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Boson mapping at finite temperature: An application to the thermo field dynamics
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The Holstein-Primakoff boson mapping at finite temperature and in the framework of the thermo field
dynamics(TFD) is applied to treat a fermion-boson Hamiltonian. The interaction between pairs of fermions
and bosons is constructed in a model which allows for a condensate. The evolution of the condensate as a
function of the temperature is investigat¢80556-281®9)06208-1

PACS numbsgps): 21.60.Fw, 21.60.Jz, 24.10.Pa

[. INTRODUCTION value, as done in quantum field thedB). In order to define

The thermo field dynamics(TFD) developed by a temperature dependent vacuum the doubling of the Hilbert
Umezawa and co-workef4] has been applied to describe a spacq2—-4] is needed to preserve Gibbs probability distribu-
variety of physical situation$2—5]. The TFD shows that tion over physical states. The doubling of the Hilbert space,
mean values computed in the standard statistical mechanigghich should be accompanied by a definition of new opera-
can be replaced by expectation values on a correlatethbrs which are acting on dual variables, is the new ingredient
vacuum. This vacuum has the structure of an exponentiadf the TFD which establishes the correspondence between
function of pairs(fermion or boson operators and their dual statistical averages and expectation vallEs In order to
images$ [6]. Gauge properties of the TFD and the symme-proceed with the formalism let us summarize the TFD basic
tries associated to the TFD vacuum have been studied in Refules in the following:(i) the Hilbert space is enlarged to
[7]. As shown by Hatsudf4] and by Klein and Marshalek accommodate physical and dual states., the TFDtilde
[8] boson expansion techniques acting on the TFD image aftates, (ii) the temperature dependent TFD vacuum is de-
a given Hamiltonian yield solutions which reproduce the ex-fined as an exponential function of physical and dual vari-
act results corresponding to the same Hamiltonian. Herewitlables,(iii ) the dynamics is then incorporated by introducing
we shall investigate the structure of the TFD image of thecommutation relations between physical and dual variables
schematic Hamiltonian proposed by Stteuand Da Provi- and operators(iv) true expectation values, of physical op-
dencia[9]. This Hamiltonian includes the interaction be- erators, are taken over the complete Hilbert space spanned by
tween fermions and bosons. Its TFD image will be con-physical and dualtilde) states, andv) physical results are
structed by performing a boson expansion. The startingndependent ofilde variables[6].
Hamiltonian has definite symmetries which are spontane- The TFD thermal vacuuf0(g)) is defined in such a way
ously broken by the TFD transformations. The subsequerthat the thermal expectation value of a given operator
boson mapping accommodates the generators of the original
symmetry, in a larger space. In the first part of the present (Ay=Trlexp(— BH)A]/Trlexp(— BH)], (1)
work we shall introduce the model and review the formalism. . .
of the thermo field dynamics. Next, a suitable boson maplS also written as the expectation value
ping developed by Holstein and PrimakdffiP) [8] is ex- _
tended to include thermal degrees of freedom. The spectrum (A)=(0(p)IAl0(B)), @
of the transformed Hamiltonian is constructed by applyingwhere g=1/(kT) is the inverse temperature. The vacuum
the random phase approximatioRPA). The results of the state|0(B)) is written[10]
TFD+HP+RPA procedure are compared with the exact so-
lution of the model both in the normal phase and in the 1 ~
condensedor deformed phase. 10(8)=[Z(B)] %: exp(— BEx/2)|my@|m),  (3)

Details of the formalism are presented in the next section

where the rule;s of thg TFD and the main featurgs of tm?/vherelm) and|m) are the states of the physical and dual
boson expansion are introduced. The exact solution of thgpaces.

model of Schtte and Da Providencigd] is described in Sec. ™ tperma) identitie§10] are satisfied by introducing a tilde

Il together with the app_roxmated ones. The results of th onjugation rule which transforms operators from the origi-
thermal boson expansion, in the normal and deforme

phases, are presented and discussed in detail in Sec. lll. Co'a‘:JlI Fock sl%acé to the dual on€. Some useful TFD opera-
clusions are drawn in Sec. IV. tions are[10]

AB=AB,
Il. FORMALISM
A. Brief introduction to TFD ClAT028= C’{R-I— C;éy
The thermo field dynamics is a theory where the statistical L
average of an operator is replaced by its vacuum expectation AT=AT,
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_ 1 —
==*A, P=bTb—§(n+n). 9

10(B)y=10(8))- @ This is a conserved quantity. The eigenvaluespf the
From the use of the TFD rules and the above relations, ipperatorP are integer numbers in the interval
can be shown that Schiimger’'s equation in the original
space translates into a ScHioger's equation in the doubled —NsL=e. (10

space, with the Hamiltonian , . L .
This model can be interpreted as a simplified version of

H=H-H. (5) quarks in a two flavors ani colors representqtion interact-
ing with a mesori12,13. It was proposed by Sctte and Da
There is a difference between TFD and the usuia Q) Providencia 9] as an effective theory of baryons and it has
quantum mechanics. If the Hamiltoni&hexhibits a dynami- ~ solutions with unbrokeninormal phase and broken(de-
cal symmetryGC S, whereS is the algebra of all bilinear formed phasgP-symmetry[9].

fermion or boson operators, the direct product ng@p@ is In order to remind the reader about the mode($fwe

- . _shall briefly summarize the structure of the spectrum, both in
the dynamical symmetry group of the thermal Hamﬂtoman}he so-called normal and deformed phases and at zero tem-

[8]. In general the thermal vacuum breaks this dyn"jlmic"’lperature In the normal phase the ground state is the eigen-
symmetry. As shown i8] the minimal groupR, such that state of P with L=0. In this phase the number of fermion

GXGCRCSXS and|0(B)) € R, is the relevant symmetry nairs and the number of bosons are the same. This regime
group. In the following subsgcnons we are going to |IlustratepersistS for small values of the coupling const&t For
the use of these concepts in dealing with the treatment ofyge values ofG the model exhibits a boson condensation
Schute and Da Providencia modgd] at finite temperature. gnd the ground state is an eigenstatePofvith eigenvalue
L>0. This is the deformed phase. For values>w; and
B. The model of Schite and Da Providencia for intermediate values o6 the ground state is an eigen-

The model proposed by Scite and Da Providencigo] ~ value of P with L<0 and it represents a condensate of fer-
consists ofN fermions moving in two single shells, each Mion pairs[9,14]. We shall now study the solutions of this
shell having 2) substates. The energy spacing betweerNdel at finite temperature.
shells is fixed by the scale;. Creation and annihilation
operators of particles belonging to the upper shell are de- C. Mean field approximation at finite temperature
noted byc}, andcy,, respectively, while for the lower shell  The mean field MF) version of Hamiltonian of Eq(6)
these operators rear|, andc,,. Substates are denoted by can be written
the quantum numbek. The fermions are coupled to an ex-

ternal boson field represented by the creatiannihilation Hye=E(7o+ Q)+ wpy'y, (11)
operatorb’ (b) and by the energw,, .
The Hamiltonian readg9] where
H=w(to+ Q)+ wpb™b+G(t,bT+t_b), 6 i
wi(to+ Q)+ wy (ty ) (6) TOZE(V‘FV)—Q, 12

whereG is the strength of the interaction in the particle-hole
channel. The operatotts. andt, are the generators of the 5.4
algebra of the group SU(2)11]. In terms of bilinear com-
binations of fermion operators these generators read
V:Ek a;ka2k1

t+:Ek cheu, to=(t)T,

1 _:; afei, (13
to=5(n+n)— 0, ()
are fermion number operators in the Hartree-Fock basis. The
where energy
_ T — T “f
n=2, CyCox, N=_2, C14Cix, 8 = ;

Ek: 2kC2k Ek: 1kC1k 8 E= osa (14)

are particle () and hole E) number operators. is the mean field value of the fermion energy. The boson

The “angular momentum'P of the system is the differ- operatorsy’ andy are the same as' andb except for the
ence between the number of bosonic and fermionic excitaaddition of vacuum expectation valueg'&b'—NY%,, v
tions, namely =b—N¥%}) [9,12]. Following the TFD rules we add to
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these degrees of freedom their dual imagesandy' and To=Ulto—vZTo—Upve(t T, +t 1),
the corresponding annihilation operators.
The thermal vacuum at mean field level is writ{ed} 'NI'0=ugfo—v,zzto—quF(t+T++t_T_), (22)

0(8))=[Z(B)) *expi— BHye/2 2 [m)[). (15 where T_|0(8))=T_|0(8))=0, Tol0(8))=Tol0(B))

=-0[0(B)), and
Since the operators_, (7_) andy (%) do not annihilate Up=11exp — Bw/2)+ 1,
the vacuum0(B)), see for instancgs], we shall introduce
the TFD thermal transformations_ anda: VE=+1— uﬁ. (23
T_=1-gr(E/2)7_+2ge(El2) 107+ , (16 These transformations between the operators have useful
properties. They are nonlinear in the generators of SU(2)
a=\1+gg(wp) y— Vgs(wp)y'. (170 ©SU(2) but the final form obeys an SU(@BU(2) algebra.

We will also need the inverse relations of E§2), which
The operatord _ (pair of fermiong anda (bosong annihi-  are useful to calculate the thermal Hamiltonian
late the thermal vacuum0(B)). The factors ge(e;)

=1/(exp(Be)+1) and gg(€)=1/(exp(Be)—1) are Fermi- to=UgT.— 2vFT(ﬁ'I ,

Dirac and Bose-Einstein occupation values, respectively. 5 ~

The transition from the normal to the deformed phase at Tt:uFTt_ZVFTOTI-

mean field level is identified by performing the variation of

H with respect to the vacuum expectation value of the boson to= uﬁTo—vﬁoJr quF(Tfh +T_7r_),

number operator as an order paramdsme Appendix A

Self-consistency requires thi] To= u§$O_V§TO+ UFVF(T+-|_+ +T 7). (24

x2 .
1= —tanh(RB'/2), (18) These operators can be accommodated in a Iarge_r group
R [8] (see Appendix B For the boson sector we shall intro-
duce the transformations
with cox=1/R, B'=(w/2)B andx=G2Q/ wiwy,.
bT: uBaT"FVBE,
D. The boson expansion in the normal phase

What is usually referred to as the normal phase is the high b=vga+uga', (29
temperature regime for which ce§E1 andby=0. In this
case and
Hue= 0i(to+ Q)+ w,b'b. (19 a'=ugb’—vgb,
One can rewrite the thermal vacuum as a=—vgb+ugb, (26)
B ~ with
l0(B)= eXl{ o Z) expt,t,)
vep=1/Jexp Bwp)—1,
B -~ ~
EXF{ - wbg) exp(b'™")[0)[0), (20) Ug=\1+v3. (27)

the thermal state can be rewritten as The Hamiltonian reads

5 _ H=wi(to—to) + wp(ala—a'a)
008) =TT (ue+vet 3. 0(Ua+veb BI0)D). e

1) +Gupug(T,at—T,aT+H.c)

We now use the fact that the thermal vacuum is unitary +Gupvg(T a—T,a+H.c)
equivalent to the original vacuum and we define a new set of F2GVeUn(Ya aT—Y_ at+H.c
thermal operators of whicf0(B)) is an eigenstate, namely FUs(Yo- -0 <)
~ +2Gveug(Yo-a—Y_ga+H.c). (28)
T::UFti+2VFt0t; f
The operators that give a nonzero result on the vacuum

T.= uFTi + ZVFTOtI , are the step operatofs, , T, , Yo, Y, oandY,,, and the
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diagonal operator3,, Ty and Y, (with eigenvalues—-(},
- and—-Q/2) (see Appendix B We now build an S(#)
irrep on the statg0(B)). Since we are considering states
with 2Q) particles, the only irrep containing a state with the
quantum numbers ofdo(B)) is the irrep{2Q}. The boson

PHYSICAL REVIEW G50 034302

|0(,3)>:1;[ (UF+VFT+,k;+,k)(UB+VB'yT;T)|O>|6>’
(37)

where

mapping for this irrep can be constructed by using commu-

tation technique$8]. We introduce two bosonsB(and B)
for the Holstein-Primakoff mapping of the two SU(2) alge-

_ Tt _ .t
T+—2k: oy, T-= Ty,

bras. Using the commutation relations given in the Appendix

B we can derive the form of all operatofsee Appendix €

By applying the boson transformation and taking the leading

order in the expansioft reads

H=wi(7"n—"7"7)+Wyo(Na—Nz)

+gVui-via'y'+an-ay'-an, (9
with
1 ~
T=———(f,B"—1,B),
n UIZ:—V|2:( 1 2
7 ! (f,B—f,B" (30)
= > (I1b—=12B"),
UF—VF
whereg=G2Q and
fi=UpUg—VgVg,
f2:UBV|:_U|:VB. (31)

We shall diagonalize this Hamiltonian by applying the
RPA formalism. The equations of motion are

[H.I=w 0", [HTl=—o.l", (32
with
I'=X;7"+X,at-Y,;7—VY,a,
Tt=X,7"+Xa' =Y, 7 Y,a. (33
The RPA image of{ is
H=w('T-T'T), (34)

where the eigenvalue is given by

1
0= =|W;—wy| +§J(wf + W) 2 — 4wwx? tanh Bwil4).

2
(35

TO:%(VJJ)—Q. (38)

We can define a new set of operators, of whighg)) is
an eigenstate, by introducing the expressions

Ti=Ug7++2VE7o7>,

Ti = uF’;-t + 2VF;OTI y

To= u,2:7-0—v,2:7-0— UpVE(TyTo+7-7),

To=uZro— V70— UpVe(r, 7y +7_7.), (39
whereT_|0(8))=T_|0(8))=0 and
UF:]-/\/W,
Ve=+1—Ug. (40)

The same considerations, applied to the normal phase, are
valid for the deformed phase concerning the group structure

of these operators.
In the deformed phase the Hamiltonian of E@). is writ-
ten

H=Hyet+0o( 7oy + 7y +ao(ri v +7_9). (41
Finally, we shall work with the TFD Hamiltonian
H=Hur—Hyet+gs(r y+ 79" =7, y=7_-%")
+oo(r Y Ty Y =T y), (42)
and after some algebra it reads
H=wi(n"n—7"7) +Wp(Na—Nz) +gc VU —vi(a'p +any

—a'y'-an) +gui-vi(@'p+ay' -2y -an"),

The expectation value of the symmetry operator is given by

(P)y=v3—Nv2Z. (36)

E. The boson expansion in the deformed phase

As in the case of the normal phase we can write the ther-

mal vacuum

(43
with
= (1,B'-1,B)
Juz—vi
- 1 - )
7= ——=— (B~ 1,B"), (44)

Juz—vi
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whereg.=g[cos@/2)]%, gs= —g[sin(«/2)]? and
f1=Upug—Vpvg,

fZZUBVF_uFVB .

(49)

PHYSICAL REVIEW 60 034302

unoccupied in the lower and upper levels. The quasimh

the state is determined by the distribution the particles on the
27 sublevels, where 2=2() — v;— v,. The number of par-
ticles in this configuration isn=2(7+v;). Let us call
U, ky. . Ka(rs vy the subspace of states witlhy occupied

We shall diagonalize the Hamiltonian by applying the and v, unoccupied sublevels. The dimension i&.2They

RPA formalism. The equations of motion are
[HI=wl", [HITT=-wl",
with
I''=X;7"+X,a"=Y;7—-Y,a,
T=X,7"+Xa"-Y,7-Y,a,
and
H=w(''T-T'T).
The two solutions fow arew=0 and

w=+\E%+ wbz—Zwbwf.

The expectation value of the symmetry operator is given b

1 1
(Py=vi+N b§—§+§cos{1(l—2v§) :

F. The exact partition function

In order to evaluate the grand partition functidib], we
have to calculate the eigenvaILEEm and the multiplicity of
the irreducible representatiohs for different particle num-

bers, namely 82N<4().
The physical space is spanned by the vectors

{le1kq,€Ko, . . . €nkn) ®]1), (51
€e{l,2 kie{l,...,20+1},ie{1,2,...n},
ne{l,2,...,40},1e{0,...}},
where | e:kq, €:K,, . . . ,€,K,) represents the fermionic sub-

space andl) the bosonic one; is the index corresponding

(47)

(48)

(49

(50

are 227 vlwyl) different subspaces
U, ky. . Ka(ot vy Each of these subspaces can be decom-

posed into irreducible ones with multiplicities

. (27)! (27)!
ST 2=k (k=D)1(27—k+ 1)l

The exact grand partition function can be written

20!
Z(B)= >

vy (27101l w)!

x; g@n ex — BE] ¥ —2u(7+v1)].
(52)

The expressions for the average energy and the average of

¥he operatoiP are given by

(Hy= 3 20!

v, (27) 011 )

X2 02 ELmexd — BE] n—2u(r+v1)],

(53
and
20!
<P>:Eyz (27 vyl )
xEk g@n L exd — BE] W= 2u(7+v1))].
(54)

In the above formulag is the Lagrange multiplier which

to levels,k represents substates antkads for the partition enforces the number of particles constraint ﬁﬁ,'f repre-

with i particles anch is the particle number of the configu- sents the exact eigenvalues corresponding-td particles.
ration. The index corresponds to the number bosons in a

particular state.

Ill. RESULTS AND DISCUSSIONS

For the fermionic subspace the number of vectors associ-

ated to a system with two levels, each of them witQ 2

In order to compare the validity of the approximations

substates and with a number of particles varying from 1 talescribed in the previous section we have calculated exact
40, is equal to 2%. The bosonic subspace has an infiniteresults corresponding to the Hamiltonian of Stawnd Da

dimension.

Providencia, using the equations presented in Sec. Il F. We

The fermionic subspace can be decomposed into invariartave considered the cable= 30 particles moving in two lev-
and irreducible subspaces. A particular distribution of giverels, each of them witf)=15. The Hamiltonian has been
number of particles on two degenerate levels can be charadiagonalized in each subspace corresponding to a certain par-

terized by numbers, andv,, i.e., v; is the number of sub-

tition of the particle number. The exact grand partition func-

levels which are occupied by particles in both the lower andion is afterwards calculated by the sum over all partitions
the upper levelsy, is the number of sublevels which are and all allowed values of the symmetry eigenvalyectual
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<H>/(w,0,)"?

0 1 2 3 4 1 2 3 4 01 2 3 4 1 2 3 4
1/2 1/2
T/ (0,0,) T/(wg0,)"

FIG. 1. Mean.value of the energy as a function of the tempera- £ 2. Mean value of the symmetR; see Eq(9), as a function
ture, corresponding to the Hamiltonian of RE9). Cases(a), (b),  of the temperature. Casés), (b), (c), and (d) show the results
(), and(d) are the results obtained with the reduced couplB®®  gptained with the reduced coupling=0, 0.5, 1.5, and 2, respec-

Eq. (18] x=0, 0.5, 1.5, and 2, respectively. Solid lines represents e\ Solid lines represent exact results and dashed lines are the
exact results and dashed lines are the results obtained by using thesits given by the TFD.

TFD procedure as described in the text.

calculations where performed for valueslofip toL=200.  Klein and Marshaleck8]. The TFD results shown in Fig.
The approximations described in the previous section havé(c) and Fig. 1d) reflect the change in the mean field in-
been implemented by performing the RPA diagonalizatio uced py strong interactions. It is seen that the bulk of the
after applying the boson expansion in the TFD basis. Thu§o'relation energy is given by the RPA value, as shown in
the results obtained in this way are limited by the cutoffFig- 3, until thermal excitations produce the screening of the
implied by the RPA expansion. The comparison between exinteractions between fermions and bosons. Naturally, this

act and approximated results for the expectation value of thifansition from one mean-fieltnteracting system of fermi-
Hamiltonian are shown in Fig. 1. Results corresponding td®"S @nd bosongo anothera noninteracting system of two-

the value of the symmetr{®, are shown in Fig. 2. The agree- componentsis a feature of the a}pprpximate solution Whigh
ment between exact and approximated results is verified on22S: @t any point of the expansion in terms of the coupling
large domain of values of the reduced couplindt works

both in the normal and in the deformed phases. As it is well 4 - T y
known the RPA approximation, at finite temperatures, has a x=2.0

phase transition point. The results shown in Fig. 3 indicates
that the critical temperature depends upon the strength of the
interaction. These results also indicate that the normal and
deformed phases are separated if the reduced coupling
strengthx is fixed above or bellow the critical value=1.
Temperature dependent effects at the RPA level of approxi-
mation seem to be rather small for valuesxef1.

From the curves shown in Fig. 1, it is seen that a linear
regime is obtained for reduced temperatures larger than one,
while a fast increase of the mean value of the energy is
observed for values off/(w;w,)¥?<1. The correspon- 05| L———
dence between these results and the mean value of the sym-
metry operatorP, displayed in Fig. 2, clearly shows the

1/2

1.5

wppa/ (@0p)

structure of the different phases. The transition between the 0 0 1 2 3 4
boson and the fermion condensates is also depending on the 1/2
value of the reduced coupling and it is obtained for values of T/(G"fc"b)

the reduced temperatué(w;w;,)(Y?<1 [see case&) and

(d) of Fig. 2]. Concerning the RPA results, see Fig. 3, the FIG. 3. Temperature dependence of the RPA frequency. The
transition to a normal phase at reduced temperaturesalues of the reduced coupling strengthare indicated on the
T/(wsw,)M?>1 is obtained, as it has been suggested bycurves. The RPA phase transition appearsxftarger than 1.
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constants, a lesser number of contributions than the exact bf=y"+ N1/2b0,
result.

a |
IV. SUMMARY AND OUTLOOK Ch= cos( E) ab— sm( E) s

In this paper we have performed a boson expansion of the
TFD image of the Hamiltonian introduced by Stfeuand Da + fa) @
Providencia. Following the general steps of the TFD we have C1i=SIN 5 |+ Co8 5
shown that the RPA treatment of the Hamiltonian produces
results which are very similar to the exact ones. In this wayn view of this we can redefine the number operator and the
the conclusions advanced by Klein and Marshaleck in the|fa|s|ng and |Owering operators for quasipartides:
fundamental paper on boson expansi¢8% proved to be
appropriate also when the boson expansions are applied to _
describe interactions at finite temperatures. Since the agree- sz a;kaZkv V=E aIkalk,
ment between the exact results and the results of the boson : .
mapping at finite temperature does not appear to be acciden-
tal we may conclude that the use of TFD in conjunction with
the boson mapping and the RPA could be very well applied
to study more sophisticated Hamiltonians.

Ak -

_ Tt ot _
T+—Ek SPICATE T—_(T+)T,

1 _
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APPENDIX A .
+NYo(y"+y) +sin(a)(r, +7.),

The deformed solution is obtained by using the following
transformations of the boson and fermion operators: and the Hamiltonian is written

H= N(wbbg+ w; SIP(al2) —gsin( a))+ (w; cog &) + 2gby sin( @) )( 7o+ Q) + wp( ¥ ) + (gby cod @) — w; SiN(@)) (74

N 1
+7.)+| = 5 G sin(a)tani BE/2)+N"owy | (¥ +9) +0s(7o v+ ¥ 1) + (7 ¥+ y72) + Gsin(a) 5 (v+ ) ('

),
|
with gc=GNY?cog(a/2) andgs=—GNYsir’(a/2). with «,3=0,=*.

.A.fter applying the transformation of E¢39) and mini- The 15 operatord -”ra andY,; close the S() alge-
mizing Hoo=(0(B)|H[0(B)) with respect toby anda, the g The commutation rules of these operators in the Carte-
Hamiltonian is written sian form are

1
H11=E§(V+V)+wbyTy, ' ~ o~ o~
[Ti.Til=l€jTe, [Ti,Tjl=li€jTk,
HZOZO,
where E=w¢/cos@), cosa=1/R, b3=(w/awp)x?(1 [T,,T,]=0,
—1/R?), and 1= (x*/R)tanhRB'/2) with B’ = (w/2)B.
APPENDIX'B [Ti -ij]:ifijlYlk- [:i-i 1ij]:i€ikIle )
Let us define
YaB:TaTrﬁ, LYij Yl =i €ixmTm6ji 1 €jim TmSix -
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APPENDIX C

The boson mapping for the operators of Appendix B is

constructed by commutator techniqui8% We introduce two
bosons B andB) for the Holstein-Primakoff mapping of the
two SU2) algebras, and one extra boso@=C) that de-

creases botff andT by one. The most general forms for the
transformed operators are

T,=B7(20-2Nc—Ng)¥2  T_=T%,
To=—Q+Nc+Ng;
T.=B'20-2N.—Np)¥2  T_=T1,
To=—Q+Nc+Nz,

Y., =BBr(N)r(N2)by(Ne)+Cr(Npr (N +1)
X1 (N)r (Np+1)by(Ng) +B2BT2Chy(Ne),
Yo =B (—Q+2Nc+Ng)r(N2)bs(Nc)
+ECTV(N1)V(N2)V(N2+ 1)by(N¢)

—B™B"2Cr(N;—1)bs(Ng),

PHYSICAL REVIEW (60 034302
Y_,=BBr(N;—1)r(Ny)by(Ne)—B2CTr(Ny)r(Ny+1)
X by(N)—B2Cr(N; = 2)r(N;— 1)bs(Ne),

Yo0o= (2 —=2Nc—Ng) (2 —=2Nc—Ng)b;(N¢)
+BBr(Ny)r(Ny)by(Ne)+BBfCr(N,— 1)
X1(Na—1)b3(Ng),

r(N)=(20-N)*2,
N1=2Nc+NB, N2=2Nc+Né,

B Q+1
b1 (Ne)= 2(Q—Ng)(Q—Ng+1)’

ba(N¢)=Dbs(Nc+1);

1
T 2(Q—Ng+1)
(20—Ng+3)(20—Ng+1)

b3(N¢)
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