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Abstract

In this work we discuss the validity of recently published results, by Rumyantsev and Urin, concerning nuclear matrix
elements of the two-neutrino double-beta decay transitions. These authors claim that these matrix elements can be calculated
in a model-independent way. We have re-analyzed their results and extended their formalism to account for proton-neutron
correlations at the QRPA level of approximation. We have found that the formalism fails in describing the double beta decay
observables. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 23.40; 23.40.Hc; 21.10.Tg

The search of a satisfactory explanation for the
observed values of nuclear double-beta-decay matrix
elements, particularly for the two-neutrino mode
Ž . w x2nbb 1,2 , has attracted the attention of experi-
mental and theoretical physicists for more than a

w xdecade. The reader is kindly referred to 3 for a
recent review on the subject. The physics of two-
neutrino double-beta-decay transitions is widely
viewed as the result of strong cancellations among
virtual transitions andror the dominance of single
virtual transitions which exhaust a small fraction of

w xthe relevant sum rules 4–6 . In principle, it means
that the values of the calculated matrix elements are
model dependent, a fact that diminishes the predic-
tive power of the theory. Recently, various attempts
were made to eliminate the model-dependence of the

w x2nbb decay amplitudes 7–9 . Unfortunately, as it is
w x w xshown in 10–12 for the case of the OEM 7,8 , the

model-independent analysis is strongly limited by

the second-order perturbative structure of the matrix
elements.

w xIn the work of Rumyantsev and Urin 9 the
question about the model independence of the 2nbb

matrix elements is raised, this time starting from
symmetry considerations and from the time depen-
dence of the transition operator. As we shall discuss
in detail in the following paragraphs, the method of
w x9 aims at explaining the smallness of the matrix

Ž .elements in terms of a soft breaking of the SU 4
symmetry. In their paper the authors have made the
analysis in an extreme single-quasiparticle model
and they have pointed out the need for a more
complete scheme, like the quasiparticle random-phase

Ž .approximation QRPA .
w xWe have taken the conclusions of 9 as the

motivation for the present study. We have investi-
gated the implications of their approach in terms of
the QRPA framework. We have found that the
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w xmethod suggested in 9 fails in describing the matrix
elements of the 2nbb decay mode when the QRPA
approximation is adopted to describe nuclear wave
functions. This failure is due to some inconsisten-
cies, as we shall show later on, which invalidate the

w xconclusions of 9 . For the sake of completeness we
briefly review in the following the formal steps

w xdiscussed in 9 .
The matrix element corresponding to the nuclear

2nbb decay for ground-state-to-ground-state transi-
Ž w x.tions is defined by adopting the notation of 9

² < Žy. < : ² < Žy. < : y1M s f G S S G i v , 1Ž .ÝG S
S

where

v sE y E qE r2 , 2Ž .Ž .S S i f

is the energy denominator of the second-order per-
< :turbative matrix element. Here the states S form a

complete set of virtual 1q states in the intermediate
double-odd nucleus, and GŽ" . s st " is the

Ž .Gamow–Teller GT operator. This equation can be
Žre-written in terms of the shifted Gamow–Teller or

. Žy. w xFermi operators V of 9G

Žy. w Žy. x Žy.V s H ,G yD G , 3Ž .G G

where H is the nuclear Hamiltonian and the factor
D is the excitation energy of the giant Gamow–G

Ž .Teller resonance GTR relative to the ground state
of the initial nucleus. For simplicity we shall discuss
hereafter only GT transitions, without losing general-
ity since the inclusion of Fermi transitions can be

Ž .done in a straightforward way. In Eq. 3 the com-
mutator of the transition operator with the Hamilto-
nian expresses the time derivative of the GT opera-

w xtor. Next, following the authors of 9 , one can use
these expressions to cast the matrix element of Eq.
Ž .1 in the form

² < Žy. < : ² < Žy. < :f V S S V iG G
M s ÝG 2 2v v yvŽ .S G SS/G

² < Žy. < : ² < Žy. < :f V G G G iG
y , 4Ž .22vG

w x < :where following the notation of 9 the ket G is the
GTR state.

.This result deserves some comments, namely: i it
contains the same information on virtual intermedi-

Ž . .ate transitions as Eq. 1 , and, ii it separates the
contribution due to the GTR from the contributions
of the other 1q states which belong to the complete
set of excitations of the intermediate nucleus. Also,
.iii the expression does not depend on any symmetry

property of the single-particle field. The authors of
w x Ž .9 have re-written Eq. 4 by assuming that the
relations

Žy. Žy.² < < :f V ,G i s0 , 5Ž .G

and

² < Žy. < :G V i s0 , 6Ž .G

w xare always valid. As done in 9 , the expression for
Ž . Ž .M , under the assumptions Eqs. 5 and 6 , is theG

following

y2 ² < Žy. < : ² < Žy. < : y1M sv f V S S V i v . 7Ž .ÝG G G G S
S

Ž . w xBased on Eq. 7 the authors of 9 have per-
formed calculation of matrix elements corresponding
to the 2nbb mode and arrived at the conclusion that
the observables can be calculated in a model-inde-

Žpendent way see also the discussion following Table
w x.1 of 9 . Naturally, it would be desirable to work

with such an expression in order to avoid the burden
of more detailed calculations involving the structure
of the virtual intermediate states. Unfortunately, such
a goal has not been reached yet due to the second-
order perturbative nature of the relevant matrix ele-
ments, among other reasons. This prevents us from
removing the sum on intermediate states from Eq.
Ž .1 and even from using a sort of cancellation-free

Ž .summation in evaluating Eq. 1 . In fact one can
w xeasily understand the results of 9 by looking at the

Ž .structure of Eq. 7 . From the formal steps which we
have outlined before we see that the supposedly
dominant contribution to the sum, reminiscent of the

Ž .invoked SU 4 symmetry, must be that given by the
GTR as virtual intermediate excitation. The other
contributions must be very small, as compared to the

Ž .GTR one, if the SU 4 symmetry is softly broken as
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Table 1
Theoretical and experimental matrix elements corresponding to 2nbb decay to the final ground state from the ground state of the nuclei

Ž .listed in column 1. The theoretical matrix elements M of Eq. 16 , calculated by using the QRPA method and at the values of g listed inG p p
Ž .column 2, are shown in column 3. The fourth column shows the experimentally extracted values of the matrix elements, M exp . TheseG

values have been obtained from the experimentally determined half-lives, corresponding to the references quoted in brackets, and using the
value g s1 for the axial-vector coupling constant. The matrix elements are scaled by the electron mass. The final two columns list theA

Ž . Ž . Ž .quantity S of Eq. 14 , for the initial S and final S nuclei, in units of MeV.i f

Ž . w xNucleus g M M exp Ref S Spp G G i f

76 w xGe 1.04 0.12 0.10 20 y20.6 y17.1
82 w xSe 0.70 0.07 0.08 21 4.32 1.40
96 w xZr 1.09 0.06 0.08 22 y22.5 y19.2
100 w xMo 1.0 0.40 0.17 23 y20.0 y17.9
116 w xCd 1.0 0.10 0.10 24 y8.93 y0.24

w xthe authors of 9 claim. On the other hand, the use
Ž . Ž .of the assumptions stated in Eqs. 5 and 6 elimi-

nates the large contribution from the summation in
Ž . w xEq. 7 , ending up with what the authors of 9 call a

hindrance effect. As it has been shown extensively in
the literature this line of argumentation fails because:
. Ž .i the breaking of the SU 4 symmetry is not a soft

Žone spin-orbit effects are very large in heavy-mass
. .nuclei and ii the experimental values of the matrix

element M can be explained either by strong can-G
w xcellations among intermediate contributions 13 or

by a single-state dominance from low-lying states
w x6 . In addition, as we are going to show next, the
above presented formalism relies upon the fulfill-

Ž . Ž .ment of conditions Eqs. 5 and 6 which are not
realized in realistic calculations. This statement be-
comes obvious in the context of the QRPA formal-
ism, as it is shown below. In the following we are

Ž .going to show that Eq. 7 does not represent the
correct value of the matrix element M . Particularly,G

Ž .we are going to show that Eq. 5 does not vanish
when the operators entering in the commutator are
expressed in terms of QRPA phonons and the result
of the commutation is given in terms of QRPA
transition amplitudes.

In order to write the previous expressions in the
QRPA framework, which amounts to introducing
proton-neutron two-body correlations which go be-
yond the single-quasiparticle approximation, we have
expressed the GT operator in terms of the QRPA
phonons. Details of the formalism can be found in
w x3 . The starting point is the definition of particle-hole
terms of the one-body GT operator, which are con-

verted to the two-quasiparticle basis by means of the
BCS transformation. This leads to

1Žy. yG s pIst In( Ž .Ým 3
pn

= † ˜u Õ A pn ,1m qÕ u A pn ,1mŽ . Ž .p n p n

qscattering terms , 8Ž .
where the exact form of the pair-creation and -anni-

† ˜Ž . Ž .hilation operators A pn,1m and A pn,1m is given
w xin 3 . We can now introduce the phonon operator

† q †Q m s X 1 ,m A pn ,1mŽ . Ž . Ž .Ým pn
pn

q ˜yY 1 ,m A pn ,1m , 9Ž . Ž . Ž .pn

which creates a correlated two-quasiparticle state
when acting on the QRPA vacuum. The full set of
states defined in this manner spans the space of the
virtual intermediate 1q states which appear in Eq.
Ž .1 . In terms of these one-phonon creation and anni-
hilation operators the GT operator can be written as

Žy. † ˜G s f Q m qg Q m , 10Ž . Ž . Ž .Ž . Ým m m m mQRPA
m

where the QRPA transition amplitudes f and gm m

are given by

f s 1q,mIGŽy.IQRPA 11Ž . Ž .m

and

g sy 1q,mIGŽq.IQRPA . 12Ž . Ž .m
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The explicit forms of f and g are given in Eqs.m m
Ž . Ž . w x3.29 and 3.30 of 3 . Within the same approxima-

Žy. Ž .tion the QRPA image of V of Eq. 3 readsG

Žy. †V s V yD f Q mŽ . Ž .Ž . ÝGm m G m mQRPA
m

˜y V qD g Q m , 13Ž . Ž . Ž .m G m m

where V is the QRPA eigenvalue of the m-th 1q
m

w xstate 3 . Using the above equations one can calculate
Ž .the QRPA value of the commutator of Eq. 5 . The

result is
1 Žy. Žy.² < < :S' f G , V iŽ . Ž .QRPA G2 QRPA

s V f g , 14Ž .Ý m m m
m

Ž .where, for convenience see the caption to Fig. 1 ,
Ž .we have called S the sum in the r.h.s of Eq. 14 .

Ž .From the structure of Eq. 14 it is then obvious that
the commutator will not vanish, except if the QRPA
energies V or the transition amplitudes f and gm m m

Fig. 1. Theoretical matrix elements corresponding to the 2nbb
76 Ž . w x Ž . w Ž .xdecay of Ge, given by Eq. 16 M and Eq. 17 M RU ,G G

are displayed as functions of g . Both matrix elements are scaledp p
Ž .by the electron mass. The quantity S of Eq. 14 , calculated for

w x w xthe initial S and final S nuclei, is also shown. The values ofi f

S and S are given in units of MeV and multiplied by the factori f

10y2 .

Ž . Ž .of Eqs. 11 and 12 vanish. Concerning the other
Ž .assumption, advanced in Eq. 6 , we can now write

the corresponding result in the QRPA approach. It
reads

² < Žy. < :G V i s V yD f . 15Ž . Ž .Ž .G G G GRPA

Ž . Ž .To make the comparison of Eqs. 1 and 7 as
explicit as possible, we write them at the QRPA

Ž .level. The result corresponding to Eq. 1 reads

f gm m
M s , 16Ž .ÝG

V yEm 0m

Ž .and the result corresponding to Eq. 7 is given by

2 21 V yE yVŽ .G i m
M s f g ,ÝG m m2 V yEV yEŽ . m 0mG 0

17Ž .
1 Ž .where E s E qE is the average between the0 i f2

initial and final ground state energies.
Ž . Ž .As it becomes obvious from Eqs. 14 and 15 ,

which have been obtained by using the QRPA ap-
proach, they do not support the main conclusions

w xupon which the calculations presented in Ref. 9 are
Ž . Ž .based, namely: that Eqs. 5 and 6 are always valid.

Ž . Ž .Their QRPA values, Eqs. 14 and 15 , do not
Ž .vanish. Notice that the validity of both Eqs. 5 and

Ž . Ž .6 is the crucial step needed to rewrite Eq. 4 in the
Ž .form of Eq. 7 . In the following we shall show and

discuss the results of realistic calculations which we
have performed as a quantitative test of the above
expressions and assumptions. The 2nbb decay tran-
sitions which we have analyzed are the ground-state-
to-ground-state decays in 76 Ge, 82 Se, 96 Zr, 100 Mo
and 116Cd. Among the set of 2nbb decay candidates
we have selected these 5 examples since there exist
accurate experimental data on half-lives of their tran-
sitions to the final ground state. The single-particle
levels correspond to a Coulomb-corrected Woods–
Saxon central potential, including the spin-orbit

w xinteraction, with parameters taken from 14 . The
matrix elements of the two-body interaction were

w xconstructed from the OBEP-G-matrix 15 , adjusted
to account for nuclear finite-size effects. Pairing
matrix elements were adjusted to reproduce observed

w xodd-even mass differences, as described in 16 .
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The residual two-body proton-neutron interaction
was parametrized in terms of particle-hole and parti-

w xcle-particle channels, as described in 17 . The
strength of the 1q component of the particle-hole
proton-neutron interaction was adjusted to reproduce
the energy of the GTR, for each of the considered
cases. The strength of the proton-neutron particle-

q Ž .particle 1 channel g of the two-body interac-p p
w xtion 18 , which is usually determined by reproduc-

w xing known single-beta decay observables 19,6 , was
taken as a free parameter. This is done to show the
sensitivity of the results upon variations of this pa-
rameter. The eigenvalues and eigenvectors of the
QRPA equations, which describe the set of virtual
1q states of the intermediate double-odd nucleus

y Ž .belonging to the double b decay chain A, N,Z y
Ž . Ž .A, Ny1,Zq1 y A, Ny2,Zq2 , were solved in
single-particle basis consisting of two oscillator ma-
jor shells around the proton and neutron Fermi sur-
faces, including intruder orbits and their spin-orbit
partners. The above described procedure is by now a
rather well-known one and the reader is kindly re-

w xferred to 3 for further details of the calculations.
Our results are summarized in Table 1 and in Fig.

1. The dependence of the matrix elements M , ofG
Ž . Ž . 76Eqs. 16 and 17 , for the case of Ge, upon the

variation of the strength parameter g is shown inp p

Fig. 1. In the same figure we show the results
Ž .corresponding to the quantity S of Eq. 14 , for this

Ž .transition. The sum of Eq. 14 was calculated for
Ž . Ž .the initial S and final S nuclei, separately. Thei f

qualitative behaviour of the quantities of Fig. 1 is the
same for the other cases of Table 1. As it is seen

Ž .from this figure, the sum of Eq. 14 vanishes at only
one point in the parametric space. For the case of the
decay of 76 Ge it corresponds to the value g s0.8,p p

a value which yields a matrix element M twice asG
w xlarge as the experimentally determined one 2 . Con-

sidering that the magnitude of the commutator of Eq.
Ž . 25 is 2=10 the magnitude of the quantities S andi

w xS depicted in the figure, the claim of 9 that itf

vanishes in a model-independent way appears to be
unrealistic.

In Table 1 we show the theoretical matrix ele-
ments, calculated in the QRPA formalism, for the
considered 2nbb ground-state-to-ground-state transi-
tions. The theoretical values of M have been ob-G

tained by fixing the parameter g at the valuesp p

indicated in the table. For comparison, the experi-
mental values of the matrix elements are also listed
in the table. Both experimental and theoretical values
of M listed in Table 1 are scaled by the electronG

mass. It may be noted that in all cases, except for the
decay of 100 Mo, the experimental values of M canG

be reproduced by the QRPA calculations. For 100 Mo
the QRPA breaks down slightly beyond g s1.0p p

and the experimental value of M can not be reachedG

with the same accuracy as for the other cases.
Ž .The results of Eq. 14 are shown in the last two

columns of Table 1, both for the initial and final
nuclei participant in the transitions. With the excep-
tion of the final branch S of the decay scheme off
116Cd, the absolute values of S and S are large andi f

none of them vanish in the vicinity of the values of
g listed in the table. Here it is worth pointing outp p

Ž .that the magnitude of the sum S of Eq. 14 is just
² <w Žy. Žy.x < :half the magnitude of the quantity f V ,G iG

Ž .of Eq. 5 showing that for the case of a realistic
Ž .interaction and within the QRPA formalism Eqs. 5

Ž .and 6 are not realized. Therefore, the transforma-
Ž . Ž .tion of Eq. 4 , which is generally valid, into Eq. 7 ,

Ž . Ž .which depends on the validity of Eqs. 5 and 6 , is
not justified. Finally, and concerning the transition

Ž .matrix element of Eq. 15 , it is seen that it does not
vanish unless NsZ and the energies of the proton
and neutron levels are the same. These conditions are
never satisfied by double-beta-decay systems.

To end up with the discussion of the results we
would like to comment briefly on the values given

Ž .by Eq. 17 . We have compared the results given by
Ž .Eq. 16 , which is the correct QRPA expression for

the matrix element M , and the ones given by theG
Ž . Ž Ž ..QRPA version of Eq. 7 e.g. Eq. 17 , which is the

approximation advocated by Urin and Rumyantsev.
The results are shown in Fig. 1 and they correspond
to the transition in 76 Ge. It is seen from this Figure

Ž .that the results of Eq. 17 differ from the results of
Ž .Eq. 16 and that they are also model dependent. At

Ž .the point where Eq. 14 vanishes, i.e, the point
w x Ž .where the approximation of 9 must work, Eqs. 16

Ž .and 17 give similar results, as expected.
To conclude, we have discussed the consequences

w xof the results of Ref. 9 in the context of the QRPA
formalism. We have found that the conditions under
which the matrix elements of the 2nbb decay mode
can be treated as model-independent ones, according
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w xto the claim of Rumyantsev and Urin 9 , are not
realized in realistic calculations.
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