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Comparison between wave functions in the random phase approximation, renormalized random
phase approximation, and self-consistent random phase approximation methods
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The random phase approximation~RPA!, the renormalized RPA~RRPA!, and the self-consistent RPA
~SCRPA! methods are applied to calculate the wave functions of the ground and excited states of an exactly
solvable model. The approximated wave functions are expanded in the basis of the exact solutions. It is found
that, when the RPA collapses, the RPA wave functions are orthogonal to the exact solutions while the RRPA
and SCRPA ones have small but finite overlaps with the exact results. In spite of the apparently good agree-
ment between the results of the RRPA, the SCRPA, and the exact solution, for the energy of the first excited
state beyond the point of collapse, it is found that these approximations do not correctly describe the exact
wave functions.@S0556-2813~99!03808-X#

PACS number~s!: 21.60.Jz, 21.60.Fw
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Various generalizations of the random-phase approxi
tion ~RPA! have been reported recently@1–4#. The renormal-
ized RPA ~RRPA! is the simplest of these approximation
and it aims at a better treatment of ground-state correlati
as compared with the RPA method. As shown in@3,4# the
RRPA results go beyond the collapse of the RPA@3,4#. The
self-consistent RPA~SCRPA! @5,6# is a more sophisticated
approximation which avoids the collapse by introducing
coupling between one-particle and particle-hole density fl
tuations. Results of the SCRPA treatment of realistic nuc
interactions can be found in@7#.

The properties and limitations of the RPA and relat
approximations, for the case of exactly solvable mod
were studied long ago@8#. Excitation energies, transition ma
trix elements, and sum rules have been the observable
choice, in assessing the validity of the RPA@8#. Concerning
wave functions, the exactly solvable Lipkin model@9# has
been used to compare exact and RPA ground-state w
functions and correlations.

In the present work we report on the results which
have obtained by using the Lipkin model to build the wa
function of excited states and to expand the RPA wave fu
tions in terms of the exact solutions. The same is done for
cases of the RRPA and SCRPA. The comparison betw
the wave functions obtained within these approximations
the exact ones is discussed in order to assess the validi
the methods.

The model Hamiltonian is taken from@9# and it reads

H5eJ02
V

2
~J1

2 1J2
2 !, ~1!

where

J05
1

2 (
m51

2V

~c1m
† c1m2c0m

† c0m!, J15 (
m51

2V

c1m
† c0m ,
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J25 (
m51

2V

c0m
† c1m ~2!

are the number and the particle-hole operators, respectiv
The indices 0 and 1 denote the lower and upper sing
particle levels, with energiese0(1)57e/2, e being the en-
ergy spacing between levels, andm is the internal quantum
number~i.e., the angular momentum projection! which var-
ies between 1̃ 2V for each shell. These operators are t
generators of the algebra of the SU~2! group. The number of
particles isN52V, andV is the strength of the interaction
Exact eigenvalues and eigenvectors of the HamiltonianH, of
Eq. ~1!, are obtained in the basis

un&5A~2V2n!!

n! ~2V!!
J1

n u&. ~3!

The stateu& is the unperturbed ground state. For this case
the particles occupy the lowest single-particle state an
implies J0u&52Vu&. Since the Hamiltonian of Eq.~1! has
nonvanishing matrix elements between states~3! with n
˜n,n62 its eigenfunctions can be written in terms of line
combinations of states with even~e! or odd ~o! values ofn
~e.g., the number of particle-hole pairs!, namely,

ul,e&5 (
n50

V

Cn,e
l u2n&, ul,o&5 (

n50

V21

Cn,o
l u2n11&. ~4!

In this notationl is the eigenvalue index, thusul51,e&
and ul51,o& are the exact ground state and the exact fi
excited state, respectively.

In the following we shall describe the main steps of t
equation of motion method@2# ~EOM!. The starting point of
the EOM is the definition of the one-phonon state created
the action of the phonon creation operatorG† on the corre-
lated vacuumu0&,

unphonon51&5G†u0&. ~5!
©1999 The American Physical Society09-1
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This vacuum is defined by the conditionGu0&50, where
the one-phonon annihilation operatorG is the adjoint ofG†.
The true eigenstates ofH can be described, approximatel
by the one-phonon statesuk&5Gk

†u0& after solving the EOM
equations. The structure of the wave function of each o
phonon stateuk& can be determined from a variation@2# and
it can be shown from the previous equations that

^0u@dGk ,H,Gk
†#u0&5vk^0u@dGk ,Gk

†#u0& ~6!

with

2^0u@dGk ,H,Gk
†#u0&5^0u@dGk ,@H,Gk

†##u0&

1^0u@@dGk ,H#,Gk
†#u0&, ~7!

wherevk is thekth eigenvalue anddGk is an arbritary varia-
tion of thekth eigenfunction.

The main assumption of the random phase approxima
~RPA! is that the one-phonon creation operator is built a
linear combination of particle-hole operators (J1 ,J2). In the
Lipkin model, Hamiltonian~1!, there is only one of such
phonons and it is written as

G†5
1

A2V
~XJ12YJ2!. ~8!

By using in Eq.~6! the above definition, the usual RP
matrix equations@2,8# are obtained

S A B

2B 2AD S X

YD 5vUS X

YD . ~9!

The quantitiesA, B, andU are defined by

A5^0u@J2 ,H,J1#u0&, B52^0u@J2 ,H,J2#u0&,

U5^0u@J2 ,J1#u0&. ~10!

The forward- and backward-going RPA amplitudesX and
Y are normalized as

^0uGG†u0&5^0u@G,G†#u0&5~X22Y2!
^0u22J0u0&

2V
.

~11!

Furthermore, it is assumed that

X22Y251. ~12!

The standard RPA matrix elementsA andB of the Eq.~9! are
obtained by assumingu0&'u&, and consequently tha
^0uJ0u0&'^uJ0u&52V, and

ARPA5e, BRPA52~2V21!V'22VV. ~13!

The RPA excitation energyv @8# is given by v
5Ae224V2V2, and it vanishes ifV5e/(2V). Under the
above conditions the so-calledquasiboson approximation

^0uGG†u0&51 ~14!
02430
e-

n
a

is fulfilled. It is valid except for the strong-coupling limi
since for large values of the strengthV @V˜e/(2V)# the
RPA amplitudesX andY diverge and̂ 0u22J0u0&˜0. Ob-
viously the RPA eigenstate is not normalizable in the stro
coupling situation.

In the self-consistent RPA~SCRPA! approach@6,10#, the
expressions~8! and the Hermitian conjugate are inverted gi
ing J1 and J2 in terms of G† and G. By replacing the
particle-hole operatorsJ6 by phonon operators and enforc
ing the constraintGu0&50, one gets the matrix elementsA
andB of Eq. ~9! in the form

ASCRPA5e12VXY,

BSCRPA52
^0uJ0

2u0&

^0uJ0u0&
V1V~X21Y2!. ~15!

There are two unknown quantities inBSCRPA, they are
^0uJ0

2u0& and ^0uJ0u0&. The simplest approximation which
can be applied to determine them is the following:

^0uJ0
2u0&

^0uJ0u0&
'2V. ~16!

After performing this approximation it is seen that E
~15! differs from Eq.~13! mainly in the term added to the
forward matrixA. Notice that the particle-hole unperturbe
energye is the only contribution to the forward matrix whic
appears in the Lipkin model. If we take the limitY˜0 in Eq.
~15!, then Eq.~13! is recovered.

If the approximation

^0uJ0
2u0&

^0uJ0u0&
'^0uJ0u0& ~17!

is used instead of Eq.~16! and the weak interaction limitY
˜0 is enforced, then the renormalized RPA matrices
obtained@3#:

ARRPA5e, BRRPA522VVD. ~18!

The renormalization factorD, which allows for a proper nor-
malization of the eigenvectors in Eq.~11!, is defined as

D[^0uGG†u0&5
^0u22J0u0&

2V
. ~19!

Different expressions forD as a function ofY2 can be
found in the literature@1,3,4#. Among them the most fre-
quently used is the one due to Cataraet al. @3,4#, whereD is
defined as

D5
1

11Y2/V
. ~20!

We shall now discuss the structure of the wave functio
as they are given by each of the above introduced appr
mations. The RPA ground state is given by@2,6,9,10#
9-2
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u0&5N21(
l 50

V
~2V22l !!

~V2 l !! l ! S Y

XD 2

J1
2l u&, ~21!

where

N 25~2V!!(
l 50

V S Y

XD 2l ~2V22l !! ~2l !!

~V2 l !! 2l ! 2
~22!

is the normalization factor. By expanding these wave fu
tions in the basis~4! one gets

u0&5(
l

^l,eu0&ul,e&. ~23!

The coefficientŝ l,eu0& are the overlaps between the e
act and RPA wave functions and they are given by

^l,eu0&5
A~2V!!

N (
l 50

V

Cl ,e
l S Y

XD l A~2V22l !! ~2l !!

~V2 l !! l !
.

~24!

By using Eq.~9! the wave function of the RPA excite
state takes the form

G†u0&5
1

XA2VA^0uGG†u0&
J1u0&, ~25!

and its overlap with the exact solutions is expressed by

^l,ouG†u0&5
A~2V21!!

XNA^0uGG†u0&

3 (
l 50

V21

Cl ,o
l S Y

XD l A~2V22l !! ~2l 11!!

~V2 l !! l !

3A2~V2 l !. ~26!

Instead of the usual quasiboson approximation, e
^0uGG†u0&51, the constraints

(
l

u^l,eu0&u251, (
l

u^l,ouG†u0&u251, ~27!

can be used to determine the normalization factorN of Eq.
~21!, which is written in terms of the RPA expectation valu
of J0 @6#, namely,

^0uJ0u0&5N21(
l 50

V S Y

XD 2l

~2l 2V!
~2V22l !! ~2l !!

~V2 l !! 2l ! 2
.

~28!

The same procedure can be applied to calculate over
between exact and RRPA and SCRPA wave functions.
shown above, for the case of the RPA, the matrix equa
~10! was solved for the RRPA and SCRPA methods. W
have computed the corresponding wave functions and w
ten them in the basis of the exact solutions. Details are o
ted for the sake of brevity.
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In the following we shall present and discuss results c
responding to the caseV57 andN52V particles. The re-
duced coupling 2VV/e will be taken as a free paramete
varying between 0 and 1.4. This interval includes the we
and the strong-coupling limits as well as the value wh
produces the collapse of the RPA (2VV/e51).

Figure 1 shows the comparison between exact and

FIG. 2. Overlaps between the exact and RPA, RRPA, a
SCRPA wave functions. Insets~a! and ~b! show overlaps with the
exact ground state (u1,e&) and with the exact first excited stat
(u1,o&), respectively. The lines follow the same convention as
Fig. 1.

FIG. 1. Excitation energyv as a function of the reduced inter
action strength 2VV/e. The upper curves~solid line and large dots!
represent SCRPA and exact solutions, respectively. Lower cu
~small dots and dashed lines! represent RRPA and RPA result
respectively.
9-3



v
p

t
d

PA

c

a
a
e
he

at
se
by
n
act
act

too
nd
mes
ys
as-
hat

s,

g
,
rv
de
s

te

ave

J. G. HIRSCH, O. CIVITARESE, AND M. REBOIRO PHYSICAL REVIEW C60 024309
proximated values of the energy of the first excited statev as
a function of the reduced coupling strength defined abo
This figure shows already well-known features of the a
proximations, namely,~i! the collapse of the RPA a
2VV/e51, ~ii ! the continuation of the RRPA values beyon
this point, and~iii ! the good agreement between the SCR
and the exact results for values of 2VV/e.1 @3,8,11,10#.

Figure 2, case~a!, shows the overlaps between the exa
ground state and the approximated ones, and Fig. 2, case~b!,
displays the overlap between the exact first excited state
the approximated ones, calculated by using the different
proximations discussed above. At first view the curv
shown of Fig. 2 show similar results for small values of t

FIG. 3. Amplitudes of the approximated ground state (u0&) on
the exact solutions (ul,e&), as a function of the reduced couplin
strength 2VV/e. Insets~a!, ~b!, and~c! correspond to RPA, RRPA
and SCRPA ground-state wave functions, respectively. The cu
are denoted byl51 –8, spanning the eight eigenstates in the mo
space withV57 and an even number of particle-hole excitation
see Eq.~4!. The eigenvalue indexl is explicitly written in the inset
~a!, for the RPA amplitudes, and the same ordering~from top to
bottom! is understood for the curves of the insets~b! and ~c!.
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reduced coupling. While the RPA overlaps vanish
2VV/e51, the RRPA and the SCRPA values decrea
steadily beyond this point. In spite of the trend exhibited
the excitation energy~see Fig. 1! the agreement betwee
SCRPA and RRPA wave functions with respect to the ex
ones is definitively poor. The discrepancy between the ex
wave functions and the approximated ones is simply
large and therefore the applicability of the RRPA a
SCRPA beyond the point where the RPA collapses beco
dubious. The RRPA and SCRPA wave functions alwa
keep a finite overlap with the exact solution, but it is decre
ing fast after the point where the RPA collapses. Notice t
the overlaps shown in case~b! ~first excited state! are smaller
than the values corresponding to the ground state@case~a! of
Fig. 2#. None of the surviving RRPA and SCRPA overlap
beyond the collapse of the RPA, exceed 50%, case~a!, or

es
l
,

FIG. 4. Amplitudes of the approximated first excited sta
(G†u0&) on the exact solutions (ul,o&), as a function of the reduced
coupling strength 2VV/e. Insets~a!, ~b!, and ~c! show the results
corresponding to RPA, RRPA, and SCRPA ground-state w
functions, respectively. The curves are denoted byl51 to 7, span-
ning the seven eigenstates in the model space withV57 and odd
number of particle-hole excitations, see Eq.~4!. The ordering of the
curves is the same as Fig. 3.
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30%, case~b!. These results are indicative of the discrepa
cies existing between the exact wave functions and the
proximated ones. Also, these discrepancies are affecting
expectation values and the sum rules of transition opera
expanded in the same basis~see@11#!.

In order to complete the discussion about the compari
between exact and approximated wave functions we h
calculated the amplitudes of the RPA, RRPA, and SCR
wave functions expanded in the complete set of exact s
tions. The results are shown in Figs. 3 and 4 for the am
tudes of the approximated ground states and first exc
states, respectively.

In Fig. 3 the amplitudes of the RPA ground-state comp
nents (u^l,eu0&u) are presented as functions of the resid
interaction strength. As shown in this figure the mixing b
tween the lowest two eigenstates increases as the intera
strength increases, therefore the structure of the appr
mated ground states changes strongly at each side o
point where the RPA collapses.

Figure 4 displays similar results for the amplitudes of t
RPA, RRPA, and SCRPA components of the first exci
state (u^l,ouG†u0&u). In this case the mixing is larger than fo
the ground state~see Fig. 3! and the exact first excited sta
ceases to represent the dominant component of the app
mated onesbeforethe point of collapse. Beyond that poin
there are many other exact states which exhibit sizable o
laps with the RRPA and SCRPA states.

To summarize, we have shown that the RPA wave fu
tions are orthogonal to the exact wave functions if the va
ys

ys
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of the reduced interaction strength lies near unity, which
the point where the RPA collapses. It is also found that
RRPA and SCRPA methods, which go beyond the point
the RPA collapse, fail badly in reproducing exact eigenfun
tions. By using these approximations one obtains finite ov
laps with the exact solutions. In spite of the fact that t
agreement between the exact and the RRPA and SCR
values, of the energy for the first excited state past the p
of collapse, is not bad, the results for the wave functio
show the presence of a strong mixing. These results ca
expressed in the shell model language by saying that m
tiple particle-hole excitations play a non-negligible role
building up correlations nearby the RPA collapse. At leas
the case of the schematic model situation which we h
discussed, it can be said that neither the RRPA nor
SCRPA are suitable approximations to be used nearby
point of collapse of the RPA. While some of the report
features were already known for the case of the RRPA@11#,
the results on the SCRPA contribute new evidence about
validity of the method. Particularly the poor agreement b
tween the exact and SCRPA wave functions gives us a si
about the use of the SCRPA in realistic situations.
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