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Boson mapping at finite temperature: An application to the thermo field dynamics
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Department of Physics, University of La Plata, C.C. 67, La Plata, Argentina

~Received 25 January 1999; published 4 August 1999!

The Holstein-Primakoff boson mapping at finite temperature and in the framework of the thermo field
dynamics~TFD! is applied to treat a fermion-boson Hamiltonian. The interaction between pairs of fermions
and bosons is constructed in a model which allows for a condensate. The evolution of the condensate as a
function of the temperature is investigated.@S0556-2813~99!06208-1#

PACS number~s!: 21.60.Fw, 21.60.Jz, 24.10.Pa
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I. INTRODUCTION
The thermo field dynamics~TFD! developed by

Umezawa and co-workers@1# has been applied to describe
variety of physical situations@2–5#. The TFD shows that
mean values computed in the standard statistical mecha
can be replaced by expectation values on a correla
vacuum. This vacuum has the structure of an exponen
function of pairs~fermion or boson operators and their du
images! @6#. Gauge properties of the TFD and the symm
tries associated to the TFD vacuum have been studied in
@7#. As shown by Hatsuda@4# and by Klein and Marshalek
@8# boson expansion techniques acting on the TFD imag
a given Hamiltonian yield solutions which reproduce the e
act results corresponding to the same Hamiltonian. Herew
we shall investigate the structure of the TFD image of
schematic Hamiltonian proposed by Schu¨tte and Da Provi-
dencia @9#. This Hamiltonian includes the interaction b
tween fermions and bosons. Its TFD image will be co
structed by performing a boson expansion. The star
Hamiltonian has definite symmetries which are sponta
ously broken by the TFD transformations. The subsequ
boson mapping accommodates the generators of the orig
symmetry, in a larger space. In the first part of the pres
work we shall introduce the model and review the formali
of the thermo field dynamics. Next, a suitable boson m
ping developed by Holstein and Primakoff~HP! @8# is ex-
tended to include thermal degrees of freedom. The spect
of the transformed Hamiltonian is constructed by apply
the random phase approximation~RPA!. The results of the
TFD1HP1RPA procedure are compared with the exact
lution of the model both in the normal phase and in t
condensed~or deformed! phase.

Details of the formalism are presented in the next sec
where the rules of the TFD and the main features of
boson expansion are introduced. The exact solution of
model of Schu¨tte and Da Providencia@9# is described in Sec
II together with the approximated ones. The results of
thermal boson expansion, in the normal and deform
phases, are presented and discussed in detail in Sec. III.
clusions are drawn in Sec. IV.

II. FORMALISM

A. Brief introduction to TFD

The thermo field dynamics is a theory where the statist
average of an operator is replaced by its vacuum expecta
0556-2813/99/60~3!/034302~8!/$15.00 60 0343
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value, as done in quantum field theory@6#. In order to define
a temperature dependent vacuum the doubling of the Hil
space@2–4# is needed to preserve Gibbs probability distrib
tion over physical states. The doubling of the Hilbert spa
which should be accompanied by a definition of new ope
tors which are acting on dual variables, is the new ingredi
of the TFD which establishes the correspondence betw
statistical averages and expectation values@1#. In order to
proceed with the formalism let us summarize the TFD ba
rules in the following:~i! the Hilbert space is enlarged t
accommodate physical and dual states~i.e., the TFD tilde
states!, ~ii ! the temperature dependent TFD vacuum is
fined as an exponential function of physical and dual va
ables,~iii ! the dynamics is then incorporated by introduci
commutation relations between physical and dual variab
and operators,~iv! true expectation values, of physical op
erators, are taken over the complete Hilbert space spanne
physical and dual~tilde! states, and~v! physical results are
independent oftilde variables@6#.

The TFD thermal vacuumu0(b)& is defined in such a way
that the thermal expectation value of a given operator

^A&5Tr@exp~2bH !A#/Tr@exp~2bH !#, ~1!

is also written as the expectation value

^A&5^0~b!uAu0~b!&, ~2!

where b51/(kT) is the inverse temperature. The vacuu
stateu0(b)& is written @10#

u0~b!&5@Z~b!#21/2(
m

exp~2bEm/2!um& ^ um̃&, ~3!

where um& and um̃& are the states of the physical and du
spaces.

Thermal identities@10# are satisfied by introducing a tild
conjugation rule which transforms operators from the ori
nal Fock spaceI to the dual oneĨ. Some useful TFD opera
tions are@10#

AB̃5ÃB̃,

c1A 1̃ c2B5c1* Ã1c2* B̃,

A†̃5Ã†,
©1999 The American Physical Society02-1
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Ã̃56A,

u0~ b̃ !&5u0~b!&. ~4!

From the use of the TFD rules and the above relation
can be shown that Schro¨dinger’s equation in the origina
space translates into a Schro¨dinger’s equation in the double
space, with the Hamiltonian

H5H2H̃. ~5!

There is a difference between TFD and the usual (T50)
quantum mechanics. If the HamiltonianH exhibits a dynami-
cal symmetryG,S, whereS is the algebra of all bilinear

fermion or boson operators, the direct product groupG^ G̃ is
the dynamical symmetry group of the thermal Hamiltoni
@8#. In general the thermal vacuum breaks this dynam
symmetry. As shown in@8# the minimal groupR, such that

G3G̃#R#S3S̃ and u0(b)&PR, is the relevant symmetry
group. In the following subsections we are going to illustra
the use of these concepts in dealing with the treatmen
Schütte and Da Providencia model@9# at finite temperature.

B. The model of Schu¨ tte and Da Providencia

The model proposed by Schu¨tte and Da Providencia@9#
consists ofN fermions moving in two single shells, eac
shell having 2V substates. The energy spacing betwe
shells is fixed by the scalev f . Creation and annihilation
operators of particles belonging to the upper shell are
noted byc2k

† andc2k , respectively, while for the lower she
these operators readc1k

† and c1k . Substates are denoted b
the quantum numberk. The fermions are coupled to an e
ternal boson field represented by the creation~annihilation!
operatorb† (b) and by the energyvb .

The Hamiltonian reads@9#

H5v f~ t01V!1vbb†b1G~ t1b†1t2b!, ~6!

whereG is the strength of the interaction in the particle-ho
channel. The operatorst6 and t0 are the generators of th
algebra of the group SU(2)@11#. In terms of bilinear com-
binations of fermion operators these generators read

t15(
k

c2k
† c1k , t25~ t1!†,

t05
1

2
~n1n̄!2V, ~7!

where

n5(
k

c2k
† c2k , n̄5(

k
c1kc1k

† , ~8!

are particle (n) and hole (n̄) number operators.
The ‘‘angular momentum’’P of the system is the differ-

ence between the number of bosonic and fermionic exc
tions, namely
03430
it
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P5b†b2
1

2
~n1n̄!. ~9!

This is a conserved quantity. The eigenvalues,L, of the
operatorP are integer numbers in the interval

2N<L<`. ~10!

This model can be interpreted as a simplified version
quarks in a two flavors andN colors representation interac
ing with a meson@12,13#. It was proposed by Schu¨tte and Da
Providencia@9# as an effective theory of baryons and it h
solutions with unbroken~normal phase! and broken~de-
formed phase! P-symmetry@9#.

In order to remind the reader about the model of@9# we
shall briefly summarize the structure of the spectrum, both
the so-called normal and deformed phases and at zero
perature. In the normal phase the ground state is the ei
state ofP with L50. In this phase the number of fermio
pairs and the number of bosons are the same. This reg
persists for small values of the coupling constantG. For
large values ofG the model exhibits a boson condensati
and the ground state is an eigenstate ofP with eigenvalue
L.0. This is the deformed phase. For valuesvb.v f and
for intermediate values ofG the ground state is an eigen
value ofP with L,0 and it represents a condensate of f
mion pairs@9,14#. We shall now study the solutions of thi
model at finite temperature.

C. Mean field approximation at finite temperature

The mean field~MF! version of Hamiltonian of Eq.~6!
can be written

HMF5E~t01V!1vbg†g, ~11!

where

t05
1

2
~n1 n̄ !2V, ~12!

and

n5(
k

a2k
† a2k ,

n̄5(
k

a1k
† a1k , ~13!

are fermion number operators in the Hartree-Fock basis.
energy

E5
v f

cosa
, ~14!

is the mean field value of the fermion energy. The bos
operatorsg† andg are the same asb† andb except for the
addition of vacuum expectation values (g†5b†2N1/2b0 , g
5b2N1/2b0* ) @9,12#. Following the TFD rules we add to
2-2
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BOSON MAPPING AT FINITE TEMPERATURES: AN . . . PHYSICAL REVIEW C60 034302
these degrees of freedom their dual imagest̃1 and g̃† and
the corresponding annihilation operators.

The thermal vacuum at mean field level is written@8#

u0~b!&5@Z~b!#21/2exp~2bHMF/2!(
m

um&um̃&. ~15!

Since the operatorst2 , (t̃2) andg (g̃) do not annihilate
the vacuumu0(b)&, see for instance@8#, we shall introduce
the TFD thermal transformationsT2 anda:

T25A12gF~E/2!t212AgF~E/2!t0t̃1 , ~16!

a5A11gB~vb!g2AgB~vb!g̃†. ~17!

The operatorsT2 ~pair of fermions! anda ~bosons! annihi-
late the thermal vacuumu0(b)&. The factors gF(e i)
51/„exp(bei)11… and gB(e i)51/„exp(bei)21… are Fermi-
Dirac and Bose-Einstein occupation values, respectiv
The transition from the normal to the deformed phase
mean field level is identified by performing the variation
H with respect to the vacuum expectation value of the bo
number operator as an order parameter~see Appendix A!.
Self-consistency requires that@9#

15
x2

R
tanh~Rb8/2!, ~18!

with cosa51/R, b85(v f /2)b andx5GA2V/v fvb.

D. The boson expansion in the normal phase

What is usually referred to as the normal phase is the h
temperature regime for which cos(a)51 andb050. In this
case

HMF5v f~ t01V!1vbb†b. ~19!

One can rewrite the thermal vacuum as

u0~b!5expS 2v f

b

4 Dexp~ t1 t̃ 1!

expS 2vb

b

2 Dexp~b†b̃†!u0&u0̃&, ~20!

the thermal state can be rewritten as

u0~b!&5)
k

~uF1vFt1,kt̃ 1,k!~uB1vBb†b̃†!u0&u0̃&.

~21!

We now use the fact that the thermal vacuum is unit
equivalent to the original vacuum and we define a new se
thermal operators of whichu0(b)& is an eigenstate, namely

T65uFt612vFt0 t̃ 7 ,

T̃65uF t̃ 612vF t̃ 0t7 ,
03430
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T05uF
2 t02vF

2 t̃ 02uFvF~ t1 t̃ 11t2 t̃ 2!,

T̃05uF
2 t̃ 02vF

2 t02uFvF~ t1 t̃ 11t2 t̃ 2!, ~22!

where T2u0(b)&5T̃2u0(b)&50, T0u0(b)&5T̃0u0(b)&
52Vu0(b)&, and

uF51/Aexp~2bv f /2!11,

vF5A12uF
2. ~23!

These transformations between the operators have us
properties. They are nonlinear in the generators of SU
^ SU(2) but the final form obeys an SU(2)^ SU(2) algebra.

We will also need the inverse relations of Eq.~22!, which
are useful to calculate the thermal Hamiltonian

t65uFT622vFT0T̃7 ,

t̃ 65uFT̃622vFT̃0T7 ,

t05uF
2T02vF

2 T̃01uFvF~T1T̃11T2T̃2!,

t̃ 05uF
2 T̃02vF

2T01uFvF~T1T̃11T2T̃2!. ~24!

These operators can be accommodated in a larger g
@8# ~see Appendix B!. For the boson sector we shall intro
duce the transformations

b†5uBa†1vBã,

b̃5vBã1uBa†, ~25!

and

a†5uBb†2vBb̃,

ã52vBb̃1uBb†, ~26!

with

vB51/Aexp~bvb!21,

uB5A11vB
2. ~27!

The Hamiltonian reads

H5v f~ t02 t̃ 0!1vb~a†a2ã†ã!

1GuFuB~T1a†2T̃1ã†1H.c.!

1GuFvB~T1ã2T̃1a1H.c.!

12GvFuB~Y02a†2Y20ã†1H.c.!

12GvFuB~Y02ã2Y20a1H.c.!. ~28!

The operators that give a nonzero result on the vacu

are the step operatorsT1 , T̃1 , Y01 , Y10 andY11 , and the
2-3
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O. CIVITARESE AND M. REBOIRO PHYSICAL REVIEW C60 034302
diagonal operatorsT0 , T̃0 and Y00 ~with eigenvalues2V,
2V and2V/2) ~see Appendix B!. We now build an SU~4!
irrep on the stateu0(b)&. Since we are considering state
with 2V particles, the only irrep containing a state with t
quantum numbers ofu0(b)& is the irrep$2V%. The boson
mapping for this irrep can be constructed by using comm
tation techniques@8#. We introduce two bosons (B and B̃)
for the Holstein-Primakoff mapping of the two SU(2) alg
bras. Using the commutation relations given in the Appen
B we can derive the form of all operators~see Appendix C!.
By applying the boson transformation and taking the lead
order in the expansionH reads

H5wf~h†h2h̃†h̃ !1wb~Na2Nã!

1gAuF
22vF

2~a†h†1ah2ã†h̃†2ãh̃ !, ~29!

with

h†5
1

AuF
22vF

2 ~ f 1B†2 f 2B̃!,

h̃5
1

AuF
22vF

2 ~ f 1B̃2 f 2B†!, ~30!

whereg5GA2V and

f 15uFuB2vFvB ,

f 25uBvF2uFvB . ~31!

We shall diagonalize this Hamiltonian by applying th
RPA formalism. The equations of motion are

@H,Gn
†#5vnG†, @H,G̃n

†#52vnG̃†, ~32!

with

G†5X1h†1X2a†2Y1h2Y2a,

G̃†5X1h̃†1X2ã†2Y1h̃2Y2ã. ~33!

The RPA image ofH is

H5w~G†G2G̃†G̃ !, ~34!

where the eigenvaluev is given by

v5
1

2
uwf2wbu1

1

2
A~wf1wb!224wfwbx2 tanh~bv f /4!.

~35!

The expectation value of the symmetry operator is given

^P&5vB
22NvF

2 . ~36!

E. The boson expansion in the deformed phase

As in the case of the normal phase we can write the th
mal vacuum
03430
-

x

g

y

r-

u0~b!&5)
k

~uF1vFt1,kt̃1,k!~uB1vBg†g̃†!u0&u0̃&,

~37!

where

t15(
k

a2k
† a1k

† , t25t1
† ,

t05
1

2
~n1 n̄ !2V. ~38!

We can define a new set of operators, of whichu0(b)& is
an eigenstate, by introducing the expressions

T65uFt612vFt0t̃7 ,

T̃65uFt̃612vFt̃0t7 ,

T05uF
2t02vF

2 t̃02uFvF~t1t̃11t2t̃2!,

T̃05uF
2 t̃02vF

2t02uFvF~t1t̃11t2t̃2!, ~39!

whereT2u0(b)&5T̃2u0(b)&50 and

uF51/Aexp~2bE/2!11,

vF5A12uF
2. ~40!

The same considerations, applied to the normal phase
valid for the deformed phase concerning the group struc
of these operators.

In the deformed phase the Hamiltonian of Eq.~6! is writ-
ten

H5HMF1gs~t1g1t2g†!1gc~t1g†1t2g!. ~41!

Finally, we shall work with the TFD Hamiltonian

H5HMF2H̃MF1gs~t1g1t2g†2 t̃1g̃2 t̃2g̃†!

1gc~t1g†1t2g2 t̃1g̃†2 t̃2g̃ !, ~42!

and after some algebra it reads

H5wf~h†h2h̃†h̃ !1wb~Na2Nã!1gcAuF
22vF

2~a†h†1ah

2ã†h̃†2ãh̃ !1gsAuF
22vF

2~a†h1ah†2ã†h̃2ãh̃†!,

~43!

with

h†5
1

AuF
22vF

2 ~ f 1B†2 f 2B̃!,

h̃5
1

AuF
22vF

2 ~ f 1B̃2 f 2B†!, ~44!
2-4
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wheregc5g@cos(a/2)#2, gs52g@sin(a/2)#2 and

f 15uFuB2vFvB ,

f 25uBvF2uFvB . ~45!

We shall diagonalize the Hamiltonian by applying t
RPA formalism. The equations of motion are

@H,Gn
†#5vnG†, @H,G̃n

†#52vnG̃†, ~46!

with

G†5X1h†1X2a†2Y1h2Y2a,

G̃†5X1h̃†1X2ã†2Y1h̃2Y2ã, ~47!

and

H5w~G†G2G̃†G̃ !. ~48!

The two solutions forv arev50 and

v5AE21vb
222vbv f . ~49!

The expectation value of the symmetry operator is given

^P&5vB
21NS b0

22
1

2
1

1

2
cosa~122vF

2 ! D . ~50!

F. The exact partition function

In order to evaluate the grand partition function@15#, we
have to calculate the eigenvaluesEL,m

T and the multiplicity of
the irreducible representationsGT for different particle num-
bers, namely 0,N<4V.

The physical space is spanned by the vectors

ˆue1k1 ,e2k2 , . . . ,enkn& ^ u l &, ~51!

e iP$1,2%,kiP$1, . . . ,2V11%,i P$1,2, . . . ,n%,

nP$1,2, . . . ,4V%,l P$0, . . . ,̀ %‰,

where ue1k1 ,e2k2 , . . . ,enkn& represents the fermionic sub
space andu l & the bosonic one.e i is the index corresponding
to levels,k represents substates andi reads for the partition
with i particles andn is the particle number of the configu
ration. The indexl corresponds to the number bosons in
particular state.

For the fermionic subspace the number of vectors ass
ated to a system with two levels, each of them with 2V
substates and with a number of particles varying from 1
4V, is equal to 24V. The bosonic subspace has an infin
dimension.

The fermionic subspace can be decomposed into invar
and irreducible subspaces. A particular distribution of giv
number of particles on two degenerate levels can be cha
terized by numbersn1 andn2, i.e., n1 is the number of sub-
levels which are occupied by particles in both the lower a
the upper levels,n2 is the number of sublevels which ar
03430
y

i-

o

nt
n
c-

d

unoccupied in the lower and upper levels. The quasispinT of
the state is determined by the distribution the particles on
2t sublevels, where 2t52V2n12n2. The number of par-
ticles in this configuration isn52(t1n1). Let us call
Gk1 ,k2 , . . . ,k2(t1n1)

the subspace of states withn1 occupied

and n2 unoccupied sublevels. The dimension is 22t. They
are (2V)!/((2t)!n1!n2!) different subspaces
Gk1 ,k2 , . . . ,k2(t1n1)

. Each of these subspaces can be deco

posed into irreducible ones with multiplicities

gk
t5

~2t!!

k! ~2t2k!!
2

~2t!!

~k21!! ~2t2k11!!
.

The exact grand partition function can be written

Z~b!5 (
tn1n2

2V!

~2t!!n1!n2!

3(
k

gk
t(
L,m

exp@2b„EL,m
t2k22m~t1n1!…#.

~52!

The expressions for the average energy and the averag
the operatorP are given by

^H&5 (
tn1n2

2V!

~2t!!n1!n2!

3(
k

gk
t(
L,m

EL,m
t2k exp@2b„EL,m

t2k22m~t1n1!…#,

~53!

and

^P&5 (
tn1n2

2V!

~2t!!n1!n2!

3(
k

gk
t(
L,m

L exp@2b„EL,m
t2k22m~t1n1!…#.

~54!

In the above formulasm is the Lagrange multiplier which
enforces the number of particles constraint andEL,m

t2k repre-
sents the exact eigenvalues corresponding tot2k particles.

III. RESULTS AND DISCUSSIONS

In order to compare the validity of the approximatio
described in the previous section we have calculated e
results corresponding to the Hamiltonian of Schu¨tte and Da
Providencia, using the equations presented in Sec. II F.
have considered the caseN530 particles moving in two lev-
els, each of them withV515. The Hamiltonian has bee
diagonalized in each subspace corresponding to a certain
tition of the particle number. The exact grand partition fun
tion is afterwards calculated by the sum over all partitio
and all allowed values of the symmetry eigenvalueL, actual
2-5
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calculations where performed for values ofL up to L5200.
The approximations described in the previous section h
been implemented by performing the RPA diagonalizat
after applying the boson expansion in the TFD basis. T
the results obtained in this way are limited by the cut
implied by the RPA expansion. The comparison between
act and approximated results for the expectation value of
Hamiltonian are shown in Fig. 1. Results corresponding
the value of the symmetry,P, are shown in Fig. 2. The agree
ment between exact and approximated results is verified
large domain of values of the reduced couplingx. It works
both in the normal and in the deformed phases. As it is w
known the RPA approximation, at finite temperatures, ha
phase transition point. The results shown in Fig. 3 indica
that the critical temperature depends upon the strength o
interaction. These results also indicate that the normal
deformed phases are separated if the reduced coup
strengthx is fixed above or bellow the critical valuex51.
Temperature dependent effects at the RPA level of appr
mation seem to be rather small for values ofx,1.

From the curves shown in Fig. 1, it is seen that a lin
regime is obtained for reduced temperatures larger than
while a fast increase of the mean value of the energy
observed for values ofT/(v fvb)(1/2),1. The correspon-
dence between these results and the mean value of the
metry operatorP, displayed in Fig. 2, clearly shows th
structure of the different phases. The transition between
boson and the fermion condensates is also depending o
value of the reduced coupling and it is obtained for values
the reduced temperatureT/(v fvb)(1/2),1 @see cases~c! and
~d! of Fig. 2#. Concerning the RPA results, see Fig. 3, t
transition to a normal phase at reduced temperatu
T/(v fvb)(1/2).1 is obtained, as it has been suggested

FIG. 1. Mean value of the energy as a function of the tempe
ture, corresponding to the Hamiltonian of Ref.@9#. Cases~a!, ~b!,
~c!, and~d! are the results obtained with the reduced coupling@see
Eq. ~18!# x50, 0.5, 1.5, and 2, respectively. Solid lines repres
exact results and dashed lines are the results obtained by usin
TFD procedure as described in the text.
03430
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Klein and Marshaleck@8#. The TFD results shown in Fig
1~c! and Fig. 1~d! reflect the change in the mean field in
duced by strong interactions. It is seen that the bulk of
correlation energy is given by the RPA value, as shown
Fig. 3, until thermal excitations produce the screening of
interactions between fermions and bosons. Naturally,
transition from one mean-field~interacting system of fermi-
ons and bosons! to another~a noninteracting system of two
components! is a feature of the approximate solution whic
has, at any point of the expansion in terms of the coupl

-

t
the

FIG. 2. Mean value of the symmetryP, see Eq.~9!, as a function
of the temperature. Cases~a!, ~b!, ~c!, and ~d! show the results
obtained with the reduced couplingx50, 0.5, 1.5, and 2, respec
tively. Solid lines represent exact results and dashed lines are
results given by the TFD.

FIG. 3. Temperature dependence of the RPA frequency.
values of the reduced coupling strengthx are indicated on the
curves. The RPA phase transition appears forx larger than 1.
2-6
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constants, a lesser number of contributions than the e
result.

IV. SUMMARY AND OUTLOOK

In this paper we have performed a boson expansion of
TFD image of the Hamiltonian introduced by Schu¨tte and Da
Providencia. Following the general steps of the TFD we h
shown that the RPA treatment of the Hamiltonian produ
results which are very similar to the exact ones. In this w
the conclusions advanced by Klein and Marshaleck in th
fundamental paper on boson expansions@8# proved to be
appropriate also when the boson expansions are applie
describe interactions at finite temperatures. Since the ag
ment between the exact results and the results of the b
mapping at finite temperature does not appear to be acci
tal we may conclude that the use of TFD in conjunction w
the boson mapping and the RPA could be very well app
to study more sophisticated Hamiltonians.
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APPENDIX A

The deformed solution is obtained by using the followi
transformations of the boson and fermion operators:
03430
ct

e

e
s
y
ir

to
e-
on
n-

d

-

b†5g†1N1/2b0 ,

c2k
† 5cosS a

2 Da2k
† 2sinS a

2 Da1k ,

c1k
† 5sinS a

2 Da2k
† 1cosS a

2 Da1k .

In view of this we can redefine the number operator and
raising and lowering operators for quasiparticles:

n5(
k

a2k
† a2k , n̄5(

k
a1k

† a1k ,

t15(
k

a2k
† a1k

† , t25~t1!†,

t05
1

2
~n1 n̄ !2V.

In this representation the angular momentum reads

P5NXb0
22sin2S a

2 D C1g†g2Ncos~a!~t01V!

1N1/2b0~g†1g!1sin~a!~t11t2!,

and the Hamiltonian is written
H5N„vbb0
21v f sin2~a/2!2gsin~a!…1„v f cos~a!12gb0 sin~a!…~t01V!1vb~g†g!1„gb0 cos~a!2v f sin~a!…~t1

1t2!1S 2
N

2
G sin~a!tanh~bE/2!1N1/2b0vbD ~g†1g!1gs~t1g1g†t2!1gc~t1g†1gt2!1G sin~a!

1

2
~n1 n̄ !~g†

1g!,
rte-
with gc5GN1/2cos2(a/2) andgs52GN1/2sin2(a/2).
After applying the transformation of Eq.~39! and mini-

mizing H005^0(b)uHu0(b)& with respect tob0 and a, the
Hamiltonian is written

H115E
1

2
~n1 n̄ !1vbg†g,

H2050,

where E5v f /cos(a), cosa51/R, b0
25(wf /4wb)x2(1

21/R2), and 15(x2/R)tanh(Rb8/2) with b85(v f /2)b.

APPENDIX B

Let us define

Yab5TaT̃b ,
with a,b50,6.

The 15 operatorsTa , T̃a andYab close the SU~4! alge-
bra. The commutation rules of these operators in the Ca
sian form are

@Ti ,Tj #5 i e i jkTk , @ T̃i ,T̃j #5 i e i jk T̃k ,

@ T̃i ,Tj #50,

@Ti ,Yjk#5 i e i j l Ylk , @ T̃i ,Yjk#5 i e iklYjl ,

@Yi j ,Ykl#5 i e ikmTmd j l 1 i e j lmT̃md ik .
2-7
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APPENDIX C

The boson mapping for the operators of Appendix B
constructed by commutator techniques@8#. We introduce two

bosons (B andB̃) for the Holstein-Primakoff mapping of th

two SU~2! algebras, and one extra boson (C5C̃) that de-

creases bothT andT̃ by one. The most general forms for th
transformed operators are

T15B†~2V22NC2NB!1/2, T25T1
† ,

T052V1NC1NB ;

T̃15B̃†~2V22NC2NB̃!1/2, T̃25T̃1
† ,

T̃052V1NC1NB̃ ,

Y115B†B̃†r ~N1!r ~N2!b1~NC!1C†r ~N1!r ~N111!

3r ~N2!r ~N211!b2~NC!1B†2B̃†2Cb3~NC!,

Y015B̃†~2V12NC1NB!r ~N2!b1~NC!

1B̃C†r ~N1!r ~N2!r ~N211!b2~NC!

2B†B̃†2Cr~N121!b3~NC!,
,

03430
Y215BB̃†r ~N121!r ~N2!b1~NC!2B2C†r ~N2!r ~N211!

3b2~NC!2B̃†2Cr~N122!r ~N121!b3~NC!,

Y005~V22NC2NB!~V22NC2NB̃!b1~NC!

1BB̃r ~N1!r ~N2!b2~NC!1B†B̃†Cr~N121!

3r ~N221!b3~NC!,

r ~N!5~2V2N!1/2,

N152NC1NB , N252NC1NB̃ ,

b1~NC!5
V11

2~V2NC!~V2NC11!
,

b2~NC!5b3~NC11!;

b3~NC!5
1

2~V2NC11!

3F 2V2NC12

~2V2NC13!~2V2NC11!G
1/2

.
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