J.I. Kapusta,Finite Temperature Field Theory~Cambridge
University Press, Cambridge, 1993!.

@2# K.T. Hecht,Vector Coherent State Method and its Applicati
to Problems of Higher Symmetries, Lecture Notes in Physics
~Springer-Verlag, Heidelberg, 1987!.

@3# H.J. Lipkin, N. Meshkov, and A.J. Glick, Nucl. Phys.62, 188
~1965!.
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