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Single- and double-beta decay Fermi transitions in an exactly solvable model
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An exactly solvable model suitable for the description of single- and double-beta decay processes of the
Fermi type is introduced. The model is equivalent to the exact shell-model treatment of protons and neutrons
in a single} shell. Exact eigenvalues and eigenvectors are compared to those corresponding to the Hamiltonian
in the quasiparticle basigp) and with the results of both the standard quasiparticle random phase approxi-
mation (QRPA) and the renormalized on€RQRPA. The role of the scattering term of the quasiparticle
Hamiltonian is analyzed. The presence of an exact eigenstate with zero energy is shown to be related to the
collapse of the QRPA. The RQRPA and the gp solutions do not include this zero-energy eigenvalue in their
spectra, probably due to spurious correlations. The meaning of this result in terms of symmetries is presented.
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PACS numbgs): 21.60.Fw, 21.60.Jz, 23.40.Hc

I. INTRODUCTION presented as a cure for the instabilities of the QRPA and it
was applied to calculations of th#3,, decay of**Mo [11].

In the last years the study of the quasiparticle randon8imilar studies have been performed in the framework of the
phase approximatiotQRPA) and its extensions, like the RQRPA and with the inclusion of proton-neutron pairing
renormalized quasiparticle random phase approximatiogorrelations in symmetry breaking Hamiltoniais2].

(RQRPA), have received renewed attention. The goal was to In a recent papef13] we have shown that the RQRPA
improve substantially the reliability of the QRPA description violates the Ikeda sum rule and that this violation is indeed
of nuclear double-beta decay transitions and, at the samgresent in many extensions of the QRPA. The study was
time, to enhance the predictive power of the theory in arbased on the schematic proton-neutron Lipkin model.
unambiguous way. In a subsequent workL4] we have introduced an exactly

The predictive power of the QRPA, mostly in dealing solvable model for the description of single- and double-beta
with the calculation of the matrix elements for ground-statedecay Fermi-type transitions. This model is equivalent to a
to ground-state two-neutrino double-beta decay transitionsinglej shell model for protons and neutrons. The appear-
(BB2,), is questionable since these amplitudes are extremelince of an eigenvalue at zero energy, in the exact spectrum,
sensitive to details of the nuclear two-body interacfibr4].  was found. Moreover, it has been shown that the presence of

The inclusion of renormalized particle-particle correla-this zero-energy eigenvalue should be associated to the col-
tions in the QRPA matrix amounts to a drastic suppression ofapse of the QRPA. It was shown that the RQRPA does not
the B83,,-matrix elements. However, for some critical valuesinclude this zero-energy mode in its spectrum. It was also
of the model parameters, i.e., the renormalized two-body inshown that the absence of this zero-energy state, in the
teractions, the otherwise purely real QRPA eigenvalue probRQRPA, leads to finite but spurious results for the transition
lem becomes complex. As a consequence of it the standaehplitudes near the point of collapse of the QRPA.
properties of the QRPA metric and conservation rules are In the present paper we discuss the details of the exactly
severely downplayed by the appearance of strong groundsolvable model of 14]. The algebraic techniques needed to
state correlations which jeopardize the stability of the theoryevaluate matrix elements of the relevant operators, in the
The most notorious example of this behavior, of the QRPASQ(5) group representation, are described in detail. Exact
approach, is the calculation of theB,, decay of *®Mo eigenvalues and eigenvectors are compared with those cor-
[1,2,5-17. responding to the quasiparticle version of the Hamiltonian

The renormalized version of the QRRRQRPA) [8,9], (gp) and with the ones obtained with the QRPA and RQRPA.
which includes some corrections beyond the quasiboson afhe role of the correlations induced by the scattering term
proximation, has been recently reformulaf@d] and applied H j, of the gp Hamiltonian and the effects on the number of
to the 83,, decay problenj11]. Contrary to the QRPA, the quasiparticles in the ground state are analyzed. The presence
RQRPA does not collapse for any value of the residual twoof a zero excitation energy state in the spectrum correspond-
body interaction. Based on its properties, the RQRPA wasng to the exact solution of the model Hamiltonian is dis-

cussed. As said before it will be shown that the RQRPA and
the gp solutions do not display the same feature, most likely

*Electronic address: hirsch@fis.cinvestav.mx due to the presence of spurious states caused by the mixing
"Electronic address: hess@roxanne.nuclecu.unam.mx of orders, of the relevant interaction terms, in the expansion
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The structure of the paper is the following: the model andby the interactions in Eq1), which are obviously specific to
its solutions are presented in Sec. Il, the quasiparticle versiothe relevant degrees of freedom of the problem. In other
of the Hamiltonian, its linear representation in terms of pairswords, if the relatively simple schematic for¢&) can ap-
of unlike (proton-neutrojiquasiparticle pairs and its proper- proximately describe the correlations induced by a more re-
ties are introduced in Sec. Ill. The QRPA and RQRPA treat-alistic interaction it certainly means that it is able to pick up
ments of the Hamiltonian are discussed in Sec. IV. The mathe bulk of the physics involved in the transitions.
trix elements of double-beta decay transitions, calculated in In a single-one-shell limit, for the model space
the framework of the different approximations introduced in(j,=j,=j) and for monopole=0) excitations, the Hamil-
the previous sections, are given in Sec. V. Conclusions ar®mnian(1) can be solved exactly. In spite of the fact that the
drawn in Sec. VI. The S(®) algebra, representations and solutions obtained in this restricted model space cannot be
reduced matrix elements used in the calculations are given irelated to actual nuclear states, the excitation energies,

detall in Appendices A, B, and C, respectively. single- and double-beta decay transition amplitudes, and
ground-state correlations depend on the particle-particle
Il. THE MODEL strength parametet in the same way as they do in realistic

o o ] _ calculations with many single-particle levels and with more
The model Hamiltonian, which includes a single-particle e gjistic interactions, as we shall show later on. Physically,
term, a pairing term for protons and neutrons, and a sCh&ne peta decay transitions betwelh=0" states correspond
matic charge-dependent residual interaction with bothg yransitions of the Fermi type. However, the study of the
particle-hole and particle-particle channels, has been intromggel and the identification of its relevant degrees of free-
duced in[15-17 and it is given by dom, instead of the comparison of observables, is the main
_ T t ~ a1 aspect of the present work. We shall obtain the eigenstates of
H=epNp = GpSpSp+ enln=GnSiSht 2xB -8 Eq. (1), by using different approximations, in order to build
—2kP™.P™, (1) up a comprehensive view about the validity of them and their
predictive power.
with The Hamiltonian(1) can be expressed in terms of the
generators of an SG) algebrag 20-22. The Hilbert space is
- t t_ .t - constructed by using the eigenstates of the particle-number
N ;, Amam: S %‘ Am a2, 1=p.n, operator N=A,,+ A\, the isospin7, and its projection
T,= (N,—N,)/2. The raising and lowering isospin operators
_ t - + ot are defined ag™=7", where7 |n)=|p). With them we
B _mpgmn m am, P _mp;—mn aman . (D cap construct  the isospin scalar 7°=3
(T-T"+T+7T)+72 and the second-order $8) Casimir

a:é:aj*pmp being the particle creation operator and (see Appendix X

T (—1)ip~mpaf its ti

a, (=1) PRy m its time revers.al. .The parameteys L N N .

and « play the role of the renormalization factogg;, and Sis,+Shs,+ _pTP:_(3_ —+ZQ) ~2(T+1) (3
gpp introduced in the literaturfl—4). P2 4 2 2

It has been shown in a series of papglg—19 that this
Hamiltonian, when treated in the framework of the QRPA,with (. =(2j+1)/2.
reproduces fairly well the results obtained with a realistic The Hamiltonian(1) can be expressed in terms of the
G matrix constructed from the Bonn-OBEP potential, bothabove-mentioned operators. Hereafter we will use
for single- and double-beta decay transitions. These resuls,=G,=G for simplicity. In terms of these generators the
can be taken as an indication about the correlations inducedamiltonian(1) reads

1 N G 2
H= ep+en—§(3+29—%/)(e+2f<) §+[en—ep—2X(7}—1)]7}+ 2x+ §+ 3K TT+1)
2 t,179=07=1 J=07=177=2
+\ 324k =G)[[aTa’]’ =" Haa] =017 5. (4)
|
In writing the creation and annihilation operatoeéﬂ( a) we e=€,, x=0, G=4«. (5)

have omitted unnecessary subindexes since the coupling to

total angular momentund and isospin7, represented as |If 4 «#G the Hamiltonian(1) is not diagonal in this basis.

[aTa’]’7, is understood. The Hamiltonian mixes states with different isosfirwhile
Hamiltonian (5) is diagonal in theN,7,7, basis if its eigenstates still have definité and T,. The dynamical

G=4«. It can be reduced to an isospin scalar if its param-breaking of the isospin symmetry is an essential aspect of the

eters are selected as model which is directly related to the nuclear structure
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mechanism responsible for the suppression of the matrix eldpon the proton-neutron energy shift due to the nuclear Cou-

ements for double-beta decay transitions. lomb field but also upory and7. The same dependence is
shown by theQ, e [EQ. (7)]. In analogy with the situation
A. The diagonal caseG=4x found in realistic calculations its value can be determined by

a fit to the experimental value of the IAS ener@y to the
Gamow-Teller giant resonance for the cased®:1" spin-
isospin-dependent excitations

The solution of Eq(1) in the basi§N,7,7;), in the case
G=4k, gives a state, the isobaric analog stdfS) at the

energy The 8 decay operators for single Fermi transitioffs;,
Epas=EWN,T,=T-1)—EWN,T,T,=T) do not change the total isospin or the total particle number of
the state upon which they act. Only the isospin projection of
=e,—en+4x(7-1). (6)  the state is changed in steps of one unit, namely,

Considering a double Fermi transition, the energy avail-
able for the decay is given by T INTL) =TT+ 1)(T+T)INTT,=1). (8

Eps=EN, T, T)—EWN,T',T})
=2(en—ep) +8x+G(27-1) if =2, (7)

B. The spectrum

For the numerical examples we have seletlgr N, and
where7,=7,—2. The above expression shows clearly thea large value of to simulate the realistic situation found in
role of the particle-hole strength paramejerlt determines medium- and heavy-mass nuclei. To perform the calculations
the excitation energy of the IAS, which depends not onlywe have adopted the following two sets of parameters:

setl: j=9/2, N=10, 0<T,<4,
€,=0.96 MeV, e,=0.0 MeV,
Gp,=G,=0.4 MeV, x=0 or 0.04MeV, Gs«=<0.2,
and
setll: j=19/2, N=20, 1=T,<5,
e,=0.69 MeV, e,=0.0 MeV,

Gp=G,=0.2 MeV, x=0 o0r0.025MeV, 0G<sk=<0.1.

The dependence of the spectrum and transition matrix ethe O states of the even-even-mass nuclei witth,Z,A)
ements on the parameteysand « is analyzed in the follow- nucleons. Thus, Fermi transitions between them are allowed.
ing paragraphs. Since the isospin of the ground state of each of the even-

The complete set of O states, belonging to different iso- €ven-mass nuclei differs, for different isotopes, Fermi
topes, is shown in Fig. (&) and Fig. 2a), for G=4x and double-beta decay transitions connecting them are forbidden
x=0, as a function of the number of protorg)( The states N this diagonal limitG=4«.
are labeled by the isospin quantum numbérsr{). Ground
states are shown by thicker lines. As shown in these figures C. Exact solutions
the structure of the mass parabola is qualitatively repro-
duced.

The upper insert(a) of each figure, shows the full spec-
trum corresponding to=0. The lower one(b), shows the

The Hamiltonian(1) has a7=2 tensorial component

which mixes states with different isospins, while particle

number and isospin projection remain as good quantum

. . numbers.The diagonalization of E() is performed in the

results corresponding t¢=0.05 MeV [Fig. 1b)] and ;s of states described in Appendix B. The corresponding

x=0.025 MeV in[Fig. 2b)]. Obviously the particle-hole eqced matrix elements are given in Appendix C. The

channel of the residual interaction stretches the spectra of @igenstates are written as

isotopes. As mentioned above, it increases the energy of the

IAS.

Beta decay transitions of the Fermi type, mediated by the INTa)= 27: Cj‘([ﬁleTZ). ©)

action of the operatop™ =t~, are allowed between states

belonging to the same isospin multiplet. The energy of each

member of a given multiplet increases linearly with The energy of the ground state {9 and of the first-
In this example the O states belonging to each odd-odd- excited state (P), as a function of the ratio&' G for the set

mass nucleilfl—1, Z+1, A) are the IAS constructed from of parameter§=9/2, N,=6, N,=4, x=0 are shown in
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FIG. 2. (@ and (b): The same as Fig. 1 for

.0t f ;
FIG. 1. (a) and(b): 0" states of different isotopes are shown for i=19/2, 4IG=1, andy=0 (0.025) MeV.

j=9/2, 4k/G=1, andx=0.(0.05) MeV in an energy vZ plot.

States are labeled byT(T,). The lowest energy state of each ) ) .
nucleus is shown by a thick line. of the ratio 4¢</G for j=9/2 andy=0 (0.04). It is clear that

when 4«/G~1.6 (1.8) an attractive proton-neutron correla-

Fig. 3@). The results of Fig. @) have been obtained with tion dominates over proton-proton and neutron-neutron pair-
the set of parameters given by=19/2, N,=12, N,=8, ing correlations and the excitation energy goes to zero. Simi-
and y=0. lar results are depicted in Figs(@ and §b), corresponding

The most characteristic feature of the results is the bareljo the excitation energ.,. of the lowest 0 state in the
avoided crossing of levels, due to the repulsive nature of thedd-odd mass nucleusM,=13, NV,=7), also measured
effective residual interaction between them. Although a comfrom the ground state of the parent even-even nucleus with
plete level crossing is not obtained in this model, in the(N,=14,\,=6) for j=19/2 andy=0 (0.025. In the case
neighborhood of the value 4G~1 a major structural of Fig. 5 the excitation energy goes to zero when
change in the wave functions will develop. In the case of ad«x/G~1.3.
complete crossing of levels, the ground and the first excited The vanishing of the energy of the first excited state and
states will interchange their quantum numbers thus givinghe subsequent inversion of levéts negative excitation en-
rise to a permanently deformdih the sense of the isospin ergies would indicate that the double-odd nucleus becomes
dominance situation. more bound than their even-even neighbors, contradicting

This behavior is by no means a surprise since it is similathe main evidence for the dominance of like nucleons pairing
to that found in pairing plus quadrupole systefi@3]. In this  in medium- and heavy-mass nuclei. It would also completely
case, if the quadrupole-quadrupole interaction is stronguppress the double-beta decay because the single-beta decay
enough, the system becomes permanently deformed, in ttfeom each “side” of the double-odd nucleus would be al-
sense of the angular momentum and spatial rotations. Thewed.
analogy between this and the present q@sespin degree of These results simply emphasize the fact that the Hamil-
freedom can be drawn from the study §24,25 where the tonian (1) will not be the adequate one when attractive
“pairing plus monopole” model, which is a two-level model proton-neutron interactions are too large. In a realistic situa-
exactly solvable using the §8) algebra, was used to ana- tion, obviously, the true Hamiltonian includes other degrees
lyze the spherical and the deformed regime of the solutionsf freedom, like quadrupole-quadrupole interactions, and
of the multipole-multipole interaction. permanent deformations of the single-particle mean field can

The full-thin line of Fig. 4a) [Fig. 4(b)] represents the also be present. These additional degrees of freedom will
excitation energf.,. of the lowest 0 state belonging to the prevent the complete crossing of levels which, of course, is
double-odd-mass nucleus/=7.,,=3) with respect to the not observed. However, in many cases the experimentally
parent even-even-mass nuclei§, & 8,/,=2) as a function  observed energy shift of double-odd-mass nuclei with re-
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FIG. 3. (a) Energy of the ground state;g (full line) and first
excited state P (dotted ling, as a function of the ratio &G, for
j=9/2, N,=6, N,=4, x=0. (b) Shows the same quantities for

j=19/2, N,=12, N,=8.

spect to their double-even-mass neighbors is very small. Thig
finding reinforces the notion of an underlying dynamical-

symmetry-restoration effect.

Ill. THE HAMILTONIAN IN THE QUASIPARTICLE

(gp) BASIS

By performing the transformation of the particle creation
and annihilation operators of the Hamiltoniél) to the qua-
siparticle representatiof26]; i.e., by using the Bogolyubov
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FIG. 4. (a) and(b): Excitation energyE.,. of the lowest 0" state
in the odd-odd intermediate nucleu§(= 7 A,=3) with respect to
the parent even-even nucleus/(=8,N,=2) against 4/G for
j=9/2, x=0 (0.04). Exact results are shown as thin-full lines
hile those of the gp Hamiltonian are shown as small-dotted lines.
esults corresponding to the linearized gp Hamiltonian are shown
as full-thick lines and the results obtained with the QRPA and
RQRPA methods as large-dotted and dashed lines, respectively.

N3=4Q(x+ K)unvn(ug—vg),

Na=A4Q(x+ K)Upv p(U3—0v32),

)\5=4Q[X(u§uﬁ+vgvﬁ)— K(ugvﬁ-kvguﬁ)],

transformations for protons and neutrons, we have obtained

the Hamiltonian

H=(ep— Ap)Np+ (€n—Ap)Ny+ N ATA+ N (ATAT+AA)

—n3(ATB+BTA)—\,(ATBT+BA)+\:B'B

+1\¢(B'BT+BB),

wheree, , €, are the quasiparticle energies, ,\, the chemi-

cal potentials, and

— t t1J=0 — T J=0
AT—[ap® anlv=0> BT—[ap®a,ﬂM:O,

Ni:% aiTmiaimi i=p,n

- 2.2, 22 2,2, 2
N1 =4Q[ x(upvy+ogup) — k(ugup+og

No=4Q(x+ K)Upv Unvp,

v3)],

(10

11

)\6: _)\2.

The operatoré' (A), which creatgannihilate a pair of
unlike (proton and neutrgpquasiparticles, together with
their counterparts for pairs of identical quasiparticles and
B,BT,Np ,N,, are the generators of the $&) algebra[20].

The quasiparticle energies

e=GQ/2 (12
and the occupation probabilities
N M
2_7Vp. 2_ n
vp=" it1, wv; 21+ 1 (13

are determined from the gap equations and particle-number
conservation conditiof26]. The occupation probabilities
can also be defined in terms of the single-particle and quasi-
particle energy, namely:
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2.5 T T T T T T T G 0-1
9 ep—en=§(/\/n—Np)T. (18)
(a) x=00
1.5 . . .
Alternatively, one can compute the occupation amplitudes
E... [MeV] 1 -

exact —

vp,U, always for the even-even nucleus, without including
blocking. The effect of blocking on the unperturbed excita-

0.5 gp-hamiltonian - - B
. HotHu— N tion energies, withk= =0, can be ignored if the single-
QRPA - particle energy difference between protons and neutrons is
0.5+ RQRPA - - i modified to the value
1k u
o G Q-1
15 02 04 06 08 1 12 14 16 18 2 ep_e“ZE(N“_Np_l) Q - (19

The linearized version of the Hamiltonidhl) is obtained
by keeping only the first line of Eq11). This is equivalent
to neglecting terms proportional ® andB' (the so-called
scattering terms The solutions of this truncated Hamil-
tonian have been discussed in a previous p&p&l

Finding the eigenvalues and eigenvectors of the Hamil-
tonian(11) requires the use of the same algebraic techniques
involved in solving the original Hamiltonian. However, the
complexity of the problem increases severely due to the fact
that neither the quasiparticle number or the quasiparticle
isospin projectior{or equivalently the number of proton and
neutron quasiparticlgsare good quantum numbers. It im-
plies that the dimension of the basis will increase by 2 orders
of magnitude. Additional reduced matrix elements would

FIG. 5. (a) and(b): The same as Fig.(4) but for the excitation ~ then be needed to diagonalize the Hamiltor{ith). The ana-
energy E,. of the lowest 0 state in the odd-odd intermediate lytic expressions of these matrix elements are given in Ap-
nucleus (V;=13,N,=7) with respect to the parent even-even pendix C.
nucleus (V,=14\,=6), for j=19/2, xy=0 (0.025. There is a remaining symmetry in the Hamiltonigrl),
since states with an even number of proton and neutron qua-
siparticles are not connected with states having an odd num-
ber of them. Due to this fact it is possible to separately di-
agonalize these two cases.

Particle number is not a good quantum number, obvi-
ously, because it is broken spontaneously by the Bogolyubov
transformation. Thus, zero-quasiparticle states belonging the
even-even-mass nucleus have good average number of pro-
tons and neutrons, the condition used to determipg,,,
while states with a nonvanishing number of quasiparticles
show strong fluctuations in the particle number. Fluctuations

spectrum of a double-odd-mass nucleus, wifh+ 1 protons in the particle number can induce, naturally, important ef-
and \,— 1 neutrons, with respect to the,ground state of thd€Ccts on the observables. Moreover, the admixture of several
n ’ . . . . . . .
even-even neighbor with/;, ,\;,, can easily be calculated if q_ua3|part|c_le conﬁgurapons In & given state, induced by re-
blocking is considered i% th v are calculated for sidual particle-particle interactions, can also strongly influ-
y 1.Cy 1Un

the even-even and odd-odd nuclei separately. These excitihce t.he 'behalvior of the ob;ervableg. A.n example of this
tion energies are given by effect is given in[13], concerning the violation of the lkeda

sum rule produced by large values of the particle-particle
strengthx.

The spectrum of the gqp Hamiltoniafil) is shown in
Figs. 4 and 5. The curves shown by small-dotted lines, in
In the following we shall always refer to Eq16) as a Figs. 4a), 4(b), 5(a), and 8b), display the dependence of the

suitable approximation for the excitation energies. In theexcitation energy for the gp Hamiltonidti1) upon the ratio
present calculation we have selecigg-e, is such a way «/G. The results of this gp approximation closely follow the
that exact ones up to the point where they become negatives
(4k/G~1.4—1.8 in the different cas@sFrom this point on
they vanish, rather than taking negative values, instead. The
excitation energies for the linearized Hamiltonidn,+ Hg,

are shown as thick lines in these figures. We can see that the
linearized Hamiltonian is able to reproduce qualitatively the

4x/G

1 ei_GUiZ_)\i
1-——— (14)

Ui :E

€j

From this equation and from E¢L2) the chemical potentials
can be expressed as

o
)\i:ei_—+GUi y

5 (15

i=p,n.

The excitation energ§,,. of a statg0, ) belonging to the

Edx= EOL N+ 1N, = 1) =~ E(9.5. M Np) + X p— Ay
(16)

G 0O-1
)\p—)\nzep—en—E(Nn—Np)TIO, (17

which implies
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behavior of the full gp one, but in general it overestimates 7 ‘ . . . . . .
the values of the excitation energies. qp-hamiltonian - - §
As is mentioned above, the results shown in Figs. 4 and 5 6 Hay o Hogvoe e
have been obtained both with the complete gp Hamiltonian 5L Rgl;l;i - /._,.* i
and with the truncated Hamiltonian which includes only the (o, |~,(0,) -
product of pair-creation and annihilation operators[18] 4 s
the relevance of the scattering terms in Efl) was pointed 3l / R
out. From the present results it can be seen that the inclusior S
of these terms is indeed important if one looks after a better 2r (a) x =100, N =14, N, =6 / 7
description of the gp-excitation energies, up to the point 1k / - |
where the exact excitation energies become negative. Fot . T e

larger values ofx even the eigenstates of the complete ER Y
Hamiltonian fail to describe negative excitation energies. 148/
This is a clear indication that other effects can play an im-

portant role, i.e., effects associated to the appearance of spu 7 w . . . . . .
rious states. This can be quantitatively illustrated by the fol- ¢  ap-hamiltonian- - |
lowing. There are four exact eigenstates for Hn;;fnz o -
j=19/2, N,=13, N,=7, as can be seen in Fig(&, while 5f R‘gRPA,,, L
the spectrum of the qp Hamiltonidfl) has 220 eigenstates.  (0:[V:[0:) . s
It is well known that states with A;,=14%+N,, .
Np,=6*N,, whereN, andN, are the number of quasipar- 3+ /
ticle protons and neutrons, respectively, are mixed with two- /
(p-n)-quasiparticle states in the odd-odd nucleus and pro- 2L (b)) v =002, M= 14,0, =6 R T
vide a large number of states belonging to other nuclei. 1k / .
When 4«/G<1 the spurious states remain largely unmixed — __P_,,Tr// L
with the lower energy two-gp state. But wher/4G~1 the 0002 04 06 08 1 12 14 16 1s 2
mixing becomes important. This fact upgrades the relevance /G

of particle-number violation effects in dealing with this case. FIG. 6 dibl: A ber of inarticles i
The full gp-treatment represents the best possible exten; * > > d(a)tatn (f)t.h Verage num erlo proton guaj'\sf'pfrltf esin
sion of the quasiboson approximation, without performing a € grounc state of the even-even nucleus =6, Ny=14 as
article-number projection, in a singjeshell. It goes beyond Wnction of 4«/G, for j=19/2, y=0 (0.025) MeV. Results cor-
P : 2 ) .- responding to the gp Hamiltonian are shown as dashed lines. The
any second extended RAA&7] and it includes explicitly all

b f d . icl d . ones corresponding to the linearized gp Hamiltonian are shown as
numbers of proton and neutron quasiparticllg @ndNy) in 5106 _dotted lines and those of the QRPA and RQRPA methods as
the eigenstates.

. full lines and small-dotted lines, respectively.
To analyze the effects associated to the number of quasi-

particles in the ground state of double-even nuclei, and par- The average quasiparticle number shows a saturation in
ticularly the effects associated to the number of quasiprotongye full-gp case for £/G~1.8. At this value of the residual
we have calculated the average number of quasiprotons UBT interaction the ground state is far away for the gp

ing the expression vacuum, and has a structure which can be described as a full
quasiparticle shell. Notice that, at this point, the exact and

(0N 0,) = > |Chrr AN+ T,). (200 full-gp excitation energies depart from each other. A state

NTT, z with four proton and four neutron quasiparticles has very

large number fluctuations. Spurious states become strongly

A similar expression holds for the average neutron-mixed with physical states. In this way the resulting excita-
quasiparticle-number. tion energies average to zero, a limit which differs from the

In Figs. §a) and Gb) the average number of proton qua- exact value, which is negative.
siparticles in the ground state of the even-even nucleus with The differences in the average gp number between full-gp
Np,=6, V=14 is shown as a function of 4G, for  and linearized approaches are larger in Figs) @nd &b)
j=19/2, x=0 and 0.04. Figures (@ and 7b) show the than in Figs. 7a) and 7b). This result is a consequence of
number of proton quasiparticles foV,=8, N,=12, the dependence of some of the effective couplings of Eq.
j=19/2, x=0 and 0.025. The dashed lines represent the11), i.e., )\3~u,2)—02 and A,~u2—v?2, on the number of
results corresponding to the full gp Hamiltonian case whileparticles. As the number of particles approaches the satura-

the large dots refer to the linearizéth,+ Hoq version of it.  tion value Q2= (2j+1)/2 the effective couplinga; and X,
The difference between both approximations is evident. Uswill vanish. Thus, the full-gp and linearized solutions yield

ing the linearized Hamiltonian the states are composed onlgimilar results.
by proton-neutron-quasiparticle paif$3], while the pres-

ence of the scattering terms introduces also ligga(and
n-n)-quasiparticle pairs. The presence of these pairs, which

for 4x/G~1 play a crucial role, increases notably the num- The QRPA HamiltoniarH ogps Can be obtained from the
ber of quasiparticles and yields excitation energies closer tbnearized version of Eq(11), by keeping only the bilinear
the exact ones. terms in the pair-creation and pair-annihilation operators.

IV. QRPA AND RQRPA
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10 . . . . . . the underlying assumption about the smallness of the quasi-
9 qp-hamiltonian- - r boson vacuum amplitudes. The QRPA excitation energies,
sl Hao + Hyq =oe . obtained with the above-introduced Hamiltonian are shown
Al Rggﬁj o in Figs. 4 and 5. It can be seen that in the four cases dis-
0:IN10.) 6 | played in these figures the collapse of the QRPA values oc-
sk . -] curs near the point where the exact excitation energies be-
WL R T come negative. This is a very important result because it
| / e | means that the QRPA description of the dynamics given by
8 (a) x=00, Ny = 12,4, =8 / the Hamiltonian(1) is able to reproduce exact results. At this
2 . i point one can naturally ask the obvious question about the
(1)' o /_V/ o 1 nature of the mechanism whic_h prpdupes sugh a co.llapse.
e T 0a 06 08 1 13 12 16 15 The fact that the QRPA approximation is sensitive to it, to-
4w/G gether with the fact that the same behavior is shown by the
exact solution, reinforces the idea about the onset of corre-
10 I . T T lations which terminate the regime of validity of the pair-
9 qp-hamiltonian - - A dominant picture. In order to identify such correlations we
8t Hox  Hoarer T have calculated the expectation value of the number of quasi-
QRPA — - .
s RQRPA - - o fermions and bosons on the QRPA ground state.
0aIN[00) 6L _ The average number of proton quasiparticles in the QRPA
5k LA ground state, which in this case coincides with the average
n PR boson number, is given by
zf (b) x=0025, Ny =12.M,=8 ./ 1 (0| Np|0>=Y2. (22
Zr R ._-' 7
1r . -/'_'_'./.--"' 8 Figures 6a), 6(b), 7(a), and Tb) show the results corre-
0 remsabsanaeie UE*B*;"{?‘"' TRV R sponding to these occupation numbers. The QRPA results
T e T T T T extend up to the valuedG~1, where the QRPA collapses.

The sudden increase of the average quasiparticle number
FIG. 7. (a) and(b): The same as Fig. 6 for the number of proton near the collapse of the QRPA is a clear evidence about a
quasiparticles folV,=8,N,=12, j=19/2, x=0 (0.025) MeV. change in the structure of the QRPA ground state.

In the renormalized QRPA the structure of the ground
The pair-creation and pair-annihilation operatk$,andA,  state is included explicitly9] in the form

are, of course, defined by coupled pairs of fermions. The

commutation relations between these pseudoboson operators s _ cATAT
include numberlike quasiparticle operators in addition to 0)=NeIBCS), S= 2(0|[[A,AT][O)" (23

unity. By taking the limit (g +1)— [13] these extra terms
vanish and the commutation relations between pairs of ferwhere the quasiboson approximation, at the commutator’'s
mions can be treated like exact commutation relations belevel, is not enforced explicitly. The renormalization proce-
tween bosons. This is the well-known quasiboson approxidure consists of retaining approximately the number of
mation and the QRPA Hamiltonian is the leading orderquasiparticle-like terms of the commutators keeping them as
Hamiltonian which satisfies the quasiboson approximation. |2 parameter to be determined, namely, by defining the
the pair operators are replaced by quasibosons, the resultiiRQRPA one-phonon state as
Hamiltonian is given by
Ofored 0)=[ YAT=YAJ/(0|[A,AT]|0)*]0)  (24)
Horpa=(2€+X1)b"b+\,{b'b"+bb}. (22)
. _ _ and enforcing the conditio®rorpA0) =0, which leads to

As said above, the quasibosobS andb fulfill exactly the  the estimatec= 21X for the parameter entering in the defi-
commutation relatiofib,b']=1. nition of the correlated vacuum. After some algebra it is

At this point we can refer to pair of fermion#\{) or to possible to show that (O|[A,AT]|0)=D=1
quasibosonsk(") without lost of generality, since we have —[2)?D/(2j+1)] [10,11], and that
not introduced a particular representation for the pair of fer-
mions to boson mapping. 2)7

The QRPA states are generated by the action of the one- D= 2j+1
phonon operatngRPfXAT—YA on the correlated QRPA
vacuum |0). The quasiboson approximation assumes that The RQRPA submatrices ardzorps=2€+\;D and
(O|[A,AT]|0y=1 and it leads to the normalization condition Bxorpa=2\,D. Since 6<D=<1, the presence dd multi-
X2—Y?=1. The QRPA matrix is just a:22 one, with sub-  plying bothx, and\, produces the reduction of the residual
matrices Agrpa=2€+N; and Borps=2h,. The corre- interaction which is needed to avoid the collapse of the
sponding eigenvalue is given byEqrpa=[(2€+ A)?  QRPA equation$11]. Due to this fact, the RQRPA energy
—4\3]Y2. It becomes purely imaginary if\2>2e+\;.

For this limit the backward-going amplitudes of the
QRPA phonon operator become dominant, thus invalidating *Notice that there is a factor 2 misprinted in E9) of [13].

-1
1+

(29
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Eroreais always real. Its value can be obtained by so|vingsc§ttering terms also .in these operators. At _this. level, by
simultaneously the nonlinear equations Eorpa,4,), and  90INg beyond the leading order QRPA approximation, more
D, which in the general case will include all possible valuesterms have to be added to the diagrams which represent the
of the multipolarityJ [11]. transition amplitudes. It has been done for a pure seniority

RQRPA excitation energies are shown in Figs. 4 and 5model in[29]. This approach, for correlations between pairs
These results strongly resemble those of Fig. {1dff and  ©f like quasiparticles, is already cumbersome and it intro-
Fig. 2 of[6]. The results corresponding to the QRRA[6]) duces an unmanageable number of contributions, both to the
and to the RQRPAof [11]) are quite similar to those shown QRPA matrix as well as to the transition operators. For un-
in Figs. 4 and 5. However, the main finding of the presentike pairs of quasiparticles the situation can be even worse,
calculations is that the exact excitation energies are closer tnce the complete algebra, which supports the expansions,
the QRPA energies, rather than to the renormalized one§annot be defined in a subspace where scattering terms are
instead. In exact calculations including the spin degrees ofeplaced byc numbers. More details about these aspects will
freedom a phase transition was found at the point where thee presented in a forthcoming publication.
QRPA collapse$28], thus reinforcing the present results.

The average number of quasiparticles in the RQRPA V. DOUBLE BETA DECAY

vacuum is given by . ) ) .
In this section we shall briefly discuss some of the conse-
(O|N,|0)=)2 (26) quences of the previously presented approaches on the cal-
P ' culation of nuclear double-beta decay observables. In the fol-
ard s shown i Figs. @, 6, 7, and T s fay VRO Sl ot o tenion on e toveling
obvious from these results that the RQRPA ground-state cor- ; X Y, .
ements governing this decay mode are more sensitive to

relations double in all cases of the complete solutions of thenuclear structure effects than the ones of the neutrinoless
linearized Hamiltonian. This is clearly an overestimation,

and it is probably one of the most notorious difficulties con-mOde' As s§|d n .the Introduction we Sh‘?“ consider only

: double-Fermi transitions. The nuclear matrix elements of the
fronting the use of the RQRPA. two-neutrino double-beta decdy,, can be written as

It allows too many ground-state correlations, and with 2v
them the particle-number fluctuations are introducing spuri- (04 8710,)(0, 8710)
ous states which can dominate the low-energy structure for M,, = >, f AATA :
large values ofk. X Ex-Ei+A
Near “collapse” the average number of quasiparticles

given by the QRPA and the RQRPA are comparable. For thwhere|0;),|0,), and|0s) represent the initial, intermediate,
case of the QRPA the increase of the ground-state correl&@nd final nuclear states participant of the virtual transitions
tions is determined by the change in the sign of theentering in the allowed second-order weak processes. The
backward-going matrix relative to the forward-going oneenergies of the initial and intermediate states Efeand
near collapse. From there on the QRPA cannot produce arfy, » respectively. The energy released by the decay is repre-
physically acceptable result since one of the underlying consented by the quantitA. For the present calculations we
ditions of the approximation, i.e., the positive definite char-have selected the value 4f=0.5 MeV, which is of the order
acter of either linear combination of the forward- and of magnitude of the empirical values used in realistic calcu-
backward-going blocks of the QRPA matrix will not be ful- lations. The results for the matrix elemeri,, obtained
filled. This collapse is prevented in the RQRPA, by the usewith the exact wave functions are shown as a function of the
of the renormalization of the matrix elements, but the draw+atio 4«/G in Figs. §a) and 8b). These results have been
back of the approximation is the contribution coming fromobtained with the following set of parameters:
spurious states, which ought to be removed. Moreover, therg=9/2(N,=2, N,=8)—(N,=4, N,=6), and y=0 and
are several other reasons to cast doubts on the consistency®P4 MeV, respectively. The values shown in Fig&)%nd
the RQRPA. Among them, the mixing up of orders in the9(b) correspond toj=19/2,(V,=6, N,=14)—(N,=8,
wave functions, of the RQRPA phonons, is not accompaniedV,,=12), andy=0 and 0.025 MeV.
by the enlargement of the Hamiltonian, to accommodate For all cases the exact value Mff,, vanishes at the point
other correlations, i.e., the exchange terms of the QRPA mad«x/G=1. As mentioned above, this cancellation appears in
trix. If one performs such a calculation, by including ex- the model due to the fact that, for this valuexgfthe isospin
change terms, the resulting values of the QRPA matrix termsymmetry is recovered and the ground states of the initial
are also “renormalized,” but this effect will depend upon the and final nuclei belong to different isospin multiplets, as can
configurations. Also, the point of collapse is shifted to higherbe seen also from the results shown in Figs. 1 and 2.
values of the coupling constartbut the effect is typically of A similar mechanism, in the context of a solvable model
the order 19), as compared to leading order terms. If termspossessing an §8) algebra including spin and isospin de-
others than unity are introduced in the commutators, then thgrees of freedom, was used a decade ago to show that the
Hamiltonian has to be enlarged to account for ##&sort of  cancellation of thévl,, matrix elements for certain values of
terms of the initial Hamiltonian, see E¢l1), because they the particle-particle residual interaction was not an artifact of
will contribute at the same order as the added number-typthe QRPA descriptiofi2].
of terms introduced by the RQRPA procedure. Thus, the The results corresponding to the matrix elemekits, ,
RQRPA procedure should be accompanied by a renormalizaalculated with the different approximations discussed in the
tion of the transition operators and/or by the inclusion oftext, are shown in Figs. 8 and 9, as a function of the coupling

, (27)
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FIG. 8. (a) and (b): Matrix elementsM,, for the double-Fermi ] . . .
two-neutrino double-beta decay mode, as functions of the ratinvI FIG. ?6r(a) aidl(gzz-z/k\lfej%rj/l\? islz)li?j’\/li’ggtjl\/? rznilgr)lx elzwgnts
4G for  j=02,(Np=2N,=8)—(Np=4\,=6), and 2 O ‘M vl p= SN~ 22),
x=0 (0.04) MeV. Exact results are indicated by thin-full lines. x=0 (0.025) MeV.

The results obtained with the qp Hamiltonian are shown as small-
dotted lines and the results of the QRPA and RQRPA methods as VI. CONCLUSIONS

dashed lines and large-dotted lines, respectively. An exactly solvable model for the description of single-

and double-beta decay processes of the Fermi type was in-
constantx. The values ofM,, are very similar to those troduced. The model is equivalent to a complete shell-model
found in realistic calculationgl,3,4,11, including its strong treatment in a singl¢-shell for the adopted Hamiltonian. It
suppression for values of the coupling constanhear the reproduces the main features of the results obtained in real-
value which produces the collapse of the QRPA descriptioni_StiC calculations, with many shell and effective residual in-
Distinctively, the RQRPA results extend to values«opass- teractions, like those used in the literature to describe the
ing the “critical” value. However, the validity of this result Microscopic structure of the nuclei involved in double-beta
can be questioned because, as we have shown above, {H@cay processes. _
RQRPA missed the vanishing of the excitation energy. The We have constructed the exact spectrum of the Hamil-

M., matrix elements, evaluated with the complete qp Hamil-fonian and discussed its properties. The results concerning

tonian (11), are quite similar to that of the RQRPA up to the energy of the §tate§ belo_nging to the exa(_:t solution of the
point where it vanishes. From this point on the results o Od?' Sh.OW t_hat, in spite of .'ts very schematic structure, the
both the full-gp and the RQRPA approximations are diﬁer_Hamlltonlan is able to qualitatively reproduce the nuclea}r

X o mass parabola. The sequence of levels of the exact solution
ent.. B(.)th matrix elements change their sign at a value of hows that the ground state and the first excited state, of the
which is larger than the one corresponding to the change pectrum of double-even nuclei, approach a band-crossing

the sign of the matrix elements calculated with the exackiyation for a critical value of the strength associated with
wave function. The fact that the RQRPA results and the oneggiractive particle-particle interactions. At the crossing these
of the gp approximation are similar, although these modelgtates interchange their quantum numbers. This behavior is
differ drastically in the correlations which they actually in- connected with the description of “shape” transitions in
clude, suggest that a kind of balance is established betwe&fimilar theories, where the order parameter is clearly associ-
terms which are responsible for ground-state correlations angted with multipole deformations in space. In the present
those which produce the breaking of coherence in the wavenodel the “deformation” mechanism is related with the
functions. Obviously this mechanism must be related to thdreaking of the isospin symmetry and the space rotation cor-
presence of scattering terms in the commutators as well as esponds to a rotation in isospin space which preserves the
the Hamiltonian. third component of the isospin.
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We have compared the exact values of the excitation enare the ten generators of the &Dgroup.
ergy and of the double-beta decay matrix elements, for The Hermitian conjugates of the pair-creation operators
double-Fermi transitions, with those obtained by using theransform, under isospin reversal, as
solutions of the approximate gp Hamiltonian, its linearized _
version, and both the QRPA and RQRPA ones. AM)=(—DMA(—=M). (A3)
It was shown that the collapse of the QRPA correlates
with the presence of an exact eigenvalue at zero energy. The Their commutation relations are more easily expressed
structure of the RQRPA solutions has been discussed and @€fining the new operators
was found that, although finite, they are not free from spuri- N

ous contributions. The role of scattering terms was discussed Hi=—-0Q, H,=T
and they were shown to be relevant in getting excitation 2 ’ 2’
energies closer to the exact values. However they are not
enough to generate the correlations which are needed to pro- En=vVOAT(1), E_;_,=VOA(D),
duce the band crossing or negative excitation energies as it
was found in the exact solution for large values of the cou- Ei_i=— \/ﬁAT(— 1), E_q1=- \/ﬁA(— 1), (A4)
pling constantx.
In order to correlate the breakup of the QRPA approxima- Eio= JOAT(0), E_i10= JVOA(0),

tion with the onset of strong fluctuations in the particle num-
ber we have calculated the average number of quasiparticles 1 1
in the different approximations discussed in the text. Eni=—=T", Eo-1=—72T .
It was shown that the solutions of the complete gqp Hamil- V2 V2
tonian display a strong change in the structure of the ground
state when the particle-particle strength increases. The AR

content of the ground state varies from a nearly zero value t hen operating on an eigenstate of the weight operators
9 : y 9|1 andH, they increase or decrease the eigenvalues of one
an almost full gp occupancy. The particle number fluctua-

. . ) . . or both by one unit. Their commutation relations are
tions associated with states with a large number of quasipar- y

ticles were mentioned as a possible source of spurious state§.4, H,]=0, [H,,E,z]=«E [H,,E,,]=BE
Double-beta decay amplitudes were evaluated in the dif-~ - Lrmes op 2:Eapl = PEap
ferent formalisms. Their similitudes and differences were [Eup.E_ o p]=aH;+ BH,, (A5)
pointed out.
As a conclusion, the need of additional work to clarify the[Eaﬁ Earpr]
meaning of the different approximations posed by the _
RQRPA was pointed out. | *EBatarprp if ata’ and p+p'=0,1,-1,
|0 otherwise.

The operatorsE,; are raising and lowering operators.
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APPENDIX A: THE SO (5) ALGEBRA [E10.E-1-11=Eo-1, [Ei0,Eoi]=—Eyy,

Following [20] we introduce the operators [E10.Eo-1]=E1_1, (AB)
T = T 179=0 _ At
A0 =lap@anliy—o=A, [E1-1.E_10]= —Eo-1, [Ei1-1,E01]=Eo,
1 _ 1 _ and by Hermitian conjugation of the above commutators one

Al(D)=—=[al®alh %, Al(-D=—[a]@a! %,  obtains

V2 V2

(A1) El,=E . 5. (A7)
B'=[aj@anlny, T =-20B",

which together with their Hermitian conjugates and with the
number and isospin operators

APPENDIX B: SO(5) REPRESENTATIONS

The highest weights of the operatadts ,H, define the
irreducible representation@rep) of the SQ5) algebra. For
Np,—Np, the present case we want the irrep which contains the state
N=Np+N,, T,= , with zero quasiparticles as well as the state completely filled
with quasiproton and quasineutrons. The maximum number
(Nmay Of quasiparticles allowed by the Pauli principle is
Ni:E aiTm_aim_, i=p.n, (A2) 2Q), thus adding quasiprotons and quasineutrons one obtains
m; b Nnhax=4C. This is the state with the highest weight and it
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belongs to the irrep defined byH{=Q,H,=0) or APPENDIX C: SO(5) REDUCED MATRIX ELEMENTS
N=4Q,T=T,=0. Acting with the generator6A2) on this . . — . i
state it is possible to generate the set of all the states with ar}sTgrdtlr?gol-rl]:gziﬁoTiZ r@q?ri?\”:ﬁgli/@;)%nl)tzgs('\lrg,Iizr)ega;he
even number of quasiparticles. This subspace suffices for an~: 'z .+ eq

the calculations described in this work. For this reason Weuse of the Wigner-Eckart theorem

have adopted the irregH( =(2,H,=0). (N'T'TL]OM™NTT,) =(TT,,tt,|] T T(N'T'||O"|NT),
In general it is necessary to specify four quantum num- (C)
bers to completely define a state in a given irrep. But for the

present case it turns out that the states can be defined by tWédiere on the right-hand side the symi§al,. |..) represents
quantum number!, T, T,. a Clebsch-Gordan coefficient agd||[..]||..) is a reduced

In the following we will construct explicitly the states matrix element._ Explicit expressio_ns for the_ reduced matrix
INTT,=T); other states with,# T are obtained by acting elements are given below. The difference in the number of
with the isospin lowering operatdr~ on them. The states of Creation and annihilation operators in the tenSois repre-

this basis are defined by sented byn and in order to obtain nonzero matrix elements it
must be equal tiN’ —N.
INT=T,)=N(a,b)(0g9)°(0,)3N=4QT=T,=0), We have used of the Wigner-Eckart theorem, the commu-

tation relations given in Appendix A, and the explicit form of
the states withf =T, shown in Appendix B to calculate the
reduced matrix elements of the different operators which are
O,.=E_4;, Og=2E_1E_{_ {+E_{E_19. (B1 .
+ 11 0o =11 10F 10, (BL) relevant in our problem. Some of these (SPreduced ma-
T N trix elements are listed here. Additional matrix elements can
54 be deduced from them by using

where

a=T,=T, b=0

N(a,b) (NTIOMTINTY = v o N[O INT)
! 2T+1 '

1/2 (C2

The relevant reduced matrix elements are

_J(2Q+1-2b)l(Q—-a-b)!(2a+1)!(a+b)!
B (2Q+1)!1(Q—b)!(al)?b! (2a+2b+1)!

12

. —1[ (20— T—NJ2)(T+N/2+3)(— T+N/2)(2Q+ T—N/2+3) (T+1)(T+2)
(N T+2”[ATA]M”NT>:E{ (2T+3)(2T+5)

~ 1
TAYOINT) =——=—[(2Q—N/ 12—~ ,
(NTI[ATAFOINT) == (20~ N2+ 3)NI2-T(T+1)]

5

(NTII[ATA]?INT) = [(NT=TJAM(D)AD)INT=T,) +(NT=T,AT(~1)A(-1)|NT=T,)

—2(NT=T,AT(0)A(0)|NT=T,)],

where

(20 —T—N/2)(T+N/2+3)(T+1)
2(2T+3)

1
(NT=TZ|AT(1)A(1)|NT=TZ>=5[—Q+T+ N/2+

(NT=T,JAT(—=1)A(-1)INT=T

_1[(2Q-T=N/2+3)(=T+N/2)(T+1)
23 2(2T+3)

Y Ny BT NRTENRAID s AT0)A(O) N+ 4T=T
=0 (2Q+T-N2+1)(-T+N2+2)" =TAAOAO) =Ta)

(NT=T,JAT(0)A(0)INT=T

The largest value thatl can take is 44— 2T. In this case
(N=4Q-2TT=T,|AT(0)A(0)|[N=4Q-2TT=T,)=1-T/Q.

The above-reduced matrix elements are enough to deal with the Hamilt@hiawhich conserves particle number.
Working with the Hamiltoniar(11) requires many other reduced matrix elements, like the following matrix elements:
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-1
(N+4T||[ATAT]t:°||NT>=m[(T+ N/2+3)(— T+N/2+2)(2Q—T—N/2)(2Q+T—-N/2+1)]*?,

V3

(—=T+N/24+4) (= T+N/2+2)(T-1)T(2Q+T—N/2—1)(2Q0+ T—N/2+1)
(2T—1)(2T-3)

1/2

1
_ Tatyt=2 _
(N+4T—2|[[ATAT=2]|NT) 20[

1
taAtt=2 _
(N+4T+2|[[ATAT=2|INT) =55

(T+N/2+3)(T+N/2+5)(T+1)(T+2)(2Q0—T—N/2)(2Q — T—N/2—2)]*?
(2T+3)(2T+5) '

T(=T+N/2+2)(2Q+T—N/2+1)]*?

20(2T-1)

(N+2T—1||AT||NT>=—[

(T+1)(T+N/2+3)(2Q—T—N/2)]¥?

T =
(N+2T+1||AT|NT) 202T13)

These matrix elements, together with those associated with the isospin raising and lowering operators
T'=-\20B, T =-208",
(NTT,+1|BINTT)=—[(T+T,+1)(T-T,)1¥%20,
(NTT,=1[BINTT,) = —[(T—T,+ 1)(T+T,)1¥%20,

are all the elements which are needed to diagonalize the Hamilt@tiiaand to calculate the matrix elements of the transition
operators.

[1] P. Vogel and M. R. Zirnbauer, Phys. Rev. Lel7, 3148 [14] J. G. Hirsch, P. O. Hess, and O. Civitarese, Phys. Le896

(1986. 36 (1997.

[2] J. Engel, P. Vogel, and M. R. Zirnbauer, Phys. Re®8TC731 [15] V. A. Kuz’'min and V. G. Soloviev, Nucl. PhysA486, 118
(1988. (1988.

[3] O. Civitarese, A. Faessler, and T. Tomoda, Phys. Lett98 [16] K. Muto, E. Bender, T. Oda, and H. V. Klapdor-Kleingrothaus,
11 (1987. Z. Phys. A341, 407 (1992.

[4] K. Muto, E. Bender, and H. V. Klapdor, Z. Phys. 384, 177 [17] O. Civitarese and J. Suhonen, J. Phys2@>1441(1994).
(1989. [18] O. Civitarese and J. Suhonen, Nucl. Ph4878, 62 (1994).

[5] O. Civitarese, A. Faessler, J. Suhonen, and X. R. Wu, Nucl[19] O. Civitarese, J. Suhonen, and Amand Faessler, Nucl. Phys.
Phys.A524, 404 (199)). A591, 195(1995.

[6] O. Civitarese, A. Faessler, J. Suhonen, and X. R. Wu, J. Phyg20] J. C. Parikh, Nucl. Phy$3, 214(1965.
G 17, 943(199)). [21] K. T. Hecht, Nucl. Phys63, 177 (19695.

[7] A. Griffiths and P. Vogel, Phys. Rev. @5, 181(1992. [22] A. Klein and E. R. Marshalek, Rev. Mod. Phy&3, 375

[8] K. Hara, Prog. Theor. Phy82, 88 (1964; K. Ikeda, T. Uda- (199)).
gawa, and Y. Yamaurabid. 33, 22 (1965. [23] L. S. Kisslinger and R. A. Sorensen, Rev. Mod. PI85;.853

[9] D. J. Rowe, Phys. Rew.75 1283(1968; Rev. Mod. Phys40, (1963.
153(1968; J. C. Parick and D. J. Rowe, Phys. R&V5 1293 [24] D. Agassi, Nucl. PhysA116, 49 (1968.
(1968; D. J. Rowe, Nucl. PhysA107, 99 (1968. [25] D. Schitte and K. Bleuler, Nucl. PhysA119, 221 (1968.

[10] F. Catara, N. Dinh Dang, and M. Sambataro, Nucl. Phys[26] D. J. RoweNuclear Collective MotioriMethuen and Co. Ltd.,

A579, 1(1994. London, 1970.

[11] J. Toivanen and J. Suhonen, Phys. Rev. L #4£.410(1995. [27] A. Mariano, J. Hirsch, and F. KrmpotidNucl. Phys.A518,
[12] J. Schwieger, F. Simkovic, and Amand Faessler, Nucl. Phys.  523(1990, and references therein.

A600, 179(1996. [28] J. Engel, S. Pittel, M. Stoitsov, P. Vogel, and J. Dukelsky,
[13] J. G. Hirsch, P. O. Hess, and O. Civitarese, Phys. Re§4,C Phys. Rev. (55, 1781(1997).

1976(1996. [29] J. Dukelsky and P. Schuck, Phys. Lett3B7, 233(1996.



