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Renormalized quasiparticle random phase approximation and double beta decay:
A critical analysis of double Fermi transitions
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The proton-neutron monopole Lipkin model, which exhibits some properties that are relevant for those
double beta decay@B) transitions mediated by the Fermi matrix elements, is solved exactly in the proton-
neutron two-quasiparticle space. The exact results are compared with the ones obtained by using the quasipar-
ticle random phase approximati0QRPA) and renormalized QRPARQRPA) approaches. It is shown that the
RQRPA violates the Ikeda sum rule and that this violation may be common to any extension of the QRPA
where scattering terms are neglected in the participant one-body operators as well as in the Hamiltonian. This
finding underlines the need of additional developments before the RQRPA could be adopted as a reliable tool
to computeB B processed.S0556-28186)06610-1

PACS numbegs): 23.40.Hc, 21.60.Jz, 21.60.Fw

I. INTRODUCTION In the present paper we will use a simple solvable model,
which is an extension of the Lipkin modEl4], to compare
The nuclear doubleg decay could provide evidence on the exact, the QRPA, and the RQRPA approaches. It will be
the existence of massive neutrinos and right-handed weaihown that if one remains at the leading order of approxima-
currents[1]. This exciting possibility has attracted much tion, i.e., by retaining two-quasiparticle terms in the relevant
theoretical and experimental work in the last yef#% In Fermi or.Gamow-TeIIer trar_lsition operators as well as in the
order to extract information about this new physics the datdiamiltonian, the RQRPA violates the Ikeda sum rule.
must be complemented with theoretical nuclear matrix ele-
ments that are strongly suppressed. Il. THE MODEL
Ten years ago it was realized that the quasiparticle ran-
dom phase approximatiofQRPA), including a particle-
particle channel in the residual interaction, can reproduce th

The model Hamiltoniah15—17 consists in a single par-
ticle, a pairing term for protons and neutrons, and a sche-

. tally determined t i q d fhatic charge-dependent residual interaction including
experimentally determined two-neutrino doulfiedecay particle-hole and particle-particle channels. It has been

(BB2,) half-lives[3-6]. This step allowed the description of ghown in a recent series of papers that this interaction,
smglg and doublg decay transitions in many nuclei. How- treated in the framework of the QRPA, is as good a6 a
ever it was soon recognized that the ground state to grounghatrix constructed from the OBEP Bonn potential in repro-

state BB,, transition amplitudes are extremely sensitive toqycing single- and doublg-decay matrix elemenfd7-19.
the force parameters, thus limiting the predictive power of The schematic Hamiltonian reads

the theory. The breakdown of the QRPA approach, for some

critical values of the model parameters, made the theoretical H=H,+H,+Hes (1)
description of some cases particularly difficult; i.e., the
BB,, decay of %Mo [3,4,7-9. where

Recently the use of a correlated vacuum in the QRPA
equation of motion, the so-called renormalized QRPA
(RQRPA [10,11], has been reformulatdd2] and appliedto ~ Hp=2, e,ala,—G,SIS,, H,=2> eata,—G,SIS,,
the B83,, decay[13]. It was found that the formalism is P "
stable beyond the point where the QRPA collapses. The
RQRPA method requires the solution of coupled-nonlinear Hies=2xB; - By —2kPy -Py . ()
equations, instead of the usual eigenvalue problem of the
QRPA. However the physical consequences of this highly In the above expression the following definitions were
nonlinear behavior, represented by the inclusion of somédntroduced:
terms beyond the QRPA order of approximation, have not

been explored carefully.
P Y s=> agafﬁlz, Sﬁ=; aga%lz,
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J justment of a given decay channel constitutes the essential
Py-Pj= Z (=DM P (P, aspect of the present discussion. _
M=-J In the single-shell case, and after performing the Bogoly-
ubov transformations, separately, for protons and neutrons,
IBJ_M:iEj <i|OJM|j>aiTaj , the first two terms in Eq(1) become diagonal, i.e.,

H, =€ E al a H.,=e€ E, al a (5)
_ . . _ _ p p pm,~pmys n n nm. “nm_»
PJM:Z <||OJM|]>aiTanr_’ Owm=omt, Ogp=7, Mp PP Mn nor
I,]

3 €p, €y being the quasiparticle energies amgi,aﬁ the quasi-
and particle qreatipn operatquO]_. _ _

: ot - The linearized Hamiltonian, neglecting the scattering

ap=(—1)»""a; _p, its time reversal. terms (xpe, , @hap) that do not contribute at the QRPA or-
As mentioned above, the Hamiltoniah) with J=1 pro-  der, reads

vides a reasonable description of the main physics involved

in Gamow-Teller transitions. The parametgrsand « play

t_at i i i
=2y m being the particle creation operator

_ t t
the role of the renormalization factog,, and g, intro- H_ep; “pmp“pmeren% *nm, *nm,
duced in the literaturé3—6). P
For the case o8=0 the Hamiltonian1) can be reduced +2x(2j + D[ (ujva+viu]

to an isospin scalar if its parameters are selected as + M-
XA A+ U wpUAT- AT+ v UnU v A-Al
ep=6€n, x=0, G,=G,=4«. 4

—2k(2j + D[ (uiua+viva) AT A= upuu w,AT- A

If x#0 the isospin symmetry is broken in the particle-hole b UUA-A] ©6)
channel and for 4# G, ,G,, this symmetry is broken in the p¥n=p=n '
particle-particle channel. A similar identification of this isos- _ .

. : . ith
pin breaking mechanism can be performed for the case of
realistic interactions with renormalized proton-proton
(gBair), neutron-neutron g(gair) and proton-neutron particle-

particle @,p) Strengths[3—6]. For the Fermi transitions,

such as the ones contribu_ting to the nuclear matrix eIememﬁlorphic version of the Lipkin model we have considered, for
associated with the neutrinoless doufieiecay mode, the simplicity, one single particle orbital for protons and neu-

valuegp,=1.0 is usually adopted, whilg,;; andgps Vary  grons  with  the  same quasiparticle  energies
from 0.9 to 1.2 to reproduce the observed proton and neutrop_ ep=en=(2j+1)G//4, i=p,n[20]
pairing gaps in medium and heavy mass nuclei. This param- jnder these approximations the Hamiltoni@) has the
etrization, adopted for realistic interactions, provides a firsgy,m,
motivation for using the proton-neutron particle-particle
strengthx as a parameter independent®f H=eC+M\ATA+ N ,(ATAT+AA), )
In order to construct an exactly solvable model to be used
to test the reliability of the RQRPA solutions for the single- ith
and doubles decay observables, we will make a strong ap-
proximation. We will consider a single shell with the same

t_p 1o 1790
A —[ap®an M=0 -

To show that it is possible to reduce E&) to an holo-

angular momentum for protons and neutrons, i.e., c=> agmpapmpJFE almnanmna and
ip=Jn=1. Adopting this model space is equivalent to work Mp Mn

with the one-level limit of Eq(1). It will be shown that this ?\1=2[X(Uf,vﬁ+vf,uﬁ)— K(u§u§+v§vﬁ)],

model, which is not intended to reproduce actual nuclear

properties, does have the qualitative features of a realistic No=2(x+ K)Upv pUnvp - ®)

pn-QRPA calculation. Indeed, excitation energies, single-

and doubles decay transition amplitudes, and ground state The operator§A,A",C} satisfy the S(2) quasispin alge-
correlations depend on the particle-particle strength paranbra[21]

eter « in the same way as they do in more elaborate calcu-

lations with many single-particle levels and with more real- [AAT]=1-C/(2j+1), [C,AT]=2A" (9)
istic interactions. The advantage of such a simplification lies

in the fact that the proton-neutron excitations can be de- A form similar to Eq.(7) was introduced by Lipkiret al.
scribed within the framework of an exactly solvable model.in their original papef14]. The usual Lipkin model is ob-
Particularly, the correspondence between the simplified vertained setting.; =0, since this term essentially renormalizes
sion (one-shell limi} of Eq. (1) and the ordinary monopole the single-particle energy. In our case it corresponds to the
Lipkin model [14] can be established if one chooses theparticular case Z=N=(2j+1)/2, which implies
channel withJ=0 of Hamiltonian(1). Physically, this case v,=v,=u,=u,, and y=«. However, we shall keep this
will correspond to Fermi-type transitions but we should em-term in order to be as close as possible to the realistic situ-
phasize the fact that the study of the model and not the adation.
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IIl. EXACT SOLUTIONS is Eqrea=[(2€+X\1)2—4N2]Y2 It becomes a pure imagi-
To obtain the exact solutions of EG7) we have per- Nary number if 2,>2¢e+ ;. It means that for this limit the _
formed a Holstein-Primakoff mappiri@1,22 of this Hamil- zero-boson component of ground state ceased to be domi-
tonian. It involves the substitution of a pair of fermions by Nant. _
functions of the exact boson operatbrsandb, which fulfill In the renormalized QRPA the structure of the ground
the exact commutation rulgb,b’]=1. The relations be- State is included explicitly11], in the form
tween both set of operators are the following: cATAt
b'b |12 b'o |12 0)=NeABCS.  S=5oraamy; 4
NP L N P
(2j+1) (2j+1) The RQRPA one-phonon state is given by
C—2b'b. (10

Oforpd0)=[ XAT— YA]/(O|[[A,AT]|0)*0).  (15)

The exact solutions are obtained using the boson basis The conditionOgrorpA0)=0 leads to the value=D1 X.

(bT)m After some algebra it is possible to show that
Inp) = — ), bl)=0. (1) (OI[A,AT]|0)y=D=1-2)"D/(2j+1) [12,13, and that
\ b.
-1
The Hamiltonian(7) has terms that change the number of D=1+ 21+ 1 (16)

bosons in two units, thus the exact wave function does not
have a definite number of bosons. At the same time, states The RQRPA submatrices arglporpa=2€+1;D and
with odd and even number of bosons are not connected. TgRQRPA: 2\,D. Given 0<D<1, the presence dd multi-
construct a decay scheme for double Fermi transitions thglying both A, and \, gives the needed reduction of the
exact ground state of the even-even nuclei will be repreresidual interaction to avoid the collapse of the QRPA equa-

sented by the lowest energy state with an even number gfons [13]. Due to this fact the RQRPA enerdSirorpa iS
bosons while the 0 states of the odd-odd nuclei are those glways real. Its value must be obtained by solving simulta-

with an odd number of bosons. Spurious states are avoidegbously the nonlinear equations f@iorpa LY, and D,
by limiting the number of bosons to<On,<2j+1. The  \hich in the general case will include all possible values of

physical states are written J[13].
2j+1 2j+1

|)\even-eveA: E C)r:e|nb)v |)\odd-odc): E C:\10|nb)' (12) V- RESULTS AND DISCUSSION
npeven b npodd b

In the following we will present numerical results that

It must be clear that what we call “exact solutions” are correspond to the model space and parameters
the exact solutions of the Hamiltonidid), where the terms .
4 j=9/2, Z=4, N=6, e=1 MeV. (17)

of the form agan,agap (scattering termshave been ne-

glected. These exact solutions exhaust any extension of thg order to avoid dealing with small numbers, we now redi-
QRPA intended to diagonalize Hamiltonidi). However, fine the two parameters

the solutions of the complete eigenvalue problem of the
Hamiltonian(1) span a larger Hilbert space, including states k—Kk'=2j+1D)k, x—x'=(2j+1)yx. (18
orthogonal to those present in the actual “exact” solutions.

The operatoB3™ is sensitive to this truncation of the Hilbert We selected the valugg’=0 or 0.5. The particle-particle
space generated by solving the restricted problem defined kstrengthx’ is kept as a variable.

the use of Hamiltoniari7). While at the QRPA level it has

no effect, in any extensions beyond QRPA the transition am- A. Excitation energies

plitudes exhibit the missed components. Its effects on the

lkeda sum rule are described below. In Fig. 1 the excitation energieB; —Eg, Eggrpa, and

Erqrea are plotted against” for x"=0 (upper figurg and
x'=0.5 (lower figure. In both cases the collapse of the
QRPA is evident atc’'=1. The RQRPA excitation energy

The QRPA HamiltoniarH grpa can be obtained from Eq. remains real but it decreases as compared with the exact one.

IV. QRPA AND RQRPA

(7) by taking the limit (3 +1)—-cc. It is given by For a relatively large value ot’, (k' =2), the ground state
and the first excited one tend to become degenerate.
Horpa=(2€+X1)b"b+\,{b'b"+bb}. (13 This Fig. 1 strongly resembles Fig. 1 of REf3] and Fig.

2 of Ref.[8], where the energy of the first excited state is
The QRPA states are generated with the one-phonon oplotted against the particle-particle strength parametgr
eratorogRPA=XAT—YA acting over the correlated QRPA The curves for the QRPA and the RQRPA are quite similar
vacuum |0). The quasiboson approximation assumes theéo those shown here. The advantage of the present simple
(O|[A,AT]|0)=1, leading to the normalization condition model is that we can compare them with the exact results,
X?2—Y?=1. The QRPA matrix is just a:22 one, with sub-  while in the general case with multiple single-particle levels
matricesAqrpa=2€+ N1 andBorpa= 2\ ,. The eigenenergy the exact solutions are unknown.
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B. Boson number

2 T T T T T T T T T
18- Qel’{;i-‘_' 4 The expectation value of the boson number operator in
L6k x=0 RQRPA — - the ground state measures the difference between the QRPA
1'4_ i (or RQRPA ground states and the BCS vacuum. Its ex-
E . pected value should be half the number of quasiparticle and
L2r T for the different cases it is written as
. ; i i 2j+1
. <0|ﬁ|0>exact: 2 |C2|2n’ <0|ﬁ|0>RPA: 2Y2:
0.6 . . n even
0.4+ K i X
0.2+ : . (0|A|0)rorea=2)7. (19
N Figure 2 shows the behavior of this average number for
exact — x' =0 and 0.5. Up tac’ =0.7 the three quantities are nearly
x =05 QRPA.--. indistiguishable. From there on, the QRPA overestimates this
2t RQRPA — - : : -
E correlation, as pointed out long ag@l], and quickly col-
lapses. The RQRPA does not collapse but it shows about
15r \ - twice the exact number of bosons.
This behavior will affect the Ikeda sum rule, as will be
1+ i shown below.
0.5k | C. B and B transition amplitudes
R The Fermi= operators in the quasiparticle basis are
0—702 04 06 038 114 15 18 B~ =\2j T 1[upo AT+ U A= Upu,B +v,0,B],
=B, B'=[alaz]’"". (20
FIG. 1. Excitation energy vs the particle-particle strength
The particle-hole strength jg’' =0 (upper figur¢ and xy’ =0.5. The Neglecting the scattering tern®',B, as was done to ob-
exact solution is plotted with thin line, the QRPA with dots, and thetain Hamiltonian(7), leads to the QRPA order of approxima-
RQRPA with a thick line. tion. In this case the amplitude of the Fermi transitions con-

necting the ground stat®) of the initial even-even nuclei
and the ground and excited sta}®g) in the odd-odd nuclei

. ' are
a5l exact — V 2j+1
QRPA:- - B :
41 RQRPA— <0)\|B |0>exact:ng\;en \/21+1C2
35
< 0]7|0 > 3t n 1/2
25+ X| uprnChty (1_m xX(n+1)
2_
L5k . 12
. * B
L +vpunCnl[(l i+ 1 n ),
0.5
0 bt (01| B710)rpa= V2] + 1(Xupvn+ Y oup),
450 exact — B _ -
J Rggg‘:: <01|B |O>RQRPA_ \ 2_] + 1(Xupvn+yv pun). (21)
. 85r Similar expressions hold fg8* interchanging the’s and
<01A[0> g v’s. There are several states in the odd-odd nuclei that can be
2.5+ connected to the ground state of the even-even(fime in
2t our example Only the state with the lowest energy, labeled
15k with |0,), is described by the QRPA and the RQRPA.
ik In order to study theBpB,, decay amplitudesM,, in
05l this simple model we made the approximation
o (Ofinal B710x)~{Oinitiall 10y) =(0,| 87|0) [3,4]. In this
0 02 04 way, we use the expression
n _
FIG. 2. Number of bosoné0|n|0) in the ground state vg'. My, = (0\[B710)(0\|5 |O>_ (22)

Conventions are the same as in Fig. 1. N ExtA
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1 T T T T T T T T T T T T T
exact — exact —
QRPA-- D SO QRPA...
0.5 _ RQRPA —
RQRPA o _ ot
M,, 0 * 1.5F b
05 .
1 . P
-1r x=0 B ox= 0.5
0.5 i
15 .
S — 002 04 06 08 1 12 14 16 18
1 T T T T T T T T T K
exact —
o5k QRPA.~ |
’ \v\ RQRPA — FIG. 4. lkeda sum rule v&’. Conventions are the same as in
0 Fig. 1, for x’ =0.5 only.
MZu
05k 4 transition operators. As was mentioned above neglecting the
scattering terms in the operatdds 8, and 8 provides a
-1r x =05 1 plausible explanation of this failure. At the QRPA level these
terms play no role, but when ground-state correlations are
-15F 3 explicitly taken into account they become relevant and can-
L not be neglected, neither in the transition operators nor in the
2002 04 06 08 1 12 14 16 18 2 Hamiltonian.

FIG. 3. BB,, transition amplituded ,, vs x’. Conventions are VI CONCLUSIONS

the same as in Fig. 1. We have presented a solvable model that is holomorphic
to the Lipkin model and used it to study the QRPA and
We selected\ = 0.5 MeV. The sum runs over all the odd- RQRPA approaches. The case of doyBldecay transitions
odd states, which are only one in the QRPA and RQRPA. of the Fermi type has been discussed. We have found that the
Figure 3 showsM,, as a function ofx’ for x'=0 and  excitation energies and douliedecay amplitudes, for these
0.5. Their behavior is very similar to that encountered intransitions, have the same qualitative behavior found in real-
realistic calculations[3,5,6,13, including its cancellation istic calculations. It is shown that, as expected, the RQRPA
near the collapse in the QRPA description. The success afoes not collapse as the QRPA description does when renor-
the RQRPA in extending this curve far beyond the value oimalized particle-particle correlations are included. However,
k' where the QRPA collapsed is clearly seen. By the othethe apparent stability of the RQRPA is hindered by the fact
side, compared with the exact valuesM%,, the RQRPA that it strongly overestimates the effect of ground-state cor-
performance is poor. The overestimation of the ground-stateelations. This tendency is reflected by the premature change
correlation causes a premature cancellation of3Be, tran-  in the sign ofM,,, as compared to the exact solution, and by

sition amplitude, as compared with the exact result. the violation of the Ikeda sum rule. In our opinion it implies
that if one wants to include explicitly the so-called ground-
D. Ikeda Sum Rule state correlations in the fashion 1] one should also ex-

. o . . ceed the two-quasiparticle order. The usually neglected one-
There is an additional point that must be mentioned. Th‘?quasiparticle terms are included in the RQRPA when the

lkeda sum rule exact commutation relations féx" andA are used but they
should be also included in the transition operators and in the
S —-S*=N-Z, S*=> [(0\|8|0)|?, (23)  Hamiltonian. In our exact model, the inclusion of these terms
A

implies the use of the S®) algebra[22,23 instead of the
present S() one. Details about the work in progress will be
must be fulfilled in any model where the Hilbert space forpublished elsewherg24].
the odd-odd nuclei includes all the states that can be con-
nected to the ground state via tjedecay.
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