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Exactly solvable fermion-boson mapping representations
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The Holstein-Primakoff boson mapping technique is applied to transform Hamiltonians defined in terms of
the generators of the SB) and Sg4) groups. These solvable models consist of a pair of fermions which
interact with hard bosons. It is shown that the mapping to ideal bosons preserves the algebra and that exact
matrix elements of the original fermionic Hamiltonian can be reconstructed from the bosonic representation.
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I. INTRODUCTION mapping method, both analytically and numerically. The re-

sults for the other case, i.e., the model which exhibits the

| Thle Qef;/elopmdegt OLm]icprggcopic:]c?uclgar rlr;odels has peegp(4) group structure, will be presented in an algebraic way
argely influenced by the findings of fermion-boson mappingy, 4oy, for numerical applications. The underlying physical

technique$1], pz?\rticularly_ in the analysi_s of exactly solvable \qiivations for both models are the analysis of symmetry
models and their extensions to realistic cases. Among theggeaking effects and the collapse of linear bosonizations for
models, the ones based on the (3J Sp4), SA5), and  certain values of the interactions. These questions have re-
SQ(8) algebras have received considerable attention. Recejved considerable attention in different fields, for instance
cently, results of the use of the §8) and S@8) groups have in the study of the validity of the random phase approxima-
been reported in the boson description of four fermion cor+ion in elementanf17] and realistid 18] situations.

relations[2]. Central to these studies is the formulation of In the first part of the following section the algebra of the
exact solutions applicable to the treatment of nuclear shorSU(2) and Sg4) models is reviewed and the transformation
range correlations, like pairinf8] and isospin-pairing de- onto boson variables is introduced. Next, the matrix elements
pendent effects[2]. Also, the study of nonperturbative of the fermion Hamiltonians are constructed in the boson
schemes to describe interactions between fermions amgpace. Exact solutions and the solutions obtained by applying
bosons has some relevance in different situations where tHzoson-mapping techniques are compared in the last part of
usual perturbative expansion fails. This problem is found inthe section, where relevant matrix elements are listed. Re-
the theory of strong interactiog] and in the microscopic sults corresponding to first excited states are discusse_d in the
description of nuclear many-body systems and finite nucleframework of the random phase approximati&PA) and in

[5]. The description of these systems can be achieved bgpe boson mapping representatlon, respectively. For the case
using boson expansion methof&-9]. Among these meth- of the SuU2) Ham|It_on|an, the re;qlts of the RPA are also
ods one can select the boson expansion of Rél, which is a}vallable frqm st_udles on the validity of _the use of perturba-
a mapping of bifermion operators onto boson operators. ThVe expansions in the presence of spurious mgdes

method was originally introduced ii0] for the generators

of SU(2) and it was lately generalized for the generators of

Sp4) by Evans and Krausfll]. The representations are Il. FORMALISM

constructe(_j by requiring that the algebra obeyed by biIi_near In this section we shall introduce the generators of the
operators in the transformed space be the same as in tré%(z) and S4) groups, the corresponding Symmetry opera-

original one. tors, and the associated basis. We shall transform the fermi-

It is the aim of this work to describe the application of this onic Hamiltonians in terms of ideal bosons and compare ex-
mapping to exactly solvable models where a pair of fermions P

interact with hard bosons. The first of these models WhichaCt solutions with the ones given by the mapping method. In
shall be referred to as the ) case, was proposéd by dealing with the applications of the formalism we shall treat

Schitte and Da Providencifl2]. These authors have added gxutatlhons In a res_tnctgd@subspace, like the one of the ran-
to the Lipkin model[13] a bosonic degree of freedom. The om phase approximatiqb].

second model, the $) case, is an extension of the one of
[12] and it in_cludes tw_o additipngl external bosor_15. These A. The SU(2) case
bosons can interact with fermionic operators which create

(annihilate two-particle and two-hole states, respectively We begin by applying the boson mapping[af] to the
[14]. The introduction of these new degrees of freedom waslamiltonian proposed by Sctta and Da Providencifl2].
motivated by the need to describe the interaction of di-The system consists dfi fermions moving in two single
baryons with hard bosongl5]. As described in16], the  shells(hereafter denoted by the subindexes 1 apdEach
Sp(4) algebra can accommodate particle, hole, and particleshell has 2@ substates which are labeled by the quantum
hole pairs, both of collective and noncollective structure.numberk. The energy difference between shells is fixed by
Since exact solutions of the $2) model of[12] are known, the scalews. The creation and annihilation operators of par-
the case will provide us with a testing ground for the bosorticles belonging to the upper level, 2, are denotedibyand

0556-2813/98/5(6)/30557)/$15.00 57 3055 © 1998 The American Physical Society



3056 OSVALDO CIVITARESE AND MARTA REBOIRO 57

azk, respectively, while for holes in the lower level, 1, the where we have defined the boson numbigs=B'B and
creation and annihilation operators are denotecbhyand n=blb; .

The fermions are coupled to an external boson field rep- We shall diagonalizéis in the basis expanded by
resented by the creatigiannihilation operatorsB' (B) and
by the energywg, respectively. Ingnp) =
The Hamiltonian readgl2] Vns!nyg!

bi™BM). 7

¢ _ The nonzero matrix elements bffg are
H= S (v+v)+ wgB™B+G(T,B'™+T_B). (1

(ninp|Hg|NNp) = 0N+ wgny,
G, is the strength of the interaction in the particle-hole chan-

nel and the operators (ns+1np+ 1| Hg|ninp) =Gy (ns+ 1) (np+1)(2Q —ny) ]2
®
v=2, ahayx, v=>, blby, 2) The operatoP, of Eq. (4), can be mapped onto the op-
K 3 erator
are particle(v) and hole ¢) number operators. Pg=Ng—n;, 9

The operatord .. andT, are the generators of the algebra
of the group SW2) [19]. In terms of bi-linear combinations leading to the identity
of fermion operators these generators read

Pglninp)=L[ninp)(L=ny—ny). (10
T.=2> albl,, T_=(T)T, The basig7) can also be labeled by the eigenvaluesgf,
k hereafter denoted bl. By using this notation, the matrix
elementg8) can be written
1 _
To=p(ren) =42, ® (L,ng[HglL,ns) = wini+ wp(ns+L),
The Hamiltonian(1) commutes with the operator (L,ng+1|[Hg|L,n¢)=Gy[(n¢+1)(ns+1+L)(2Q—np)]H2
11
1 _
P=B'B— §(V+ V). (4) These matrix elements, given by the Holstein-Primakoff

boson mapping, coincide with the exact matrix elements, as
can be seen from12]. Exact solutions of this model have
been obtained by a separation of variables followed by a
?ferturbative expansion in terms of intrinsic and collective
coordinateg17]. In the framework of the RPA method, the
spectrum of excited states of E(fl), written in terms of

- . phonon operators which are linear superpositions of fermion
Next we transform the original fermion space onto the i ang hosons, contains spuriosities which are not present

T _ .
boson spacebs}, where [by,bj]=1, by preserving the i, the exact solution. In this respect the boson mapiig
original SU2) commutation relations between the generatorsbe|Ongs to the group of techniques which can be used to

Therefore, the matrix elements df can be calculated in a
basis labeled by the eigenvalues of the number operators f
bosons and fermions, as shown[it2]. The corresponding
expressions are given ir12] and we shall avoid repeating
them here.

Ty, T, andTy, ie, disentangle physical and spurious effects in approximate
treatments of the Hamiltonian. In the next section we shall
T.=bl(2Q-blbp)¥? T_=(2Q0-blbs) %y, present RPA and exact results, obtained by using the boson

mapping, in a regime of parameters of Ef) where a tran-
" sition from normal to deformed solutiojd2] can be pro-
To=Dbfbi— Q. ) duced. As shown in17] the separation of spurious and
physical degrees of freedom is essential in thigZhodel,
The new boson operatdy] and its Hermitian conjugate if the RPA approximation is used to construct effective bo-
bs are introduced, instead of the original onB% and B, son excitations.
because fermionic and bosonic excitations of the Hamil-

tonian(1) have, i_n general, different scales._ B. The Sp(4) case
After performing the above transformatiorior short, ) ) o ] ]
the Hamiltonian(1) the expression particle-hole nature, were considered by Geyer and Hahne

[16] in algebraic models. These models can be adopted, with
. . ; ; + some modifications, as the basic structures to represent scalar
Hg=wni+wgNg+G[b;(2Q—bsb)B'+H.c], (6)  and vector couplings between bosons and fermions and they
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can provide us with testing grounds for nonperturbative ap-
proacheq7]. As a generalization of the model §12] we S+:Ek sg(k)ad by, S-=(S,)",
shall introduce the coupling of bifermion excitations with
bosons. The fermionic degrees of freedom will be defined as
in [16] while bosonic excitations will be represented by ex- So=Lo— Ko, (13
Leglr;alcgr?é?]?; Vgghdggglicr:ir:? Iﬁ]’oz:fgg f%erlrgcskiar,]g?g db:_me and they are the generators of the algebra of the simplectic
son. Starting from these assumptions on the Hamiltonian wéroup Sit4) [16]‘ . L .
shall present the results of the boson mapping and show the Exact solu'qons of this Hamiltonian can be Obta'?ed by
elements of the basis and the resulting matrix elements. roup_theoretlcal methodsee, pleasqjll,ZC] for details.
have also performed numerical applications of the formalism he eigenvectors belong to the basis of the operators
and we shall comment on them, in the next section. Details
related to the construction of the algebraic solution can be
found in[11] and in[20].

We consider the Hamiltonian

1 _
P=B'B+B}B,+B/B,— S(v+w),

1
H=Hos+Hop+Hpn+Hppt+Han, R=B{B,—B}B,+ S(r=n). (14)

with In correspondence with the notation introduced after Eq.
(6) we shall define the fermionic and bosonic number opera-
® o . - - . N
Hof:%(,ﬂrv), tors nf:bIbfA, np=blb,, Ny=blb,, Ng=B'B, N,
=B!B,, andN,=B/By.
; ; ; The boson mapping proposed in REE1], preserves the
Hob=wgB'B+ w,B By + wpBpBy, algebra of the generators of this group. The corresponding
boson images are
Hon=G(T BT+T_B), o
Li=by(Q=ny=np*%  L_=(Ly)T,
Hpp=Ga(L Bl +L_By),

Hhn=G3(K Bl +K_By). (12

In the above equation the fermions are coupled to bosons.
These bosons are created by the opera@isB], andB]
and their energies a@g, w,, andwy,, respectivelyG, is,
as in the previous example, the strength of the interaction in
the particle-hole channel ar@, andG; are the strengths of
particle-particle and hole-hole channels.

The operatorsT., L., K., S., Ly, andKg,, of Eq.
(12) are defined by

Ky=bi(Q-n,—np*2  K_=(K,)T,

n 1. 1
KO: nh+§nf_§Q y

S, =bl®(ny)(Q—n,—ny %,
—bJ(Q—ny—np 2D (ng) by,
Te=2 agbl, T-=(T)"

S_=(s)",
To=LotKo, T, == bf(Q—ny—np) Y0 - N, =N V2D (ny)
+d(ng)bblby,
Lo=3 abab, L =L i
k>0
T_=(T)". (15)
L0=E(V—Q) With these generators the mapped Hamiltonian reads
2 L
HB=wf(ﬁf+ﬁp+ﬁh)+wBNB+ prp+ whNh
Ki=2, bubl i, K=K, +G[bl(Q—y— A Y8+ H.c]

+G3[bl(Q—n,—np)¥Bl+H.c]

1_
Ko=5(v=11), +G[ - bf(Q— =) YA Q—n,—n)2D(n)) B
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+<I>(ﬁf)b;bﬁbeT+ Hel, (16) % Bg[(aw—L>/2+m]B;[<a—ﬁ—L)/2+2Q—N+m]|>,
with (18)

where k=n; and m=n,. These states are labeled by the
quantum numbera and 8 and by the number of particlés.

d(n.)=
(nr) These quantum numbers are defined by

(20+2-h) r’z
(Q+1-n)(Q-ng)|

The images of the operato”sandR, of Eq. (14), read a=Ng—n+Ny—ny+Ny—np,
Pg=(Ng+N,+Ny) = (ng+n,+ny),
ﬁ:Nh‘l‘nh_(Np“‘np),

Rg=(Np+np) —(Np+np), 17
o o . N=20-ny+n,. (19
and the basis in the image space is defined by the eigenvec-
tors In addition, we shall define =Ng—n; . After some alge-
g g M 20— N+ M)t (ke L) bra we have obtained the following nonzero matrix elements
|PRIL ik m = NKL k,mb1 by B of Hg (16) in the basig(18)

(ORA ( ml HIPRA ) = 0¢(M+ Q= N2+ m+K) + wg(L +K) + 0, [ Q —N/2+ m+ (a— - L)/2]
+op[m+(a+B—L)2],

a+pB-L
<q)ﬁ'i2,|_,k,m+1|H|<Dﬁ',6L,k,m>:G2\/(m+1) m+1+ T)(Q—k—m),
N N a—B—L\[N
(D s HIORE ) =G| 2 5 +met |y 0 Famers TEH [N )

20+ 2—K)(Q—m—K)[(N/2)—m—K]
(Q+1-K)(Q—kK) '

(PR s 1 HIPRL o) = = Ga(k+ 1) (k+1+1L) \/

(Q—N/2+m+1)(L+k+1)(2Q+3—K)

<¢)ﬁﬁ_+2,k—l,m+l|H|(D§‘,BL,k,m>:Gl Vk(m+ 1) (Q_k+ 1)(Q+2_k)

(20

The complete set of nonzero matrix elements can be obef the exact ground state and excited states in the so-called
tained from the above equations by observing the selectionormal and deformed phases. In the normal phase the abso-
rulesN,k,m—N=*2k+1m=*1. lute ground-state energy has=0, which is the eigenvalue of

In analogy to the case of the §2) model we observe that the symmetryP corresponding to the unperturbed ground
the matrix elements obtained in the image space and th&ate. In this phase the number of fermion pairs and the num-
exact ones, of the initial fermion and boson basis, do coinher of bosons are the same. This regime persists for small
cide. For a comparison between both sets of expressions, thg,es of G,. For large values oG, the model of[12]
reader is kindly referred tf20] where the exact matrix ele- exhibits a boson condensation, i.e., positive valuek afe

ments are listed. assigned to the absolute ground state. This is the so-called
deformed phase. For values af; larger thanw; and for
intermediate values d&; the model shows minima for val-

In the first part of this section we shall present the resultd/€S 0fL<0, i.e., a condensate of fermion pairs. We have
obtained by applying the boson mapping introduced in theverified that the results given by the boson mapping proce-
previous section to the S) model of Ref[12]. We aim at dure coincide with the results §12]. The absolute value of
the comparison between the present results and the ones i€ ground-state energy, obtained in the boson mapping, is
[12] to assess the validity of the boson mapping. In order teshown in Table I, with the corresponding values of the exact
remind the reader about the model [4P] we shall briefly ~symmetryL and the one corresponding to the mean field
summarize the conclusions fit2] concerning the structure approximation ofH (see[17]). These results coincide with

Ill. RESULTS AND DISCUSSION
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TABLE I. Absolute ground-state energi(%® , as a function of
the coupling constank=G;2Q/w;wg, and the exactl() and
mean field L) values of the symmetr [Eq. (9)] defined in Eq.
(10). Top and bottom correspond t@;=wg=1 and wi=1wg
=3, respectively.

X E( L L
0.0 0.00 0 0.0
0.5 —-0.13 0 0.0
1.0 —-0.74 0 0.0
15 —-5.83 5 5.2
2.0 —17.40 16 16.8
2.5 —33.60 33 33.1
3.0 —53.86 53 53.3
0.0 0.00 0 0.0
0.5 —-0.20 0 0.0
1.0 —-0.96 0 0.0
15 —6.43 -3 —-3.8
2.0 —18.20 -2 -1.9
2.5 —34.50 3 2.6
3.0 —54.80 9 8.9
the results of Tables 1 and 3 of RgL2]. Also, one can see

that the structure of the different phases found/12] is 00
preserved by the mapping. The parameters used in the cal
culations are given in the caption to Table | and they have
been obtained foN =2() =30 particles and the reduced cou-  FIG. 1. Exact first excited states of E@) in the basig7). Solid
pling constank is defined byx=G/2Q/w;wg. The depen- and dashed lines correspond to positive and negative valueobf
dence of the results upon the ratio between the unperturbegh. (10), respectively. The results are shown for values of the cou-
fermion and boson energids; and wg, respectively is  pling constantx=G;20Q/wwg in the interval 6<x<3 and for
shown in Table | pi=wg=1), (w;=1, wg=3). The results N=2Q particles. The curves, from bottom to top, correspond to
of Table | show the appearance of a fermion condensate=0.4,8,12,16(solid lines and L=-4,-8,—-12,—~16 (dashed
(L<0), as is discussed ii2]. lines). The upper box(@ shows results forw;=wg=1 and the
Figure 1 shows the values of the excitation energy correlower box(b) shows results for the case with=1, wg=3.
sponding to the first excited state Idf (6), for different val-
ues of the coupling constartand for positive and negative lines) correspond to normalx&1) and deformed X>1)
values ofL. The spreading of the results corresponding tosolutions.
positive values ot is larger than the spreading associated to In the normal phase the absolute ground statelha$
negative values of, as can be seen from the results of Fig.and the RPA values reproduce fairly well the exact energy
1. difference between the firkt=1 state and the ground state.
The dependence of the first two eigenvalues, for differenOf the two solutions of Eq(21) the value with the positive
values of the coupling constartand forL=0,*+1, is shown sign in front of the square root correspondd.te 1 and the
in Fig. 2. For the case ab;=wg=1 [case(a)] the structure absolute value of the other solutionlte= — 1, as in[12] and
of the ground state is always given by positive values of [17].
(see also Table) land the transition from the normal to the In the deformed phase the agreement between the RPA
deformed phase appears around the valadl. The results and exact results is evident for large valuesxofHere, the
for the negative value df are always larger than the results exact energy of the first excited state is defined as the energy
for positive values and the energy of the fitst 1 state is  difference between the first two eigenvalues corresponding
always smaller than the energy of the sectreO state. A to the value oL which minimizes the absolute ground-state
different behavior is shown by the curves of FigbR where  energy.
the second.=0 eigenstate and the firkst=1 state become For the case of the deformed phase the RPA gives two
nearly degenerate around=1 and a fermion condensate solutions, one of them spurious and another which ap-
appears arounk=1.5. This shows the strong dependence ofproaches the exact value. Aroure-1 the RPA collapses.
the results upon the scale adopted for the bare energies, aslibe RPA spurious mode also has zero energy and it is inde-
the case for the results 12]. pendent of the value used for the coupling constanThe
The results shown in Fig. 3 correspond to excitation en<collapse of the first excited RPA state »at 1 signals the
ergies obtained by using the RPA meth@thshed lines beginning of the deformed phase. The RPA values depend
[12,17. The results shown as exact results in Figis8lid  also upon the ratio of the fermionic and bosonic scales of the

0.5 1.0 1.5 2.0 2.5 3.0
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FIG. 2. Exact eigenstates éf (6) in the basiq7), for L==*1
and L=0. Solid, dashed, and dotted lines read for the first twol, its for th  the first ited state of ™
eigenvalues corresponding ko=0,1,—1, respectively. The results ine) results for the energy of the first excited state of &). The

correspond to the parameters given in Fig. 1 for the upper and Iowelllpper(a) and_ Iowz_ar(b)_ boxes show results obtained with the pa-
boxes(a) and (b). rameters defined in Fig. 1.

FIG. 3. Comparison between exdsblid line) and RPA(dashed

Hamiltonian. This is shown by the comparison betweenMethod leads to a good agreement with the exact and ap-
casega) and(b) of Fig. 3. The effect produced by the asym- Proximate(RPA) solutions of the S(2) model.
metry (w;+# wg) Upon the RPA eigenvalue is shown by the We can now discuss some of the features extracted from

lower curve of Fig. ). The RPA expression of the first the numerical_ SOI_U“O”S O_f the Hamiltoniah6). .
excited state, in the normal phase, is the following: In the applications which we have performed, the matrix
elements of Eq(20) were calculated foN=8, =4 and all

the energiesv of Eq. (12) were fixed at the valuer=1. The

1 1 2G,V20 2 coupling constant§; of Eq. (12) were transformed into adi-
wrpp=—|0¢— wg| == (wi+ wg) 1-| —— mensional couplings; as in[12], i.e., by scaling the cou-
2 2 wit g plings with factors proportional to the inverse of the energies

(2) W, . The values ok; were varied in a mesh with steps of 0.25
. and the Hamiltonian matrif20) was diagonalized in a basis

For the deformed caset-1) the RPA method yields of states having good values afand 8, Eq. (19). For each
set of values of the couplings the spectrum of eigenvalues

(G /29)4 of H was obtained and optimal values af and 8 were
ORpA= l—+w2_2w w (22)  selected by searching for the lowest ground-state energy.
RPA B fB- . . . .
wg? The solutions of the §g) Hamiltonian also display a nor-

mal and a deformed regime, similar to the case of th€2pU

As said before, the RPA also gives a spurious solution asymmetry. We shall identify these normal and deformed
wrpp=0 [17]. The RPA solution of the previous equation phases in terms of the symmetry numbermnd 3, which are
can be compared WitIEtmin_EE,min of the exact solution the eigenvalues of Eq.14). For interaction channels with
[12]. couplingsx;<1 (i = particle-particle, hole-hole, and particle-

After this comparison between the solutions obtained withhole) the minima correspond to values afand 8 close to
the methods of12] and the present one, and to concludezero(the normal phageFor larger values af; a condensate,
with the first part of the discussions, it would be enough toof either fermion or boson origin, can be produced. The as-
say that we have shown that the use of the boson mappingpciated minima correspond to nonzero valueg,oivhile 8
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can remain close to zero. As in the case of the modgl®f  groups. It is shown that the mapping preserves the algebra.
condensates in the 8p) model can correspond to positive or Also, it is found that the matrix elements of each of the
negative values of. Positive values of are associated to a Hamiltonians calculated in basis having exact symmetries
condensate of bosons while negative values oépresent a  coincide with the matrix elements obtained after applying the
condensate of fermions. The occurrence of such condensatesmpping onto the ideal boson space.

is also a function of the fermionic and bosonic scales intro- It is concluded that the mapping is a good alternative way
duced in the Hamiltonian. For the @p Hamiltonian(16)  to get exact solutions and that it may be easier to apply,
the collapse of the RPA signals the splitting of the RPAinstead of the algebraic way, in evaluating the validity of
phonons into phonons which are predominantly given byapproximate methods, like the RPA. Applications of the
two-fermion components(particle-particle or hole-hole mapping method to QCD inspired models are in progress
phonong [18]. [21].
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