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Abstract 

The formalism of the thermo field dynamics (TFD) is extended in order to accommodate 
resonant states belonging to the spectrum of a single-particle Hamiltonian. It is shown that the 
rules of the TFD can be applied to a fermionic basis where resonant states are described as 
complex eigenvalues. The consequences for the definition of TFD thermodynamical observables, 
due to the inclusion of resonant states, are studied. © 1998 Elsevier Science B.V. 

PACS: 03.65.-w; 03.65.Bz; 03.65.Ca; 03.65 Db 

1. Introduct ion  

The theoretical treatment of  thermal excitations in quantum many-body systems has 

been the subject of  various studies in different fields of  physics [ 1 ]. Among the theo- 

ries used to treat thermal excitations, the thermo field dynamics (TFD)  developed by 

Umezawa and co-workers has received attention in a number of  publications [2] .  A 

comparison between the TFD and other theories based on the use of  contours in the 

t ime- tempera ture  plane can be found in Ref. [ 3 ]. 

The advantage of  the use of  TFD, in dealing with quantum systems at finite tem- 

perature, has been presented in Ref. [4] ,  where the gauge structure of  the theory was 

discussed in detail. Several other aspects of  the TFD can be found in Refs. [2,17] and 

references therein. 

The experimental  study of  nuclear properties at finite temperature has produced new 

interest in TFD and it has already been shown that the theory exhibits some advantages 
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as compared, for example, with Matsubara's techniques or with other complex- or real- 
time formalisms [ 5 ]. One particular problem associated with the treatment of nuclei at 

finite temperature is the inclusion of the continuum [6]. Recently, we have investigated 
the suitability of a representation of resonant states [7] which is based on the theory of 

ultradistributions and on Dirac's formulation of quantum mechanics. The formulation of 

quantum mechanics in the rigged Hilbert space (RHS) has been presented, among others, 
by Bohm [ 14]. In Ref. [ 14] it is shown that idealized resonances can be described in 
the RHS representation by generalized eigenvectors of a self-adjoint Hamiltonian with 
complex eigenvalues. These states are included in the Hamiltonian eigenvalue density as 

Breit-Wigner energy distributions around the real value of their energies. The spreading 
of these distributions around the centroids is given by the imaginary part of the energies. 
In Ref. [7] we show that this representation of resonances is indeed valid and that it 

is consistent with Dirac's formulation. In the present work we shall adopt the same 
definition of a resonance and assume that the spectrum of the Hamiltonian includes 

complex eigenvalues. Since we are dealing with a Fock representation this condition 

(complex eigenvalues) suffices for the identification of resonances, since generalized 
spectral functions can be constructed without explicit reference to wave functions [6-  
8,13,14]. 

In the present paper we are mostly concerned with the question about the inclusion 
of resonant states [ 8 ] in the framework of the TFD, with reference to the calculation of 
nuclear partition functions and Green functions at finite temperatures. These elements, 

and the need of a rigorous procedure to describe the effects due to the continuum 
at finite temperature, are frequently found in articles specifically devoted to nuclear 

structure studies [ 9,10]. 
In Section 2 we shall discuss the meaning of thermal Bogoliubov transformations in 

the presence of resonant states and extend the rules of the TFD to include resonant 
states. The TFD invariance of a Hamiltonian with complex eigenstates will be shown 
in Section 3. The TFD representation in Fock space, the occupation numbers and the 

partition functions will be given in Section 4. Conclusions are drawn in Section 5. 

2. On the TFD with complex eigenvalues 

We shall start our presentation of the subject with the definition of the TFD Hamil- 
tonian/2/, associated with a physical system described by a Hamiltonian H and its TFD 
dual/-). For the sake of completeness we shall briefly review the main steps of the TFD 
procedure as they have been formulated by Umezawa and coworkers [1,17]. Details 
can be found in Refs. [ 12,15]. The main features of TFD are the following [3-5].  

(i) TFD physical and dual spaces are related in such a manner that one has always 
to calculate vacuum expectation values instead of the usual statistical averages. 

(ii) Fermion degrees of freedom are expressed in terms of thermal quasi-particles. 
The normal ordering of these operators is defined with respect to the TFD vacuum given 
by the G-transformation. The thermal quasi-particles are constructed by acting thermal 
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Bogoliubov transformations on the original and dual fermion degrees of freedom. Finally, 

the meaning of the various operations which are used in TFD calculations, such as the 
TFD tilde-transformation which relates dual and physical degrees of freedom, can be 
found in Ref. [ 1]. In the following we shall assume that the density of eigenvalues 
of the starting Hamiltonian represents both bound states, which correspond to real 
eigenvalues, and resonant states, which are represented by complex eigenvalues. This 

situation is found, for instance, in the single-particle solutions of the central nuclear 
potential which includes centrifugal and Coulomb terms in addition to the bulk and spin- 

orbit contributions. The superposition of these terms generates a central potential of finite 
deep and finite range with a dense distribution of eigenvalues around the surface. It has 

been shown that bound states and a few isolated resonances, with complex energies, can 

be used to define a basis [ 8]. It has also been shown that the corresponding Hamiltonian 

distribution of eigenvalues can be represented by a delta function on discrete states (i.e. 
states with zero imaginary part of the energy) and a Breit-Wigner distribution for the 

few narrow resonances near the real axis [6-10].  The energies of these non-overlapping 
resonances are complex and their imaginary parts are much smaller than the real parts. 
In the above-mentioned works they have been introduced in configuration space and 

they were adopted as a representation of the continuum. The full implication of this 
assumption can be found in Berggren's works [8,13]. It is the aim of the present work 
to include these states in a Fock's representation and use it to calculate TDF vacuum 
expectation values. Therefore, by assuming that the Hamiltonian density includes both 

discrete states and resonances, we can write, for a single-particle (free) Hamiltonian, 

the expression 

r / =  H - / z / =  ( E n a + a , - E n a n a , ) ,  1) 
n=l 

where En is the eigenvalue associated with the linear momentum Pn = kn - it/n, with 
r/,, ~> 0. The quantity r/n entering in this definition of Pn is related to the imaginary part 

of the energy, E(pn) = en - iTn /2 ,  and its value is given by the solution of the central 

potential eigenvalue problem. Therefore, r/n does not represent the imaginary shift of 
the energy variable appearing in the spectral density distribution [ 16]. Rather, it is a 

physical parameter associated with the single-particle scape-width [6]. 
As usual we shall denote TFD dual states by a tilde [ 1 1 ]. The meaning of the tilde 

operation has been discussed extensively by Ojima [ 15] and it leads to the definition 

of the TFD quasi-fermions as a superposition of physical and dual fields. 
In order to write explicitly a TDF representation, with complex eigenvalues and at 

finite temperature, we shall request: (i) the invariance of/2/under  thermal transforma- 
tions [ 12], and (ii) real values of the expectation value of H on the TFD vacuum. 
These conditions can be fulfilled if and only if the following complex anticommutators 

are allowed in the (an, an) basis, namely 

{a , , ,an+}=Ananm (2) 

and 
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{a. ,  +} = (3) 

and the remaining anticommutators vanish. 
In the present discussion of the formalism we assume that I An[ 4= 0. The meaning of 

this condition will be discussed later (see Subsection 4.2). 
The algebra defined by Eqs. (2) and (3) differs from the generalized algebra used by 

Henning [2] and from the method of Ref. [ 16]. In order to draw the difference between 
these methods and the present one, let us mention that in Ref. [2] physical representa- 
tions are constructed by the direct summation of elementary fields weighted by positive 
weighting functions. These elementary fields have energy and momentum not related by 
dispersion relations, thus they represent off-mass extensions. A similar representation, in 
terms of spectral functions and propagators, is used in Ref. [ 16]. In the present paper 
we shall work in a RHS [7,14] instead to define physical fields. Once the physical fields 
are expanded in terms of creation and annihilation operators, in both methods, the com- 
mutation relations among them require state-dependent renormalizations, which for the 
case of Ref. [2] are also momentum dependent (cf. Eqs. (3.28)-(3.30) of Ref. [2]) .  
In our formalism Eqs. (2) and (3) result from conditions (i) and (ii) and they are 
valid at equilibrium. It should be emphasized that the commutator algebra of Eqs. (2) 
and (3) is not obtained by a simple rescaling, as shown at the end of Subsection 4.2). 

In this representation the TFD thermal vacuum can be written as 

+ - +  
[0(/3) ) = 1-I ( 1 + Cna n a n )10), 

rt=l 

(0(/3) I = (01 l - I (1  + Dng~nan). (4) 
n=l 

The thermal vacuum is normalized accordingly, i.e. 

(0(/3)10(/3)) = 1 = l - I (1  + 1&I2D.C,). (5) 
n=l 

The constants Cn and D,, entering in the definition of the TFD vacuum, can be deter- 
mined by transforming the single-particle operators from the TFD basis at zero temper° 
ature to a TFD basis at finite T, as is shown below. 

3. Complex thermal Bogoliubov transformations 

Let B and C be the matrices which define the transformation from the basis of 
(a, fi) to the basis (or, &), which is the basis associated with the ½-representation of the 
TFD [ 1,12]. As usual, /3 = lIT is the inverse temperature, in units of energy. In the 
following the subindex n will be omitted, for convenience. In explicit form one has, for 
the transformations B and C, 

( a )  = {Bll B12) ( a )  
&+ \ B21 B22 J fi+ (6) 
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and 

Or'+ 

From the anticommutation relations (2) and (3) one obtains 

0 ) 
c =  0a* (B-' 0 l/a* 

= [ d e t ( B ) ] - '  ( B22 - ( E * / E ) B 2 , )  (8) 
- ( E / E * ) B 1 2  Bll ' 

with det(B) = B,1B22 - -  BI2B21, after transforming (1) under the conditions (i) and 
(ii). In (8) we have used the result EA = E*,~*. Since we are dealing with fermions 
the double-tilde operation is defined by 

(a)-= - a ,  (fi~)-= -or,  

(~+)-= - a  +, (t~+) -= - a  +. (9) 

From these relations the elements of the matrix B fulfill the following relations: 

]det(B)] = 1, 

det(B) = B I I / B , , *  = B22/B22* = ( E * / E ) B 2 , / B z I *  = (E/E*)B,2 /Br2* .  (10) 

Therefore, 

B22Bll* =B22*B11 E R, 

E2BlzB21 * = E*2B12*B21 E ]~. ( 1 1 ) 

The invariance of/?/follows from the relationships between the elements of the matrices 
B and C and the anticommutation conditions of the single-particle operators, as can 
easily be seen by applying the transformations (6) and (7), i.e. 

F t = ~ - ~ ( E , a + a ,  *~+- = ~ ( E , u + a n  *~+- - E~a n an) - Enot n an) (12) 
11=1 n=l 

and 

(o (~ ) tH [o (~ ) )  = (o (~ )1~1o(~ ) )=  -Z(P.nB2~nBjzn) E R, 
n=| 

(13) 

where /~, = ,~nEn. Thus, if (O(fl)]H[O(fl)) is real, from the equations which relate the 
elements of B, Eqs. (10) and (11), it is seen that Blln and Bzzn a r e  real for all values 
of the eigenvalue index n. 

It should be mentioned that, even for the adopted TFD representation, the operator 
a + is not the adjoint of a, except for states associated with real eigenvalues. 
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It can easily be shown that any operator ,4 of the form 

~ = a _ ~ = Z ~ n (  a+an ~l+n__an~ 
n \ An A~, J '  (14) 

with -4n E ~ Vn, is invariant under complex thermal transformations and that the 
expectation value of A (/~) is always real if the expectation value is considered on 
a state which is symmetric under the TFD "tilde" transformation [ 11,12,15,17]. This 
result is valid for the case of the Hamiltonian, as an operator, where -4n =/~,. 

4. The generator of the thermal transformations 

In the following we shall construct the generator G of the TFD transformations by 
applying the conditions described in the previous section. The TFD vacuum 10(fl)) 
( (0(f l ) [ )  is related to the corresponding one at zero temperature 10) ((0]) by the 
operation 

10(/3)) = eal 0) ((0U~)I = (0le-a) .  (15) 

Since the vacuum must be invariant under both thermal and "tilde" transformations, one 

has 10(fl)) = 10(fl)) and (0(fl) I = (0(fl)I, therefore G = G. 
The transformations between single-particle operators can be written 

o~ = eG ae -G, ot + = eG a+ e -G, 

~r = eC~e - c ,  &+ = eGa+e -a.  (16) 

The transformed operators a and & ( a  + and ~+) annihilate the thermal right (left) 
vacuum 

,~Io(,o)) = alO(~)) = o, 

( o ( j o )  i,~ + = ( o ( ~ ) I , ~  + = o. ( 1 7 )  

These are the so-called thermal state conditions [ 12]. Since/~ is invariant under these 
transformations 

[ t?/, G] =0.  (18) 

The general form of G is 

G = Z  Onf~ ~ ?than 1 [a+an + a+an] } , (19) 
,,=, .B'2" ... + B 2 ' " . . .  + 2 ( B " " - e z / " )  L a. a~ / 

where On are parameters to be determined. 
The condition C~ = G restricts the value of these parameters and for each value of the 

index n one has 
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O*B~2/A* = OBlz /A  C JR, O*B~I/A = OB21/A* E JR, 

O*(B~1 - B2"2) = O(Bl l  -- B22) E R. (20) 

Once the structure of  G is determined one can evaluate 10(/3)) and (0(/3)[. They are 
given by 

+~+ 
[0(/3)) = eGlO) = 1-'I e°"(B'I"-//z:")/2 [un + vna n a n ]10), (21) 

n=l 

(0(/3) 1 = (0le - c  = (01 1 - I e - ° " ( e " " - e ~ " ) / 2 [ w .  + Zna.a.] ,  (22) 
n=l 

where the coefficients u.,  vn, w. and z. are determined by 

u. = cosh(  Onq.) - ( B l l .  - Bzzn) / ( 2qn)s inh(  Onqn), 

v, = Bl2n/  ( Anqn)sinh( Onqn), 

w ,  = cosh(  Onq,) + ( B l l ,  -- B22,) / ( 2qn)sinh(  Onq,).  

Z, = - B 2 1 n /  ( A* q , ) s i n h (  O, qn),  

q,  = ½ [ (BI  1, - B22n) 2 + 4B12nB21, ] U2. (23) 

From the above relations and from the thermal state conditions it follows that 

Bll sinh (0q) = - q  cosh(0q)  + (Bl l  - B22)/2 s inh(0q) ,  

B22 sinh(0q) = - q  cosh( Oq) - (B11 - B22) / 2  sinh( Oq). (24) 

These equations will be used to compute the thermal dependence of the elements of  the 

matrix B, as shown below. 

4.1. The parti t ion funct ion 

We shall work in Fock's  representation, which is equivalent to the grand canonical 
ensemble. In this representation the TFD vacuum can be written as 

Io(/3) ) = p 1/2 ZlN) ® ,  
N--O 

(0(/3)1= (N] ® (NI pl/2.  (25) 

where p is the statistical operator. Its TFD representation is defined by 

p = Z - ~ e  -(/s/2)(K+R), (26) 

since /5 = p. Z E ]R denotes the associated partition function and 
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a+n an 
K = H - keN = ~2. . , (E,  - ke) ~ - - ,  

rt=l 

k = ~q - kef" = y~ ' ( t ? ,  - ke) an-a___~, 
,=1 a,'~ 

(27) 

The Lagrange multiplier ke E N guarantees that (0( /3)INI0(/3))  = ( 0 ( / 3 ) I f ' [ 0 ( / 3 ) )  = No. 
The index N of (25) labels the set of  different configurations of  N fermions, which 

are obtained by occupying N one-particle states from all possible states belonging to 

the Fock space. More explicitly, for the case of  N ) 1 one has 

N N 
IN)= 1-I 'pJ'~- l/2a+ 10)'pJ If') = I I  ( a ~ , ) -  ~/Za~ I ° ) , .  . (28) 

j=l j=l 

where p j ( j  = 1 . . . . .  N )  =_ PN is the Pth  configuration of N fermions defined in Fock's  

space. Since we are dealing with fermions we shall assume that these configurations are 

different. By definition 10) - 10) ® 10) is the TFD vacuum at T = 0. 
The notation IN) = IN, PN) will be adopted to denote all possible different configu- 

rations of  N fermions. In this notation the one-body term of  p can be written 

N N 
g l N > = ~ - - ~ ( E p ~ - k e ) l N > ,  kl f '>  = ~-~J/~pj - ke) I f '  ) . (29) 

j=l j=l 

Replacing the TFD vacuum by its definition and writing the states of  N particles 

explicitly, one has 

10(/3)) = z - l~2  { [0) @ 10~'~ -}- N>O,PNZ e-(B/2)~-~J~'(P'P/-~)IN'PN)@IN'~N)} 
(30) 

and 

<o(/3)1 = z - ' /2  {<o7 ® <ol + Z 
N>O,Pjv 

e -(#/2) ~=~(eP ' -~) (N,~Nt  @ (N, PNI }. 
(31) 

Since the vacuum is normalized ((0(/3)  10(/3)) = 1) the partition function Z can be 
expressed as 

Z = 1 + Z e-~}-~'='(t?"J-~) (32) 
N>0,PN 

up to an overall factor given by the vacuum expectation value of the operator K. 
These results should coincide with those obtained in terms of the complex thermal 

Bogoliubov transformations. By writing 10(/3)) ((0(/3) I) as a power series of  the 
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operators [a+~ + ] ( [ a a ] )  and comparing term by term with the previous equations one 
obtains 

Z- l~2  = 1-I eO"~B''-B2~")/2Un = I-[  e--O"~SH"--B22")/2Wn' (33) 
n=l n=l 

Z-1/2e-(fl/2)(E'-tz)[/~m] ( ) - l - I  eO"(BH"-B22")/2Un eO"(B'"'--B22")/2t)m 
\ n  4= m 

These equations should be satisfied for an arbitrary value of On and n, therefore 

81117 = 822n,  

~nB21n = - /~nBl2n,  

Un = W. = c o s h ( 0 n ~ ) ,  

e-(fl/2)L, 
Un = Zn = c o s h ( 0 n ~ )  iAn[ , 

Z -1/2 = I - I  c o s h ( O n ~ ) .  (35) 
n=l 

4.2. The occupation numbers 

The coefficients of  the complex thermal transformation B of Section 2 can be deter- 
mined from the results obtained in the previous subsection. For real values of Blln and 

0n and after some algebra one obtains 

- 1 / 2  
Bi in = [ 1 + e -# (L ' -u )  ] , 

_ /in e - ( f l / 2 ) ( ~ , , - l ~ ) B l l n  ' 
Bl2n - - ~ n ]  

/~* 
= --,7 e - ( 1 3 / 2 ) ( E , , - ~ ) B l l n  ' (36) 82,n lanL 

up to a global multiplicative factor of unitary modulus. In consequence, the fermion 
occupation numbers nv can be written as 

a+ an ,~ 
nF = (0(/3)I---~-- " 10(/3) ) = -B12nB21n = v'n" 

= - [ s i n h ( 0 , , ~ )  ]2 = _ [ sinh(0n _X/-L-~F ) ]2. (37) 

By introducing the definition ~Pn = 0nv/-hT the occupation numbers nF can be written as 

n F = [sin(~p.) ]2, 
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Blln = B22n = cos(tpn) = V/] - - nF, 

IE.I sin(~on) = IEnl v ~ ,  
B 1 2 n -  En - E----~ 

B 2 1 n = ~ s i n ( q ~ n ) =  I f f ~ . V ~ .  (38) 

These equalities lead to the following form for G, which is the generator of  the thermal 

transformations: 

G =  Z ~On ~ +~+ ~ l { a n a n  - a n a n }. (39) 
n=l 

Mean values of  the energy and particle number on the ensemble and their deviations 

can be defined, as usual, as derivatives of  the partition function Z 

Z = [ I [ 1  + e -B(~ ' -~ )  ] = HBll2m • (40) 
m=l m=l 

The factors an, appearing in the anticommutators of  Eqs. (2) and (3) and in G of  

Eq. (39) ,  are complex factors which are determined from the definition of  the creation 

and annihilation operators 

ana+10) = srnl0), (41) 

so that I~r.I = 1 Vn. Thus 

(01a, a+10) = srn = (nln) = An, (42) 

and in consequence 

lanl = 1, /~n = IE.I = V/~n 2 + y2n/4, (43) 

where En = en - iyn/2, Yn >/0 Vn. 
We are now in a position to show that the operators H and /1 are indeed hermitian 

operators. The demonstration holds in general for any operator which is invariant under 

thermal transformations, as defined in Eq. (14).  In order to illustrate the concepts we 
~t + '+ and a n, which differ from the adjoints of  an and shall introduce creation operators a n 

fin. Starting from the anticommutator between a and a '+, Eq. (2) ,  and demanding that 

for states with real eigenvalues the + symbol represents hermitian conjugation ( t ) ,  it 

can be shown that 

a t =  ( ~* / A ) l/2a '+, 

( a '+ )  t = (,~*/~)1/2a. (44) 

Similar relations hold for the "tilde" partners. 
We can define the renormalized operators b, b '+ (b, /~'+) by 
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b = a / / [  1/2, [9 = f / a *  I/2, 

b '+ = a ' + / a  1/2, /?+ = a ' + / a  .1/2. (45) 

These operators satisfy the usual anticommutation relations, i.e. {bn, '+ b , , }  = a,m, 

{D~, t) '+ } = 8 , , ,  and the remaining anticommutators vanish. In addition, in the (b, b t+) 
basis, the operations + and f coincide, in consequence 

b '+ = b  t, b = (b '+)  f. (46) 

Hence, when H and /~ are written in the (b, b+), (b,/~+) basis they exhibit their 
hermitian character 

n = ~_, IEolb+b. (47) 
t/=l 

and 

/=/ 
: ~_~ IE.Ib~b.. (48) 

n=l 

The (bn, b +) basis, where all the eigenvalues are real, is equivalent to a basis which 
includes Gamow states, e.g. Berggren's basis [ 13 ]. 

As described in Refs. [9,10] the Hamiltonian eigenvalue density distribution can in- 
clude resonances, which are added to the bound states as broad states with a distribution 
on the real energy axis. That is to say that the full spectrum is treated as a set of 
states with purely real eigenvalues, some of them having a width. This procedure seems 

to be correct for very narrow resonances but the question about its validity at high 
temperatures remains to be investigated. The procedure of Refs. [9,10] was constructed 
to include the concept of a resonance, i.e. a decaying state, in the context of the con- 

ventional statistical mechanics. The TFD description of physical states in the presence 
of resonances, as described above, gives support to the treatment of Refs. [9,10]. By 

definition [2],  the TFD quasi-particles are always stable states, in spite of the fact that 
the original physical states can, in general, have a finite lifetime. This is obviously true 
if one is working in a Fock space, as we have done. 

5. Conclusions 

In this work we have shown that the rules of the TFD can be applied to a basis 
including states of complex energies. The invariance of the total Hamiltonian, under 
thermal transformations, and the structure of the corresponding partition functions have 
been obtained by using generalized commutation relations and complex Bogoliubov 
transformations. It is shown that this assumption does not contradict the basic rules 
of the TFD and that it leads to a description where states with complex energies are 
included as broad states on the real axis. This result is central in the application of 
statistical concepts in a basis with complex eigenvalues, i.e. in Berggren's basis [ 13]. 
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To conclude, we think that the use of TFD together with the use of Berggren's basis 

to account for the continuum may be the suitable theoretical framework to describe 

temperature-dependent nuclear structure effects. As we have shown in this work, the 

already known approximations based on the use of effective Hamiltonian density distri- 

butions of eigenvalues [9,10] seem to be justified in a rigorous way. 
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