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Summary.  The space of analytical test fuctions rapidly decreasing on the real 
axis (i.e: Schwartz test functions on the real axis), is used to construct the Rigged 
Hilbert Space (RHS) where Resonant Gamow States (GS) are defined starting from 
Dirac's formula. It is shown that the expectation value of a self-adjoint operator 
acting on a GS is real. 

The treatment of the continuum and the inclusion of decaying states in 
the definition of the nuclear response is a long-standing problem [1, 2, 3]. The 
inclusion of resonant states in the one-body Green Function has been studied 
years ago by Tore Berggren [4, 5]. Lately, the use of these states to calculate 
one-particle and collective excitations in finite nuclei has been proposed by 
Liotta et al. [6]. 

Several methods have been developed in connection with the treatment 
of GS [7, 8, 9]. The equivalence between some of these methods and the 
correspondence between Bergreen's and Mittag-Lefler's representations have 
been explored in dealing with the use of GS in nuclear structure problems 
[6]. Mathematical properties of GS, in the framework of the Hamiltonian 
formalism, have been studied by Sudarshan and collaborators [10]. Bohm et 
al. [11, 12] have shown that  the RHS is a suitable framework to describe 
idealized resonances as generalized eigenvectors of a self-adjoint Hamiltonian 
with complex eigenvalues. The overlap between GS and wave packets of the 
Breit-Wigner form has been discussed by Romo [8] by using techniques of 
analytic continuation. The possibility of defining expectation values of oper- 
ators in a resonant state has been studied by Tore Berggren in a recent work 
[13] 

In this talk we shall show some results concerning the calculation of ex- 
pectation values on resonant states [13]. At variance with the usually adopted 
mathematical  formalism [7, 12] we shall use the concepts of tempered ultra- 
distributions and Gelfand's triplets [14]. In the following, only the aspects of 
the derivation which are relevant to validate Berggren's approximation will 
be shown. The mathematical details of the formalism are given in [15]. 

The space of analytical functionals ( '  (tempered ultradistributions) is the 
minimal space whose Fourier anti-transform accomodates real exponential 
functions as distributions. This space is the dual of the space of analytical 
test functions ~. Together with the Hilbert space 7/ one can construct the 
R H S  or Gelfand's triplet (GT) [14, 15] ( C 7 / C  ( .  In this RHS a linear and 
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symmetric operator A acting on ~, which admits a self-adjoint prolongation 
( acting on 7/, has a complete set of eigen-functionals on with real gener- 

alized eigenvalues [14]. Let us introduce the GT (~, 7/, ~',) which is related to 
(~, 7/, ~ ) by Fourier transforms. The Schwartz Space S of tempered distri- 
butions is included in ~' and in ~' (S' 6 ( ) .  The extension to ~' of Dirac's 
formula is given by [15] 
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where ¢ (t) = ¢c (t + !0 ) -  ¢c ( t -  i0). In addition to (~, 7/, ~') and (~, 7/, ¢') it 
exists the GT (¢a, 7/,, ~a) which admits the definition of the position operator 

acting on 7/~. If x > 6  ~: then < x'lx > =  5 ( x - x )  and < x'l~.lz > =  
~ ( x  - x') . 

The relations I¢ > 6  ~ ¢* < xl¢ > =  ¢(x) 6 ~, !~ > 6  7/~ ¢~ < 
x l ~ > =  ~(x) 6 7 t  and 1¢ > 6 ~ :  ¢~ < zl¢  > =  ¢(x) 6 ~  represent Dirac's 
formalism of Quantum Mechanics in a RHS [16]. Let us introduce a self- 
adjoint operator H,  acting on 7/, with the eigenstates (eigenvalues) given by 
H[En > =  E, IE,~ > ( for n 6 A/" ) and HIE > =  EIE > (for E0 < E < E1 ). 
Thus from Eq.(1) one can write 

(2) 
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^ • 1 / 1_ E(¢(E)), dE, 
(¢(EG)) = 2~i E~ - 

Eo 

with EG = ED + iF F > 0. In Dirac's notation one has 

E 1  

^ * 1 [ 1 
(3) (¢(EG)) = 2rri J EG* -- E < ¢IE > dE. 

Eo 

We can now define 

E 1  

1 / 1 IE> dE (4) lEG* > :  ~ EG* - E  
Eo 

^ * 

Then ~b(EG) --< Egl~b > and (¢(EG)) = <  ¢IEG* >. The state lEG* > 
is by definition a GS eigenstate of H.  

The states lEG* > are normalizable. The diagonal matrix element of H 
between GS is given by the expression 
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(5) < EGIHIE5 > =  ED + 

[IE,-E~)~+r ~] 
r In L ( E o - E D )  2+F2 J 

2 [ a r c t a n ( - ~ - ~ ) -  a r c t a n ( N @ - ) ]  

The probability distribution associated to a GS is given by 

P(E) = I< EIE5 > 12 

r 1 
(6) = 

( E -  ZD) 2 + I '2 [arctan (~_gLa) _ arctan (N@o_)] " 

as proposed in [8, 11]. 
For a self-adjoint operator A, which is acting on ~/~, the expectation value 

of A between GS 

(7) < EclAIEG* > =  

- t -  C<) 

/ 
- -  (:X:) 

is real since < EalA > =  (< ~IE5 >)*. 
Following Berggren's notation [13] the GS state can be defined by 

(8) 

t o o  

vCf f tE(~), k,Z > 
lEa* >= i - - - ~  EG* ---- E dE,  

0 

and in the impulse representation it is written as 

(9) lEa* > :  i ~  J v m E - j ~  E--(f~) dk. 
0 

Consequently, for the expectation value of A one has the expression 

(10) 
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<EGIAIEG*>=T~ 0k d k ' ~  <k,k,llAIk, k,t> 
(E ( f i ' )  - E G ) ( E ( f i )  - E a ' )  

l, l~ 0 

We can now compare the result provided by the present method and by 
Berggren's conjecture, namely: < A > =  Re < EG*]A]EG* >, where 

(11) 
+ c o  + c o  

< Ea*IAIEa* > =  - - ~  dk dk - -  
7r m 

l,l' 0 0 

< k' ,~' , l ' lAIk,  k,l > 
(E(k') - Ec~)(E(k) - EG') 
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The relation between the above equations can be expressed as 

< A > = <  EaIA[Ea*  > =  Re < Ea*IAIEa*  > - 

l , l '  0 

+/ ~ [ ] < k',]z',l'lAlk, k,l > 
dk' E(f¢) - E ( f / )  ]E(k ) - Ec]  ]E(k) - Ea l  m , - : , - -  - - - Y - - ~ "  - - 2 ~ -  

0 

(12) 
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It  means that  the result obtained in [13] is valid at leading order in F and 
that ,  in general, < EalA]Ea* ># Re < Ea*IA[Ea* > . 
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