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Effects due to the continuum on shell corrections at finite temperatures
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Temperature dependent shell corrections are calculated taking into account the continuum spectrum of a
finite depth mean field potential. The effect of the continuum is split up into a discret term which includes
Gamow resonances and an integral along a contour in the complex energy plane. The resonances appear in the
formalism in the same manner as bound states and at low temperatures they give the main part of the
contribution due to the continuum. The method is applied to the particular ca98Pti The temperature for
which the shell corrections are washed out completly is estimatéd=@5 MeV.[S0556-28187)05203-3

PACS numbdps): 21.10.Pc, 21.10.Dr, 21.60n, 27.80+w

[. INTRODUCTION extracting the main contribution of the resonant states is pre-
sented.
The thermal properties of a nucleus depend on the density
of single-particle states around the Fermi level. By thermal Il. FORMALISM

excitations these states become equally populated and the .
single-particle shell structure is washed-out progressivelyh Temperature dependent Hartree-Fd¢kF) calculations

Above a critical temperature the system displays the behav:o> shown that for values of the temperaturg [ess than
P y play about 5 MeV the relevant thermodynamical quantities, such

?or of a degenerat_e Ferm.i gas, that is the excitatiqn ENEIY¥s the excitation energy and the entropy, can be described
increases quadratically with the temperature. For higher exs, proximatively by using the single-particle spectrum of the
citations the nucleus beco_mes unstable since nuclgons Cafold” nucleus [1-5]. This justifies a non-self-consistent
occupy states of the continuum. In order to describe thighermodinamic approadl6,7,14 that will be applied also in
process one should consider the excitations of the nucleonge present work. Thus, in what follows we consider that the
in a finite depth potential and to treat properly the continuumemperature is externally fixed and that the nucleons move in
part of its energy spectrum. a temperature independent mean field.

To deal with the continuum different prescriptions have  For high excitation energies the particles can be excited
been used both in self-consistent and phenomenological tennto the continuum part of the spectrum. The continuum con-
perature dependent calculations. One of these prescriptionstigbutes mainly through the narrow resonances and their ef-
to diagonalize the mean field potential in a harmonic oscilfect could be introduced by the generalized level density,
lator basis and to replace the continuum by the correspondy(e), given by[8,9]
ing positive energy solutiongl—3|. The drawback of this
approach is that the unbound spectrum depends on the cutoff _
of the oscillator basi§4]. 9(e)= i%m O(e~ &)+ Adcon(€), @

Another alternative was proposed in Rg5] where the
continuum was discretized by considering the nucleus in avhere
box at equilibrium with a nucleonic gas. Then the nuclear |
component of the solution was obtained by extracting the gas 138 . dajj(e)
solution from the one representing the total system, i.e., Agcom(e):;%: (2j+1) de
nucleus and gas. '

In phenomenological temperature dependent calculationss the contribution of the continuum to the single-particle
in which the mean field is not changed with the temperaturelevel density{11] and §,; are the phase shifts.
the continuum contribution is generally introduced through Using the generalized level density one can readily in-
the generalized level densitg,7]. clude the contribution of the continuum in the formalism. It

The effects of the continuum on shell corrections wasis worthwhile to stress that the continuum will contribute not
discussed many years af,9] for the case of nuclei in the only to the thermal averaging process, but also to the
ground state, but up to now there is not a realistic estimatiosmoothing procedure itsef8,9].
of these effects for finite temperatures. The temperature dependent shell corrections to the free

In this paper we extend the Strutinsky method as to incorenergy are defined by
porate in a simple way both the continuum and thermal ef- _ _ o
fects. For evaluating the continuum a general procedure for OF=F—-F=(E-T9—-(E-TS). 3
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HereE andS are the HF energy and entropy given by

E=f+weg<e>n<e>de=,2 en(e)

—o0 ibound

+ f " eAg(€)onn(€)de @
0

and

s=— [ atatntemin(a1+[1-n(e i 1-n(e)jde,
©

where g) is the single-particle level densitg) andn(e) is
the Fermi occupation probability

1

n(e)= 1t T

(6)

The Fermi level for a given temperatudg(T), is fixed by
the number of particles

N=f wg(@n(e)de;z n(ei>+f "AG()eonii(€)dle.
— ibound 0
7

The smooth energ)E, and the smooth entropﬁ, have

similar expressions as the corresponding HF quantities,

namely:

E=f+%e§(e)ﬁ(e)de (8)

— o0

and

"S':_17:5(6){ﬁ(e)|n['ﬁ(e)]+[1—ﬁ(e)]ln[1—ﬁ(e)]}df-
©)

The quantityn(e) is the Fermi distribution corresponding
to the smooth Fermi level(T), which is determined by the

condition

N= fjwﬁ( e)n(e)de. (10

The level densityg(e€) is obtained by folding the corre-
sponding single-particle density with a smoothing function

f(x), i.e.,

- +oo e—¢€'
g(e):f,w df'g(f')f<7)

zzf(
ibound
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FIG. 1. Contour of the integration path in the complex energy
plane used to evaluate the shell correction for neutron&’dRb.
The open circles are the Gamow-state energies corresponding to a
Woods-Saxon potential. Energies are given in MeV.

function and the so-called “curvature correction” polyno-
mial. Here we use the expression

e—ﬁ p
f(x)= % CnHm(X),

YN

(12

whereH , is the Hermite polynomial of orden andc,, is an
expansion coefficiertl2].

The shell corrections should not depend strongly on the
smoothing parametey or on the degree of the curvature
polynomialp. These constraints are referred to as the plateau
conditions[12].

The quantities defined above contain a discrete sum on
bound states and an integral over the phase shifts. To per-
form these integrals on the real axis may be difficult, particu-
larly if narrow resonances are present. To avoid these diffi-
culties we replace the integral on the real axis by an
integration along a contou in the complex energy plane.
Such a contour is shown in Fig. 1. The circles represent the
so-called Gamow resonances. They are the outgoing solu-
tions of the time-independent Scklinger equation corre-
sponding to the finite depth potential.

Changing the path of integration, as displayed in Fig. 1,
and applying Cauchy’s theorem one obtains from @q)

€E— €

+de6’Ag(e’)comf( 5 ) (13

In this expression the summation runs over all the bound
states and resonances enclosed by the contour, Whdehe
integral path in the complex energy plane of Fig. 1. The

In this equationy is the smoothing parameter, which should contribution of the resonances are evaluated by noticing that
be larger than the typical distance between major shells. Theear the pole&,=(e,,— v, the derivative of the phase
function f(x) can be written as a product of a weighting shifts can be written afl5,16
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FIG. 2. Shell corrections to the free energy MeV), for neu- FIG. 3. Shell corrections to the free ener@y MeV) for neu-

trons in 2%8Pp, as a function of the smoothing paramegeand for  trons in ?*®Pb as a function of temperature. The full line corre-
three different temperaturésom bottom to top T=0, 0.7, and 1.5  sponds to the exact result, the dashed line to the case when only
MeV, respectively. The dashed, full, and dotted lines correspond téound and resonant states are included, and the dash-dotted line
the values of the curvature-order parameter8, 10, and 12, re- corresponds to the approximation given in Ep).

spectively.

tering functions are well behaved. Moreover, if the contour
dé(&) Yn Yn includes only narrow resonances, the contribution of the in-
A& (e- ENE—Er) T (E—e)Pt (14)  tegral is very small as compared to the discrete term and can
be neglected.
In addition to the numerical advantages, this procedure to
scribe the continuum allows for a transparent interpreta-

The fact that the main contribution due to the continuumfion Of the results. Thus, one can calculate the occupancy

can be cast in an analytical form can be used to expand tlﬁrobability of different resonances as a function of tempera-
shell correction formulas in powers of the temperature. Thidure as well as their contributions to the thermal averaging
kind of expansion was done {iL0] for the case of a har- and to the smoothing procedure.

monic oscillator potential. Neglecting the contribution of the

contour integral and keeping only the first term of the expan- . NUMERICAL RESULTS

sion in powers of the temperature one gets, for the tempera-
ture dependent shell correction to the free energy, the expresy
sion

We use the same procedure to evaluate the integrals definir(ggz9
the HF quantities.

We will apply the formalism derived above to the case of
%b. For this we utilize as a central field a Saxon-Woods
potential with parameterg,=44.4 MeV,V,_,=16.5 MeV,
- ~ _ a=as_,=0.7 fm,ro=rs_,=1.27 fm. To calculate the com-
SF=SE(T=0)+F*(T)+aT? (19  plex energies and wave functions of the resonances we use
the computer codesamow [13], which solves the corre-
WhereSE(T 0) is the shell correction at zero temperaturesponding Schidinger equation by imposing outgoing
andF*(T)=F(T) —E(T=0). Formally the level density pa- boundary conditions at large distances.
rametera has the same analitical form ag[it0], but now the In order to verify the plateau conditions for different tem-
summation goes over the resonant states as well. One getperatures we show in Fig. 2 the results of the shell correc-
tions as a function of the smoothing parametefor three
values ofp. The continuum contribution is important to ob-
z e [(\—¢)7] (05ycp Hps2 tain the_ plateau, as shpwn in_ RéR] for T=0 . In our
calculation the plateau is obtained for resonable cutoff pa-
rameters, namely including single-particle states up to
Enax=20 MeV and for a maximum angular momentum
lmax=11%. This is to be compared with the values
Ema=100 MeV andl ,,,=20% used in Ref[9]. Our cutoff
Summarizing this section, we have split up the contribu-parameters are the same as those in Bé¢fvhere no plateau
tion of the continuum in two parts: a discrete part wherewas found. This could be a manifestation of numerical inac-
resonances are treated in the same footing as bound statesracies affecting the integration along the real axis in the
and an integral along a contour in the complex energy planegegion of narrow resonances.
This integral can be evaluated without difficulties if one  From Fig. 2 one can see that the plateau is stable when the
chooses a contour far enough from the poles, where the scaemperature is increased.

6\/—7

p
+mE:O Cm(27Hm+eme+1)). (16)
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! Fig. 4 would be equal to the level density parameter given by
[17]

w2 2m*
=7 0

: (17)

N >

wherem* is the effective mass arld: is the Fermi momen-
tum. If one takes for these parameters the values given by a
Skyrme interactiorj18] then the level density parameter in
208ph comes at aboat = 11 MeV 1. This agrees well with
the asymtotic value extracted from Fig. 4.
An asymtotic behavior for those quantities which is simi-
lar to the one seen in Fig. 4 was obtained in RB{.in the
3 framework of a temperature dependent Hartree-Fock calcu-
T(MeV) lation (see Fig. 5 of Ref5]). However, the asymptotic value
of the level density parameter obtained from there is about
FIG. 4. Variation with the temperature &*/T? (full line), 15, MeV ™. It is worthwhile to mention _that those asymp-
S/2T (dashed ling and SY4E* (dash-dotted ling All the quanti-  totic values should not be compared with the level density
ties are in MeV-2. parameter estimated in R¢1L8], since there one expands the
free energy in power 6f? keeping only the first term, as we
. did in deriving Eq.(15). But this approximation fails at large
The results for the tempera’;ure_dependent shell Co”ecnoﬂemperature, as one can see from Fig. 3. Therefore the value
to the free energy are shown in Fig. 3, where10.6 MeV 5 — 20 MeV! derived in Ref[18], should rather be com-
and p=10 are used. These values are consistent with thﬁared in our approach to the result given®yn Eq. (15).
plateau condition, as seen from Fig. 2. We thus obtained® = 17 MeV ™%, which is closer to the
The full curve shown in Fig. 3 gives the exact results, thatyalue of Ref.[18]. The remaining difference may be due to
is when the contribution of the contour is introduced. As onethe different interactions used in the calculations, and not to
can see, the curve approaches zero exponentially, in agrene way the continuum is treated at this low temperature.
meent with previous estimatiorjd4]. The temperature for For the range of temperatures shown in Fig. 3 only the
which the shell corrections are completely washed ouharrow resonances contribute to the thermal averaging. In-
(T~2.5 MeV) is of the same order as the one obtained fordeed, forT=2.5 MeV, the occupancy of the first resonance
the case of the harmonic oscillator potenfied]. The dashed is about 0.4 while for the next two resonances it is of the
curve shows the results obtained with the discrete part, i.erder of 0.2. The resonances lying at higher energies are not
by neglecting the contributions of the integrals, both to thepopulated unless unrealistically large values of the tempera-
HF and to the smoothed quantities. The slope of that curve igure are used. For=2.5 MeV the whole contribution of the
almost the same as for the full curve, corresponding to theontinuum to the HF excitation energy is about 2% and to
exact result, and the differences between them are not largéhe entropy about 5%. This indicates thatd5Pb the con-
These differences come mainly from the smoothed quantitienuum does not play an important role for thermal averag-
which include the broader resonances at about 12 MeV. Thig. But in nuclei that are of interest at present, e.g., nuclei
dash-dotted curve corresponds to the approximation of Edslose to the drip line, the low excited states may be above the
(15). One can see that for temperatures below 1.5 MeV thigontinuum threshold. In cases like this the treatment of the
approximation reproduces almost exactly the value given byontinuum presented here is a favorable alternative to de-
the discrete term. For higher temperatures the deviation frorgcribe the dynamics of the system.
the exact result increases. This implies that one cannot use
the level density parameter [Eg. (15)] to approximate the
value of the shell corrections to the free energy for tempera-
tures much beyond 1.5 MeV. In particular, it would be ques- In this paper we have presented a method to evaluate the
tionable to implement that approximation for temperaturesontribution of the continuum part of the spectrum to shell
higher than the 2.5 MeV point of collapse of the shell cor-corrections in nuclei at finite temperature. The main part of
rection[10]. that contribution is due to outgoin@amow resonances that
In Fig. 4 we have plotted the quantiti&s /T2 (full line), are not too wide. This is expected, since nucleons moving in
S/2T (dashed ling and S?/4E* (dashed-dotted linewhere  wide resonances would not have enough time to feel the
E*=E(T)—E(T=0) is the excitation energy. In the region interactions induced by the other nucleons in the core.
where the shell corrections begin to be negligible., from One appealing feature of the the formalism is that all reso-
about 2.5 MeV those quantities become almost constanthances are treated on the same footing as bound states. That
This indicates that the system is in a degenerate Fermi gas, formally bound states and Gamow resonances are identi-
regime for high excitation energy, as expected. Therefore, toal excitations.
compare the level density parameter that can be extracted The remaining continuum contribution is given by a con-
from Fig. 4 to the corresponding Fermi gas value, one has ttour integral which can be easily evaluated. Neglecting this
go to the asymptotic regions of high temperatures. On theontour integral an analytical expression for the level density
other hand, in a Fermi-gas model all the quantities plotted iparameter, valid for low temperatures, is obtained. The

a{Mev ™

IV. SUMMARY
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method was applied for the case ®¥Pb. The critical tem- an adequate way of treating both shell corrections and ther-
perature for which the shell corrections are completelymal properties.

washed out was estimated at ab®et2.5 MeV. Beyond this

temperature the system behaves as a degenerate Fermi gas. ACKNOWLEDGMENTS
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