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Comparison between wave functions in the random phase approximation, renormalized random
phase approximation, and self-consistent random phase approximation methods
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The random phase approximati¢RPA), the renormalized RPARRPA), and the self-consistent RPA
(SCRPA methods are applied to calculate the wave functions of the ground and excited states of an exactly
solvable model. The approximated wave functions are expanded in the basis of the exact solutions. It is found
that, when the RPA collapses, the RPA wave functions are orthogonal to the exact solutions while the RRPA
and SCRPA ones have small but finite overlaps with the exact results. In spite of the apparently good agree-
ment between the results of the RRPA, the SCRPA, and the exact solution, for the energy of the first excited
state beyond the point of collapse, it is found that these approximations do not correctly describe the exact
wave functions[S0556-28189)03808-X]

PACS numbd(s): 21.60.Jz, 21.60.Fw

Various generalizations of the random-phase approxima- 20

tion (RPA) have been reported recenfli~4]. The renormal- J=> ComCim 2

ized RPA (RRPA) is the simplest of these approximations m=1

and it aims at a better treatment of ground-state correlation%,re the number and the particle-hole operators. respectivel

as compared with the RPA method. As shown 3¥] the he indi 0 and 1 d P te the | P d » respec I y:

RRPA results go beyond the collapse of the RRBA]. The T € Indices U an enote _e_ower and upper: single-

self-consistent RPASCRPA [5,6] is a more sophisticated particle levels, with energiegy(;)= +€/2, € being the en-
ergy spacing between levels, andis the internal quantum

approximation which avoids the collapse by introducing thenumber(i.e., the angular momentum projecijorhich var-

couplin tween one-particle and particle-hol nsity fluc-:
oupling betwee e-particle and particle-hole density fluc s between £2() for each shell. These operators are the

}gg:gg;b?:i:tsbog :tginsdc[g]PA treatment of realistic nUCIeagenerators of the algebra of the @Jgroup. The number of

The properties and limitations of the RPA and relatedpartide? ISN=2(}, andV.is the strength of the interaction.
approximations, for the case of exactly solvable modelsEXaCt eigenvalues and eigenvectors of the Hamiltohiaof

were studied long agl@]. Excitation energies, transition ma- Eq. (1), are obtained in the basis
trix elements, and sum rules have been the observables of 20-n)!
choice, in assessing the validity of the RIPgJ. Concerning Iny= /—'Jm). 3
wave functions, the exactly solvable Lipkin modél has n!(2Q)!

been used to compare exact and RPA ground-state wave ) )
functions and correlations. The statd) is the unperturbed ground state. For this case all

In the present work we report on the results which w the particles occupy the lowest single-particle state and it

have obtained by using the Lipkin model to build the wavelMPlies Jo|)=—Qf). Since the Hamiltonian of Eq1) has

function of excited states and to expand the RPA wave funclonvanishing matrix elements between stat8p with n
tions in terms of the exact solutions. The same is done for the>N:N* 2 its eigenfunctions can be written in terms of linear
cases of the RRPA and SCRPA. The comparison betweefPmbinations of states with eves) or odd (o) values ofn
the wave functions obtained within these approximations an&€-9-» the number of particle-hole pairsamely,

the exact ones is discussed in order to assess the validity of a

-1
the methods. _ A _ A
The model Hamiltonian is taken frof®] and it reads n.€) n§=:O Chel2n), [N,0) n§=:0 Chol2n+1). (4

In this notation\ is the eigenvalue index, thya =1.e)
and|\=1,0) are the exact ground state and the exact first
excited state, respectively.

In the following we shall describe the main steps of the
equation of motion methof®2] (EOM). The starting point of
where the EOM is the definition of the one-phonon state created by

the action of the phonon creation operaldr on the corre-
20 20 lated vacuunj0),

H=edom o(32 47 1
= €Jdo 2(+ 7)1 ()

1
Jo== el cim—cl com), Ji= > ¢! Com,
0 mE:1( 1m~1m om Om) + mE:1 1m~0m |nphonon: 1>=FT|O>. (5)

0556-2813/99/6(2)/0243095)/$15.00 60 024309-1 ©1999 The American Physical Society



J. G. HIRSCH, O. CIVITARESE, AND M. REBOIRO

This vacuum is defined by the conditidi0)=0, where

the one-phonon annihilation operaforis the adjoint ofl"".
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is fulfilled. It is valid except for the strong-coupling limit
since for large values of the strength [V—¢e/(2Q)] the

The true eigenstates &f can be described, approximately, RPA amplitudesX andY diverge and 0| —2J,|0)—0. Ob-

by the one-phonon staték)=1"{|0) after solving the EOM

viously the RPA eigenstate is not normalizable in the strong-

equations. The structure of the wave function of each oneeoupling situation.

phonon staték) can be determined from a variatip2] and
it can be shown from the previous equations that

(O|[ 8T ,H,I'{]|0) = wy(O|[ 8T, T'{]|0) (6)
with
2(0|[ 8T, H,T'{1|0)=(0]|[ 8T, ,[H,T{]]0)
+(O|[[8T,HL.T{I0),  (7)

wherew, is thekth eigenvalue andT' is an arbritary varia-

tion of thekth eigenfunction.

In the self-consistent RPASCRPA approach 6,10, the
expression$8) and the Hermitian conjugate are inverted giv-
ing J, andJ_ in terms of I'" and I'. By replacing the
particle-hole operator§.. by phonon operators and enforc-
ing the constrainf’|0)=0, one gets the matrix elemems
andB of Eq. (9) in the form

ASCRPA: e+ 2VXY,

(0]J5/0)

B =2-———V+V(X?+Y?). 15
SCRPA <O|J0|0> ( ) ( )

The main assumption of the random phase approximation There are two unknown quantities Biscrpa, they are
(RPA) is that the one-phonon creation operator is built as §0|J3|0) and (0|J,|0). The simplest approximation which

linear combination of particle-hole operatots.(,J_). In the

Lipkin model, Hamiltonian(1), there is only one of such

phonons and it is written as

LV
r (XJ,—YJ). (8)

V20

can be applied to determine them is the following:

(01350)

{0130y~ ~ (18

After performing this approximation it is seen that Eg.
(15) differs from Eq.(13) mainly in the term added to the

By using in Eq.(6) the above definition, the usual RPA forward matrixA. Notice that the particle-hole unperturbed

matrix equation$2,8] are obtained

(—AB —BA) (i) :“’U(i)- )

The quantitiesA, B, andU are defined by
A=(0|[J- H,J;]1|0), B=—(0[[J- ,H,J_]|0),
U=(0|[J_,;1/0). (10

The forward- and backward-going RPA amplitudéand
Y are normalized as

<O|FFT|0>=(O|[F,FT]|O>:(XZ—YZ)W_
11
Furthermore, it is assumed that
X2-Y2=1. (12)

The standard RPA matrix elememtsandB of the Eq.(9) are

obtained by assuminglO)~|), and consequently that

(0]30]0)~(|Jol)=~ 2, and

ARPA: €, BRPA: _(ZQ_l)Vm_ZQV (13)
The RPA excitation energyo [8] is given by o
=e—40%V/?, and it vanishes ifV=¢/(2Q). Under the
above conditions the so-callepiasiboson approximation

(o[rrfoy=1 (14)

energye is the only contribution to the forward matrix which
appears in the Lipkin model. If we take the linvit=0 in Eq.
(15), then Eq.(13) is recovered.

If the approximation

(035/0)

<O|JO|0>~<O|‘]O|O>

17

is used instead of Eq16) and the weak interaction limiY
—0 is enforced, then the renormalized RPA matrices are
obtained[3]:

Arrpa=€, Bgrrpa= —2QVD. (18
The renormalization factdD, which allows for a proper nor-
malization of the eigenvectors in E@L1), is defined as

<0|—2~]o|0>_

2Q (19

D=(0|I'TT|0)=

Different expressions fob as a function ofY? can be
found in the literaturg1,3,4. Among them the most fre-
guently used is the one due to Catatal.[3,4], whereD is
defined as

1

D=——7—. 20
1+Y4Q (20
We shall now discuss the structure of the wave functions,
as they are given by each of the above introduced approxi-
mations. The RPA ground state is given[l%/6,9,1Q
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QO 2 1
2Q-=-20H[Y
A1 T oq2
0.8
where
0 " “Yooel
Y\ (2Q-2)!21)!
N?=(20)! —) —_— 22
( );o X Q-2 @) 0.4
is the normalization factor. By expanding these wave func- 02k \ |
tions in the basig4) one gets ' \
0 1 1 1 1 1 1
10)="2, (\,e|0)|x,e). (23 0 02 04 06 08 1 12 14
N 20V /e
The coefficientg\,e|0) are the overlaps between the ex-  FIG. 1. Excitation energy as a function of the reduced inter-
act and RPA wave functions and they are given by action strength 2V/e. The upper curveésolid line and large dojs
0 represent SCRPA and exact solutions, respectively. Lower curves
V(20)! Y HJ@a-2h120)! (small dots and dashed linesepresent RRPA and RPA results,
(\,€e[0)= N Zf) Cie X Q- . respectively.
(24)

In the following we shall present and discuss results cor-
By using Eq.(9) the wave function of the RPA excited responding to the case@ =7 andN=2( particles. The re-
state takes the form duced coupling 2V/e will be taken as a free parameter
varying between 0 and 1.4. This interval includes the weak
and the strong-coupling limits as well as the value which
produces the collapse of the RPAQ¥/e=1).
Figure 1 shows the comparison between exact and ap-

(29

1
10y =
0= avare O

and its overlap with the exact solutions is expressed by

V(2O —1)!
<7\,O|FT|O>=(—)
XANAV(O|TTT|0) 0.8
Q-1 I
Y 20-2H1(21+1)! 2
X E Cl)\ _) \/( ) ( ) (olle) 0.6+
=0 "\ X Q-nHt
X \2(Q—1). (26) 04r
Instead of the usual quasiboson approximation, e.g., 0.2

(0|TTT|0y=1, the constraints

2 [(\e|0)|?=1, 2 (A 0[TT0)2=1, (27)

0.8
can be used to determine the normalization fagtoof Eq. (O[T[1,)2
(21), which is written in terms of the RPA expectation values 0.6
of Jg [6], namely,
0.4-
Q 2|
Y (2Q—21)1(21)!
= -1 — — _—
(0]30|0y =N Z‘o x) (21-9) TEIEEE 0zl
(28 .
0 1 1 1 1 1 1
The same procedure can be applied to calculate overlap 0 02 04 06 08 1 12 14

between exact and RRPA and SCRPA wave functions. As 2V

shown above, for the case of the RPA, the matrix equation g, 2. Overlaps between the exact and RPA, RRPA, and
(10) was solved for the RRPA and SCRPA methods. WescRPA wave functions. Insets) and (b) show overlaps with the
have computed the corresponding wave functions and writexact ground state|{.e)) and with the exact first excited state
ten them in the basis of the exact solutions. Details are omit¢1,0)), respectively. The lines follow the same convention as in
ted for the sake of brevity. Fig. 1.
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0.6- 3 i 0.6 ) 4
4
5
5 0.4} -
0.4r . 6
6 7
0.2t N
0.2F 7 - /
8 0 : i : :
0 I
0.8} ®) |
0.8L (b) oI
I{0IA)| 06r 1
0.6 4
0.4+
0.4
0.2+ 4
0.2 0 \ , ; t
0 0.8 (c) _
[{0IT}A)|
0.8F (© ] 0.6F .
[{0]A¢)]
0.6 = 0.4r 3
0.4F _ 0.21- /
0 b 1 1
0.2 b 0 0.2 0.4 0.6 0.8 1 1.2 14
_ 20V/e
0 == e ’/ ) . i .
0 0.2 0.4 0.6 0.8 1 12 14 FIG. 4. Amplitudes of the approximated first excited state

20V /e (T'T|0)) on the exact solutiongX,0)), as a function of the reduced
coupling strength 2V/e. Insets(a), (b), and(c) show the results
FIG. 3. Amplitudes of the approximated ground std@)) on corresponding to RPA, RRPA, and SCRPA ground-state wave
the exact solutions|,e)), as a function of the reduced coupling functions, respectively. The curves are denoted byl to 7, span-
strength Z)V/e. Insets(a), (b), and(c) correspond to RPA, RRPA, ning the seven eigenstates in the model space @ith7 and odd
and SCRPA ground-state wave functions, respectively. The curvesumber of particle-hole excitations, see E4). The ordering of the
are denoted by =1-8, spanning the eight eigenstates in the modelcurves is the same as Fig. 3.
space withQ=7 and an even number of particle-hole excitations,
see Eq(4). The eigenvalue indeXx is explicitly written in the inset
(a), for the RPA amplitudes, and the same orderifrgm top to
bottom) is understood for the curves of the insét$ and(c).

reduced coupling. While the RPA overlaps vanish at
2QOV/e=1, the RRPA and the SCRPA values decrease
steadily beyond this point. In spite of the trend exhibited by
proximated values of the energy of the first excited statss  the excitation energysee Fig. 1 the agreement between
a function of the reduced coupling strength defined aboveSCRPA and RRPA wave functions with respect to the exact
This figure shows already well-known features of the ap-ones is definitively poor. The discrepancy between the exact
proximations, namely,(i) the collapse of the RPA at wave functions and the approximated ones is simply too
2QOV/e=1, (ii) the continuation of the RRPA values beyond large and therefore the applicability of the RRPA and
this point, andii ) the good agreement between the SCRPASCRPA beyond the point where the RPA collapses becomes
and the exact results for values of)¥/e>1 [3,8,11,1Q. dubious. The RRPA and SCRPA wave functions always
Figure 2, casda), shows the overlaps between the exactkeep a finite overlap with the exact solution, but it is decreas-
ground state and the approximated ones, and Fig. 2,(base ing fast after the point where the RPA collapses. Notice that
displays the overlap between the exact first excited state arttie overlaps shown in cage) (first excited stateare smaller
the approximated ones, calculated by using the different aghan the values corresponding to the ground dizdse(a) of
proximations discussed above. At first view the curvesFig. 2]. None of the surviving RRPA and SCRPA overlaps,
shown of Fig. 2 show similar results for small values of thebeyond the collapse of the RPA, exceed 50%, daseor
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30%, casgb). These results are indicative of the discrepan-of the reduced interaction strength lies near unity, which is
cies existing between the exact wave functions and the aphe point where the RPA collapses. It is also found that the
proximated ones. Also, these discrepancies are affecting ttRRPA and SCRPA methods, which go beyond the point of
expectation values and the sum rules of transition operatoige RPA collapse, fail badly in reproducing exact eigenfunc-
expanded in the same basgee[11]). tions. By using these approximations one obtains finite over-
In order to complete the discussion about the comparisofaps with the exact solutions. In spite of the fact that the
between exact and approximated wave functions we havggreement between the exact and the RRPA and SCRPA
calculated the amplitudes of the RPA, RRPA, and SCRPAj5|es, of the energy for the first excited state past the point

wave functions expanded in the complete set of exact solust ¢qjapse, is not bad, the results for the wave functions
tions. The results are shown in Figs. 3 and 4 for the ampli-

tud £ th hated 4 stat d first , ahow the presence of a strong mixing. These results can be
udes of the approximated ground states and hirst excite xpressed in the shell model language by saying that mul-
states, respectively.

. . tiple particle-hole excitations play a non-negligible role in
In Fig. 3 the amplitudes of the RPA ground-state compo-_ ... . :
nents {(\,e|0)|) are presented as functions of the resiolualbuﬂdmg up correlations nearby the RPA collapse. At least in

interactl renath. As sho in this fiaure the mixing be the case of the schematic model situation which we have
Interaction strengtn. As shown in this Tigur IXing “discussed, it can be said that neither the RRPA nor the

strenath increases. therefore the structure of the apbro %_Q:RPA are suitable approximations to be used nearby the
gih | ’ uctu PPTOXEgint of collapse of the RPA. While some of the reported

mated ground states changes strongly at each side of t €atures were already known for the case of the RIRPH,

pOIE:gVJPeeieJiZEIS;Asﬁ :::P?ee;ﬁlts for the amplitudes of thethe. results on the SCRPA cpntrlbute new evidence about the
RPA. RRPA, and SCRPA components of the first excited\[/aI|d|ty of the method. Particularly the poor agreement _be-
state ((n 0|F’T|0>|) In this case the mixing is larger than for ween the exact and SCRPA wave functions gives us a signal
the ground statésee Fig. 3 and the exact first excited state about the use of the SCRPA in realistic situations.
ceases to represent the dominant component of the approxi- This work was supported in part by the Conacyt
mated onedeforethe point of collapse. Beyond that point, (México) and by Grant No. PICT0079 of the ANPCyAr-
there are many other exact states which exhibit sizable ovegenting. J.G.H. is on a sabbatical leave from the Departa-
laps with the RRPA and SCRPA states. mento de Rica of the Centro de Investigadiy de Estudios

To summarize, we have shown that the RPA wave funcAvanzados, Mgico. O.C. and M.R. acknowledge the sup-

tions are orthogonal to the exact wave functions if the valugort of CONICET, Argentina.
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