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Abstract 

Effects due to the temperature dependence of the nuclear binding energy 
upon the equation of state (EOS) for hot nuclear matter are studied. 
Nuclear contributions to the free energy are represented by temperature 
dependent liquid drop model terms. 

Phase coexistence is assumed for temperatures of the order of 
1 MeV < T < 6MeV, baryon number densities p of the order of 
10-4fm-3 < p < 1O-'f1n-~ and lepton fractions of the order of 0.2 < 
y I  < 0.4. It is found that the total pressure of the system is not affected by 
the temperature dependence of the nuclear free energy, in spite of changes 
observed in the nuclear pressure due to the different parametrizations used 
to represent the nuclear binding energy. 

1. Introduction 

The study of nuclear properties at finite temperatures is rele- 
vant both for applications in astrophysics [l-ll] and for 
models of finite nuclei and nuclear matter at high excitation 
energy. 

In this work we have investigated the influence of the 
temperature dependence of the nuclear free energy [12] on 
the statistical equilibrium between nuclei and nucleons in a 
nuclear matter phase. Different methods has been proposed 
during the last decades to compute the equation of state 
(EOS) of system with free nucleons, nuclei and leptons 
[ 1-91, mostly to describe conditions found in astrophysics 
and in highly energetic nuclear collisions , Since the current- 
ly adopted methods are well known we shall use them as the 
framework to test less known aspects of nuclear structure at 
finite temperature [12-181. From this point of view we shall 
use the EOS as a tool to determine the validity of different 
approximations which have been proposed to describe 
nuclear matter properties at finite temperature, rather than 
exploring already solved questions related with the way in 
which the EOS is calculated [l-8,19-211. Similar 
approaches can be found in [l-81, where the temperature 
dependence of the nuclear free energy has been para- 
metrized using modified versions of the Fermi Gas Model. 
In the present treatment we have used a realistic nuclear free 
energy [13], based on temperature dependent mean field 
calculations, and another one [22], constructed as an 
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extrapolation from the data on nuclear ground state and 
excited state energies, to determine physical consequences of 
both approximations upon the EOS. 

In order to introduce the present formalism let us briefly 
review some of the approximations which are used in 
dealing with the calculation of the EOS, namely: 

(i) Bulk nuclear matter properties at finite temperature 
have been described by using density dependent Hamilto- 
nians, of the Skyrme's type [14, 23, 241, treated in the plane 
wave limit [2] and in the context of the Thomas-Fermi 
approximation [l5, 25,261; 

(ii) The EOS, under constraints which are suitable for the 
description of astrophysical processes, has been obtained for 
electrically neutral systems with electrons, neutrinos, 
protons and neutrons in a drip phase and nuclei [l, 3, 5, 6, 

(iii) The drip phase, at equilibrium with the nuclear phase, 
has been treated as an interacting Fermi Gas [2] and the 
nuclear phase has been described in terms of a distribution 
over a mass range with constant, temperature independent, 
free energies [SI. 

In this picture one can think of a phase transition 
between nucleons in nuclei (nuclear phase) and in nuclear 
matter (drip phase). Another phase transition (the liquid to 
gas phase transition) can occur as a consequence of the 
thermal collapse of the interaction between nucleons in the 
drip phase [4]. The temperature scale of this phase tran- 
sition is fixed by the energy of ordinary nuclear matter at 
saturation [14, 231 and it is determined by the residual two 
body interaction used to describe the drip phase [l-6,9]. 

The temperature domain for these transitions varies with 
the force used to describe nuclear interactions. Nuclear par- 
tition functions yield a critical temperature of the order of 
T = 8-10MeV [21] for the melting of nuclei while a stan- 
dard partition function for nuclear matter yields a critical 
temperature of the order of T = 18-20MeV [l, 51 for the 
liquid to gas phase-transition, respectively. Recently, limit- 
ing temperatures of the order of T = 4-8MeV, for the 
nuclear phase, have been reported by Baldo et al. [12]. 

The liquid to gas phase-transition at T = 18-20MeV has 
not been observed. From crude arguments, based on 
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nuclear structure concepts, a critical temperature of the 
order of T = 8-10 MeV can be associated with a transition 
from bound to unbound nucleons, as mentioned above. 
However, this value is too high to be consistent with data 
extracted from the analysis of compound nucleus reactions 
[27-301. Experimental results suggest that T = 4-6 MeV is 
a more reliable value [27]. In this respect the theoretical 
values reported by Baldo et al. [12] are more realistic than 
the values extracted from mean field calculations [6]. It 
implies that the temperature which a compound nucleus can 
reach can be lower than the theoretical value obtained in a 
mean field approach [6]. 

The work of Ref. [13], about the temperature dependence 
of the nuclear free energy, has shown that effects associated 
with it are important in dealing with the calculation of 
nuclear partition functions. The parametrization of [13] is 
consistent with the experimental information [27-301 and 
with theoretical evidences [12] about limiting temperatures. 
Another parametrization of the nuclear binding energy, at 
finite temperatures, has been proposed more recently in 
[22]. As we shall discuss in detail, the parametrization of 
Davidson et al. [22] shows a more pronounced temperature 
dependence of the associated Liquid Drop Model coeffi- 
cients. It has also induced some speculations about the 
observation of signals on “phase transitions” [22]. Follow- 
ing the conclusions of [22] these effects should strongly 
influence the EOS. As it is said in [22], the low temperature 
behavior of the volume coefficient differs from the one used 
to compute the equation of state (EOS) for symmetric 
nuclear matter. In view of this we would like to explore the 
consequences upon the EOS once a given temperature 
dependence of the nuclear binding energy is assumed. In the 
present work the results corresponding to the EOS calcu- 
lated by using the parametrization proposed in [22] and the 
one of Guet et al. [13] will be compared. In order to test the 
accuracy of the method adopted to compute the EOS the 
present results will be compared, also, with the results of 
Lattimer et al. [SI. 

The equations which are discussed in Section 2 represent 
a system where : 

( i )  a fraction of nucleons is bound in a nuclear phase. The 
nuclear free energy is assumed to be temperature dependent 
and it has been parametrized as in Ref. [13]. In this para- 
metrization the usual Liquid Drop Model (LDM) coeffi- 
cients [31], which are temperature independent, are 
replaced by temperature dependent ones, instead; 

(i i)  a fraction of nucleons are in a drip phase [l]. The 
microscopic description of this drip phase is obtained from 
the finite temperature treatment of Skyrme’s Sk* Hamilto- 
nian in the nuclear matter limit [14,23,24]; 

(iii) nuclei and drip nucleons are at thermal equilibrium; 
and 

(iv) Coulomb lattice effects are included, to account for 
the interaction between nuclei and the background of elec- 
trons, following the method of Ref. [lo]. 

The equilibrium conditions are fulfilled by imposing con- 
straints on chemical potentials and baryon number densities 
at fixed volume [8]. Changes in nuclear properties due to a 
neutron vapor phase have not been considered; intrinsic 
nuclear excitations are also neglected in constructing the 
nuclear partition function except for a renormalization of 
the nuclear level density parameter [31]. Results for the 

EOS of the system and related parameters are shown and 
discussed in section 3. Conclusions are drawn in Section 4. 

2. Formalism 

The system is described by the following parameters: the 
neutron density pn, the proton density pp and the electron 
density p e .  These quantities can also be written in terms of a 
total baryon number density p and a charge fraction q ,  
where : 

P = P n  + P p ,  

and 
(1) 

P p  

P p  + Pn 
Yp = 

Since we have assumed charge neutrality the charge frac- 
tion Yp is fixed at the value Y, , which denotes the number of 
electrons per baryons. For the present study we shall neglect 
neutrino contributions, Y,, and use the electron fraction 
instead of the total leptonic one. A similar approximation 
has been used in Refs [1,2, 41. 

We have assumed that nuclei are present in the system. 
All nuclei with N = Z and with mass number A < 18 have 
been included in the calculations, as well as all nuclear 
species with 20 < A < 130. By including this set of nuclei we 
are extending the formalism of [l-71, which includes only 
one nuclear mass. Free (drip) nucleons and nuclei are at 
thermal equilibrium. Nucleons in the drip phase are inter- 
acting via a two-body density dependent interaction of the 
Skyrme type (Sk*)  [14, 23, 241 and the nuclei are treated 
like elementary particles in Boltzmann’s statistics. Equi- 
librium conditions are given by the balance equation [8, 
321 : 

BPA, z = - ( A  - Z ) Y n  - Z Y ~  + B B A ,  z 5 

Y, = PqB, (4) 

(3) 
where 

is the inverse temperature and pq (4 = n, p) is the chemical 
potential for neutrons (q  = n) or protons (q = p) in the drip 
phase. The balance condition (3) looks, in principle, different 
from the more conventional equilibrium conditions of 
[ 1-71, which are based on the minimization of the total free 
energy. The present approach, based on [8], and the con- 
ventional one of [l-71 give similar EOS, as it will be shown 
in Section 3. Since we are interested in the study of effects, 
upon the EOS, induced by the nuclear component of the 
system any other suitable method to compute the EOS can 
be used. For a review of these methods see [ 111. 

The quantity B A , z  is the nuclear binding energy for a 
nucleus with mass number A and proton number Z ;  the 
nuclei included in the calculations fulfill the condition [8] : 

B z , A  = Zm, + ( A  - Z)m, - M A , z  > 0. ( 5 )  
The nuclear number density for a nucleus with mass number 
A and Z protons, nA, z, is defined by 

where 0 is the nuclear partition function [31] 

@ = e-aT (21 + l)e [-fi2W+1)1/ZIT (7) 
I 
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Table I. EOS for lepton fraction y l ,  entropy per baryon s and total baryon density p. 
The value of the temperature ( T )  is shown, as obtained by using the method of Latti- 
mer et al. (LRPL)  [SI and the present one (TI)  calculated with the temperature inde- 
pendent version of the Liquid Drop Model of [13] 

s = l  s = 2  s = 3  
Yl log @) LPRL TI LPRL TI LPRL TI 

0.2 -4.00 0.750 0.644 1.500 1.482 
- 3.50 0.937 1.164 1.975 2.266 
- 3.00 0.750 0.588 1.949 2.009 3.148 3.434 
-2.50 1.500 1.160 3.257 3.415 4.872 5.355 
- 2.00 2.414 2.106 5.271 5.755 8.155 8.978 
- 1.50 4.063 3.479 8.419 9.174 14.519 15.183 

0.3 -4.00 0.652 0.571 1.335 1.353 1.780 1.904 
- 3.50 0.912 0.805 1.707 1.827 2.236 2.566 
-3.00 1.283 1.117 2.391 2.610 3.359 3.620 
- 2.50 1.877 1.668 3.616 3.922 4.989 5.410 
- 2.00 2.879 2.590 5.574 5.796 8.084 8.354 
- 1.50 4.330 3.718 8.499 9.373 13.812 12.805 

0.4 - 4.00 1.092 1.122 1.690 1.674 1.925 2.046 
-3.50 1.500 1.357 1.917 2.169 2.379 2.7 13 
-3.00 1.707 1.722 2.649 2.931 3.462 3.735 
-2.50 2.325 2.301 3.822 4.078 5.073 5.304 
- 2.00 3.262 3.139 5.726 5.665 8.017 7.734 
- 1.50 4.529 4.127 8.569 7.768 13.371 11.333 

In Eqs (6)-(7) translational and rotational degrees of 
freedom of the nucleus are included. Intrinsic excitations are 
not included explicitly, except for the renormalization of the 
level density parameter [31]. 

Following the treatment of Lattimer et al. [5] we have 
defined the volume available to the drip matter by the ratio : 

where the sum is taken over all allowed partitions of the 
mass number and nuclear charge included in the calcu- 
lations. These equations account for the inclusion of more 
than one nuclear mass [SI. 

The above definitions have been used to construct 
balance equations [6] : 

(9) 

which can be solved for fixed values of the temperature T 
and of the density p. 

The solutions are functions of the chemical potential for 
neutrons and protons in the drip phase. Once the chemical 
potentials are determined, the solutions of eqs (9)-(10) are 
used to construct the total free energy of the system: 

9 (11) F = F(nuc1ear) + F(drip) + F(e1ectrons) 

where : 

The contribution to the free energy due to electrons, 
, is defined in Ref. [SI and the nuclear free energy, F(e1ectrons) 
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, includes the translational and rotational contribu- 
tions which appears in the definition of nA,Z of Eqs (6)-(7), 
as we have mentioned above, and an intrinsic free energy 

The intrinsic nuclear free energy term is parametrized in 
the way which has been proposed in [13], with an explicit 
temperature dependence of the coefficients corresponding to 
the liquid drop model expansion. The expression for the 
nuclear free energy per unit mass is the following: 

f A , z  = a, + ~ 2 , A - l ’ ~  + 

p u c l e a r )  

f A ,  Z L5, 61. 

+ a,,A-’ +fcoul +fasymG 
(14) 

The first four terms of the free energy are the volume, 
surface, curvature and constant-shift contributions, as dis- 
cussed in [13], respectively, and 

fcoul = z ~ ( c , A - ~ ’ ~  + c , A - ~ ) ,  

and 

( N  - Z ) z  
A ’  fasym = Casym 

are the Coulomb and asymmetry free energy terms. The 
Coulomb contribution corresponds to a single nucleus. The 
Coulomb lattice correction to this value [ 101 is described 
below. 

The coefficients which appear in the definition of the 
nuclear free energy, namely : a,, a,, a, ,  a,, c1 ,  c2 and cas,,,,, , 
are functions of the nuclear temperature T.  At lowest order 
in T these Coefficients can be parametrized as quadratic 
functions of the temperature, with constant terms which are 
determined from the standard temperature independent 
Liquid Drop Model expansion. Following the notation of 
[ 131 we can write for them the expression : 

(17) ak(T) = ak(T = 0)(1 - N k  Tz), 
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where with the index k we have denoted different contribu- 
tions (volume, surface, curvature, constant shift, etc) to the 
above quoted nuclear free energy, eq. (14). 

The parameters ak are the critical values for inverse tem- 
peratures associated to volume, surface, curvature, Coulomb 
and asymmetry terms of the nuclear free energy. The 
adopted values can be found in [13]. The value of each 
parameter t l k  determines the higher value of the temperature 
T which can be reached without violating the approx- 
imation. Limiting temperatures, extracted from these coefii- 
cients, are of the order of 11 MeV [13]. In the form 
proposed in [13], one has, for the nuclear binding energy, 
the following expression 

&,(A, Z ,  T )  = a,(T)A + a,(T)2/3 + aC(T)ll3 + ao(T) 

4Q( T)A1I3 

+ 6A(T) (18) 
the term I = ( N  - Z) /A;  6A(T) is a parametrized tem- 
perature dependent pairing correction. The value of the 
parameters ak are listed in the Table I of [13]. 

Another parametrization of the nuclear binding energy, at 
finite temperature, can be found in [22]. Following David- 
son et al. [22], it reads 

0.7636 2.29R(0)2 ) 
x 1--- ( Z2I3 (R(T)A’13)2 

where ts = (Z - N)/2 and f ( A ,  Z )  = - 1, 0 or 1 for even- 
even, even-odd and odd-odd nuclei, respectively, R( T )  is a 
temperature dependent Coulomb radius 
(R(T) = 1.07(1 + 0.OlT)); as it is said above, the value of the 
coefficients (y(T), q(T), fl(T), a(T)  and 6(T)) are given in 
c221. 

A comparison between the temperature dependence 
described by the above expressions, eqs (18)-(19), is shown 
in Figs 1 and 2. The E ,  of eq. (19), shows a strong tem- 
perature dependence, as compared to the one of eq. (18), 
particularly, for the case of the symmetry coefficient (see Fig. 
1). The loss of binding at relatively small values of the tem- 
perature seems to be a regular feature of the results calcu- 
lated from eq. (19). 

The contribution to the total free energy due to nucleons 
in the drip phase has been calculated by following the 
method of [%I. For this part of the calculations we have 
used the Skyrme interaction Sk* including thermal effects, 
as it has been discussed in [14, 23,241. 

The Coulomb free energy includes lattice corrections. Fol- 
lowing the method of [lo] it is computed in the Wigner- 
Seitz cell. As a function of the nuclear specific volume U the 
lattice correction reads: 

f ~ ~ ~ i c c ” ( u )  =fcoul[l - ( 3 / 2 ) ~ l ’ ~  + (1/2)~]. (20) 

- 1 2  r I 

U 

4 1.2 4.0 ‘ 7 1  
- _  > 0.9 3.9 - - _  

0 1 2 3 4  0 1 2 3 4  

T [ M e V ]  
Fig. 1. Temperature dependence of the volume (a), surface (b), symmetry (c) 
and Coulomb (d) terms of the nuclear binding energy per nucleon, EdA, 
taken from Guet et al. [13] (solid line) and from Davidson et a l .  [22] 
(dashed lines, for the case of *‘*Pb. 

Once the total free energy of the system has been defined, 
with the above introduced expressions, the EOS can be 
computed. 

Following the work of [8], the equation of balance (3) 
and the constraints (9) and (10) are solved for a given tem- 
perature T ,  for a fixed lepton to baryon fraction r; and for a 
total baryon density p ;  this system of equations is highly 
non-linear and it combines the exponential dependence of 
nA, upon y, (q  = n and p) with the linear dependence upon 
p y p  (q = p, n). Moreover, since nA, depends on the nuclear 
chemical potential p A , z  the system of equations is also 
dependent upon the adopted parametrization of the nuclear 
free energy. 

4 1  

I .  

8 

4- 
4 

0 1 2 3 4 

T [ M e V ]  
Fig. 2.  Temperature dependent nuclear binding energy, for different nuclei, 
calculated with the parameters of [13], eq. (18) solid lines) and[22], eq. (19), 
(dashed lines), respectively. 
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As we have mentioned before, the use in the present work 
of the method of El Eid and Hillebrandt [8], to compute the 
EOS, does not necessarily imply that this method is superior 
to any other one reported in the available literature. It has 
been used as a suitable framework for the present discussion 
on nuclear temperature dependent effects. For the sake of 
completeness we have also computed the EOS using other 
method, the one of [SI. The comparison of the results for 
the EOS calculated with the method used by Lattimer et al. 
[SI (LPRL); which is based on the minimization of the total 
free energy; and the present one, obtained from the solution 
of the equations given in [8, 321, is shown in Tables I and 
11. From the results which are shown in these tables it is 
seen that both methods give a similar EOS. 

3. Results and discussion 

The total pressure, P,  of the system can be expressed in 
terms of the total free energy, F ,  and it is given by: 

aF P = p -  - F .  
aP 

The contribution to the total pressure due to the nuclear 
component of the system can be obtained by subtracting, 
from the r.h.s of the above equation, the pressure due to the 
electron phase. 

The parameters of the two body interaction which we 
have used to compute the free energy of nucleons in the drip 
phase are given in [2]. 

In order to investigate effects due to the temperature 
dependence of the nuclear free energy upon the EOS of the 
system, we have calculated it for the following cases: 

(a) with the temperature independent parametrization of 
the nuclear free energy (TI) of [13], i.e: using eq. (18) with 
constant (temperature independent) coefficients ak( T = 0), 
c.f. eq. (17); 

(b) with the temperature dependent (TD) one, i.e : using 
eq. (18) with the coefficients given by eq. (17). 
and 

(c) with the parameters introduced in eq. (19). 
The EOS obtained by using the present method (TI case) 
and the one of LPRL are shown in Tables I and 11. As it is 
said above, the EOS is similar, for both set of results. These 
results give some confidence about the use of present 
method, concerning this part of the calculations, and allows 
one to discuss on the temperature dependence of the nuclear 
components of the problem. The results shown in Table I11 
correspond to the calculated nuclear mass abundance, from 
the EOS computed with the approximations (a), (b) and (c). 
At first view, the results of Table I11 do not differ signifi- 
cantly, except at relatively high temperature, since heavy 
masses are suppressed more rapidly in the temperature 
dependent cases. 

The total pressure P is shown in Fig. 3, for the three cases 
(a), (b) and (c). The isotherms are clearly independent of the 
parametrization used to compute the nuclear contribution. 
It is evident from the curves shown in this figure that the 
adopted temperature dependence of the nuclear free energy 
does not affect the results. This is expected since the total 
pressure is dominated by the contribution of the relativistic 
electron gas [5, 61. This feature is also consistent with the 
fact that the temperature associated to the collapse of 
the nuclear bulk-term of the binding energy, Tbulk, is of 
the order of 17MeV [13]; a value which is larger than the 
maximum value of T (6 MeV) allowed in our calculations. 

The results which are displayed in Fig. 4 correspond to 
the nuclear contributions to the pressure. The results 
obtained by using the TD expression (case b) for the nuclear 
free energy yield a lower nuclear pressure, for a given T ,  as 
compared to the TI case (case a). For the case of the binding 
energy of [22], curves c), the nuclear pressure is even lower 
and it shows a peculiar behaviour at temperatures of the 
order of T = 4 MeV to T = 6 MeV. In fact, it shows insta- 
bilities at very low densities which are clearly non-physical. 

Another interesting feature of the EOS is the predicted 
value of the adiabatic index r [5, 61 at low entropy. From 
the EOS, both in the LPRL and TI approximations, (see 

Table 11. Adiabatic index r obtained f fom the EOS. The meaning of the variables y, ,  
p, s and of the approximations (LRPL) and ( T I )  is given in the caption of Table I 

r 
s = l  s = 2  s = 3  

Y1 1% @) LPRL TI LPRL TI LPRL TI 

0.2 - 4.00 1.290 1.354 1.370 1.372 
- 3.50 1.375 1.381 1.375 1.372 
- 3.00 1.355 1.352 1.370 1.377 1.390 1.372 
-2.50 1.340 1.337 1.365 1.348 1.400 1.368 
- 2.00 1.320 1.300 1.340 1.287 1.390 1.301 
- 1.50 1.365 1.281 1.300 1.223 1.240 1.111 

0.3 -4.00 1.325 1.337 1.310 1.312 1.333 1.321 
-3.50 1.310 1.315 1.325 1.326 1.350 1.337 
- 3.00 1.315 1.318 1.334 1.337 1.360 1.339 
- 2.50 1.320 1.324 1.333 1.321 1.365 1.333 
- 2.00 1.310 1.311 1.320 1.292 1.355 1.298 
- 1.50 1.275 1.296 1.295 1.261 1.200 1.204 

0.4 - 4.00 1.305 1.310 1.315 1.313 1.310 1.319 
- 3.50 1.310 1.316 1.320 1.323 1.340 1.328 
- 3.00 1.315 1.322 1.333 1.326 1.345 1.325 
- 2.50 1.320 1.325 1.333 1.317 1.345 1.318 
- 2.00 1.315 1.322 1.315 1.304 1.340 1.305 
- 1.50 1.290 1.316 1.270 1.295 1.100 1.264 
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L 

Table 111. Nuclear (most abundant) mass A,  as a function of the total baryon density 
(p), for lepton paction y ,  = 0.3 and for the isotherms denoted by the temperature (T) .  
The results shown in the third and fourth columns correspond to the temperature inde- 
pendent parametrization of the nuclear p e e  energies (TI )  and to the temperature 
dependent one (TD) of [13 ] ,  respectively. The  results shown in the last column corre- 
spond to the EOS calculated with the temperature dependent parametrization of [22]  

A 

1% @) TI TD 

-3 

-2 

- 1. 

1. 
2. 
3. 
4. 
5. 

1. 
2. 
3. 
4. 
5. 

2. 
3. 
4. 
5. 

93 
I1 
25 
24 
4 

101 
85 
51 
29 
29 

100 
13 
33 
33 

89 
63 
25 
4 
4 

101 
19 
39 
29 
29 

91 
63 
33 
33 

93 
15 
23 
4 
4 

95 
83 
16 
14 
20 

98 
15 
14 
21 

E 
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4 ,  , 

1 :I: 0 

6 

4 

e 

n 0  
I 6 
n 

il 
- 4  

% 
z 2  
U 

a 0  
6 

4 

2 

0 
0 

0 00  0.05 0 10 0 15 

p[fm-31 
Fig. 3. Total pressure, P, as a function of the density, p, for different values of the temperature T.  The curves shown for each case read from bottom to 
top: T = 2 , 4  and 6MeV, respectively. Cases (a) and (b) correspond to temperature independent (TI) and temperature dependent (TD) parametrizations of 
the nuclear binding energy of [13] and (c) to the parametrization given in [22]. The results are shown for different values of the lepton fraction y ,  . 
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Fig. 4 .  Pressure of the nuclear phase, P,,,, as a function of the density for various values of the temperature T. Cases (a) and (b) correspond to the (TI) 
and (TD) parametrizations given in [13] and case (c) corresponds to parametrization of the nuclear binding energy of [22]. 

Table 11) it is found that the predicted value of r, at entropy 
per baryon s = 1, 2 and 3 is of the order of 1.3 and remains 
nearly constant over the densities which we have considered. 
This smooth behavior differs from the huge changes (it 
varies from 1.18 to 1.33 and then it goes back to 1.2, for the 
three values of s) shown by the value of r obtained by using 
eq. (19), as we have noted in our calculations. 

Figure 5 shows temperature versus density domains along 
adiabats, for different lepton fractions. The use of eq. (19) in 
the EOS yields lower values of the temperature, for densities 
around the normal nuclear matter density. The difference 
between the values obtained with eq. (18) and those corre- 
sponding to eq. (19) is of the order of (or larger than) 1 MeV 
for s = 2, 3. 

It is then evident, from the results which are presented 
above, that for a realistic temperature dependence of the 
nuclear binding energy, like the one of [13], one should 
expect to find very small effects upon the EOS, except for 
the already discussed suppression of heavy mass nuclei from 
the distribution of most abundant nuclear masses and for a 
tendency to produce cooler adiabats. Both effects can be 
related to the fact that small, but non-negligible, changes in 
the binding energy of the hot nuclei have been obtained in 
the self-consistent treatment of Guet et al. [13]. The para- 
metrization proposed by Davidson et al. [22] produces 
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more drastic changes on the EOS, but the physical meaning 
of these changes is somehow dubious, as shown by the 
results of Fig. 4. In order to relate the drastic changes of the 
EOS corresponding to the approximation c) with the 
parameters of eq. (19) we would like to comment on the 
behavior of the bulk-term of the binding energy. The results 
are shown in Fig. 6. The derivative of the bulk of the 
binding energy, eq. (19), respect to the temperature has a 
bump at about T x 0.5 MeV but it is linearly dependent on 
T for the case of [6] and also for [13]. 

The appearance of this bump can be due to the fact that 
the coefficients of eq. (19) have been determined from a fit to 
the observed low-energy spectra of a huge number of nuclei 
[22]. It is known that finite nuclei show a rich variety of 
features strongly dependent on the nuclear interactions, 
which are reflected, particularly, on the low energy spec- 
trum. Among these features the appearance of a low-lying 
excited state strongly affects the thermal behaviour of the 
nucleus. The thermal occupation of low-lying states deter- 
mines a departure in the temperature dependence of the 
average (statistical) values of the characteristic functions, 
like the energy and the entropy. The shape of the specific 
heat corresponding to eq. (19), shown in Fig. 6, is a clear 
signal of finite size effects [33] which are always present 
when partition functions or level densities are constructed 



0. G. Benvenuto, 0. Civitarese and M .  Reboiro 557 

8 I 

a)  y,=o.2 

6 -  

0 ’  I I 

-4 -3 -2  -1 

8 ,  I I 

6 
n + 
U i 2 4  

2 

0 ’  8 I I I I 
-4 -3  - 2  -1 

I I 

6 

+ 
i 2 4  
U 

2 

I y,=0.4 

- 

_ _ _ _ - -  

I 

0 1  I I I 
-4 -3 -2 -1 

Fig. 5.  The temperature ( T )  us. density Cp) plot at constant entropy (s). The 
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lated with the parameters given in [13] and [22], respectively. 

with a finite (and small) number of levels. This is something 
certainly not present in the case of homogeneous nuclear 
matter or in the large scale fit of mean-field properties at 
finite T and it can explain the difference between the fit of 
[22] and the values of [6] and [13]. 

The results, which we have been presented, can be sum- 
marized in the following : 

( i )  The total pressure of the system is rather independent 
of the thermal dependence of the parameters which are 
included in the definition of the nuclear free energy and it is 
dominated by the electron gas. However, at a much smaller 
scale, some changes are observed in the nuclear pressure 
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0.8 1 

h I ,  
E-c 
U 
W 

/ 
/ 

/ I . ‘  I 

0 1 2 3 4 

T [ M e V ]  
Fig. 6. Specific heat, C, for homogeneous nuclear matter (volume 
contribution), as a function of the temperature, T,  calculated with the 
parameters given by Davidson et al. [22] (dashed lines), Lattimer et al. [6] 
(dotted lines) and Guet et al. [13] (solid lines). 

when temperature dependent nuclear binding energies are 
used to construct the EOS; 

(ii) The nuclear pressure for the TD cases tends to be 
lower than the pressure corresponding to the TI case; 

(iii) The low density region of the EOS shows an abun- 
dance of 4He for both the TI and TD approximations. At 
larger densities the mass distribution is more dependent 
upon density for the temperature independent case than for 
the temperature dependent one. 

The inclusion of TD nuclear free energies induces a sup- 
pression of heavy nuclei, as compared with the results 
obtained by using TI nuclear free energies. Therefore, a 
smaller number of nuclear states will be available to store 
entropy. This effect can be of some relevance in describing 
the infall epoch of type I1 supernovae [7, 111. As said above 
the changes which can be produced in the EOS by intro- 
ducing temperature dependent nuclear structure effects are 
very small. This conclusion is supported by the results 
obtained by using a realistic expression of the nuclear 
binding energy at finite temperatures [13]. More drastic 
changes can be produced on the EOS if the parametrization 
proposed in [22] is used. However, some doubts can be cast 
about the validity of such a parametrization, since it may be 
strongly limited by finite size effects. [33]. 

4. Conclusions 

In this work we have reported some results concerning the 
temperature dependence of the nuclear free energy and its 
effects upon the equation of state for a system of nuclei and 
nucleons in a drip phase. 

We have solved a system of coupled equations to deter- 
mine the chemical potentials under balance conditions. The 
nuclear structure component of the calculations has been 
approximated by a temperature dependent version of the 
Liquid Drop Model and by another one proposed in [22]. 

The EOS of the system is not affected by the temperature 
dependence of the nuclear component. However, some 
changes due to the adopted temperature dependence of the 
nuclear free energy are observed, mainly the decrease of the 
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nuclear pressure at h e d  temperature. In addition some 
effects are observed in the mass abundance which show the 
suppression of heavy nuclei when temperature dependent 
nuclear binding energies are used to compute the EOS. For 
the temperatures and densities considered in the present 
work these are minor effects, indeed. The parametrization of 
[22] leads to cooler adiabats than the one corresponding to 
the EOS computed with a more standard set of parameters 
for the binding energy [13] but the results may be strongly 
affected by finite size effects (i.e: the finite number of nuclear 
levels included in the fit of 1221 and its extrapolation to 
finite temperatures). It can change the nuclear contribution 
to the EOS significantly, but not in the sense advanced in 
[22] where the bump show in Fig. 6 was interpreted as a 
signal for a phase transition. 
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