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Effects due to the continuum on shell corrections at finite temperatures
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Temperature dependent shell corrections are calculated taking into account the continuum spectrum of a
finite depth mean field potential. The effect of the continuum is split up into a discret term which includes
Gamow resonances and an integral along a contour in the complex energy plane. The resonances appear in the
formalism in the same manner as bound states and at low temperatures they give the main part of the
contribution due to the continuum. The method is applied to the particular case of208Pb. The temperature for
which the shell corrections are washed out completly is estimated atT'2.5 MeV. @S0556-2813~97!05203-5#

PACS number~s!: 21.10.Pc, 21.10.Dr, 21.60.2n, 27.80.1w
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I. INTRODUCTION

The thermal properties of a nucleus depend on the den
of single-particle states around the Fermi level. By therm
excitations these states become equally populated and
single-particle shell structure is washed-out progressiv
Above a critical temperature the system displays the beh
ior of a degenerate Fermi gas, that is the excitation ene
increases quadratically with the temperature. For higher
citations the nucleus becomes unstable since nucleons
occupy states of the continuum. In order to describe
process one should consider the excitations of the nucle
in a finite depth potential and to treat properly the continu
part of its energy spectrum.

To deal with the continuum different prescriptions ha
been used both in self-consistent and phenomenological
perature dependent calculations. One of these prescriptio
to diagonalize the mean field potential in a harmonic os
lator basis and to replace the continuum by the correspo
ing positive energy solutions@1–3#. The drawback of this
approach is that the unbound spectrum depends on the c
of the oscillator basis@4#.

Another alternative was proposed in Ref.@5# where the
continuum was discretized by considering the nucleus i
box at equilibrium with a nucleonic gas. Then the nucle
component of the solution was obtained by extracting the
solution from the one representing the total system,
nucleus and gas.

In phenomenological temperature dependent calculati
in which the mean field is not changed with the temperatu
the continuum contribution is generally introduced throu
the generalized level density@6,7#.

The effects of the continuum on shell corrections w
discussed many years ago@8,9# for the case of nuclei in the
ground state, but up to now there is not a realistic estima
of these effects for finite temperatures.

In this paper we extend the Strutinsky method as to inc
porate in a simple way both the continuum and thermal
fects. For evaluating the continuum a general procedure
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extracting the main contribution of the resonant states is p
sented.

II. FORMALISM

Temperature dependent Hartree-Fock~HF! calculations
have shown that for values of the temperature (T) less than
about 5 MeV the relevant thermodynamical quantities, su
as the excitation energy and the entropy, can be descr
approximatively by using the single-particle spectrum of t
‘‘cold’’ nucleus @1–5#. This justifies a non-self-consisten
thermodinamic approach@6,7,10# that will be applied also in
the present work. Thus, in what follows we consider that
temperature is externally fixed and that the nucleons mov
a temperature independent mean field.

For high excitation energies the particles can be exc
into the continuum part of the spectrum. The continuum c
tributes mainly through the narrow resonances and their
fect could be introduced by the generalized level dens
g(e), given by@8,9#

g~e!5 (
ibound

d~e2e i !1Dgcont~e!, ~1!

where

Dgcont~e!5
1

p(
l , j

lmax

~2 j11!
dd l j ~e!

de
~2!

is the contribution of the continuum to the single-partic
level density@11# andd l j are the phase shifts.

Using the generalized level density one can readily
clude the contribution of the continuum in the formalism.
is worthwhile to stress that the continuum will contribute n
only to the thermal averaging process, but also to
smoothing procedure itself@8,9#.

The temperature dependent shell corrections to the
energy are defined by

dF̃5F2F̃5~E2TS!2~Ẽ2TS̃!. ~3!
1250 © 1997 The American Physical Society
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HereE andS are the HF energy and entropy given by

E5E
2`

1`

eg~e!n~e!de5 (
ibound

e in~e i !

1E
0

1`

eDg~e!contn~e!de ~4!

and

S52E
2`

1`

g~e!$n~e!ln@n~e!#1@12n~e!# ln@12n~e!#%de,

~5!

where g(e) is the single-particle level density~1! andn(e) is
the Fermi occupation probability

n~e!5
1

11e~e2l!/T . ~6!

The Fermi level for a given temperature,l(T), is fixed by
the number of particles

N5E
2`

1`

g~e!n~e!de5 (
ibound

n~e i !1E
0

1`

Dg~e!contn~e!de.

~7!

The smooth energy,Ẽ, and the smooth entropy,S̃, have
similar expressions as the corresponding HF quantit
namely:

Ẽ5E
2`

1`

eg̃~e!ñ~e!de ~8!

and

S̃52E
2`

1`

g̃~e!$ñ~e!ln@ ñ~e!#1@12ñ~e!# ln@12ñ~e!#%de.

~9!

The quantityñ(e) is the Fermi distribution correspondin
to the smooth Fermi level,l̃(T), which is determined by the
condition

N5E
2`

1`

g̃~e!ñ~e!de. ~10!

The level densityg̃(e) is obtained by folding the corre
sponding single-particle density with a smoothing functi
f (x), i.e.,

g̃~e!5E
2`

1`

de8g~e8! f S e2e8

g D
5 (

ibound
f S e2wi

g D1E
0

1`

de8Dg~e8!contf S e2e8

g D .
~11!

In this equationg is the smoothing parameter, which shou
be larger than the typical distance between major shells.
function f (x) can be written as a product of a weightin
s,

he

function and the so-called ‘‘curvature correction’’ polyno-
mial. Here we use the expression

f ~x!5
e2x2

gAp
(
0

p

cmHm~x!, ~12!

whereHm is the Hermite polynomial of orderm andcm is an
expansion coefficient@12#.

The shell corrections should not depend strongly on th
smoothing parameterg or on the degree of the curvature
polynomialp. These constraints are referred to as the plate
conditions@12#.

The quantities defined above contain a discrete sum
bound states and an integral over the phase shifts. To p
form these integrals on the real axis may be difficult, particu
larly if narrow resonances are present. To avoid these dif
culties we replace the integral on the real axis by a
integration along a contourC in the complex energy plane.
Such a contour is shown in Fig. 1. The circles represent t
so-called Gamow resonances. They are the outgoing so
tions of the time-independent Schro¨dinger equation corre-
sponding to the finite depth potential.

Changing the path of integration, as displayed in Fig. 1
and applying Cauchy’s theorem one obtains from Eq.~11!

g̃~e!5(
i
f S e2wi

g D1E
L
de8Dg~e8!contf S e2e8

g D . ~13!

In this expression the summation runs over all the boun
states and resonances enclosed by the contour, whileL is the
integral path in the complex energy plane of Fig. 1. Th
contribution of the resonances are evaluated by noticing th
near the poleEn5(en ,2gn) the derivative of the phase
shifts can be written as@15,16#

FIG. 1. Contour of the integration path in the complex energ
plane used to evaluate the shell correction for neutrons in208Pb.
The open circles are the Gamow-state energies corresponding t
Woods-Saxon potential. Energies are given in MeV.
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dd~E!
dE 5

gn

~E2En!~E2En* !
5

gn

~E2en!
21gn

2 . ~14!

We use the same procedure to evaluate the integrals defin
the HF quantities.

The fact that the main contribution due to the continuum
can be cast in an analytical form can be used to expand
shell correction formulas in powers of the temperature. Th
kind of expansion was done in@10# for the case of a har-
monic oscillator potential. Neglecting the contribution of th
contour integral and keeping only the first term of the expa
sion in powers of the temperature one gets, for the tempe
ture dependent shell correction to the free energy, the expr
sion

dF̃5dẼ~T50!1F* ~T!1ãT2, ~15!

wheredẼ(T50) is the shell correction at zero temperatur
andF* (T)5F(T)2E(T50). Formally the level density pa-
rameterã has the same analitical form as in@10#, but now the
summation goes over the resonant states as well. One ge

ã5
p2

6Apg2(j e2[ ~ l̃2e j !/g]
2S 0.5gcpHp12

1 (
m50

p

cm~2gHm1e jHm11!D . ~16!

Summarizing this section, we have split up the contribu
tion of the continuum in two parts: a discrete part wher
resonances are treated in the same footing as bound sta
and an integral along a contour in the complex energy plan
This integral can be evaluated without difficulties if one
chooses a contour far enough from the poles, where the sc

FIG. 2. Shell corrections to the free energy~in MeV!, for neu-
trons in 208Pb, as a function of the smoothing parameterg and for
three different temperatures~from bottom to top! T50, 0.7, and 1.5
MeV, respectively. The dashed, full, and dotted lines correspond
the values of the curvature-order parameterp58, 10, and 12, re-
spectively.
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tering functions are well behaved. Moreover, if the contou
includes only narrow resonances, the contribution of the in
tegral is very small as compared to the discrete term and c
be neglected.

In addition to the numerical advantages, this procedure
describe the continuum allows for a transparent interpret
tion of the results. Thus, one can calculate the occupan
probability of different resonances as a function of tempera
ture as well as their contributions to the thermal averagin
and to the smoothing procedure.

III. NUMERICAL RESULTS

We will apply the formalism derived above to the case o
208Pb. For this we utilize as a central field a Saxon-Wood
potential with parametersV0544.4 MeV,Vs2o516.5 MeV,
a5as2o50.7 fm, r 05r s2o51.27 fm. To calculate the com-
plex energies and wave functions of the resonances we u
the computer codeGAMOW @13#, which solves the corre-
sponding Schro¨dinger equation by imposing outgoing
boundary conditions at large distances.

In order to verify the plateau conditions for different tem-
peratures we show in Fig. 2 the results of the shell corre
tions as a function of the smoothing parameterg for three
values ofp. The continuum contribution is important to ob-
tain the plateau, as shown in Ref.@9# for T50 . In our
calculation the plateau is obtained for resonable cutoff pa
rameters, namely including single-particle states up t
Emax520 MeV and for a maximum angular momentum
lmax511\. This is to be compared with the values
Emax5100 MeV andlmax520\ used in Ref.@9#. Our cutoff
parameters are the same as those in Ref.@8# where no plateau
was found. This could be a manifestation of numerical inac
curacies affecting the integration along the real axis in th
region of narrow resonances.

From Fig. 2 one can see that the plateau is stable when t
temperature is increased.

to

FIG. 3. Shell corrections to the free energy~in MeV! for neu-
trons in 208Pb as a function of temperature. The full line corre-
sponds to the exact result, the dashed line to the case when o
bound and resonant states are included, and the dash-dotted
corresponds to the approximation given in Eq.~15!.
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The results for the temperature dependent shell correct
to the free energy are shown in Fig. 3, whereg510.6 MeV
and p510 are used. These values are consistent with
plateau condition, as seen from Fig. 2.

The full curve shown in Fig. 3 gives the exact results, th
is when the contribution of the contour is introduced. As on
can see, the curve approaches zero exponentially, in ag
meent with previous estimations@14#. The temperature for
which the shell corrections are completely washed o
(T'2.5 MeV! is of the same order as the one obtained f
the case of the harmonic oscillator potential@10#. The dashed
curve shows the results obtained with the discrete part,
by neglecting the contributions of the integrals, both to th
HF and to the smoothed quantities. The slope of that curve
almost the same as for the full curve, corresponding to t
exact result, and the differences between them are not la
These differences come mainly from the smoothed quantit
which include the broader resonances at about 12 MeV. T
dash-dotted curve corresponds to the approximation of E
~15!. One can see that for temperatures below 1.5 MeV th
approximation reproduces almost exactly the value given
the discrete term. For higher temperatures the deviation fr
the exact result increases. This implies that one cannot
the level density parameterã @Eq. ~15!# to approximate the
value of the shell corrections to the free energy for tempe
tures much beyond 1.5 MeV. In particular, it would be que
tionable to implement that approximation for temperatur
higher than the 2.5 MeV point of collapse of the shell co
rection @10#.

In Fig. 4 we have plotted the quantitiesE* /T2 ~full line!,
S/2T ~dashed line!, andS2/4E* ~dashed-dotted line!, where
E*5E(T)2E(T50) is the excitation energy. In the region
where the shell corrections begin to be negligible~i.e., from
about 2.5 MeV! those quantities become almost constan
This indicates that the system is in a degenerate Fermi
regime for high excitation energy, as expected. Therefore,
compare the level density parameter that can be extrac
from Fig. 4 to the corresponding Fermi gas value, one has
go to the asymptotic regions of high temperatures. On t
other hand, in a Fermi-gas model all the quantities plotted

FIG. 4. Variation with the temperature ofE* /T2 ~full line!,
S/2T ~dashed line!, andS2/4E* ~dash-dotted line!. All the quanti-
ties are in MeV21.
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Fig. 4 would be equal to the level density parameter given
@17#

a5
p2

4

2m*

\2

A

kF
2 , ~17!

wherem* is the effective mass andkF is the Fermi momen-
tum. If one takes for these parameters the values given b
Skyrme interaction@18# then the level density parameter
208Pb comes at abouta 5 11 MeV21. This agrees well with
the asymtotic value extracted from Fig. 4.

An asymtotic behavior for those quantities which is sim
lar to the one seen in Fig. 4 was obtained in Ref.@5# in the
framework of a temperature dependent Hartree-Fock ca
lation ~see Fig. 5 of Ref.@5#!. However, the asymptotic valu
of the level density parameter obtained from there is ab
15 MeV21. It is worthwhile to mention that those asymp
totic values should not be compared with the level dens
parameter estimated in Ref.@18#, since there one expands th
free energy in power ofT2 keeping only the first term, as w
did in deriving Eq.~15!. But this approximation fails at large
temperature, as one can see from Fig. 3. Therefore the v
a 5 20 MeV21 derived in Ref.@18#, should rather be com
pared in our approach to the result given byã in Eq. ~15!.
We thus obtainedã 5 17 MeV21, which is closer to the
value of Ref.@18#. The remaining difference may be due
the different interactions used in the calculations, and no
the way the continuum is treated at this low temperature

For the range of temperatures shown in Fig. 3 only
narrow resonances contribute to the thermal averaging.
deed, forT52.5 MeV, the occupancy of the first resonan
is about 0.4 while for the next two resonances it is of t
order of 0.2. The resonances lying at higher energies are
populated unless unrealistically large values of the temp
ture are used. ForT52.5 MeV the whole contribution of the
continuum to the HF excitation energy is about 2% and
the entropy about 5%. This indicates that in208Pb the con-
tinuum does not play an important role for thermal avera
ing. But in nuclei that are of interest at present, e.g., nuc
close to the drip line, the low excited states may be above
continuum threshold. In cases like this the treatment of
continuum presented here is a favorable alternative to
scribe the dynamics of the system.

IV. SUMMARY

In this paper we have presented a method to evaluate
contribution of the continuum part of the spectrum to sh
corrections in nuclei at finite temperature. The main part
that contribution is due to outgoing~Gamow! resonances tha
are not too wide. This is expected, since nucleons movin
wide resonances would not have enough time to feel
interactions induced by the other nucleons in the core.

One appealing feature of the the formalism is that all re
nances are treated on the same footing as bound states.
is, formally bound states and Gamow resonances are ide
cal excitations.

The remaining continuum contribution is given by a co
tour integral which can be easily evaluated. Neglecting t
contour integral an analytical expression for the level den
parameter, valid for low temperatures, is obtained. T
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method was applied for the case of208Pb. The critical tem-
perature for which the shell corrections are complet
washed out was estimated at aboutT'2.5 MeV. Beyond this
temperature the system behaves as a degenerate Ferm
Asymptotically, the value of the level density parameter
close to the value predicted by the Fermi-gas model. In
case of208Pb the inclusion of the continuum is essential f
obtaining the plateau conditions but it does not influence
nuclear thermal properties significantly. One expects that
continuum will be important for thermal excitations in nucl
far from the stability line, where the present method may
s.
y

gas.
s
e

e
e

e

an adequate way of treating both shell corrections and t
mal properties.
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