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Renormalized quasiparticle random phase approximation and double beta decay:
A critical analysis of double Fermi transitions
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The proton-neutron monopole Lipkin model, which exhibits some properties that are relevant for those
double beta decay (bb) transitions mediated by the Fermi matrix elements, is solved exactly in the proton-
neutron two-quasiparticle space. The exact results are compared with the ones obtained by using the quasipar-
ticle random phase approximation~QRPA! and renormalized QRPA~RQRPA! approaches. It is shown that the
RQRPA violates the Ikeda sum rule and that this violation may be common to any extension of the QRPA
where scattering terms are neglected in the participant one-body operators as well as in the Hamiltonian. This
finding underlines the need of additional developments before the RQRPA could be adopted as a reliable tool
to computebb processes.@S0556-2813~96!06610-1#

PACS number~s!: 23.40.Hc, 21.60.Jz, 21.60.Fw
el,

be
a-
nt
he

he-
ing
en
on,

o-

re
I. INTRODUCTION

The nuclear doubleb decay could provide evidence on
the existence of massive neutrinos and right-handed w
currents @1#. This exciting possibility has attracted muc
theoretical and experimental work in the last years@2#. In
order to extract information about this new physics the da
must be complemented with theoretical nuclear matrix e
ments that are strongly suppressed.

Ten years ago it was realized that the quasiparticle ra
dom phase approximation~QRPA!, including a particle-
particle channel in the residual interaction, can reproduce
experimentally determined two-neutrino double-b decay
(bb2n) half-lives @3–6#. This step allowed the description o
single and double-b decay transitions in many nuclei. How
ever it was soon recognized that the ground state to grou
statebb2n transition amplitudes are extremely sensitive
the force parameters, thus limiting the predictive power
the theory. The breakdown of the QRPA approach, for so
critical values of the model parameters, made the theoret
description of some cases particularly difficult; i.e., th
bb2n decay of

100Mo @3,4,7–9#.
Recently the use of a correlated vacuum in the QRP

equation of motion, the so-called renormalized QRP
~RQRPA! @10,11#, has been reformulated@12# and applied to
the bb2n decay @13#. It was found that the formalism is
stable beyond the point where the QRPA collapses. T
RQRPA method requires the solution of coupled-nonline
equations, instead of the usual eigenvalue problem of
QRPA. However the physical consequences of this high
nonlinear behavior, represented by the inclusion of so
terms beyond the QRPA order of approximation, have n
been explored carefully.
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In the present paper we will use a simple solvable mod
which is an extension of the Lipkin model@14#, to compare
the exact, the QRPA, and the RQRPA approaches. It will
shown that if one remains at the leading order of approxim
tion, i.e., by retaining two-quasiparticle terms in the releva
Fermi or Gamow-Teller transition operators as well as in t
Hamiltonian, the RQRPA violates the Ikeda sum rule.

II. THE MODEL

The model Hamiltonian@15–17# consists in a single par-
ticle, a pairing term for protons and neutrons, and a sc
matic charge-dependent residual interaction includ
particle-hole and particle-particle channels. It has be
shown in a recent series of papers that this interacti
treated in the framework of the QRPA, is as good as aG
matrix constructed from the OBEP Bonn potential in repr
ducing single- and double-b decay matrix elements@17–19#.

The schematic Hamiltonian reads

H5Hp1Hn1H res, ~1!

where

Hp5(
p
epap

†ap2GpSp
†Sp , Hn5(

n
enan

†an2GnSn
†Sn ,

H res52xbJ
2
•bJ

122kPJ
2
•PJ

1 . ~2!

In the above expression the following definitions we
introduced:

Sp
†5(

p
ap
†ap̄

† /2, Sn
†5(

n
an
†an̄

† /2,

bJ
2
•bJ

15 (
M52J

J

~21!M:bJM
2 ~bJ2M

2 !†:,
1976 © 1996 The American Physical Society



tial

y-
ns,

g

r
-
s

s

tu-

54 1977RENORMALIZED QUASIPARTICLE RANDOM PHASE . . .
PJ
2
•PJ

15 (
M52J

J

~21!M:PJM
2 ~PJ2M

2 !†:,

bJM
2 5(

i , j
^ i uOJMu j &ai

†aj ,

PJM
2 5(

i , j
^ i uOJMu j &ai

†a
j̄

†
, O1M5sMt2, O005t2,

~3!

ap
†5aj pmp

† being the particle creation operator an

ap̄
†5(21) j p2mpaj p2mp

† its time reversal.

As mentioned above, the Hamiltonian~1! with J51 pro-
vides a reasonable description of the main physics involv
in Gamow-Teller transitions. The parametersx and k play
the role of the renormalization factorsgph and gpp intro-
duced in the literature@3–6#.

For the case ofJ50 the Hamiltonian~1! can be reduced
to an isospin scalar if its parameters are selected as

ep5en , x50, Gp5Gn54k. ~4!

If xÞ0 the isospin symmetry is broken in the particle-ho
channel and for 4kÞGp ,Gn this symmetry is broken in the
particle-particle channel. A similar identification of this isos
pin breaking mechanism can be performed for the case
realistic interactions with renormalized proton-proto
(gpair

p ), neutron-neutron (gpair
n ) and proton-neutron particle-

particle (gpp) strengths@3–6#. For the Fermi transitions,
such as the ones contributing to the nuclear matrix eleme
associated with the neutrinoless double-b-decay mode, the
valuegpp51.0 is usually adopted, whilegpair

p andgpair
n vary

from 0.9 to 1.2 to reproduce the observed proton and neut
pairing gaps in medium and heavy mass nuclei. This para
etrization, adopted for realistic interactions, provides a fi
motivation for using the proton-neutron particle-partic
strengthk as a parameter independent ofG.

In order to construct an exactly solvable model to be us
to test the reliability of the RQRPA solutions for the single
and double-b decay observables, we will make a strong a
proximation. We will consider a single shell with the sam
angular momentum for protons and neutrons, i.
j p5 j n5 j . Adopting this model space is equivalent to wor
with the one-level limit of Eq.~1!. It will be shown that this
model, which is not intended to reproduce actual nucle
properties, does have the qualitative features of a reali
pn-QRPA calculation. Indeed, excitation energies, sing
and double-b decay transition amplitudes, and ground sta
correlations depend on the particle-particle strength para
eterk in the same way as they do in more elaborate calc
lations with many single-particle levels and with more rea
istic interactions. The advantage of such a simplification li
in the fact that the proton-neutron excitations can be d
scribed within the framework of an exactly solvable mode
Particularly, the correspondence between the simplified v
sion ~one-shell limit! of Eq. ~1! and the ordinary monopole
Lipkin model @14# can be established if one chooses th
channel withJ50 of Hamiltonian~1!. Physically, this case
will correspond to Fermi-type transitions but we should em
phasize the fact that the study of the model and not the
d
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justment of a given decay channel constitutes the essen
aspect of the present discussion.

In the single-shell case, and after performing the Bogol
ubov transformations, separately, for protons and neutro
the first two terms in Eq.~1! become diagonal, i.e.,

Hp5ep(
mp

apmp
† apmp

, Hn5en(
mn

anmn
† anmn

, ~5!

ep ,en being the quasiparticle energies andap
† ,an

† the quasi-
particle creation operators@20#.

The linearized Hamiltonian, neglecting the scatterin
terms (ap

†an ,an
†ap) that do not contribute at the QRPA or-

der, reads

H5ep(
mp

apmp
† apmp

1en(
mn

anmn
† anmn

12x~2 j11!@~up
2vn

21vp
2un

2!

3A†
•A1upvnvpunA

†
•A†1vpunupvnA•A#

22k~2 j11!@~up
2un

21vp
2vn

2!A†
•A2upunvpvnA

†
•A†

2vpvnupunA•A#, ~6!

with

A†5@ap
†

^ an
†#M50

J50 .

To show that it is possible to reduce Eq.~6! to an holo-
morphic version of the Lipkin model we have considered, fo
simplicity, one single particle orbital for protons and neu
trons with the same quasiparticle energie
e5ep5en5(2 j11)Gi /4, i5p,n @20#.

Under these approximations the Hamiltonian~6! has the
form

H5eC1l1A
†A1l2~A

†A†1AA!, ~7!

with

C[(
mp

apmp
† apmp

1(
mn

anmn
† anmn

, and

l152@x~up
2vn

21vp
2un

2!2k~up
2un

21vp
2vn

2!#,

l252~x1k!upvpunvn . ~8!

The operators$A,A†,C% satisfy the SU~2! quasispin alge-
bra @21#

@A,A†#512C/~2 j11!, @C,A†#52A†. ~9!

A form similar to Eq.~7! was introduced by Lipkinet al.
in their original paper@14#. The usual Lipkin model is ob-
tained settingl150, since this term essentially renormalize
the single-particle energye. In our case it corresponds to the
particular case Z5N5(2 j11)/2, which implies
vp5vn5up5un , and x5k. However, we shall keep this
term in order to be as close as possible to the realistic si
ation.
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III. EXACT SOLUTIONS

To obtain the exact solutions of Eq.~7! we have per-
formed a Holstein-Primakoff mapping@21,22# of this Hamil-
tonian. It involves the substitution of a pair of fermions b
functions of the exact boson operatorsb† andb, which fulfill
the exact commutation rule@b,b†#51. The relations be-
tween both set of operators are the following:

A†→b†S 12
b†b

~2 j11! D
1/2

, A→S 12
b†b

~2 j11! D
1/2

b,

C→2b†b. ~10!

The exact solutions are obtained using the boson basi

unb)5
~b†!nb

Anb!
u), bu)50. ~11!

The Hamiltonian~7! has terms that change the number
bosons in two units, thus the exact wave function does
have a definite number of bosons. At the same time, sta
with odd and even number of bosons are not connected.
construct a decay scheme for double Fermi transitions
exact ground state of the even-even nuclei will be rep
sented by the lowest energy state with an even number
bosons while the 01 states of the odd-odd nuclei are thos
with an odd number of bosons. Spurious states are avoi
by limiting the number of bosons to 0<nb<2 j11. The
physical states are written

uleven-even)5 (
nb even

2 j11

Cnb

leunb), ulodd-odd)5 (
nb odd

2 j11

Cnb

lounb). ~12!

It must be clear that what we call ‘‘exact solutions’’ ar
the exact solutions of the Hamiltonian~7!, where the terms
of the form ap

†an ,an
†ap ~scattering terms! have been ne-

glected. These exact solutions exhaust any extension of
QRPA intended to diagonalize Hamiltonian~7!. However,
the solutions of the complete eigenvalue problem of t
Hamiltonian~1! span a larger Hilbert space, including state
orthogonal to those present in the actual ‘‘exact’’ solution
The operatorb6 is sensitive to this truncation of the Hilber
space generated by solving the restricted problem defined
the use of Hamiltonian~7!. While at the QRPA level it has
no effect, in any extensions beyond QRPA the transition a
plitudes exhibit the missed components. Its effects on
Ikeda sum rule are described below.

IV. QRPA AND RQRPA

The QRPA HamiltonianHQRPA can be obtained from Eq.
~7! by taking the limit (2j11)→`. It is given by

HQRPA5~2e1l1!b
†b1l2$b

†b†1bb%. ~13!

The QRPA states are generated with the one-phonon
eratorOQRPA

† 5XA†2YA acting over the correlated QRPA
vacuum u0&. The quasiboson approximation assumes t
^0u@A,A†#u0&51, leading to the normalization condition
X22Y251. The QRPA matrix is just a 232 one, with sub-
matricesAQRPA52e1l1 andBQRPA52l2. The eigenenergy
y
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is EQRPA5@(2e1l1)
224l2

2#1/2. It becomes a pure imagi-
nary number if 2l2.2e1l1. It means that for this limit the
zero-boson component of ground state ceased to be do
nant.

In the renormalized QRPA the structure of the groun
state is included explicitly@11#, in the form

u0&5NeSuBCS&, S5
cA†A†

2^0u@A,A†#u0&
. ~14!

The RQRPA one-phonon state is given by

ORQRPA
† u0&5@XA†2YA#/^0u@A,A†#u0&1/2u0&. ~15!

The conditionORQRPAu0&50 leads to the valuec5Y/X.
After some algebra it is possible to show tha
^0u@A,A†#u0&[D5122Y2D/(2j11) @12,13#, and that

D5F11
2Y2

2 j11G21

. ~16!

The RQRPA submatrices areARQRPA52e1l1D and
BRQRPA52l2D. Given 0<D<1, the presence ofD multi-
plying both l1 and l2 gives the needed reduction of the
residual interaction to avoid the collapse of the QRPA equ
tions @13#. Due to this fact the RQRPA energyERQRPA is
always real. Its value must be obtained by solving simult
neously the nonlinear equations forERQRPA,X,Y, and D,
which in the general case will include all possible values
J @13#.

V. RESULTS AND DISCUSSION

In the following we will present numerical results tha
correspond to the model space and parameters

j59/2, Z54, N56, e51 MeV. ~17!

In order to avoid dealing with small numbers, we now red
fine the two parameters

k→k8[~2 j11!k, x→x8[~2 j11!x. ~18!

We selected the valuesx850 or 0.5. The particle-particle
strengthk8 is kept as a variable.

A. Excitation energies

In Fig. 1 the excitation energiesE12E0 , EQRPA, and
ERQRPA are plotted againstk8 for x850 ~upper figure! and
x850.5 ~lower figure!. In both cases the collapse of the
QRPA is evident atk8.1. The RQRPA excitation energy
remains real but it decreases as compared with the exact o
For a relatively large value ofk8, (k8.2), the ground state
and the first excited one tend to become degenerate.

This Fig. 1 strongly resembles Fig. 1 of Ref.@13# and Fig.
2 of Ref. @8#, where the energy of the first excited state
plotted against the particle-particle strength parametergpp .
The curves for the QRPA and the RQRPA are quite simil
to those shown here. The advantage of the present sim
model is that we can compare them with the exact resu
while in the general case with multiple single-particle leve
the exact solutions are unknown.
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FIG. 1. Excitation energy vs the particle-particle strengthk8.
The particle-hole strength isx850 ~upper figure! andx850.5. The
exact solution is plotted with thin line, the QRPA with dots, and t
RQRPA with a thick line.

FIG. 2. Number of bosonŝ0un̂u0& in the ground state vsk8.
Conventions are the same as in Fig. 1.
B. Boson number

The expectation value of the boson number operator
the ground state measures the difference between the QR
~or RQRPA! ground states and the BCS vacuum. Its e
pected value should be half the number of quasiparticle a
for the different cases it is written as

^0un̂u0&exact5 (
n even

2 j11

uCn
0u2n, ^0un̂u0&RPA52Y2,

^0un̂u0&RQRPA52Y2. ~19!

Figure 2 shows the behavior of this average number f
x850 and 0.5. Up tok8.0.7 the three quantities are nearly
indistiguishable. From there on, the QRPA overestimates t
correlation, as pointed out long ago@21#, and quickly col-
lapses. The RQRPA does not collapse but it shows ab
twice the exact number of bosons.

This behavior will affect the Ikeda sum rule, as will be
shown below.

C. b and bb transition amplitudes

The Fermib6 operators in the quasiparticle basis are

b25A2 j11@upvnA
†1vpunA2upunB

†1vpvnB#,

b15~b2!†, B†5@ap
†a n̄#J50. ~20!

Neglecting the scattering termsB†,B, as was done to ob-
tain Hamiltonian~7!, leads to the QRPA order of approxima
tion. In this case the amplitude of the Fermi transitions co
necting the ground stateu0) of the initial even-even nuclei
and the ground and excited statesu0l& in the odd-odd nuclei
are

^0lub2u0&exact5 (
n even

2 j11

A2 j11Cn
0

3S upvnCn11* l F S 12
n

2 j11D3~n11!G1/2
1vpunCn21* l F S 12

n

2 j11DnG1/2D ,
^01ub2u0&RPA5A2 j11~Xupvn1Yvpun!,

^01ub2u0&RQRPA5A2 j11~Xupvn1Yvpun!. ~21!

Similar expressions hold forb1 interchanging theu’s and
v ’s. There are several states in the odd-odd nuclei that can
connected to the ground state of the even-even one~five in
our example!. Only the state with the lowest energy, labele
with u01&, is described by the QRPA and the RQRPA.

In order to study thebb2n decay amplitudesM2n in
this simple model we made the approximatio
^0finalub2u0l&'^0initialub2u0l&5^0lub1u0& @3,4#. In this
way, we use the expression

M2n5(
l

^0lub1u0&^0lub2u0&
El1D

. ~22!

he
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We selectedD50.5 MeV. The sum runs over all the odd
odd states, which are only one in the QRPA and RQRPA

Figure 3 showsM2n as a function ofk8 for x850 and
0.5. Their behavior is very similar to that encountered
realistic calculations@3,5,6,13#, including its cancellation
near the collapse in the QRPA description. The success
the RQRPA in extending this curve far beyond the value
k8 where the QRPA collapsed is clearly seen. By the oth
side, compared with the exact values ofM2n , the RQRPA
performance is poor. The overestimation of the ground-st
correlation causes a premature cancellation of thebb2n tran-
sition amplitude, as compared with the exact result.

D. Ikeda Sum Rule

There is an additional point that must be mentioned. T
Ikeda sum rule

S22S15N2Z, S65(
l

u^0lub6u0&u2, ~23!

must be fulfilled in any model where the Hilbert space fo
the odd-odd nuclei includes all the states that can be c
nected to the ground state via theb decay.

The behavior ofS22S1 againstk8 is exhibited in Fig. 4.
As is well known, in the QRPA this sum rule is alway
fulfilled, irrespective of how large the ground-state correl
tions are. It is seen in the figure as a dotted straight lin
interrupted where the QRPA collapses. The RQRPA stron
violates the sum rule by nearly 50% at large values ofk. The
exact solution of Eq.~7! also violates the sum rule but in a
smaller amount. The origin of this problem can be attribut
to the adopted structure of both the Hamiltonian and t

FIG. 3. bb2n transition amplitudesM2n vs k8. Conventions are
the same as in Fig. 1.
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transition operators. As was mentioned above neglecting
scattering terms in the operatorsH, b2, andb1 provides a
plausible explanation of this failure. At the QRPA level thes
terms play no role, but when ground-state correlations a
explicitly taken into account they become relevant and ca
not be neglected, neither in the transition operators nor in t
Hamiltonian.

VI. CONCLUSIONS

We have presented a solvable model that is holomorp
to the Lipkin model and used it to study the QRPA an
RQRPA approaches. The case of doubleb decay transitions
of the Fermi type has been discussed. We have found that
excitation energies and doubleb decay amplitudes, for these
transitions, have the same qualitative behavior found in re
istic calculations. It is shown that, as expected, the RQRP
does not collapse as the QRPA description does when ren
malized particle-particle correlations are included. Howeve
the apparent stability of the RQRPA is hindered by the fa
that it strongly overestimates the effect of ground-state co
relations. This tendency is reflected by the premature chan
in the sign ofM2n , as compared to the exact solution, and b
the violation of the Ikeda sum rule. In our opinion it implies
that if one wants to include explicitly the so-called ground
state correlations in the fashion of@11# one should also ex-
ceed the two-quasiparticle order. The usually neglected o
quasiparticle terms are included in the RQRPA when t
exact commutation relations forA† andA are used but they
should be also included in the transition operators and in t
Hamiltonian. In our exact model, the inclusion of these term
implies the use of the SO~5! algebra@22,23# instead of the
present SU~2! one. Details about the work in progress will be
published elsewhere@24#.
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