
PHYSICAL REVIEW C JUNE 1998VOLUME 57, NUMBER 6
Exactly solvable fermion-boson mapping representations

Osvaldo Civitarese and Marta Reboiro
Department of Physics, University of La Plata, C.C. 67, La Plata, Argentina

~Received 18 November 1997; revised manuscript received 13 February 1998!

The Holstein-Primakoff boson mapping technique is applied to transform Hamiltonians defined in terms of
the generators of the SU~2! and Sp~4! groups. These solvable models consist of a pair of fermions which
interact with hard bosons. It is shown that the mapping to ideal bosons preserves the algebra and that exact
matrix elements of the original fermionic Hamiltonian can be reconstructed from the bosonic representation.
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PACS number~s!: 21.60.Fw, 21.60.Jz
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I. INTRODUCTION

The development of microscopic nuclear models has b
largely influenced by the findings of fermion-boson mapp
techniques@1#, particularly in the analysis of exactly solvab
models and their extensions to realistic cases. Among th
models, the ones based on the SU~2!, Sp~4!, SO~5!, and
SO~8! algebras have received considerable attention.
cently, results of the use of the SO~5! and SO~8! groups have
been reported in the boson description of four fermion c
relations@2#. Central to these studies is the formulation
exact solutions applicable to the treatment of nuclear s
range correlations, like pairing@3# and isospin-pairing de
pendent effects@2#. Also, the study of nonperturbativ
schemes to describe interactions between fermions
bosons has some relevance in different situations where
usual perturbative expansion fails. This problem is found
the theory of strong interactions@4# and in the microscopic
description of nuclear many-body systems and finite nu
@5#. The description of these systems can be achieved
using boson expansion methods@6–9#. Among these meth-
ods one can select the boson expansion of Ref.@10#, which is
a mapping of bifermion operators onto boson operators.
method was originally introduced in@10# for the generators
of SU~2! and it was lately generalized for the generators
Sp~4! by Evans and Krauss@11#. The representations ar
constructed by requiring that the algebra obeyed by bilin
operators in the transformed space be the same as in
original one.

It is the aim of this work to describe the application of th
mapping to exactly solvable models where a pair of fermio
interact with hard bosons. The first of these models, wh
shall be referred to as the SU~2! case, was proposed b
Schütte and Da Providencia@12#. These authors have adde
to the Lipkin model@13# a bosonic degree of freedom. Th
second model, the Sp~4! case, is an extension of the one
@12# and it includes two additional external bosons. The
bosons can interact with fermionic operators which cre
~annihilate! two-particle and two-hole states, respective
@14#. The introduction of these new degrees of freedom w
motivated by the need to describe the interaction of
baryons with hard bosons@15#. As described in@16#, the
Sp~4! algebra can accommodate particle, hole, and parti
hole pairs, both of collective and noncollective structu
Since exact solutions of the SU~2! model of@12# are known,
the case will provide us with a testing ground for the bos
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mapping method, both analytically and numerically. The
sults for the other case, i.e., the model which exhibits
Sp~4! group structure, will be presented in an algebraic w
to allow for numerical applications. The underlying physic
motivations for both models are the analysis of symme
breaking effects and the collapse of linear bosonizations
certain values of the interactions. These questions have
ceived considerable attention in different fields, for instan
in the study of the validity of the random phase approxim
tion in elementary@17# and realistic@18# situations.

In the first part of the following section the algebra of th
SU~2! and Sp~4! models is reviewed and the transformatio
onto boson variables is introduced. Next, the matrix eleme
of the fermion Hamiltonians are constructed in the bos
space. Exact solutions and the solutions obtained by appl
boson-mapping techniques are compared in the last pa
the section, where relevant matrix elements are listed.
sults corresponding to first excited states are discussed in
framework of the random phase approximation~RPA! and in
the boson mapping representation, respectively. For the
of the SU~2! Hamiltonian, the results of the RPA are als
available from studies on the validity of the use of perturb
tive expansions in the presence of spurious modes@17#.

II. FORMALISM

In this section we shall introduce the generators of
SU~2! and Sp~4! groups, the corresponding symmetry ope
tors, and the associated basis. We shall transform the fe
onic Hamiltonians in terms of ideal bosons and compare
act solutions with the ones given by the mapping method
dealing with the applications of the formalism we shall tre
excitations in a restricted subspace, like the one of the r
dom phase approximation@6#.

A. The SU„2… case

We begin by applying the boson mapping of@10# to the
Hamiltonian proposed by Schu¨tte and Da Providencia@12#.
The system consists ofN fermions moving in two single
shells ~hereafter denoted by the subindexes 1 and 2!. Each
shell has 2V substates which are labeled by the quant
numberk. The energy difference between shells is fixed
the scalev f . The creation and annihilation operators of pa
ticles belonging to the upper level, 2, are denoted bya2k

† and
3055 © 1998 The American Physical Society
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3056 57OSVALDO CIVITARESE AND MARTA REBOIRO
a2k , respectively, while for holes in the lower level, 1, th
creation and annihilation operators are denoted byb1k

† and
b1k .

The fermions are coupled to an external boson field r
resented by the creation~annihilation! operatorsB† (B) and
by the energyvB , respectively.

The Hamiltonian reads@12#

H5
v f

2
~n1 n̄ !1vBB†B1G1~T1B†1T2B!. ~1!

G1 is the strength of the interaction in the particle-hole ch
nel and the operators

n5(
k

a2k
† a2k , n̄5(

k
b1k

† b1k , ~2!

are particle~n! and hole (n̄) number operators.
The operatorsT6 andT0 are the generators of the algeb

of the group SU~2! @19#. In terms of bi-linear combinations
of fermion operators these generators read

T15(
k

a2k
† b1k

† , T25~T1!†,

T05
1

2
~n1 n̄ !2V. ~3!

The Hamiltonian~1! commutes with the operator

P5B†B2
1

2
~n1 n̄ !. ~4!

Therefore, the matrix elements ofH can be calculated in a
basis labeled by the eigenvalues of the number operator
bosons and fermions, as shown in@12#. The corresponding
expressions are given in@12# and we shall avoid repeatin
them here.

Next we transform the original fermion space onto t
boson space$bf%, where @bf ,bf

†#51, by preserving the
original SU~2! commutation relations between the generat
T1 , T2 , andT0 , i.e.,

T15bf
†~2V2bf

†bf !
1/2, T25~2V2bf

†bf !
1/2bf ,

T05bf
†bf2V. ~5!

The new boson operatorbf
† and its Hermitian conjugate

bf are introduced, instead of the original onesB† and B,
because fermionic and bosonic excitations of the Ham
tonian ~1! have, in general, different scales.

After performing the above transformations~for short,
mapping! we get for the Holstein-Primakoff@10# image of
the Hamiltonian~1! the expression

HB5v f n̂ f1vBN̂B1G1@bf
†~2V2bf

†bf !B
†1H.c.#, ~6!
-

-

for

s

l-

where we have defined the boson numbersN̂B5B†B and
n̂f5bf

†bf .
We shall diagonalizeHB in the basis expanded by

unfnb&5
1

Anf !nb!
bf

†nfB†nbu&. ~7!

The nonzero matrix elements ofHB are

^nfnbuHBunfnb&5v fnf1vBnb ,

^nf11nb11uHBunfnb&5G1@~nf11!~nb11!~2V2nf !#
1/2.
~8!

The operatorP, of Eq. ~4!, can be mapped onto the op
erator

PB5N̂B2n̂f , ~9!

leading to the identity

PBunfnb&5Lunfnb&~L5nb2nf !. ~10!

The basis~7! can also be labeled by the eigenvalues ofPB ,
hereafter denoted byL. By using this notation, the matrix
elements~8! can be written

^L,nf uHBuL,nf&5v fnf1vB~nf1L !,

^L,nf11uHBuL,nf&5G1@~nf11!~nf111L !~2V2nf !#
1/2.
~11!

These matrix elements, given by the Holstein-Primak
boson mapping, coincide with the exact matrix elements
can be seen from@12#. Exact solutions of this model hav
been obtained by a separation of variables followed b
perturbative expansion in terms of intrinsic and collecti
coordinates@17#. In the framework of the RPA method, th
spectrum of excited states of Eq.~1!, written in terms of
phonon operators which are linear superpositions of ferm
pairs and bosons, contains spuriosities which are not pre
in the exact solution. In this respect the boson mapping~5!
belongs to the group of techniques which can be used
disentangle physical and spurious effects in approxim
treatments of the Hamiltonian. In the next section we sh
present RPA and exact results, obtained by using the bo
mapping, in a regime of parameters of Eq.~1! where a tran-
sition from normal to deformed solutions@12# can be pro-
duced. As shown in@17# the separation of spurious an
physical degrees of freedom is essential in this SU~2! model,
if the RPA approximation is used to construct effective b
son excitations.

B. The Sp„4… case

Bifermion excitations, of particle-particle, hole-hole, an
particle-hole nature, were considered by Geyer and Ha
@16# in algebraic models. These models can be adopted,
some modifications, as the basic structures to represent s
and vector couplings between bosons and fermions and



ap

th
a

x
le

w
t
W

ism
ai
b

on

n
f

ctic

by

q.
ra-

ing

57 3057EXACTLY SOLVABLE FERMION-BOSON MAPPING . . .
can provide us with testing grounds for nonperturbative
proaches@7#. As a generalization of the model of@12# we
shall introduce the coupling of bifermion excitations wi
bosons. The fermionic degrees of freedom will be defined
in @16# while bosonic excitations will be represented by e
ternal bosons with particle-hole, particle-particle, and ho
hole contents, as done in the model of@12# for a single bo-
son. Starting from these assumptions on the Hamiltonian
shall present the results of the boson mapping and show
elements of the basis and the resulting matrix elements.
have also performed numerical applications of the formal
and we shall comment on them, in the next section. Det
related to the construction of the algebraic solution can
found in @11# and in @20#.

We consider the Hamiltonian

H5H0 f1H0b1Hph1Hpp1Hhh ,

with

H0 f5
v f

2
~n1 n̄ !,

H0b5vBB†B1vpBp
†Bp1vhBh

†Bh ,

Hph5G1~T1B†1T2B!,

Hpp5G2~L1Bh
†1L2Bh!,

Hhh5G3~K1Bp
†1K2Bp!. ~12!

In the above equation the fermions are coupled to bos
These bosons are created by the operatorsB†, Bp

† , andBh
†

and their energies arevB , vp , andvh , respectively.G1 is,
as in the previous example, the strength of the interactio
the particle-hole channel andG2 andG3 are the strengths o
particle-particle and hole-hole channels.

The operatorsT6 , L6 , K6 , S6 , L0 , and K0 , of Eq.
~12! are defined by

T15(
k

a2k
† b1k

† , T25~T1!†,

T05L01K0 ,

L15 (
k.0

a2k
† a22k

† , L25~L1!†,

L05
1

2
~n2V!,

K15 (
k.0

b1k
† b12k

† , K25~K1!†,

K05
1

2
~ n̄2V!,
-

s
-
-

e
he
e

ls
e

s.

in

S15(
k

sg~k!a22k
† b1k , S25~S1!†,

S05L02K0 , ~13!

and they are the generators of the algebra of the simple
group Sp~4! @16#.

Exact solutions of this Hamiltonian can be obtained
group theoretical methods~see, please,@11,20# for details!.
The eigenvectors belong to the basis of the operators

P5B†B1Bp
†Bp1Bh

†Bh2
1

2
~n1 n̄ !,

R5Bh
†Bh2Bp

†Bp1
1

2
~ n̄2n!. ~14!

In correspondence with the notation introduced after E
~6! we shall define the fermionic and bosonic number ope
tors n̂f5bf

†bf , n̂p5bp
†bp , n̂h5bh

†bh , N̂B5B†B, N̂p

5Bp
†Bp , andN̂h5Bh

†Bh .
The boson mapping proposed in Ref.@11#, preserves the

algebra of the generators of this group. The correspond
boson images are

L15bp
†~V2n̂p2n̂f !

1/2, L25~L1!†,

L05S n̂p1
1

2
n̂f2

1

2
V D ,

K15bh
†~V2n̂h2n̂f !

1/2, K25~K1!†,

K05S n̂h1
1

2
n̂f2

1

2
V D ,

S15bf
†F~ n̂f !~V2n̂p2n̂f !

1/2bh

2bp
†~V2n̂h2n̂f !

1/2F~ n̂f !bf ,

S25~S1!†,

T152bf
†~V2n̂h2n̂f !

1/2~V2n̂p2n̂f !
1/2F~ n̂f !

1F~ n̂f !bp
†bh

†bf ,

T25~T1!†. ~15!

With these generators the mapped Hamiltonian reads

HB5v f~ n̂f1n̂p1n̂h!1vBN̂B1vpN̂p1vhN̂h

1G2@bp
†~V2n̂p2n̂f !

1/2Bh
†1H.c.#

1G3@bh
†~V2n̂h2n̂f !

1/2Bp
†1H.c.#

1G1@2bf
†~V2n̂h2n̂f !

1/2~V2n̂p2n̂f !
1/2F~ n̂f !B

†
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1F~ n̂f !bp
†bh

†bfB
†1H.c.#, ~16!

with

F~ n̂f !5F ~2V122n̂f !

~V112n̂f !~V2n̂f !
G 1/2

.

The images of the operatorsP andR, of Eq. ~14!, read

PB5~N̂B1N̂p1N̂h!2~ n̂f1n̂p1n̂h!,

RB5~N̂h1n̂h!2~N̂p1n̂p!, ~17!

and the basis in the image space is defined by the eigen
tors

uFN,L,k,m
ab &5NN,L,k,m

ab bf
†kbp

†mbh
†~2V2N1m!B†~k1L !
o
tio

t
t
in
,
-

ult
th

es
r t
ec-

3Bp
†@~a1b2L !/21m#Bh

†@~a2b2L !/212V2N1m#u&,

~18!

where k5nf and m5np . These states are labeled by th
quantum numbersa andb and by the number of particlesN.
These quantum numbers are defined by

a5NB2nf1Np2np1Nh2nh ,

b5Nh1nh2~Np1np!,

N52V2nh1np . ~19!

In addition, we shall defineL5NB2nf . After some alge-
bra we have obtained the following nonzero matrix eleme
of HB ~16! in the basis~18!
^FN,L,k,m
ab uHuFN,L,k,m

ab &5v f~m1V2N/21m1k!1vB~L1k!1vp@V2N/21m1~a2b2L !/2#

1vh@m1~a1b2L !/2#,

^FN12,L,k,m11
ab uHuFN,L,k,m

ab &5G2A~m11!S m111
a1b2L

2 D ~V2k2m!,

^FN12,L,k,m
ab uHuFN,L,k,m

ab &5G3AS V2
N

2
1m11DAS V2

N

2
1m111

a2b2L

2 D S N

2
2k2mD ,

^FN,L,k11,m
ab uHuFN,L,k,m

ab &52G1A~k11!~k111L !A~2V122k!~V2m2k!@~N/2!2m2k#

~V112k!~V2k!
,

^FN,L12,k21,m11
ab uHuFN,L,k,m

ab &5G1Ak~m11!A~V2N/21m11!~L1k11!~2V132k!

~V2k11!~V122k!
. ~20!
lled
bso-
f
nd
um-
mall

lled

-
ve
ce-
f
, is

act
ld
The complete set of nonzero matrix elements can be
tained from the above equations by observing the selec
rulesN,k,m→N62,k61,m61.

In analogy to the case of the SU~2! model we observe tha
the matrix elements obtained in the image space and
exact ones, of the initial fermion and boson basis, do co
cide. For a comparison between both sets of expressions
reader is kindly referred to@20# where the exact matrix ele
ments are listed.

III. RESULTS AND DISCUSSION

In the first part of this section we shall present the res
obtained by applying the boson mapping introduced in
previous section to the SU~2! model of Ref.@12#. We aim at
the comparison between the present results and the on
@12# to assess the validity of the boson mapping. In orde
remind the reader about the model of@12# we shall briefly
summarize the conclusions of@12# concerning the structure
b-
n

he
-

the

s
e

of
o

of the exact ground state and excited states in the so-ca
normal and deformed phases. In the normal phase the a
lute ground-state energy hasL50, which is the eigenvalue o
the symmetryP corresponding to the unperturbed grou
state. In this phase the number of fermion pairs and the n
ber of bosons are the same. This regime persists for s
values of G1 . For large values ofG1 the model of@12#
exhibits a boson condensation, i.e., positive values ofL are
assigned to the absolute ground state. This is the so-ca
deformed phase. For values ofvB larger thanv f and for
intermediate values ofG1 the model shows minima for val
ues of L,0, i.e., a condensate of fermion pairs. We ha
verified that the results given by the boson mapping pro
dure coincide with the results of@12#. The absolute value o
the ground-state energy, obtained in the boson mapping
shown in Table I, with the corresponding values of the ex
symmetryL and the one corresponding to the mean fie
approximation ofH ~see@17#!. These results coincide with
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57 3059EXACTLY SOLVABLE FERMION-BOSON MAPPING . . .
the results of Tables 1 and 3 of Ref.@12#. Also, one can see
that the structure of the different phases found in@12# is
preserved by the mapping. The parameters used in the
culations are given in the caption to Table I and they ha
been obtained forN52V530 particles and the reduced co
pling constantx is defined byx5G1A2V/v fvB. The depen-
dence of the results upon the ratio between the unpertu
fermion and boson energies~v f and vB , respectively! is
shown in Table I (v f5vB51), ~v f51, vB53!. The results
of Table I show the appearance of a fermion condens
(L,0), as is discussed in@12#.

Figure 1 shows the values of the excitation energy co
sponding to the first excited state ofH ~6!, for different val-
ues of the coupling constantx and for positive and negativ
values ofL. The spreading of the results corresponding
positive values ofL is larger than the spreading associated
negative values ofL, as can be seen from the results of F
1.

The dependence of the first two eigenvalues, for differ
values of the coupling constantx and forL50,61, is shown
in Fig. 2. For the case ofv f5vB51 @case~a!# the structure
of the ground state is always given by positive values oL
~see also Table I! and the transition from the normal to th
deformed phase appears around the valuex51. The results
for the negative value ofL are always larger than the resul
for positive values and the energy of the firstL51 state is
always smaller than the energy of the secondL50 state. A
different behavior is shown by the curves of Fig. 2~b!, where
the secondL50 eigenstate and the firstL51 state become
nearly degenerate aroundx51 and a fermion condensat
appears aroundx51.5. This shows the strong dependence
the results upon the scale adopted for the bare energies,
the case for the results of@12#.

The results shown in Fig. 3 correspond to excitation
ergies obtained by using the RPA method~dashed lines!
@12,17#. The results shown as exact results in Fig. 3~solid

TABLE I. Absolute ground-state energy,EL
(g.s.) , as a function of

the coupling constantx5G1A2V/v fvB, and the exact (L) and
mean field (Lm.f.) values of the symmetryP @Eq. ~9!# defined in Eq.
~10!. Top and bottom correspond tov f5vB51 and v f51,vB

53, respectively.

x EL
(g.s.) L Lm.f.

0.0 0.00 0 0.0
0.5 20.13 0 0.0
1.0 20.74 0 0.0
1.5 25.83 5 5.2
2.0 217.40 16 16.8
2.5 233.60 33 33.1
3.0 253.86 53 53.3

0.0 0.00 0 0.0
0.5 20.20 0 0.0
1.0 20.96 0 0.0
1.5 26.43 23 23.8
2.0 218.20 22 21.9
2.5 234.50 3 2.6
3.0 254.80 9 8.9
al-
e

ed

te

-

o
o
.

t

f
s is

-

lines! correspond to normal (x<1) and deformed (x.1)
solutions.

In the normal phase the absolute ground state hasL50
and the RPA values reproduce fairly well the exact ene
difference between the firstL51 state and the ground stat
Of the two solutions of Eq.~21! the value with the positive
sign in front of the square root corresponds toL51 and the
absolute value of the other solution toL521, as in@12# and
@17#.

In the deformed phase the agreement between the R
and exact results is evident for large values ofx. Here, the
exact energy of the first excited state is defined as the en
difference between the first two eigenvalues correspond
to the value ofL which minimizes the absolute ground-sta
energy.

For the case of the deformed phase the RPA gives
solutions, one of them spurious and another which
proaches the exact value. Aroundx51 the RPA collapses
The RPA spurious mode also has zero energy and it is in
pendent of the value used for the coupling constantx. The
collapse of the first excited RPA state atx51 signals the
beginning of the deformed phase. The RPA values dep
also upon the ratio of the fermionic and bosonic scales of

FIG. 1. Exact first excited states of Eq.~6! in the basis~7!. Solid
and dashed lines correspond to positive and negative values ofL of
Eq. ~10!, respectively. The results are shown for values of the c
pling constantx5G1A2V/v fvB in the interval 0<x<3 and for
N52V particles. The curves, from bottom to top, correspond
L50,4,8,12,16 ~solid lines! and L524,28,212,216 ~dashed
lines!. The upper box~a! shows results forv f5vB51 and the
lower box ~b! shows results for the case withv f51, vB53.
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3060 57OSVALDO CIVITARESE AND MARTA REBOIRO
Hamiltonian. This is shown by the comparison betwe
cases~a! and~b! of Fig. 3. The effect produced by the asym
metry (v fÞvB) upon the RPA eigenvalue is shown by th
lower curve of Fig. 3~b!. The RPA expression of the firs
excited state, in the normal phase, is the following:

vRPA5
1

2
uv f2vBu6

1

2
~v f1vB!A12S 2G1A2V

v f1vB

D 2

.

~21!

For the deformed case (x.1) the RPA method yields

vRPA5A~G1A2V!4

vB
2

1vB
222v fvB. ~22!

As said before, the RPA also gives a spurious solution
vRPA50 @17#. The RPA solution of the previous equatio
can be compared withEL,min

1 2EL,min
0 of the exact solution

@12#.
After this comparison between the solutions obtained w

the methods of@12# and the present one, and to conclu
with the first part of the discussions, it would be enough
say that we have shown that the use of the boson map

FIG. 2. Exact eigenstates ofH ~6! in the basis~7!, for L561
and L50. Solid, dashed, and dotted lines read for the first t
eigenvalues corresponding toL50,1,21, respectively. The result
correspond to the parameters given in Fig. 1 for the upper and lo
boxes~a! and ~b!.
n

at

h

o
ng

method leads to a good agreement with the exact and
proximate~RPA! solutions of the SU~2! model.

We can now discuss some of the features extracted f
the numerical solutions of the Hamiltonian~16!.

In the applications which we have performed, the mat
elements of Eq.~20! were calculated forN58, V54 and all
the energiesw of Eq. ~12! were fixed at the valuew51. The
coupling constantsGi of Eq. ~12! were transformed into adi
mensional couplingsxi as in @12#, i.e., by scaling the cou-
plings with factors proportional to the inverse of the energ
wi . The values ofxi were varied in a mesh with steps of 0.2
and the Hamiltonian matrix~20! was diagonalized in a basi
of states having good values ofa andb, Eq. ~19!. For each
set of values of the couplingsxi the spectrum of eigenvalue
of H was obtained and optimal values ofa and b were
selected by searching for the lowest ground-state energy

The solutions of the Sp~4! Hamiltonian also display a nor
mal and a deformed regime, similar to the case of the SU~2!
symmetry. We shall identify these normal and deform
phases in terms of the symmetry numbersa andb, which are
the eigenvalues of Eq.~14!. For interaction channels with
couplingsxi<1 ~i 5particle-particle, hole-hole, and particle
hole! the minima correspond to values ofa and b close to
zero~the normal phase!. For larger values ofxi a condensate
of either fermion or boson origin, can be produced. The
sociated minima correspond to nonzero values ofa, while b

er

FIG. 3. Comparison between exact~solid line! and RPA~dashed
line! results for the energy of the first excited state of Eq.~6!. The
upper ~a! and lower~b! boxes show results obtained with the p
rameters defined in Fig. 1.
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can remain close to zero. As in the case of the model of@12#
condensates in the Sp~4! model can correspond to positive o
negative values ofa. Positive values ofa are associated to
condensate of bosons while negative values ofa represent a
condensate of fermions. The occurrence of such condens
is also a function of the fermionic and bosonic scales int
duced in the Hamiltonian. For the Sp~4! Hamiltonian ~16!
the collapse of the RPA signals the splitting of the RP
phonons into phonons which are predominantly given
two-fermion components~particle-particle or hole-hole
phonons! @18#.

IV. SUMMARY AND OUTLOOK

The mapping of fermionic and bosonic degrees of fr
dom onto an ideal bosonic space has been performed for
Hamiltonians described by generators of the SU~2! and Sp~4!
s

-
.

tes
-

y

-
o

groups. It is shown that the mapping preserves the alge
Also, it is found that the matrix elements of each of t
Hamiltonians calculated in basis having exact symmet
coincide with the matrix elements obtained after applying
mapping onto the ideal boson space.

It is concluded that the mapping is a good alternative w
to get exact solutions and that it may be easier to ap
instead of the algebraic way, in evaluating the validity
approximate methods, like the RPA. Applications of t
mapping method to QCD inspired models are in progr
@21#.
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