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Abstract

A consistent treatment of the intrinsic and collective coordinates relevant for the calculation of matrix elements
describing nuclear double beta decay transitions is introduced. The method, which was originally developed for the case of
nuclear rotations, is adapted to include isospin and number of particles degrees of freedom. To illustrate its main features we
apply the formalism to the case of Fermi transitions in a simplified model. From the corresponding results we conclude that
the uncertainties found in many existing double beta decay calculations might be largely due to the mixing of physical and
spurious effects in the treatment of isospin dependent interactions. q 1999 Published by Elsivier Science B.V. All rights
reserved.
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One can hardly overestimate the importance of
the double beta decay as a process explicitly linking
the physics of neutrinos with the nuclear structure
w x1–3 . Nuclear double beta decays are described as
second order processes which involve the elec-
troweak decay of two nucleons. These transitions are
allowed by the Standard Model if they proceed via
the emission of two electron-antineutrino pairs
Ž .2nbb and totally forbidden if they proceed through
lepton number violating decays, as the neutrinoless

Ž .mode 0nbb which is a unique test of the proper-
w x Ž .ties of the neutrino 2,3 . The 2nbb transitions
w xhave been observed 3 . Their correct theoretical

description is a necessary step towards the under-
standing of the neutrinoless mode.

Ž .Earlier calculations of 2nbb were performed
w xwithin limited shell model spaces 1 . Since the

possible double beta decays emitters are heavy nu-
clei, full scale shell model calculations are unfeasi-
ble, and one has to resort to mean field treatments
such as the BCSqRPA. Within such approach, it
was shown that the inclusion of pairing-type proton-
neutron interactions resulted in the suppression of

Ž . w xthe 2nbb matrix elements 4,5 . Although this
supression was also obtained within several other

w xapproaches 6 and it was confirmed by the few
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w xavailable shell model calculations 7 , the reliability
of the theoretical predictions has been hampered by
unstabilities in the BCS q RPA treatments. An
alternative approach based on group theoretical
methods has confirmed the existence of a zero-en-
ergy state for certain values of the strength of the
proton-neutron, particle-particle, effective interaction
w x8,9 . The appearance of such a state has been inter-

w xpreted as a signature of a phase transition 10 .
Here we take a point of view based on the fact

that the zero-energy state is a consequence of the
breakdown of the isospin symmetry implicit in the
Ž . Ž . Ž .separate neutron n and proton p BCS solutions
w x11 . As similar to the case of deformed nuclei, the
symmetry may be restored in the laboratory frame
through the introduction of collective coordinates.
There is, however, a complication due to the fact that
in many existing double beta decay calculations the
strength of the proton-neutron interactions is taken as
an adjustable parameter. As a consequence of this
the resulting effective nuclear hamiltonian does not,
in general, conserve isospin. In this paper we do not
attempt to discuss the derivation of this effective

Žinteraction from first principles Coulomb effects, np
.mass differences, etc. . However, given such interac-

tion, a central many-body problem that must be
solved is to disentangle unphysical isospin violations

Žintroduced by the formalism i.e. BCS approximation
.for separate protons and neutrons from those isospin

violations produced by isotensor components of the
effective nuclear hamiltonian.

The basic aim of this letter is to introduce a
formalism which solves this problem through an
exact, albeit perturbative, way. Such formalism is
based on the treatment of collective coordinates and
can be applied to a general realistic nuclear hamilto-
nian. In order to simplify the presentation, however,
we will apply it here to the case of particles moving
in a single j-shell and coupled through a charge
dependent monopole pairing force. This exactly solu-

w xble model has been used 9 for the description of
Ž .2nbb transitions of the Fermi-type and, moreover,
it already involves all the complications associated
with the collective treatment.

The corresponding hamiltonian is

1q qHs e t yg S S y g S S 1Ž .Ž .Ý Õ Õ Õ Õ Õ H H H2
Õ

where Õsp,n. Use is made of the operators

q q q q q q q qS s c c ; S s c c qc c ,Ž .Ý ÝÕ Õm Õm H pm nm nm pm
m)0 m)0

1 1 w xt s t qt ; t s t yt ; t ,t st ,Ž . Ž .A p n 0 p n 1 1 02 2

1
1T s T qT ; T s T yT ;Ž . Ž .A p n 0 p n22

T ,T syT1 1 0

Ž .where t are the number operators and t 1sy1Õ "1

the rising and lowering isospin operators in the
spherical representation. The T ,T are the corre-Õ "1

sponding generators of collective rotations in gauge-
and isospace. The parameter g plays the role ofH
the renormalization factor g introduced in thep p

w xliterature 4,5 .
The introduction of collective degrees of freedom

is compensated through the appearance of the con-
straints

t yT s0 ; zsn , p ,"1 , 2Ž . Ž .z z

which express the fact that we can rotate the intrinsic
system in one direction or the body in the opposite

w xone without altering the physical situation 12 . Phys-
ical states should be annihilated by the four con-
straints and physical operators should commute with
them.

The collective Hilbert space appropriate for an
isospin conserving pairing interaction was originally

w xintroduced in Refs. 11,13,14 . The states may be
< :labeled by the four quantum numbers T ,T ,m,k ,A

where T is the total number of pairs of particles.A
1 1Ž . ŽThe quantum numbers m' TqM and k' T2 2

.qT determine M and T , the isospin projections0 0

in the laboratory and intrinsic frame, respectively.
We focus on states such that m<T and ks0.
Hereof we drop the label k from the collective
states.

Unphysical violations of the isospin symmetry are
allowed in the intrinsic frame. Such frame may be
defined, for instance, by the condition S s0, whereH

w xthe bar denotes the g.s. expectation value 14 . This
condition is precisely satisfied by performing the
usual separate Bogoliubov transformation for protons
and neutrons. The rotations in isospace and gauge
space restore the symmetries which are present in the
laboratory frame. Thus the np-pairing becomes ef-
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fectively incorporated, as well as the pairing between
identical particles.

However, as different from previous cases where
collective coordinates have been used, we are deal-
ing here with an interaction which, in general, does

Ž .not conserve isospin. Namely, the hamiltonian 1 is
not generally an isoscalar. As in most collective
treatments, physical isotensor operators must be
transformed from the laboratory frame to the intrin-
sic frame. In the case of the single-particle and
pairing hamiltonian this procedure yields

Ž lab. 1 1 1H se t qe D t qD t qD tŽ .sp A A 0 00 0 01 1 01 1

1Ž lab. q q qH syg S S qS S q S SŽ .pair ,0 0 p p n n H H2

Ž lab. 1 q qH syg D S S yS SŽ .pair ,1 1 00 p p n n

D1
01 q qy S S qS SŽ .p H H n'2

1D01 q qq S S qS SŽ .n H H p'2

H Ž lab. syg D2 SqS qSqS ySq SŽ .½pair ,2 2 00 p p n n H H

3 2 q qy D S S yS S( Ž .01 H n p H2

2 q qqD S S yS SŽ .01 H p n H

2 q 2 q'q 6 D S S qD S S 3Ž .5ž /02 p n 02 n p

Here the subindices 0,1,2 on the l.h.s. denote
isoscalar, isovector and isoquadrupole components,
and
e se qe , e se ye ,A p n 0 p n

g qg qg g ygp n H p n
g s , g s ,0 13 2

g qg y2 gp n H
g s .2 6

It is easy to verify that the four components of the
Ž . Ž .hamiltonian 3 commute with the constraints 2 and

are therefore physical operators.
Ž .Up to now the hamiltonian 3 together with the

Ž .constraints 2 constitute an exact reformulation of
the original problem, since the introduction of addi-
tional collective coordinates is compensated by the

presence of the constraints. Systems of this type can
be treated in a perturbative way within an expansion
given by the inverse order parameter 1rS , for in-Õ

w xstance through the BRST procedure 15 , as applied
w xto many-body problems in 12 , and to the particular

w xcase of high angular momentum in 16 . There is,
however, a new feature in the present case, namely
the presence of the rotational matrices Dl in themn

hamiltonian. This extra complication can be over-
come by means of Marshalek’s generalization of the

w xHolstein-Primakoff representation 17 , which is
amenable to an expansion in powers of Ty1. In what
follows we will keep only the lowest order terms in

Ž . Ž .such an expansion, assuming O S sT and O gÕ n
y1 Ž .sT . Such terms include the two pp and nn

pairing hamiltonians in a single j-shell e t yÕ Õ

g SqS , which are separately treated within the BCSÕ Õ Õ

approximation. In doing so, Lagrange multiplier
Ž .terms yl t yT have to be added. This treatmentÕ Õ Õ

yields the independent quasi-particle energies EÕ
1s V g , where V is half the value of the shellÕ2

degeneracy.
The spectrum of the system is ordered into collec-

tive bands, each one carrying as quantum numbers
Ž .the total number of particles and the isospin TFT .A

The properties of these bands are obtained by adding
Ž .the remaining leading order terms in 3 to the

independent np quasi-particle energy terms. To lead-
ing order in Ty1

Ž lab. qH sHqv d dqH ,Žspqpair . d 2

2Hs e t yg S ,Ž .Ý Õ Õ Õ Õ

Õ

g 3g1 22 2 2 2v se q S yS q S qS ,ž / ž /d 0 p n p nT T

² < < :T ,Ty2,my2 H T ,T ,mA 2 A

3g2 (sy S S m my1 , 4Ž . Ž .p nT

Ž .plus null terms proportional to 2 . The boson cre-
ation operator d† increases in one unit the value of

w xm 17 .
The energy of the band head is given by the BCS

expectation value H. The different members of each
band are labeled by the quantum number m and are
separated by the distance v , which includes thed
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difference between the proton and the neutron sin-
gle-particle energies e . Our strategy has been to0

restore the number of particles T and the isospin TA

as good quantum numbers and, within such a basis,
to construct the interband interaction H , which2

allows for the possibility of double-beta decay. In
such a way we have been able to disentangle the
physical isospin violations from the unphysical ones.

Both within the simple model or in the realistic
case, the t mode disappears 1 from the final"1

Ž . Žphysical hamiltonian 4 to become part of the
Ž .. Žconstraints 2 . This is precisely the unrenormaliz-

.able phonon that yields a zero frequency root for
w xisoscalar hamiltonians within a naive RPA 9 . From

Ž .the practical point of view it is as if this unphysical
RPA boson becomes substituted by the collective
boson dq,d, which is well behaved in the limit of
zero frequency. In realistic cases this structure is also
maintained, but superimposed to the excitations of

Ž .the other physical RPA modes. This substitution
also becomes apparent in the expression for the
strong current that appears in the weak hamiltonian,
which is proportional to the isospin operator, namely

Ž lab. 1 1 1' 'b sy 2 t sy 2 D t qD t qDŽ .y 1 11 1 10 0 11

q'f 2T d qnull operator. 5Ž .
From the point of view of the expansion in powers
of Ty1, the interband interaction H is of the same2

Ž Ž ..order O 1 as the distance between the states that
are mixed by it. Nevertheless, in the following we
continue applying perturbation theory by requiring

< <that g -g .2 Õ

Let us proceed now with the discussion of some
calculations. We assume g sg sg. The excitationp n

9energy v is displayed in Fig. 1 for the cases js ,d 2

T s5, Ts3, e s0.8 MeV, gs0.4 MeV and jA 0
19s , T s10, Ts4, e s0.63 MeV, gs0.2 MeV,A 02

Ž .as function of the ratio g rg upper boxes . We2

predict the exact results for g s0 and very satisfac-2

tory ones for the other values, in spite of the fact that
for these results we have neglected the interband
interaction. The matrix element of double beta decay

1 To leading order, the isospin operators have a boson structure
w xsince t ,t fT and t annihilates the state with t syT. In1 1 1 0

higher orders of the expansion in powers of Ty1 this mode
w xappears explicitly 12 .

Fig. 1. Excitation energy and transition matrix elements. Exact
Ž . Ž .solid lines and collective dotted lines results for the excitation

Ž .energy upper boxes and transition matrix elements M and M1 2
Ž .lower boxes corresponding to the two different sets of parame-

Ž .ters js9r2 and js19r2 discussed in the text.

transitions, which for the present case correspond to
Ž w x.pure Fermi transitions cf. 9 , is proportional to the

product of the two matrix elements

'² < < :M s T ,T ,1 b T ,T ,0 f 2T1 A y A

² < < :M s T ,Ty2,0 b T ,T ,12 A y A

' ² < < :2 T T ,Ty2,0 H T ,T ,2A 2 A
fy . 6Ž .

H T ,T ,2 yH T ,Ty2,0Ž . Ž .A A

These matrix elements are displayed in the lower
boxes of Fig. 1 for the same parameters as in the
upper boxes. The expression for the interband matrix

Ž .element in 4 does not distinguish whether the r.h.s.
should be calculated for the initial or the final value
of T , since it is valid for T41. Therefore, the
effective interband matrix element has been chosen
as the geometric average of the values obtained for
each of the two connected bands.
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Fig. 2 displays Fermi double beta decay matrix
elements, corresponding to transitions from the ini-
tial to the final ground states. It has been calculated
using the expression

M M1 2
M s 7Ž .2 Õ

v qDd

where the energy released D is taken to be 0.5 MeV,
w xas in 9 . In addition to the exact and collective

values of these matrix elements, we have included in
this figure the results obtained by using some other
approximations. As expected from the fact that Fermi
transitions only connect states with the same value of
isospin, the exact result shows the suppression of the
matrix element around the point where the strength
of the np symmetry breaking interaction approaches
the value of the fully symmetric interaction. This
result is reproduced both in the naive QRPA and in
the collective approach. The other approximation

Fig. 2. Matrix elements for Fermi double beta decay transitions
calculated in several different approximations. The meaning of the
QRPA and RQRPA approximations is explained in the text.

badly misses this cancellation. A detailed compari-
son between the results of exact, naive QRPA and

Ž .renormalized QRPA RQRPA calculations can be
w xfound in 9 . It is worth to note that in the collective

Žapproach the corresponding sum rule Ikeda’s sum
.rule is exactly observed. This is not the case of

other approaches, as the RQRPA. The collective
approach, as seen in Figs. 1 and 2, not only repro-
duces exact results very satisfactorily but it also
gives some insight about the mechanism responsible
for the suppression of the matrix elements. As found
in the calculations, the value of the matrix element
M depends critically on the strength of the physical2

symmetry breaking term H . On the other hand, the2

values of M are not very much dependent on this1

interaction. Finally, it should be observed that the
point where the excitation energy vanishes and the
point where the symmetry is completely restored are

Ž .different cf. Fig. 1 . This result, also obtained in the
exact diagonalization of the full hamiltonian, cannot

w xbe reproduced by other means as shown in 9 .
In conclusion, it is found that a correct treatment

of collective effects induced by isospin dependent
residual interactions in a superfluid system is feasi-
ble: physical effects due to the isospin symmetry-
breaking terms in the hamiltonian are obtained even
in the presence of the BCS mean field built upon
separate proton and neutron pairing interactions. The
interplay of intrinsic and collective coordinates guar-
antees that the isospin symmetry is restored and that
spurious contributions to the wave functions are
decoupled from physical ones. Particularly, the prob-
lem of the unstabilities found in the standard np
QRPA are avoided by the explicit elimination of the
zero frequency mode from the physical spectrum
Ž .but keeping it in the perturbative expansion . The
appearance of this mode cannot be avoided by the
inclusion of higher order terms in the QRPA expan-
sion or by any other ad-hoc renormalization proce-
dure, like the RQRPA, once the BCS procedure is
adopted for the separate treatment of pp- and nn-

w xpairing correlations 9 .
From the point of view of the expansion in pow-

ers of Ty1, the results shown in this letter are
encouraging, in spite of the fact that we have not
used very large values of T. Further details will be
presented in a longer publication, in which the case

Ž .T<O S will also be treated. We will also reportÕ
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there on the extension of the formalism to include
any number of non-degenerate j-shells as well as the
effects of the Ss1,Ts0 pairing interaction on the
Gamow-Teller transitions. In spite of these complica-
tions, the main features of the formalism remain
essentially the same, albeit the expressions become
more cumbersome to handle.
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