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Single- and double-beta decay Fermi transitions in an exactly solvable model
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An exactly solvable model suitable for the description of single- and double-beta decay processes of the
Fermi type is introduced. The model is equivalent to the exact shell-model treatment of protons and neutrons
in a single-j shell. Exact eigenvalues and eigenvectors are compared to those corresponding to the Hamiltonian
in the quasiparticle basis~qp! and with the results of both the standard quasiparticle random phase approxi-
mation ~QRPA! and the renormalized one~RQRPA!. The role of the scattering term of the quasiparticle
Hamiltonian is analyzed. The presence of an exact eigenstate with zero energy is shown to be related to the
collapse of the QRPA. The RQRPA and the qp solutions do not include this zero-energy eigenvalue in their
spectra, probably due to spurious correlations. The meaning of this result in terms of symmetries is presented.
@S0556-2813~97!03507-3#
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I. INTRODUCTION

In the last years the study of the quasiparticle rand
phase approximation~QRPA! and its extensions, like the
renormalized quasiparticle random phase approxima
~RQRPA!, have received renewed attention. The goal wa
improve substantially the reliability of the QRPA descriptio
of nuclear double-beta decay transitions and, at the s
time, to enhance the predictive power of the theory in
unambiguous way.

The predictive power of the QRPA, mostly in dealin
with the calculation of the matrix elements for ground-st
to ground-state two-neutrino double-beta decay transiti
(bb2n), is questionable since these amplitudes are extrem
sensitive to details of the nuclear two-body interaction@1–4#.

The inclusion of renormalized particle-particle corre
tions in the QRPA matrix amounts to a drastic suppressio
thebb2n-matrix elements. However, for some critical valu
of the model parameters, i.e., the renormalized two-body
teractions, the otherwise purely real QRPA eigenvalue pr
lem becomes complex. As a consequence of it the stan
properties of the QRPA metric and conservation rules
severely downplayed by the appearance of strong grou
state correlations which jeopardize the stability of the theo
The most notorious example of this behavior, of the QR
approach, is the calculation of thebb2n decay of 100Mo
@1,2,5–7#.

The renormalized version of the QRPA~RQRPA! @8,9#,
which includes some corrections beyond the quasiboson
proximation, has been recently reformulated@10# and applied
to thebb2n decay problem@11#. Contrary to the QRPA, the
RQRPA does not collapse for any value of the residual tw
body interaction. Based on its properties, the RQRPA w
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presented as a cure for the instabilities of the QRPA an
was applied to calculations of thebb2n decay of

100Mo @11#.
Similar studies have been performed in the framework of
RQRPA and with the inclusion of proton-neutron pairin
correlations in symmetry breaking Hamiltonians@12#.

In a recent paper@13# we have shown that the RQRP
violates the Ikeda sum rule and that this violation is inde
present in many extensions of the QRPA. The study w
based on the schematic proton-neutron Lipkin model.

In a subsequent work@14# we have introduced an exactl
solvable model for the description of single- and double-b
decay Fermi-type transitions. This model is equivalent to
single-j shell model for protons and neutrons. The appe
ance of an eigenvalue at zero energy, in the exact spect
was found. Moreover, it has been shown that the presenc
this zero-energy eigenvalue should be associated to the
lapse of the QRPA. It was shown that the RQRPA does
include this zero-energy mode in its spectrum. It was a
shown that the absence of this zero-energy state, in
RQRPA, leads to finite but spurious results for the transit
amplitudes near the point of collapse of the QRPA.

In the present paper we discuss the details of the exa
solvable model of@14#. The algebraic techniques needed
evaluate matrix elements of the relevant operators, in
SO~5! group representation, are described in detail. Ex
eigenvalues and eigenvectors are compared with those
responding to the quasiparticle version of the Hamilton
~qp! and with the ones obtained with the QRPA and RQRP
The role of the correlations induced by the scattering te
H31 of the qp Hamiltonian and the effects on the number
quasiparticles in the ground state are analyzed. The pres
of a zero excitation energy state in the spectrum correspo
ing to the exact solution of the model Hamiltonian is d
cussed. As said before it will be shown that the RQRPA a
the qp solutions do not display the same feature, most lik
due to the presence of spurious states caused by the m
of orders, of the relevant interaction terms, in the expans
procedure.
199 © 1997 The American Physical Society
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200 56HIRSCH, HESS, AND CIVITARESE
The structure of the paper is the following: the model a
its solutions are presented in Sec. II, the quasiparticle ver
of the Hamiltonian, its linear representation in terms of pa
of unlike ~proton-neutron! quasiparticle pairs and its prope
ties are introduced in Sec. III. The QRPA and RQRPA tre
ments of the Hamiltonian are discussed in Sec. IV. The m
trix elements of double-beta decay transitions, calculate
the framework of the different approximations introduced
the previous sections, are given in Sec. V. Conclusions
drawn in Sec. VI. The SO~5! algebra, representations an
reduced matrix elements used in the calculations are give
detail in Appendices A, B, and C, respectively.

II. THE MODEL

The model Hamiltonian, which includes a single-partic
term, a pairing term for protons and neutrons, and a sc
matic charge-dependent residual interaction with b
particle-hole and particle-particle channels, has been in
duced in@15–17# and it is given by

H5epNp2GpSp
†Sp1enNn2GnSn

†Sn12xb2
•b1

22kP2
•P1, ~1!

with

Ni5(
mi

ami

† ami
, Si

†5(
mi

ami

† am̄i

† /2, i5p,n,

b25 (
mp5mn

amp

† amn
, P25 (

mp52mn

amp

† am̄n

† , ~2!

ap
†5aj pmp

† being the particle creation operator an

ap̄
†

5(21) j p2mpaj p2mp

† its time reversal. The parametersx

and k play the role of the renormalization factorsgph and
gpp introduced in the literature@1–4#.

It has been shown in a series of papers@17–19# that this
Hamiltonian, when treated in the framework of the QRP
reproduces fairly well the results obtained with a realis
G matrix constructed from the Bonn-OBEP potential, bo
for single- and double-beta decay transitions. These res
can be taken as an indication about the correlations indu
g
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by the interactions in Eq.~1!, which are obviously specific to
the relevant degrees of freedom of the problem. In ot
words, if the relatively simple schematic force~1! can ap-
proximately describe the correlations induced by a more
alistic interaction it certainly means that it is able to pick
the bulk of the physics involved in the transitions.

In a single-one-shell limit, for the model spac
( j p5 j n5 j ) and for monopole (J50) excitations, the Hamil-
tonian~1! can be solved exactly. In spite of the fact that t
solutions obtained in this restricted model space canno
related to actual nuclear states, the excitation energ
single- and double-beta decay transition amplitudes,
ground-state correlations depend on the particle-part
strength parameterk in the same way as they do in realist
calculations with many single-particle levels and with mo
realistic interactions, as we shall show later on. Physica
the beta decay transitions betweenJp501 states correspond
to transitions of the Fermi type. However, the study of t
model and the identification of its relevant degrees of fr
dom, instead of the comparison of observables, is the m
aspect of the present work. We shall obtain the eigenstate
Eq. ~1!, by using different approximations, in order to bui
up a comprehensive view about the validity of them and th
predictive power.

The Hamiltonian~1! can be expressed in terms of th
generators of an SO~5! algebra@20–22#. The Hilbert space is
constructed by using the eigenstates of the particle-num
operatorN5Np1Nn , the isospinT, and its projection
Tz5(Nn2Np)/2. The raising and lowering isospin operato
are defined asb65T6, whereT2un&5up&. With them we
can construct the isospin scalar T 25 1

2

(T2T11T1T2)1T z2 and the second-order SO~5! Casimir
~see Appendix A!:

Sn
†Sn1Sp

†Sp1
1

2
P†P5

N
4 S 32

N
2

12V D2
T
2

~T11! ~3!

with V5(2 j11)/2.
The Hamiltonian~1! can be expressed in terms of th

above-mentioned operators. Hereafter we will u
Gp5Gn[G for simplicity. In terms of these generators th
Hamiltonian~1! reads
H5Fep1en2
1

3S 312V2
N
2 D ~G12k!GN2 1@en2ep22x~Tz21!#Tz1F2x1

G

3
1
2

3
kGT~T11!

1A2

3
V~4k2G!@@a†a†#J50,T51@aa#J50,T51#Tz50

T52 . ~4!
.

the
re
In writing the creation and annihilation operators (a†, a) we
have omitted unnecessary subindexes since the couplin
total angular momentumJ and isospinT, represented as
@a†a†#J,T, is understood.

Hamiltonian ~5! is diagonal in theN,T,Tz basis if
G54k. It can be reduced to an isospin scalar if its para
eters are selected as
to

-

ep5en , x50, G54k. ~5!

If 4kÞG the Hamiltonian~1! is not diagonal in this basis
The Hamiltonian mixes states with different isospinT while
its eigenstates still have definiteN andTz . The dynamical
breaking of the isospin symmetry is an essential aspect of
model which is directly related to the nuclear structu
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56 201SINGLE- AND DOUBLE-BETA DECAY FERMI . . .
mechanism responsible for the suppression of the matrix
ements for double-beta decay transitions.

A. The diagonal caseG54k

The solution of Eq.~1! in the basisuN,T,Tz&, in the case
G54k, gives a state, the isobaric analog state~IAS! at the
energy

EIAS5E~N,T,Tz5T21!2E~N,T,Tz5T!

5ep2en14x~T21!. ~6!

Considering a double Fermi transition, the energy av
able for the decay is given by

Ebb5E~N,T,Tz!2E~N,T 8,Tz8!

52~en2ep!18x1G~2T21! if T>2, ~7!

whereT z85Tz22. The above expression shows clearly t
role of the particle-hole strength parameterx. It determines
the excitation energy of the IAS, which depends not o
e
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upon the proton-neutron energy shift due to the nuclear C
lomb field but also uponx andT. The same dependence
shown by theQvalue @Eq. ~7!#. In analogy with the situation
found in realistic calculations its value can be determined
a fit to the experimental value of the IAS energy~or to the
Gamow-Teller giant resonance for the case ofJp511 spin-
isospin-dependent excitations!.

The b decay operators for single Fermi transitions,T6,
do not change the total isospin or the total particle numbe
the state upon which they act. Only the isospin projection
the state is changed in steps of one unit, namely,

T6uNTTz&5A~T6Tz11!~T7Tz!uNT_Tz61&. ~8!

B. The spectrum

For the numerical examples we have selectedNn.Np and
a large value ofj to simulate the realistic situation found i
medium- and heavy-mass nuclei. To perform the calculati
we have adopted the following two sets of parameters:
set I: j59/2, N510, 0<Tz<4,

ep50.96 MeV, en50.0 MeV,

Gp5Gn50.4 MeV, x50 or 0.04 MeV, 0<k<0.2,

and

set II: j519/2, N520, 1<Tz<5,

ep50.69 MeV, en50.0 MeV,

Gp5Gn50.2 MeV, x50 or 0.025 MeV, 0<k<0.1.
ed.
en-
mi
den

t
le
tum

ing
he
The dependence of the spectrum and transition matrix
ements on the parametersx andk is analyzed in the follow-
ing paragraphs.

The complete set of 01 states, belonging to different iso
topes, is shown in Fig. 1~a! and Fig. 2~a!, for G54k and
x50, as a function of the number of protons (Z). The states
are labeled by the isospin quantum numbers (T,Tz). Ground
states are shown by thicker lines. As shown in these figu
the structure of the mass parabola is qualitatively rep
duced.

The upper insert,~a! of each figure, shows the full spec
trum corresponding tox50. The lower one,~b!, shows the
results corresponding tox50.05 MeV @Fig. 1~b!# and
x50.025 MeV in @Fig. 2~b!#. Obviously the particle-hole
channel of the residual interaction stretches the spectra o
isotopes. As mentioned above, it increases the energy o
IAS.

Beta decay transitions of the Fermi type, mediated by
action of the operatorb25t2, are allowed between state
belonging to the same isospin multiplet. The energy of e
member of a given multiplet increases linearly withZ.

In this example the 01 states belonging to each odd-od
mass nuclei (N21, Z11, A) are the IAS constructed from
l-

es
-

all
he

e

h

the 01 states of the even-even-mass nuclei with (N,Z,A)
nucleons. Thus, Fermi transitions between them are allow

Since the isospin of the ground state of each of the ev
even-mass nuclei differs, for different isotopes, Fer
double-beta decay transitions connecting them are forbid
in this diagonal limitG54k.

C. Exact solutions

The Hamiltonian ~1! has a T52 tensorial componen
which mixes states with different isospins, while partic
number and isospin projection remain as good quan
numbers.The diagonalization of Eq.~1! is performed in the
basis of states described in Appendix B. The correspond
reduced matrix elements are given in Appendix C. T
eigenstates are written as

uNTza&5(
T
CN T Tz

a uNTTz&. ~9!

The energy of the ground state (0g.s.
1 ) and of the first-

excited state (01
1), as a function of the ratio 4k/G for the set

of parametersj59/2, Nn56, Np54, x50 are shown in
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Fig. 3~a!. The results of Fig. 3~b! have been obtained with
the set of parameters given byj519/2, Nn512, Np58,
andx50.

The most characteristic feature of the results is the ba
avoided crossing of levels, due to the repulsive nature of
effective residual interaction between them. Although a co
plete level crossing is not obtained in this model, in t
neighborhood of the value 4k/G'1 a major structural
change in the wave functions will develop. In the case o
complete crossing of levels, the ground and the first exc
states will interchange their quantum numbers thus giv
rise to a permanently deformed~in the sense of the isospi
dominance! situation.

This behavior is by no means a surprise since it is sim
to that found in pairing plus quadrupole systems@23#. In this
case, if the quadrupole-quadrupole interaction is stro
enough, the system becomes permanently deformed, in
sense of the angular momentum and spatial rotations.
analogy between this and the present case~isospin degree of
freedom! can be drawn from the study of@24,25# where the
‘‘pairing plus monopole’’ model, which is a two-level mode
exactly solvable using the SO~5! algebra, was used to ana
lyze the spherical and the deformed regime of the soluti
of the multipole-multipole interaction.

The full-thin line of Fig. 4~a! @Fig. 4~b!# represents the
excitation energyEexc of the lowest 0

1 state belonging to the
double-odd-mass nucleus (Nn57,Np53) with respect to the
parent even-even-mass nucleus (Nn58,Np52) as a function

FIG. 1. ~a! and~b!: 01 states of different isotopes are shown f
j59/2, 4k/G51, andx50.(0.05) MeV in an energy vsZ plot.
States are labeled by (T,Tz). The lowest energy state of eac
nucleus is shown by a thick line.
ly
e
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of the ratio 4k/G for j59/2 andx50 (0.04). It is clear that
when 4k/G'1.6 (1.8) an attractive proton-neutron correl
tion dominates over proton-proton and neutron-neutron p
ing correlations and the excitation energy goes to zero. S
lar results are depicted in Figs. 5~a! and 5~b!, corresponding
to the excitation energyEexc of the lowest 01 state in the
odd-odd mass nucleus (Nn513, Np57), also measured
from the ground state of the parent even-even nucleus w
(Nn514,Np56) for j519/2 andx50 ~0.025!. In the case
of Fig. 5 the excitation energy goes to zero wh
4k/G'1.3.

The vanishing of the energy of the first excited state a
the subsequent inversion of levels~or negative excitation en
ergies! would indicate that the double-odd nucleus becom
more bound than their even-even neighbors, contradic
the main evidence for the dominance of like nucleons pair
in medium- and heavy-mass nuclei. It would also complet
suppress the double-beta decay because the single-beta
from each ‘‘side’’ of the double-odd nucleus would be a
lowed.

These results simply emphasize the fact that the Ham
tonian ~1! will not be the adequate one when attracti
proton-neutron interactions are too large. In a realistic sit
tion, obviously, the true Hamiltonian includes other degre
of freedom, like quadrupole-quadrupole interactions, a
permanent deformations of the single-particle mean field
also be present. These additional degrees of freedom
prevent the complete crossing of levels which, of course
not observed. However, in many cases the experiment
observed energy shift of double-odd-mass nuclei with

FIG. 2. ~a! and ~b!: The same as Fig. 1 for
j519/2, 4k/G51, andx50 (0.025) MeV.
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56 203SINGLE- AND DOUBLE-BETA DECAY FERMI . . .
spect to their double-even-mass neighbors is very small. T
finding reinforces the notion of an underlying dynamic
symmetry-restoration effect.

III. THE HAMILTONIAN IN THE QUASIPARTICLE
„qp… BASIS

By performing the transformation of the particle creati
and annihilation operators of the Hamiltonian~1! to the qua-
siparticle representation@26#; i.e., by using the Bogolyubov
transformations for protons and neutrons, we have obta
the Hamiltonian

H5~ep2lp!Np1~en2ln!Nn1l1A
†A1l2~A

†A†1AA!

2l3~A
†B1B†A!2l4~A

†B†1BA!1l5B
†B

1l6~B
†B†1BB!, ~10!

whereep ,en are the quasiparticle energies,lp ,ln the chemi-
cal potentials, and

A†5@ap
†

^ an
†#M50

J50 , B†5@ap
†

^ a n̄#M50
J50 ,

Ni5(
mi

a imi

† a imi
i5p,n

l154V@x~up
2vn

21vp
2un

2!2k~up
2un

21vp
2vn

2!#,

l254V~x1k!upvpunvn , ~11!

FIG. 3. ~a! Energy of the ground state 0g.s.
1 ~full line! and first

excited state 01
1 ~dotted line!, as a function of the ratio 4k/G, for

j59/2, Nn56, Np54, x50. ~b! Shows the same quantities fo
j519/2, Nn512, Np58.
is

ed

l354V~x1k!unvn~up
22vp

2!,

l454V~x1k!upvp~un
22vn

2!,

l554V@x~up
2un

21vp
2vn

2!2k~up
2vn

21vp
2un

2!#,

l652l2 .

The operatorsA† (A), which create~annihilate! a pair of
unlike ~proton and neutron!-quasiparticles, together with
their counterparts for pairs of identical quasiparticles a
B,B†,Np ,Nn are the generators of the SO~5! algebra@20#.

The quasiparticle energies

e5GV/2 ~12!

and the occupation probabilities

vp
25
Np

2
j11, vn

25
Nn

2 j11
~13!

are determined from the gap equations and particle-num
conservation condition@26#. The occupation probabilities
can also be defined in terms of the single-particle and qu
particle energy, namely:

FIG. 4. ~a! and~b!: Excitation energyEexc of the lowest 0
1 state

in the odd-odd intermediate nucleus (Nn57,Np53) with respect to
the parent even-even nucleus (Nn58,Np52) against 4k/G for
j59/2, x50 (0.04). Exact results are shown as thin-full lin
while those of the qp Hamiltonian are shown as small-dotted lin
Results corresponding to the linearized qp Hamiltonian are sh
as full-thick lines and the results obtained with the QRPA a
RQRPA methods as large-dotted and dashed lines, respective
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204 56HIRSCH, HESS, AND CIVITARESE
v i
25

1

2S 12
ei2Gv i

22l i

e i
D , i5p,n. ~14!

From this equation and from Eq.~12! the chemical potentials
can be expressed as

l i5ei2
GV

2
1Gv i

2 , i5p,n. ~15!

The excitation energyEexc
l of a stateu0l& belonging to the

spectrum of a double-odd-mass nucleus, withNp11 protons
andNn21 neutrons, with respect to the ground state of
even-even neighbor withNp ,Nn , can easily be calculated i
blocking is considered, i.e., whenvp ,vn are calculated for
the even-even and odd-odd nuclei separately. These ex
tion energies are given by

Eexc
l 5E~l,Np11,Nn21!2E~g.s.,Nn ,Np!1lp2ln .

~16!

In the following we shall always refer to Eq.~16! as a
suitable approximation for the excitation energies. In
present calculation we have selectedep2en is such a way
that

lp2ln5ep2en2
G

2
~Nn2Np!

V21

V
50, ~17!

which implies

FIG. 5. ~a! and~b!: The same as Fig. 4~a! but for the excitation
energyEexc of the lowest 01 state in the odd-odd intermediat
nucleus (Nn513,Np57) with respect to the parent even-eve
nucleus (Nn514,Np56), for j519/2, x50 ~0.025!.
e

ta-

e

ep2en5
G

2
~Nn2Np!

V21

V
. ~18!

Alternatively, one can compute the occupation amplitud
vp ,vn always for the even-even nucleus, without includi
blocking. The effect of blocking on the unperturbed exci
tion energies, withk5x50, can be ignored if the single
particle energy difference between protons and neutron
modified to the value

ep2en5
G

2
~Nn2Np21!

V21

V
. ~19!

The linearized version of the Hamiltonian~11! is obtained
by keeping only the first line of Eq.~11!. This is equivalent
to neglecting terms proportional toB andB† ~the so-called
scattering terms!. The solutions of this truncated Hami
tonian have been discussed in a previous paper@13#.

Finding the eigenvalues and eigenvectors of the Ham
tonian~11! requires the use of the same algebraic techniq
involved in solving the original Hamiltonian. However, th
complexity of the problem increases severely due to the
that neither the quasiparticle number or the quasipart
isospin projection~or equivalently the number of proton an
neutron quasiparticles! are good quantum numbers. It im
plies that the dimension of the basis will increase by 2 ord
of magnitude. Additional reduced matrix elements wou
then be needed to diagonalize the Hamiltonian~11!. The ana-
lytic expressions of these matrix elements are given in A
pendix C.

There is a remaining symmetry in the Hamiltonian~11!,
since states with an even number of proton and neutron q
siparticles are not connected with states having an odd n
ber of them. Due to this fact it is possible to separately
agonalize these two cases.

Particle number is not a good quantum number, ob
ously, because it is broken spontaneously by the Bogolyu
transformation. Thus, zero-quasiparticle states belonging
even-even-mass nucleus have good average number of
tons and neutrons, the condition used to determinevp ,vn ,
while states with a nonvanishing number of quasipartic
show strong fluctuations in the particle number. Fluctuatio
in the particle number can induce, naturally, important
fects on the observables. Moreover, the admixture of sev
quasiparticle configurations in a given state, induced by
sidual particle-particle interactions, can also strongly infl
ence the behavior of the observables. An example of
effect is given in@13#, concerning the violation of the Iked
sum rule produced by large values of the particle-parti
strengthk.

The spectrum of the qp Hamiltonian~11! is shown in
Figs. 4 and 5. The curves shown by small-dotted lines
Figs. 4~a!, 4~b!, 5~a!, and 5~b!, display the dependence of th
excitation energy for the qp Hamiltonian~11! upon the ratio
k/G. The results of this qp approximation closely follow th
exact ones up to the point where they become negat
(4k/G'1.421.8 in the different cases!. From this point on
they vanish, rather than taking negative values, instead.
excitation energies for the linearized HamiltonianH221H04
are shown as thick lines in these figures. We can see tha
linearized Hamiltonian is able to reproduce qualitatively t
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56 205SINGLE- AND DOUBLE-BETA DECAY FERMI . . .
behavior of the full qp one, but in general it overestima
the values of the excitation energies.

As is mentioned above, the results shown in Figs. 4 an
have been obtained both with the complete qp Hamilton
and with the truncated Hamiltonian which includes only t
product of pair-creation and annihilation operators. In@13#
the relevance of the scattering terms in Eq.~11! was pointed
out. From the present results it can be seen that the inclu
of these terms is indeed important if one looks after a be
description of the qp-excitation energies, up to the po
where the exact excitation energies become negative.
larger values ofk even the eigenstates of the comple
Hamiltonian fail to describe negative excitation energi
This is a clear indication that other effects can play an
portant role, i.e., effects associated to the appearance of
rious states. This can be quantitatively illustrated by the
lowing. There are four exact eigenstates f
j519/2, Nn513, Np57, as can be seen in Fig. 2~a!, while
the spectrum of the qp Hamiltonian~11! has 220 eigenstates
It is well known that states with Nn5146Nn ,
Np566Np , whereNp andNn are the number of quasipa
ticle protons and neutrons, respectively, are mixed with tw
(p-n)-quasiparticle states in the odd-odd nucleus and p
vide a large number of states belonging to other nuc
When 4k/G!1 the spurious states remain largely unmix
with the lower energy two-qp state. But when 4k/G'1 the
mixing becomes important. This fact upgrades the releva
of particle-number violation effects in dealing with this cas

The full qp-treatment represents the best possible ex
sion of the quasiboson approximation, without performing
particle-number projection, in a single-j shell. It goes beyond
any second extended RPA@27# and it includes explicitly all
numbers of proton and neutron quasiparticles (Np andNn) in
the eigenstates.

To analyze the effects associated to the number of qu
particles in the ground state of double-even nuclei, and p
ticularly the effects associated to the number of quasiproto
we have calculated the average number of quasiprotons
ing the expression

^0luNpu0l&5 (
NTTz

uCNTTz
l u2~N/21Tz!. ~20!

A similar expression holds for the average neutro
quasiparticle-number.

In Figs. 6~a! and 6~b! the average number of proton qu
siparticles in the ground state of the even-even nucleus
Np56, Nn514 is shown as a function of 4k/G, for
j519/2, x50 and 0.04. Figures 7~a! and 7~b! show the
number of proton quasiparticles forNp58, Nn512,
j519/2, x50 and 0.025. The dashed lines represent
results corresponding to the full qp Hamiltonian case wh
the large dots refer to the linearizedH221H04 version of it.
The difference between both approximations is evident.
ing the linearized Hamiltonian the states are composed o
by proton-neutron-quasiparticle pairs@13#, while the pres-
ence of the scattering terms introduces also like-(p-p and
n-n)-quasiparticle pairs. The presence of these pairs, wh
for 4k/G'1 play a crucial role, increases notably the nu
ber of quasiparticles and yields excitation energies close
the exact ones.
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The average quasiparticle number shows a saturatio
the full-qp case for 4k/G'1.8. At this value of the residua
pn interaction the ground state is far away for the
vacuum, and has a structure which can be described as a
quasiparticle shell. Notice that, at this point, the exact a
full-qp excitation energies depart from each other. A st
with four proton and four neutron quasiparticles has ve
large number fluctuations. Spurious states become stro
mixed with physical states. In this way the resulting exci
tion energies average to zero, a limit which differs from t
exact value, which is negative.

The differences in the average qp number between full
and linearized approaches are larger in Figs. 6~a! and 6~b!
than in Figs. 7~a! and 7~b!. This result is a consequence o
the dependence of some of the effective couplings of
~11!, i.e., l3'up

22vp
2 and l4'un

22vn
2 , on the number of

particles. As the number of particles approaches the sat
tion valueV5(2 j11)/2 the effective couplingsl3 andl4
will vanish. Thus, the full-qp and linearized solutions yie
similar results.

IV. QRPA AND RQRPA

The QRPA HamiltonianHQRPA can be obtained from the
linearized version of Eq.~11!, by keeping only the bilinear
terms in the pair-creation and pair-annihilation operato

FIG. 6. ~a! and~b!: Average number of proton quasiparticles
the ground state of the even-even nucleus withNp56, Nn514 as
function of 4k/G, for j519/2, x50 (0.025) MeV. Results cor-
responding to the qp Hamiltonian are shown as dashed lines.
ones corresponding to the linearized qp Hamiltonian are show
large-dotted lines and those of the QRPA and RQRPA method
full lines and small-dotted lines, respectively.
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206 56HIRSCH, HESS, AND CIVITARESE
The pair-creation and pair-annihilation operators,A† andA,
are, of course, defined by coupled pairs of fermions. T
commutation relations between these pseudoboson oper
include numberlike quasiparticle operators in addition
unity. By taking the limit (2j11)→` @13# these extra terms
vanish and the commutation relations between pairs of
mions can be treated like exact commutation relations
tween bosons. This is the well-known quasiboson appro
mation and the QRPA Hamiltonian is the leading ord
Hamiltonian which satisfies the quasiboson approximation
the pair operators are replaced by quasibosons, the resu
Hamiltonian is given by

HQRPA5~2e1l1!b
†b1l2$b

†b†1bb%. ~21!

As said above, the quasibosonsb† andb fulfill exactly the
commutation relation@b,b†#51.

At this point we can refer to pair of fermions (A†) or to
quasibosons (b†) without lost of generality, since we hav
not introduced a particular representation for the pair of f
mions to boson mapping.

The QRPA states are generated by the action of the o
phonon operatorOQRPA

† 5XA†2YA on the correlated QRPA
vacuum u0&. The quasiboson approximation assumes t
^0u@A,A†#u0&51 and it leads to the normalization conditio
X22Y251. The QRPA matrix is just a 232 one, with sub-
matrices AQRPA52e1l1 and BQRPA52l2. The corre-
sponding eigenvalue is given byEQRPA5@(2e1l1)

2

24l2
2] 1/2. It becomes purely imaginary if 2l2.2e1l1.

For this limit the backward-going amplitudes of th
QRPA phonon operator become dominant, thus invalida

FIG. 7. ~a! and~b!: The same as Fig. 6 for the number of proto
quasiparticles forNp58,Nn512, j519/2, x50 (0.025) MeV.
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the underlying assumption about the smallness of the qu
boson vacuum amplitudes. The QRPA excitation energ
obtained with the above-introduced Hamiltonian are sho
in Figs. 4 and 5. It can be seen that in the four cases
played in these figures the collapse of the QRPA values
curs near the point where the exact excitation energies
come negative. This is a very important result becaus
means that the QRPA description of the dynamics given
the Hamiltonian~1! is able to reproduce exact results. At th
point one can naturally ask the obvious question about
nature of the mechanism which produces such a colla
The fact that the QRPA approximation is sensitive to it,
gether with the fact that the same behavior is shown by
exact solution, reinforces the idea about the onset of co
lations which terminate the regime of validity of the pa
dominant picture. In order to identify such correlations w
have calculated the expectation value of the number of qu
fermions and bosons on the QRPA ground state.

The average number of proton quasiparticles in the QR
ground state, which in this case coincides with the aver
boson number, is given by1

^0uNpu0&5Y2. ~22!

Figures 6~a!, 6~b!, 7~a!, and 7~b! show the results corre
sponding to these occupation numbers. The QRPA res
extend up to the value 4k/G'1, where the QRPA collapses
The sudden increase of the average quasiparticle num
near the collapse of the QRPA is a clear evidence abo
change in the structure of the QRPA ground state.

In the renormalized QRPA the structure of the grou
state is included explicitly@9# in the form

u0&5NeSuBCS&, S5
cA†A†

2^0u@A,A†#u0&
, ~23!

where the quasiboson approximation, at the commutat
level, is not enforced explicitly. The renormalization proc
dure consists of retaining approximately the number
quasiparticle-like terms of the commutators keeping them
a parameter to be determined, namely, by defining
RQRPA one-phonon state as

ORQRPA
† u0&5@XA†2YA#/^0u@A,A†#u0&1/2u0& ~24!

and enforcing the conditionORQRPAu0&50, which leads to
the estimatec5Y/X for the parameter entering in the defi
nition of the correlated vacuum. After some algebra it
possible to show that ^0u@A,A†#u0&[D51
2@2Y2D/(2 j11)# @10,11#, and that

D5F11
2Y2

2 j11G21

. ~25!

The RQRPA submatrices areARQRPA52e1l1D and
BRQRPA52l2D. Since 0<D<1, the presence ofD multi-
plying bothl1 andl2 produces the reduction of the residu
interaction which is needed to avoid the collapse of
QRPA equations@11#. Due to this fact, the RQRPA energ

1Notice that there is a factor 2 misprinted in Eq.~19! of @13#.
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56 207SINGLE- AND DOUBLE-BETA DECAY FERMI . . .
ERQRPA is always real. Its value can be obtained by solvi
simultaneously the nonlinear equations forERQRPA,X,Y, and
D, which in the general case will include all possible valu
of the multipolarityJ @11#.

RQRPA excitation energies are shown in Figs. 4 and
These results strongly resemble those of Fig. 1 of@11# and
Fig. 2 of @6#. The results corresponding to the QRPA~of @6#!
and to the RQRPA~of @11#! are quite similar to those show
in Figs. 4 and 5. However, the main finding of the pres
calculations is that the exact excitation energies are close
the QRPA energies, rather than to the renormalized o
instead. In exact calculations including the spin degrees
freedom a phase transition was found at the point where
QRPA collapses@28#, thus reinforcing the present results.

The average number of quasiparticles in the RQR
vacuum is given by

^0uNpu0&5Y2, ~26!

and it is shown in Figs. 6~a!, 6~b!, 7~a!, and 7~b!. It is fairly
obvious from these results that the RQRPA ground-state
relations double in all cases of the complete solutions of
linearized Hamiltonian. This is clearly an overestimatio
and it is probably one of the most notorious difficulties co
fronting the use of the RQRPA.

It allows too many ground-state correlations, and w
them the particle-number fluctuations are introducing sp
ous states which can dominate the low-energy structure
large values ofk.

Near ‘‘collapse’’ the average number of quasipartic
given by the QRPA and the RQRPA are comparable. For
case of the QRPA the increase of the ground-state corr
tions is determined by the change in the sign of
backward-going matrix relative to the forward-going o
near collapse. From there on the QRPA cannot produce
physically acceptable result since one of the underlying c
ditions of the approximation, i.e., the positive definite ch
acter of either linear combination of the forward- a
backward-going blocks of the QRPA matrix will not be fu
filled. This collapse is prevented in the RQRPA, by the u
of the renormalization of the matrix elements, but the dra
back of the approximation is the contribution coming fro
spurious states, which ought to be removed. Moreover, th
are several other reasons to cast doubts on the consisten
the RQRPA. Among them, the mixing up of orders in t
wave functions, of the RQRPA phonons, is not accompan
by the enlargement of the Hamiltonian, to accommod
other correlations, i.e., the exchange terms of the QRPA
trix. If one performs such a calculation, by including e
change terms, the resulting values of the QRPA matrix te
are also ‘‘renormalized,’’ but this effect will depend upon th
configurations. Also, the point of collapse is shifted to high
values of the coupling constantk but the effect is typically of
the order 1/V, as compared to leading order terms. If term
others than unity are introduced in the commutators, then
Hamiltonian has to be enlarged to account for theAB sort of
terms of the initial Hamiltonian, see Eq.~11!, because they
will contribute at the same order as the added number-t
of terms introduced by the RQRPA procedure. Thus,
RQRPA procedure should be accompanied by a renorma
tion of the transition operators and/or by the inclusion
s
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scattering terms also in these operators. At this level,
going beyond the leading order QRPA approximation, m
terms have to be added to the diagrams which represen
transition amplitudes. It has been done for a pure senio
model in@29#. This approach, for correlations between pa
of like quasiparticles, is already cumbersome and it int
duces an unmanageable number of contributions, both to
QRPA matrix as well as to the transition operators. For u
like pairs of quasiparticles the situation can be even wo
since the complete algebra, which supports the expansi
cannot be defined in a subspace where scattering terms
replaced byc numbers. More details about these aspects w
be presented in a forthcoming publication.

V. DOUBLE BETA DECAY

In this section we shall briefly discuss some of the con
quences of the previously presented approaches on the
culation of nuclear double-beta decay observables. In the
lowing we shall focus our attention on the two-neutrin
mode of the nuclear double-beta decay, since the matrix
ements governing this decay mode are more sensitive
nuclear structure effects than the ones of the neutrino
mode. As said in the Introduction we shall consider on
double-Fermi transitions. The nuclear matrix elements of
two-neutrino double-beta decayM2n can be written as

M2n 5 (
l

^0 f ub2u0l&^0lub2u0i&
El2Ei1D

, ~27!

whereu0i&,u0l&, and u0 f& represent the initial, intermediate
and final nuclear states participant of the virtual transitio
entering in the allowed second-order weak processes.
energies of the initial and intermediate states areEi and
El , respectively. The energy released by the decay is re
sented by the quantityD. For the present calculations w
have selected the value ofD50.5 MeV, which is of the order
of magnitude of the empirical values used in realistic cal
lations. The results for the matrix elementsM2n obtained
with the exact wave functions are shown as a function of
ratio 4k/G in Figs. 8~a! and 8~b!. These results have bee
obtained with the following set of parameter
j59/2(Np52, Nn58)→(Np54, Nn56), and x50 and
0.04 MeV, respectively. The values shown in Figs. 9~a! and
9~b! correspond to j519/2,(Np56, Nn514)→(Np58,
Nn512), andx50 and 0.025 MeV.

For all cases the exact value ofM2n vanishes at the poin
4k/G51. As mentioned above, this cancellation appears
the model due to the fact that, for this value ofk, the isospin
symmetry is recovered and the ground states of the in
and final nuclei belong to different isospin multiplets, as c
be seen also from the results shown in Figs. 1 and 2.

A similar mechanism, in the context of a solvable mod
possessing an SO~8! algebra including spin and isospin de
grees of freedom, was used a decade ago to show tha
cancellation of theM2n matrix elements for certain values o
the particle-particle residual interaction was not an artifac
the QRPA description@2#.

The results corresponding to the matrix elementsM2n ,
calculated with the different approximations discussed in
text, are shown in Figs. 8 and 9, as a function of the coupl
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208 56HIRSCH, HESS, AND CIVITARESE
constantk. The values ofM2n are very similar to those
found in realistic calculations@1,3,4,11#, including its strong
suppression for values of the coupling constantk near the
value which produces the collapse of the QRPA descript
Distinctively, the RQRPA results extend to values ofk pass-
ing the ‘‘critical’’ value. However, the validity of this resul
can be questioned because, as we have shown above
RQRPA missed the vanishing of the excitation energy. T
M2n matrix elements, evaluated with the complete qp Ham
tonian ~11!, are quite similar to that of the RQRPA up t
point where it vanishes. From this point on the results
both the full-qp and the RQRPA approximations are diff
ent. Both matrix elements change their sign at a value ok
which is larger than the one corresponding to the chang
the sign of the matrix elements calculated with the ex
wave function. The fact that the RQRPA results and the o
of the qp approximation are similar, although these mod
differ drastically in the correlations which they actually i
clude, suggest that a kind of balance is established betw
terms which are responsible for ground-state correlations
those which produce the breaking of coherence in the w
functions. Obviously this mechanism must be related to
presence of scattering terms in the commutators as well a
the Hamiltonian.

FIG. 8. ~a! and ~b!: Matrix elementsM2n for the double-Fermi
two-neutrino double-beta decay mode, as functions of the r
4k/G for j59/2,(Np52,Nn58)→(Np54,Nn56), and
x50 (0.04) MeV. Exact results are indicated by thin-full line
The results obtained with the qp Hamiltonian are shown as sm
dotted lines and the results of the QRPA and RQRPA method
dashed lines and large-dotted lines, respectively.
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VI. CONCLUSIONS

An exactly solvable model for the description of singl
and double-beta decay processes of the Fermi type wa
troduced. The model is equivalent to a complete shell-mo
treatment in a single-j shell for the adopted Hamiltonian. I
reproduces the main features of the results obtained in r
istic calculations, with many shell and effective residual
teractions, like those used in the literature to describe
microscopic structure of the nuclei involved in double-be
decay processes.

We have constructed the exact spectrum of the Ham
tonian and discussed its properties. The results concer
the energy of the states belonging to the exact solution of
model show that, in spite of its very schematic structure,
Hamiltonian is able to qualitatively reproduce the nucle
mass parabola. The sequence of levels of the exact solu
shows that the ground state and the first excited state, o
spectrum of double-even nuclei, approach a band-cros
situation for a critical value of the strength associated w
attractive particle-particle interactions. At the crossing the
states interchange their quantum numbers. This behavio
connected with the description of ‘‘shape’’ transitions
similar theories, where the order parameter is clearly ass
ated with multipole deformations inr space. In the presen
model the ‘‘deformation’’ mechanism is related with th
breaking of the isospin symmetry and the space rotation
responds to a rotation in isospin space which preserves
third component of the isospin.

io

ll-
as

FIG. 9. ~a! and~b!: The same as Fig. 8, i.e., the matrix elemen
M2n , for j519/2,(Np56,Nn514)→(Np58,Nn512), and
x50 (0.025) MeV.
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56 209SINGLE- AND DOUBLE-BETA DECAY FERMI . . .
We have compared the exact values of the excitation
ergy and of the double-beta decay matrix elements,
double-Fermi transitions, with those obtained by using
solutions of the approximate qp Hamiltonian, its lineariz
version, and both the QRPA and RQRPA ones.

It was shown that the collapse of the QRPA correla
with the presence of an exact eigenvalue at zero energy.
structure of the RQRPA solutions has been discussed a
was found that, although finite, they are not free from spu
ous contributions. The role of scattering terms was discus
and they were shown to be relevant in getting excitat
energies closer to the exact values. However they are
enough to generate the correlations which are needed to
duce the band crossing or negative excitation energies
was found in the exact solution for large values of the c
pling constantk.

In order to correlate the breakup of the QRPA approxim
tion with the onset of strong fluctuations in the particle nu
ber we have calculated the average number of quasipart
in the different approximations discussed in the text.

It was shown that the solutions of the complete qp Ham
tonian display a strong change in the structure of the gro
state when the particle-particle strength increases. The
content of the ground state varies from a nearly zero valu
an almost full qp occupancy. The particle number fluctu
tions associated with states with a large number of quasi
ticles were mentioned as a possible source of spurious st

Double-beta decay amplitudes were evaluated in the
ferent formalisms. Their similitudes and differences we
pointed out.

As a conclusion, the need of additional work to clarify t
meaning of the different approximations posed by
RQRPA was pointed out.
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APPENDIX A: THE SO „5… ALGEBRA

Following @20# we introduce the operators

A†~0![@ap
†

^ an
†#M50

J50 5A†,

A†~1![
1

A2
@an

†
^ an

†#M50
J50 , A†~21![

1

A2
@ap

†
^ ap

†#M50
J50 ,

~A1!

B†5@ap
†

^ a n̄#M50
J50 , T252A2VB†,

which together with their Hermitian conjugates and with t
number and isospin operators

N5Np1Nn , Tz5
Np2Nn

2
,

Ni5(
mi

a imi

† a imi
, i5p,n, ~A2!
n-
r
e
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he
it
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ed
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it
-

-
-
les

-
d
qp
to
-
r-
es.
if-
e

e

s
-

are the ten generators of the SO~5! group.
The Hermitian conjugates of the pair-creation operat

transform, under isospin reversal, as

Ã~M ![~21!MA~2M !. ~A3!

Their commutation relations are more easily expres
defining the new operators

H15
N

2
2V, H25Tz ,

E115AVA†~1!, E21215AVA~1!,

E12152AVA†~21!, E21152AVA~21!, ~A4!

E105AVA†~0!, E2105AVA~0!,

E015
1

A2
T1, E0215

1

A2
T2.

The operatorsEab are raising and lowering operator
When operating on an eigenstate of the weight opera
H1 andH2 they increase or decrease the eigenvalues of
or both by one unit. Their commutation relations are

@H1 ,H2#50, @H1 ,Eab#5aEab , @H2 ,Eab#5bEab ,

@Eab ,E2a2b#5aH11bH2 , ~A5!

@Eab ,Ea8b8#

5H 6Ea1a8b1b8 if a1a8 and b1b850,1,21,

0 otherwise.

More explicitly

@E11,E210#5E01, @E11,E021#52E10,

@E10,E211#52E01,

@E10,E2121#5E021 , @E10,E01#52E11,

@E10,E021#5E121 , ~A6!

@E121 ,E210#52E021 , @E121 ,E01#5E10,

and by Hermitian conjugation of the above commutators o
obtains

Eab
† 5E2a2b . ~A7!

APPENDIX B: SO„5… REPRESENTATIONS

The highest weights of the operatorsH1 ,H2 define the
irreducible representations~irrep! of the SO~5! algebra. For
the present case we want the irrep which contains the s
with zero quasiparticles as well as the state completely fi
with quasiproton and quasineutrons. The maximum num
(Nmax) of quasiparticles allowed by the Pauli principle
2V, thus adding quasiprotons and quasineutrons one obt
Nmax54V. This is the state with the highest weight and
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210 56HIRSCH, HESS, AND CIVITARESE
belongs to the irrep defined by (H15V,H250) or
N54V,T5Tz50. Acting with the generators~A2! on this
state it is possible to generate the set of all the states wit
even number of quasiparticles. This subspace suffices fo
the calculations described in this work. For this reason
have adopted the irrep (H15V,H250).

In general it is necessary to specify four quantum nu
bers to completely define a state in a given irrep. But for
present case it turns out that the states can be defined b
quantum numbersN,T,Tz .

In the following we will construct explicitly the state
uNTTz5T&; other states withTzÞT are obtained by acting
with the isospin lowering operatorT2 on them. The states o
this basis are defined by

uNT5Tz&5N~a,b!~O00!
b~O1!auN54VT5Tz50&,

where

O15E211, O0052E211E21211E210E210, ~B1!

a5Tz5T, b5V2
T

2
2
N

4
,

N~a,b!

52bF ~2V1122b!! ~V2a2b!! ~2a11!! ~a1b!!

~2V11!! ~V2b!! ~a! !2b! ~2a12b11!! G1/2.
an
all
e

-
e
the

APPENDIX C: SO„5… REDUCED MATRIX ELEMENTS

To diagonalize the Hamiltonian~11! in the (N,T,Tz) ba-
sis, or the Hamiltonian~1! in theN,T,Tz basis, requires the
use of the Wigner-Eckart theorem

^N8T8Tz8uO
nttzuNTTz&5~TTz ,ttzuT8Tz8!^N8T8uuOntuuNT&,

~C1!

where on the right-hand side the symbol(..,..u..) represents
a Clebsch-Gordan coefficient and^..uu@ ..#uu..& is a reduced
matrix element. Explicit expressions for the reduced ma
elements are given below. The difference in the number
creation and annihilation operators in the tensorO is repre-
sented byn and in order to obtain nonzero matrix elements
must be equal toN82N.

We have used of the Wigner-Eckart theorem, the comm
tation relations given in Appendix A, and the explicit form o
the states withT5Tz shown in Appendix B to calculate th
reduced matrix elements of the different operators which
relevant in our problem. Some of these SO~5!-reduced ma-
trix elements are listed here. Additional matrix elements c
be deduced from them by using

^NTuu~Ont!†uuN8T8&5A2T811

2T11
^N8T8uuOntuuNT&.

~C2!

The relevant reduced matrix elements are
r.
^N T12uu@A†Ã# t52uuNT&5
21

2V F ~2V2T2N/2!~T1N/213!~2T1N/2!~2V1T2N/213!~T11!~T12!

~2T13!~2T15! G1/2,
^NTuu@A†Ã# t50uuNT&5

1

2A3V
@~2V2N/213!N/22T~T11!#,

^NTuu@A†Ã# t52uuNT&5
1

A6~TT,20uTT!
@^NT5TzuA†~1!A~1!uNT5Tz&1^NT5TzuA†~21!A~21!uNT5Tz&

22^NT5TzuA†~0!A~0!uNT5Tz&#,

where

^NT5TzuA†~1!A~1!uNT5Tz&5
1

VF2V1T1N/21
~2V2T2N/2!~T1N/213!~T11!

2~2T13! G ,
^NT5TzuA†~21!A~21!uNT5Tz&5

1

VF ~2V2T2N/213!~2T1N/2!~T11!

2~2T13! G ,
^NT5TzuA†~0!A~0!uNT5Tz&5

1

VF2V1N/21
~2V2T2N/2!~T1N/213!V

~2V1T2N/211!~2T1N/212!
^N14T5TzuA†~0!A~0!uN14T5Tz&G .

The largest value thatN can take is 4V22T. In this case

^N54V22TT5TzuA†~0!A~0!uN54V22TT5Tz&512T/V.

The above-reduced matrix elements are enough to deal with the Hamiltonian~1!, which conserves particle numbe
Working with the Hamiltonian~11! requires many other reduced matrix elements, like the following matrix elements:



ion

56 211SINGLE- AND DOUBLE-BETA DECAY FERMI . . .
^N14Tuu@A†A†# t50uuNT&5
21

2A3V
@~T1N/213!~2T1N/212!~2V2T2N/2!~2V1T2N/211!#1/2,

^N14T22uu@A†A†# t52uuNT&5
1

2VF ~2T1N/214!~2T1N/212!~T21!T~2V1T2N/221!~2V1T2N/211!

~2T21!~2T23! G1/2,
^N14T12uu@A†A†# t52uuNT&5

1

2VF ~T1N/213!~T1N/215!~T11!~T12!~2V2T2N/2!~2V2T2N/222!

~2T13!~2T15! G1/2,
^N12T21uuA†uuNT&52FT~2T1N/212!~2V1T2N/211!

2V~2T21! G1/2,
^N12T11uuA†uuNT&5F ~T11!~T1N/213!~2V2T2N/2!

2V~2T13! G1/2.
These matrix elements, together with those associated with the isospin raising and lowering operators

T152A2VB, T252A2VB†,

^NTTz11uBuNTTz&52@~T1Tz11!~T2Tz!#
1/2/A2V,

^NTTz21uB†uNTTz&52@~T2Tz11!~T1Tz!#
1/2/A2V,

are all the elements which are needed to diagonalize the Hamiltonian~11! and to calculate the matrix elements of the transit
operators.
uc
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