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Abstract 

Using a schematic model we have investigated the collapse of the proton-neutron quasiparticle random-phase approxima- 

tion (pn-QRF’A) and the occurrence of phase instabilities in the space of solutions of the Hamiltonian. The analysis is based 
on the use of coherent states within the framework of a boson expansion method. 0 1997 Elsevier Science B.V. 

PACS: 21.60.52; 21.60.F~; 23.40.H~ 

The study of proton-neutron correlations is relevant to the microscopic description of single and double beta 

&cay studies [ 1,2]. Both the random phase approximation @PA) and its extension to open shell nuclei, the 
quasiparticle-random phase approximation (QRPA), [3,4] have been extensively used to calculate double-beta 

decay observables [2]. One of the best established results in the field, in dealing with results of the QRPA for 

Gamow-Teller transitions in the case of the two-neutrino double beta decay mode, is the need of renormalized 

particle-particle (proton-neutron) interactions [5,6] to account for the strong suppression of the nuclear matrix 

elements, as required by data [7] and theory [1,2]. However, the renormalization of these interactions also 

induces instabilities in the QRPA spectrum [8] whose physical interpretation has been the source of a lively 

discussion for nearly a decade. Several attempts have been proposed to avoid the collapse of the QRPA. The use 

of some of these methods can not be justified from physical arguments [9]. Some others, more elaborately, have 
tried to prevent the occurence of the QRPA collapse by introducing additional renormalizations of the QRPA 
matrices to shift the critical values of the coupling constants to unphysical regions [lO,l I]. In spite of these 

attempts and regarding the validity of the QRPA results, recent calculations [ 121 have shown that the 
suppression of the nuclear matrix elements, for the two-neutrino double beta decay transition, obtained at the 
QRPA level of approximation is indeed seen in more elaborate shell model basis. As it has been shown 
extensively, the mechanism responsible for the suppression of the nuclear matrix elements is the renormalization 
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of attractive particle-particle (proton-neutron) interactions [5,6l. The inclusion of these renormalized interactions 

also caused the so-called collapse of the QRPA. In consequence, both effects, i.e: the strong suppression of the 

nuclear matrix elements and the onset of instabilities at the QRPA level of approximation should not be 

considered artifacts of the approximation but rather results of the change in the structure of the ground and 

excited states induced by these interactions. The connection between it and the appearance of a zero-energy state 

in the spectrum, for certain values of the renormalized coupling constant K, has been discussed in a series of 

papers based on group-theoretical methods [ 13,141. 

In the present work we have focussed our attention on the interpretation of the collapse of the proton-neutron 

QRPA (pn-QRPA) as a signature of a phase transition. The adopted view-point is the one encountered in other 

areas of physics, e.g. in field theory, which relates phase transitions to symmetry breaking [15]. 

In order to determine the structure of the phase transition, we have related the order parameter with the 

number of proton-neutron pairs 1161. We have adopted the schematic, but nonetheless realistic, Hamiltonian of 
Refs. [ 17,181 and performed a boson-mapping [ 191 . m a coherent state representation [20] which preserves 
Pauli’s Principle. The coherent states are functionals of a complex order parameter and are used as trial states. 

The energy surface is given by the expectation value of the Hamiltonian with respect to the coherent states [4]. 

The dependence of the real and imaginary part of the energy, as a function of the real and imaginary parts of the 
order parameter, gives information about the position of the phase transition in the parametric ( X-K) space. 

The Hamiltonian adopted for the present calculations includes a single particle term, both for protons and 

neutrons, a pairing interaction between like-nucleons and a proton-neutron two body interaction which is 

furthermore parametrized in terms of particle-hole and particle-particle channels. This form of H has been used 

previously both in realistic and in schematic calculations [18]. The schematic hamitonian reads 

H=H,+H,+H,,, (1) 

where 

HP= ~e,a~a,--G,,S$?,, H,,= ~ena~a,-G,,S~S,, H,,,=~x~J./~~-~KP;.PJ’. (2) 
P n 

For the definitions of the operators and more details, please see Ref. [ 131. The operators S,,cn, are monopole pair 
operators, Gpc,,, are the pairing coupling constants, pJ* and PJ’ are particle-hole and particle-particle 

proton-neutron operators, x and K are the coupling constants of the separable proton-neutron two body 
interaction. We shall consider the one-shell limit of this Hamiltonian. Pairing effects will be accounted for by 

quasiparticle mean fields, for protons and neutrons, which represent the dominant contributions to the pairing 

correlation energies, as given by the separable monopole pairing interactions. 

This Hamiltonian has been used both for the description of Fermi (J = 0) and Gamow-Teller (J = 11 

excitations and the corresponding transitions. The solutions for J = 0 have been studied in [ 131 while the case of 

Gamow-Teller excitations have been presented in [ 141. For the sake of simplicity and without loss of generality, 
we shall proceed with the case of J = 0. In the BCS representation the quasiparticle-pair operators have the 

form 

(3) 
Thus, at the QRPA order of approximation, e.g. by keeping bilinear products of At and A, we arrive at the 
expression 

H=EC+A,A+A+A~(A+A++AA), (4) 

where the proton and neutron quasiparticle energies have been replaced by a common value E. The operator C 

and the coupling constants A, and h, of Eq. (4) are given by 

C=CLYiSm,O(pm,+Ca,lm,,(Y,,,“, h,=4R[X(~~~nL+O~U~)-K(U~Uk+L’biL!,2)], 

mr mn 

A, = 40( X + K) UpUpUnL’, , (5) 
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where 2 R is the degeneracy of the shell. The adopted QRPA treatment of this Hamiltonian [13] leads to the 
collapse of the QRPA collective excitation for 2 A, = 2 E + A,. This result, which is also found in the exact 
solution of the model, does not show-up in the renormalized QRPA treatment of Refs. [ 10,l I]. The collapse of 
the QRPA excitation energy has also been found in the extension of the present model to a larger group 
representation [14]. Since, as we have said before, it remains valid in the more realistic shell model treatment of 
[12] we shall attempt to understand the underlying physical mechanism from a more direct and simple picture 
where it can be featured as the signature of a phase transition. Consequently, we shall introduce a boson 
representation which transforms the combination of fermionic degrees of freedom into bosonic ones and which 
preserves Pauli’s Principle. The link with the phase-transition mechanism is established by introducing, in this 
boson basis, coherent states and an order parameter. 

To achieve this goal, in a first step, we have performed the Dyson’s mapping of the Hamiltonian (4) by 
replacing the quasiparticle-pair operators by [19] 

A-tb, C-t2b+b. (6) 

The operators bt and b are boson creation and annihilation operators, which obey exact boson-commutation 
relations. The number of bosons nb is restricted by the condition nb I 20. This restriction guarantees that 
spuriousities due to non-physical states with a larger number of bosons will not be present in the basis. 

The transformed Hamiltonian corresponding to Eq. (4) is written 

H=(2E+A,)b+b- $b”b’ + A, 1 - ( -$)b+2-~(l-~)bt3b+-$bf4b2+~2b2. (7) 

The second step consists of the introduction of coherent states [20]. We chose the ansatz 

where (Y is a complex parameter 

(Y = a0ei4 (8) 

and N, is a normalization factor. In the following we shall distinguished between a first ansatz (all powers are 
retained in the above sum) which mixes even and odd number of proton-neutron pairs and a second ansatz (only 
even powers are retained in the sum appearing in the definition of I a >) which takes into account the fact that 
the Hamiltonian (Eq. (7)) only mixes even (odd) number of pairs within themselves. The expectation value of 
the transformed Hamiltonian, Eq. (7), gives the potential energy surface, E((Y) = E, + iE,, which depends both 
on the real and imaginary parts of the order parameter as well as on the actual values of the coupling constants 
of the model. The minima can be identified by performing a search in the parametric ( x, K)-space subject to the 
variation of the order parameter. Different regimes of the solution will therefore be determined by non-trivial 
values of the order parameter. 

In the following we will present numerical results which correspond to the model parameters 

fi=5, Np=4, N,=6, l =l.OMeV. (9) 

The particle-hole strength x is absorbed in the value of E and the particle-particle strength K is varied in the 
range 0 I K IO.2 MeV. 

The potential-energy surface E(a) was minimized as a function of the order parameter LX. The dependence 
of the expectation value of the number of proton-neutron pairs (upper box) and of the order parameter (Y (lower 
box) at the minimum and as a function of K in the captions to Fig. 1. This behaviour demostrates that for the 
expectation value of the proton-neutron pairs a sudden change of correlations occurs around some critical value 
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Fig. 1. Upper box: The expectation value of brb as a function of the coupling constant K at the minimum of the energy surface. The values 

of K are given in units of MeV. The solid line corresponds to the first and the dotted line to the second ansatz described in the text. Lower 

box: The same for the real part of the order parameter (Y. 

of the coupling constant K (K,). The onset of the phase transition is observed at values of K just before the 

point where 24 = A, + 2~. As the number of particles approaches the limit NPCn, -+ 2fl the phase transition 
vanishes. 
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Fig. 2. Real, E,, part of the energy, as a function of fhe order parameter (Y, for K < K, (upper box) and for K > K, (lower box). The angle 

C#J of Eq. (8) is equal to ?r /2 and K, is the critical value ( K, = 0.1 MeV) shown in Fig. 1. The values of E, are given in units of MeV. The 

solid line corresponds to the first and the dotted line to the second ansatz. 
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Fig. 3. Evolution of the energy corresponding to the minimum, as a function of K. Both the I?, and K are given in units of MeV. The solid 

line corresponds to the first and the dotted line to the second ansatz. 

of the potential-energy surfaces is well demostrated by the results shown in Fig. 2. The upper box shows the 
harmonic dependence of the energy, as a function of c+ reflecting the dominance of the QRPA harmonic 
expansion around the minimum corresponding to LX,, = 0. This regime is, of course, to be related with values of 
K smaller than the critical value shown in Fig. 1, which is K, = 0.10 MeV. For the example shown in the upper 
box of Fig. 2 we have used the value K = 0.02 MeV. The lower box of Fig. 2, where the value K = 0.20 MeV is 
used, shows the characteristic shape of a double-well potential with symmetric minima located at non-zero 
values of oO. This is a clear evidence of the symmetry breaking induced by the renormalized particle-particle 
interactions. 

ndence of the real part of the potential-energy (E,) versus K at the minimum. Clearly, for the first ansatz 
(solid line) and for values of K lower than the critical one, the energy remains closer to the spherical minimum, 
e.g. the harmonic one with a single minimum at zero which is the parametric region where the standard QRPA 
is valid. For values of K larger than the critical value the shape of the real part of the energy at the minimum 
shows a change in the slope, around K~, followed by a steady decrease. 

From the above discussed results it is concluded that the renormalization of attractive particle-particle 
interactions, at the QRPA level of approximation, counter-balance the effects due to repulsive particle-hole 
interactions by inducing permanent deformations in gauge space, e.g. the space where the number of 
proton-neutron pairs in vacuum can be defined in terms of an order parameter. This has been shown by 
introducing the concept of coherent states. In general the order parameter is complex, but the values of (Y at the 
minima of the potential-energy surface are located on the real axis. The spontaneous breaking of the 
proton-neutron-pair symmetry can only be produced in the presence of the particle-particle interactions and it 
manifests itself in the appearance of a zero-energy state. It means that the orientation of the QRPA 
wave-function in gauge space can not be eliminated by perturbatively expanding around the spherical minima. 
At this point, the analogy with the situation found in systems with permanent intrinsic deformations can be 
drawn by noticing that transitions from the spherical to the deformed ground states are non-perturbative [21]. 
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