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Neutron-proton pairing in the BCS approach
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We investigate the BCS treatment of neutron-proton pairing involving time-reversed orbits. We conclude
that an isospin-symmetric Hamiltonian, treated with the help of the generalized Bogolyubov transformation,
fails to describe the ground state pairing properties correctly. In order for thenp isovector pairs to coexist with
the like-particle pairs, one has to break the isospin symmetry of the Hamiltonian by artificially increasing the
strength of thenp pairing interaction above its isospin-symmetric value. We briefly discuss the prescription
how to choose the coupling constant of this auxiliary isospin-breaking pairing force.@S0556-2813~97!03710-2#

PACS number~s!: 21.60.Fw, 21.30.Fe, 23.40.Hc
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I. INTRODUCTION

Pairing correlations are an essential feature of nuc
structure@1#. In proton-rich nuclei withN'Z the neutron
and proton Fermi levels are close to each other and there
the neutron-proton (np) pairing correlations can be expecte
to play a significant role in their structure and decay~for a
review of the early work onnp pairing theory see Ref.@2#!.
In contrast, in the heavier nuclei with large neutron exc
the neutron-proton pairing correlations can be usually
glected.

There has been a recent revival of interest in the theo
ical description of pairing involving both neutrons and pr
tons @3–6#. This renaissance stems from the advent of
periments with radioactive beams, as well as from
application of neutron-proton pairing concepts in the desc
tion of alpha decay@7# and double-beta decay@8,9#. How-
ever, the theoretical treatment is not without a controve
While intuition and arguments of isospin symmetry sugg
that the neutron-proton pairing correlations should be as
portant as the like-particle pairing correlations in theN.Z
nuclei, the balance between these pairing modes is deli
and the standard approximations often fail.

In order to elucidate what is going on we examine t
treatment of neutron-proton pairing in the generaliz
Bogolyubov transformation approach, in particular the r
of isospin symmetry. The problem at hand is the determi
tion of the ground state of an even-even system with
Hamiltonian

H5(
jmt

e j tajmt
† ajmt

2
1

4 (
jm j8m8

(
tt8

Gtt8ajmt
† ajmt8

† aj 8m8t8aj 8m8t , ~1!

where (jmt) represents the angular momentum, its proj
tion, and the isospin projection of the single-particle~s.p.!
state created~annihilated! by the operatorajmt

† (ajmt), and as
usual ajmt5(21) j 2maj 2mt . The three coupling constant
Gtt8 ~we assume thatGtt85Gt8t) characterize the monopol
pairing interaction. The interaction couples only states
time-reversed orbits, but allows an arbitrary combination
560556-2813/97/56~4!/1840~4!/$10.00
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the isospin projection indices. Obviously, when isospin sy
metry is imposed, the s.p. energies become independen
the isospin labelt, andGnn5Gpp5Gpn5Gnp[G. The in-
teraction then describes the isovectorT51 pairing. How-
ever, as will be seen below, it is advantageous to keep
general form of the Hamiltonian~1!.

One can find the exact ground state of Eq.~1! in the
simple case of a one- or two-level system. However, in
general case of a multilevel system the dimension increa
exponentially and therefore the standard procedure is to
the generalized Bogolyubov transformation approach in
form @10# where the quasiparticle operators are related to
particle operators by

S cj 1
†

cj 2
†

c j̄ 1

c j̄ 2

D 5S u11j u12j v11j v12j

u21j u22j v21j v22j

2v11j 2v12j* u11j u12j*

2v21j* 2v22j u21j* u22j

D S ajp
†

ajn
†

a j̄ p

a j̄ n

D . ~2!

Here j denotes the full set of quantum numbers of a s
orbit, and the indices ‘‘1’’ and ‘‘2’’ are the quasiparticle
analogs ofp or n, i.e., of the corresponding isospin proje
tions. The transformation amplitudesuik, j and v ik, j with i
Þk describe the neutron-proton pairing. They are, in gene
complex. We refer to@5# and@10# for the unitarity conditions
which uik, j andv ik, j have to obey, as well as for the relatio
between the amplitudes and the gap parametersDp , Dn , and
Dnp .

To find the ground state we minimize the quantityH0, the
expectation value of the Hamiltonian in the quasiparti
vacuum, while simultaneously obeying the unitarity con
tions and the usual conservation~on average! of the number
of neutrons and protons.~This procedure is equivalent t
demanding that the ‘‘dangerous graph’’ termH20, which
creates or annihilates a pair of quasiparticles, vanish.! We
use the Newton-Raphson method@11# and check, by com-
paring to the ‘‘standard BCS’’ solution forGnp50, that the
ground state energy is lower than in the state without
neutron-proton pairing. The procedure allows us to find
1840 © 1997 The American Physical Society
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56 1841NEUTRON-PROTON PAIRING IN THE BCS APPROACH
the same time the gain in the ground state binding ene
associated with the neutron-proton pairing.

II. ISOSPIN-SYMMETRIC HAMILTONIAN

The Hamiltonian~1! with e jp5e jn and Gnn5Gpp5Gnp
describes the isovector pairing, in which all three kinds
pairs (nn, pp, andnp with T51) are treated equally on th
interaction level. One expects then that in an even-e
nucleus withN5Z the corresponding gap parameters sho
be the same for all three possible pairs.

In fact, in the exactly solvable manifestation of th
Hamiltonian, in which there is only one s.p. state of deg
eracy 2V, this is indeed the case. Defining the pair creat
operator as

Stz
† 5 (

j ,m.0
@ajm

† ajm
†

# tz
T51 , ~3!

wheretz is the corresponding isospin projection, the quan
related to the pairing gapD tz

is the ground state expectatio

valueNtz
5^Stz

† Stz
&. ~We calculate the ‘‘gap’’D tz

from the

expressionNtz
5 D tz

2 /Gtz
2 valid up to the terms 1/V. This

relation, however, fails for full shells.! As shown in @3#,
based on the earlier work on this SO~5! model, one can ob-
tain analytic expressions forNtz

. Indeed, whenN5Z and

both are even, all three values ofNtz
are equal, and when

N2Z increases,N0, and therefore alsoDnp , sharply de-
creases, while the other twoNtz561 remain the same or in

FIG. 1. The pairing gaps for the one-level case withV511, N
56, and Z54. Gpair50.242 MeV was used and the results a
plotted as a function of the ratioGnp /Gpair . In both panels of the
figure long-dashed lines, solid lines, and short-dashed lines re
sent the neutron-neutron (Dnn), proton-proton (Dpp), and proton-
neutron (Dpn) pairing gaps, respectively. The upper panel is for
exact solution with gaps determined as described in the text.
lower panel is for the BCS solution.
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crease withN2Z. We expect that this behavior is ‘‘ge
neric,’’ i.e., survives even in the case of more than o
single-particle level.

Indeed, the generalization of the one-level model to
case of two nondegenerate levels@12# supports this conjec-
ture. Such a generalization is straightforward if we restr
ourselves only to the states with seniority zero. It is then e
to construct the corresponding Hamiltonian matrix which h
very manageable dimensions even for largeV. For com-
pleteness we give the expressions for the corresponding
trix elements, applicable to both the one- and two-level m
els for seniority-zero states in the Appendix.~The results
shown in Figs. 1 and 2 below are, for simplicity, for th
one-level case.!

Unlike the exact solutions described above, the gene
ized Bogolyubov transformation approach gives very diff
ent results in the isospin-symmetric case. It has been kn
for some time@13# that in the one-level case the approa
leads to nonp pairing whenN.Z. The relationship between
the occurrence ofnp pairing and the conservation of averag
values of the total isospin (T2) and its projectionTz , in a
multilevel BCS approach was studied by Ginocchio a
Weneser@14#. These authors have reported the finding o
class of BCS solutions with the same ground state ene
and different values ofTz and the fact that the solution cor
responding to the maximum isospin projection (T5Tz) has
no proton-neutron pairing. Our calculations show that th
results are generally valid when the dependence ofnp pair-
ing correlations upon the neutron~or proton! excess and the
relaxation of the isospin symmetry are explicitly considere
We find, in fact, that the ground states of even-even nu
with N.Z have vanishingDnp when isospin-symmetric
Hamiltonian is used. ForN5Z nuclei there is still no mix-
ing. But in that case there are twodegenerateminima of the
energy: one with nonvanishingDn5Dp andDnp50, and the
other one withDn5Dp50 andDnpÞ0. ~This conclusion was

re-

e

FIG. 2. The pairing gaps for the one-level case withV511, as
function of the neutron excessN2Z. Short-dashed lines, long
dashed lines, and solid lines correspond to values ofDpn ,Dnn , and
Dpp , respectively. Both panels are forZ54 while the neutron num-
ber is varied;Gpair516/~N1Z156! MeV. The exact solutions for
Gnp /Gpair51.1 are in the upper panel. The BCS solutions
Gnp /Gpair51.25 are in the lower panel.
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also reached in@4# for the one-level model, and in@6# in the
more general case.!

We see, therefore, that the generalized Bogolyubov tra
formation fails to describe correctly the treatment
isovector-pairing correlations. However, since we expect
stated above, that the effect ofnp pairing decreases fast wit
increasingN2Z, the standard BCS theory is still applicab
for most heavier nuclei whereN2Z is relatively large.

III. BREAKING THE ISOSPIN SYMMETRY

Let us consider now what happens when the requirem
of isospin symmetry is relaxed; i.e., in the Hamiltonian~1!
one allows different coupling constantsGnnÞGppÞGnp ,
and possibly different single-particle energies for neutro
and protons. It was shown already 30 years ago@10# that
such a Hamiltonian, treated using the generalized Bog
ubov transformation~2!, results in nonvanishingDnp in nu-
clei with N.Z.

The Hamiltonian which breaks isospin symmetry lea
naturally, to eigenstates that do not have a definite valu
isospin. Since the quasiparticle vacuum mixes states w
different particle number, and therefore also with differe
isospin, even for an isospin-conserving Hamiltonian, it
perhaps worthwhile to explore effects associated with suc
more general situation.

It is straightforward to treat the Hamiltonian~1! exactly in
the one- or two-level model; the corresponding Hamilton
matrix can be calculated using the formulas in@15# ~see also
the Appendix!. The corresponding eigenstates are no lon
characterized by isospinT. Instead, all isospin values be
tweenTz[Tmin5(N2Z)/2 andTmax5(N1Z)/2 contribute
to the wave function. The ground state energyEg.s. of a one-
level system withGnpÞGpair[Gnn5Gpp decreases mono
tonically with increasingGnp . However, the binding energ
gain between a system with no neutron-proton interac
~and thereforeDnp50) and the system with pure isovect
interaction~andDnpÞ0) is only of the order 1/V,

DE5Eg.s.~Gnp /Gpair51!2Eg.s.~Gnp50!52GpairZ/2,
~4!

compared to the leading term2GpairV(N1Z)/2. Moreover,
the exact wave function of the ground state correspondin
the isovector-pairing Hamiltonian withGnp /Gpair51 can be
obtained from the ground state of the isospin-violati
Hamiltonian with any Gnp /GpairÞ1 by simply projecting
onto a state with isospinT5Tmin . This is an exact statemen
which follows from the uniqueness of the zero-seniority st
with given (N,Z,T).

In Fig. 1 we show the exact and BCS gap parameters
the one-level system as a function of the ratioGnp /Gpair.
The degeneracyV and the pairing strengthGpair are chosen
in such a way that they resemble the situation in finite nu
discussed later on. One can see that the two methods
qualitatively similar results. They agree with each other qu
well, with the exception of the narrow region near the ‘‘cri
cal point’’ of the BCS method~for the plotted case this poin
is atGnp /Gpair51.05). As usual, the BCS method is chara
terized by the sharp phase transition while the exact met
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goes more smoothly through the ‘‘critical point,’’ as it mu
for a finite system. Nevertheless, the basic similarity is
parent.

It is now clear that the failure of the BCS method
describe the neutron-proton pairing in the isospin-symme
case is not a fundamental one. It is related to the abr
phase transition inherent in the BCS. The isospin-symme
valueGnp5Gpair is less than the critical value needed for t
phase transition from the pure like-particle pairing to t
situation where both like-particle and neutron-proton pa
coexist. Since, as stated earlier, the quasiparticle vacu
breaks isospin anyway, it should not matter much that
isospin violation is also imposed on the Hamiltonian lev
We have to choose, however, the proper value of the c
pling constantGnp .

The natural way to fix the ratioGnp /Gpair is in nuclei with
N.Z where one can use the arguments of isospin symm
to estimate the gapDnp . This is easy to do for the pairing
Hamiltonian ~1!. But a similar procedure can be also do
when working with a ‘‘realistic’’ Hamiltonian with noncon-
stant pairing matrix elements. Such Hamiltonians are ess
tially always isospin symmetric. To break the symmetry, a
allow the coexistence of the like-particle and neutron-pro
pairs, we propose to add to the realistic Hamiltonian
interaction term

Haux5
1

4 (
jm j8m8

Gnpajmn
† ajmp

† aj 8m8paj 8m8n , ~5!

containing an adjustable parameterGnp . This parameter is
then fixed in such a way that in nuclei withN.Z the corre-
sponding gaps have values following from isospin symm
try. Once determined, the value ofGnp should be kept fixed
for calculation of other nuclei for which the same singl
particle level scheme is applicable. While our prescription
unique for the pure pairing Hamiltonian~1!, it is not obvi-
ously unique for the realistic Hamiltonian. But as long as t
isospin breaking is relatively mild, its actual form should n
matter much.

What happens when neutrons are added to the symm
N5Z even-even nucleus? We show in Fig. 2 again the co
parison between the exact and BCS gaps in the degen
case, now as a function ofN2Z. There are again basic sim
larities between the two situations, but the quantityDnp de-
creases more rapidly withN2Z in the BCS case than in th
exact case. We believe that this feature is related to the
proximation involved in relating the gapD tz

to the ground

state expectation valueNtz
in the exact case. What is clearl

visible in both cases, and intuitively obvious, is the tenden
of the Dnp to decrease with increasingN2Z. This tendency
have been noted many times before; see e.g.,@3,5#. In par-
ticular Ref.@5# has shown that in the BCS approach for re
nuclei, and with the ratioGnp /Gpair fixed so that atN.Z the
gap Dnp has reasonable value, the effect of neutron-pro
pairing disappears atN2Z>6. It is important to keep in
mind that the decrease ofDnp with increasingN2Z occurs
even though the protons and neutrons occupy the same s
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IV. CONCLUSIONS

We have shown that treating pairing properties of a s
tem of interacting protons and neutrons with the help of
generalized Bogolyubov transformation requires spe
care. The corresponding system of equations allows, in p
ciple, three different solutions. There is the trivial ‘‘norma
solution with no pairing whatsoever. But there are also t
competing solutions with pairing correlations present. O
in which there are no neutron-proton pairs, corresponds
product state with the neutron-neutron and proton-pro
pairs not communicating with each other. The other solut
corresponds to a system in which like-particle and neutr
proton isovector pairs coexist. When the generalized Bog
ubov transformation is used, there is a sharp phase trans
between these two paired regimes, with the critical pair
strengthGnp /Gpair somewhat larger than unity.

Thus, if one wants to describe the neutron-proton pair
using the quasiparticle transformation method, one ha
break isospin symmetry at the Hamiltonian level. We p
pose to fix the unknown degree of isospin breaking in suc
way that the gapDnp in N.Z nuclei is reasonable, i.e., com
parable to the gapsDnn and Dpp . With this assignment al
traces of the isovector neutron-proton pairing disappear
N2Z>6 in real nuclei.
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APPENDIX

For the exact diagonalization in the space of pairs w
zero seniority we use the basisuN,T,Tz&, whereN is the
total number of pairs,T is the isospin, andTz its projection.
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The necessary matrix elements of the pair creation and a
hilation operators are

^N11,T11,Tz1tzuStz
† uN,T,Tz&

5
^TTz1tzuT11,Tz1tz&

A2T13

3@~T11!~2V2N2T!~T1N13!/2#1/2, ~A1!

^N11,T21,Tz1tzuStz
† uN,T,Tz&

5
^TTz1tzuT21,Tz1tz&

A2T21

3@T~2V112N1T!~N2T12!/2#1/2, ~A2!

^N21,T11,Tz2tzuStz
uN,T,Tz&

5
^TTz12tzuT11,Tz2tz&

A2T13

3@~T11!~2V132N1T!~N2T!/2#1/2, ~A3!

^N21,T21,Tz2tzuStz
uN,T,Tz&

5
^TTz12tzuT21,Tz2tz&

A2T21

3@T~2V122N2T!~N1T11!/2#1/2. ~A4!

For the case of two levels the basis
uN1 ,N2 ,T1 ,T2 ,T1z ,T2z& with the obvious constraintN1
1N25N ~total number of pairs! and a similar one forTz .
The Hamiltonian matrix is easily constructed from the e
pressions above, with terms diagonal inN1 ,N2 and terms
whereN1→N161, andN2→N271. In addition there is a
diagonal shift of 2eN2, wheree is the splitting of the single-
particle states.
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