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Abstract 

Resonant Gamow States (GS) are constructed in a rigged Hilbert space (RHS) (5, ‘Ft, 5’) starting from Dirac’s formula. 
It is shown that the expectation value of a self-adjoint operator acting on a GS is real. The validity of recently proposed 

approximations to calculate expectation values on resonant states is discussed. 

The treatment of the continuum and the inclusion 
of decaying states in the definition of the nuclear re- 

sponse is a long-standing problem [ l-31. The inclu- 
sion of resonant states in the one-body Green Function 

has been studied years ago by Tore Berggren [4,5]. 
More recently, the use of these states to calculate one- 
particle and collective excitations in finite nuclei has 

been proposed by Liotta et al. [ 61. A key component 

of these microscopic descriptions of nuclear proper- 
ties including the continuum, as shown in [ 61 and [ 71 
is the use of the techniques developed by Vertse et al. 

[81. 
Several methods have been developed in connec- 

tion with the treatment of GS [ 9- 11 I. The equivalence 
between some of these methods and the correspon- 
dence between Bergreen’s and Mittag-Lefler’s repre- 
sentations have been explored in dealing with the use 
of GS in nuclear structure problems [ 61. Mathemati- 
cal properties of GS, in the framework of the Hamilto- 
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nian formalism, have been studied by Sudarshan and 

collaborators [ 121. Bohm et al. [ 13,141 have shown 

that the RHS is a suitable framework to describe ideal- 
ized resonances as generalized eigenvectors of a self- 
adjoint Hamiltonian with complex eigenvalues. The 
overlap between GS and wave packets of the Breit- 

Wigner form has been discussed by Romo [ lo] by us- 
ing techniques of analytic continuation. However, dif- 

ficulties associated with the interpretation of expecta- 
tion values of operators on GS have prevented a more 
extended use of these states in nuclear structure calcu- 

lations. The possibility of defining expectation values 
of operators in a resonant state has been studied by 
Tore Berggren in a recent work [ 151. 

In this work we shall show that the results of [ 151 
are valid at leading order in I, the imaginary part 
of the energy of a GS. At variance with the usu- 
ally adopted mathematical formalism [ 9,141 we shall 
use the concepts of tempered ultradistributions and 
Gelfand’s triplets [ 161. In the following, only the as- 
pects of the derivation which are relevant to validate 
Berggren’s approximation will be shown. The neces- 
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sary mathematical details of the formalism are given 
in [17]. 

The space of analytical functionals 5’ (tempered ul- 
tradistributions) is the minimal space whose Fourier 
anti-transform accommodates real exponential func- 
tions as distributions. This space is the dual of the 
space of analytical test functions 5. Together with 
the Hilbert space IFI one can construct the RHS or 
Gelfand’s triplet (GT) [ 16,171 5 c 7-l c 5’. In this 
RHS a linear and symmetric operator A acting on 5, 
which admits a self-adjoint prolongation x acting on 
‘H, has a complete set of eigen-functionals on 5’ with 
real generalized eigenvalues [ 161. Let us introduce 
the GT ($,7-i, {’ > which is related to (5, ‘I-i, 6’) by 
Fourier transforms. The Schwartz space S’ of tem- 
pered distributions is included in 5’ and in 5’. The 
extension to 8’ of Dirac’s formula is given by [ 17,181 

(1) 

where&(t) =~,&(t+iO> -&(t-i0). 
Let us introduce a self-adjoint operator H, acting 

on 3-1, with the eigenstates (eigenvalues) given by 
HIEn> = EnlEn> (for n E N) and HIE> = E[E> 
(for Es < E < El ) . Thus from Eq. ( 1) one can write 

El 

($WG))* = & / EG*1_ E(hW*dE> 
EO 

(2) 

with EG = ED + iJ?, r > 0. 
In Dirac’s notation one has 

El 

($(EG))* = & / E el_ E<+lE> dE- 
G 

(3) 

EO 

We can now define 

E! 

(EG*> = & / EGel_ E IE> dE. 
Eo 

(4) 

Then&(Eo) = <EG~$> and ($(EG))* = <#[EG*>. 
The state \EG*> is by definition a GS eigenstate of 
H, since 

E($(E))* dE 

= E~*<$/EG*>. (5) 

The states ) EC*> are normalizable and the norm is 
given by 

<EGIE;> = & 

The diagonal matrix element of H between GS is given 
by the expression 

l- 

+ Z [arctan (v) - arctan (v)] . 
(7) 

Thus the imaginary part of this diagonal matrix ele- 
ment vanishes and for the limits Eo -+ -co and El -+ 
$00 it gives <EGIHJEG> = ED. 

The probability distribution associated to a GS is 
given by 

P(E) = I<EIE;,>f = 
r 

(E-Ed2+P 
1 

1 

x [arctan (v) - arctan (-)I ’ 
(8) 

In the limit El --+ +CQ, Eo ---f -co the above equation 
yields the Breit-Wigner form proposed in [ 10,131. 

Let us introduce the self-adjoint operator A, which 
is acting on the complete abstract space XFI, [ 171, 

A= jm,n>M.(h) <h[, (9) 

where a,( A) is given by 

A,<h<A, 

and where 0 is a Heaviside step function. The expec- 
tation value of A between GS 



C.G. Bollini et al/Physics Letters B 382 (1996) 205-208 207 

<EGjA(E~*> 

+oO 

= 
s 

<E&i > Ada,(A)<AjEG*>, 

--oo 

(11) 

is real since <EGIA> = (<A/ET;>)*. 
In the following we shall discuss the validity of 

the approximation proposed in [ 151 to calculate the 

expectation value of an operator in a resonant state. 

Following Berggren’s notation, let us introduce the 

state 1 k, fi, I> and the continuum wave function 
<x 1 k, k, I> = 4:” (r) . Since the energy E is given 

by E(k) = k2/2m the GS state can be defined by 

Jr; 
lEG*>= m J +*l-W),~,l> dE 

EG*-E ’ 
0 

(12) 

and using the impulse representation it is written as 

(13) 

Consequently, for the expectation value of A one has 

the expression 

<EGIA/EG*> = $ C Tdk Td$e 

1,11 0 0 

<k’, %‘, I’IAlk, it I> 

x (E(k’) - &)(E(k) - EG*) ’ 
(14) 

We are now in conditions to compare the result pro- 

vided by the present method and Berggren’s conjec- 

ture, namely: <A> = Re<EG*IAIEG*>, where 

<EG*]AIEG*> = z c Tdk Tdkte 

1,1’ 0 0 

< k’,~,l’~A(k,~,l > 

x (E(k’) - EG*)(E(k) - EG*) 
(15) 

The relation between the above equations can be ex- 
pressed as 

<A> = <EG(AIEG*> = Re<&*IA[EG*> 

- F c rdk 7dk.F [E(k) - E(k’)] 

1,E’ 0 0 

X 
< k’,it’,dIAjk,jt,Z > 

IE(k’) - &i2/E(k) - EGj2 

+ 

X 
< k’,&iIAlk,i,Z > 

JE( k’) - EGj21E( k) - EG/’ ’ 

This 
valid 
<EG/AIEG*> # Re<EG*IAI&*> . 

means that the result obtained in [ 151 is 

at leading order in r and that, in general, 

(16) 

Hereafter we would like to discuss briefly the main 

differences between the present approach and the 
methods due to other authors, mainly [ 10,13,19]. The 

treatment of Bohm et al. [ 13,191 is based on the use 
of the Schwartz space S of rapidly-decreasing func- 

tions on the real axis while we have introduced the 

space of basic functions 8, which are integer analytic 

functions. In [ 131 a GS is defined as a continuous 
linear functional of analytic functions of S which 

should vanish on a circle, in the limit of infinite ra- 
dius, in the complex energy plane. This procedure 

requires the extension of the spectrum of H and it 
can yield to non-physical values. In our approach a 

GS is an element of 5’ and to define it we have used 

Dirac’s formula. This definition has direct conse- 
quences upon the structure of a GS and in [ 171 it is 
shown that the integration done in [ 141 and the use 

of the support EO 5 E 5 El (in the limit Eo --f --co 
and El -+ +co) does not yield to the same result. We 
think that the use of ultradistributions, i.e, the space 
of functions ,$I, has an obvious advantage, namely: it 
does not require of any analytic continuation, like it 
is done in [ 10,141. Both the energy and the normal- 
ization of a GS, as we have shown, can be obtained 
directly from Dirac’s formula, instead. 

To conclude, we have presented a mathematical rep- 
resentation of GS based on the RHS and calculated 
the expectation value of a self-adjoint operator on a 
resonant state. We have found that Berggren’s expan- 
sion is valid at leading order in the imaginary part of 
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the energy EG. This result is illustrative of the adopted 
representation. However, a more complete comparison 

between the results of the present method and the one 
developed in [ 7,8], concerning the description of GS, 
would be useful in order to assess the advantages or 

the drawbacks of the use of RHS for numerical work. 
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