Gamow states as continuous linear functionals
over analytical test functions
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The space of analytical test functiogsrapidly decreasing on the real axise.,
Schwartz test functions of the typ& on the real axig is used to construct the
rigged Hilbert spacéRHS) (&£,.7,£'). Gamow state$GS) can be defined in RHS
starting from Dirac’s formula. It is shown that the expectation value of a self-
adjoint operator acting on a GS is real. We have computed exactly the probability
of finding a system in a GS and found that it is finite. The validity of recently
proposed approximations to calculate the expectation value of self-adjoint operators
in a GS is discussed. @996 American Institute of Physics.
[S0022-24886)00209-3

I. INTRODUCTION

The proper treatment of the continuum and the inclusion of decaying states belonging to it in
the definition of Green'’s functions of physical interest is a long-standing problem in various fields
of physics. The mathematical consequences of the inclusion of the continuum in the scattering of
particles by a central potential have been explored by Gamow lond Agnodern review of the
scattering theory can be found in Ref. 2 where the basic elements of the involved radial differen-
tial equations are presented in great detail. The use of these states, as it has been shown by
Gamow! is of central importance in building the physical interpretation of dh@ecay mode of
heavy atomic nuclel. The so-called Gamow resonant staftfes simplicity Gamow state$GS)]
fulfill purely outgoing boundary conditions with an exponential behavior at infhi8everal
methods have been proposed since the publication of Gamow’s4mkicularly in connection
with the normalizability of Green’s functions in the presence of GS and in the treatment of
completeness relatiofisThe mathematical equivalence between some of these methods has been
discussed recently and the correspondence between Bergreen’s and Mittag-Lefler's representations
has been explored at lendttRresently a rich literature is available regarding the application of
these concepts to nuclear reactions and to nuclear structure problems.

The amount of information about mathematical properties of representations which include
GS is also very rich. The use of decaying states of complex energy in the framework of the
Hamiltonian formalism, and the use of deformed contours to compute survival amplitudes, has
been reported in Ref. 8 by Sudarshan and co-workers. The formulation of quantum mechanics in
the rigged Hilbert spacéRHS) has been also studied by Bolmn Ref. 10 it is shown that
idealized resonances are described, within the RHS, by generalized eigenvectors of a self-adjoint
Hamiltonian with complex eigenvalues and a Breit—Wigner energy distribution. Similar argu-
ments have been advanced by GadEis:2*Among the difficulties posed by the use of GS one
can mention the appearance of the exponential catastrophe and the need to include nonphysical
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states of negative energy in the definition of GS by an integral on the real*akisonrigorous

cure for the exponential catastrophe would be the use of some regularization techniques, such as
the one proposed by Zel'doviéA However, and with reference to explicit numerical applications,

the use of these techniques does not guarantee the stability of the results since the onset of the
exponential dominance of the GS can manifest itself at physical stAlemng the recent refer-

ences on GS we shall mention the work of T. Bergdfemhere the possibility of defining
expectation values of operators in a resonant state is considered. In the present work we shall
focus our attention on the mathematical aspects of representations which include Gamow states.
At variance with the usually adopted approach, i.e., by using the class of functions known as
Hardy class function§:~*we shall use tempered ultradistributiods?° The space of analytical
functionals & (tempered ultradistributionsis the minimal space whose Fourier antitransform
accomodates real exponential functions as distributions. In the first part of this work the definition
of the space of analytical test functioéss given and the corresponding RHS is constructed. Then
Dirac’s formulation of quantum mechanics in RHS is shown, the structure of GS is given explic-
itly, and the norm of GS in RHS is calculated. The contribution of GP (&), the probability
distribution of a system at enerdy is obtained and the relation with the Breit—Wigner weighted
energy distribution is studied. Next, some examples of GS as analytical functionals are given.
Finally, a comparison with Berggren’s results on expectation values with resonant states is pre-
sented.

Il. THE RIGGED HILBERT SPACE (¢,7,¢')

Let us consider the spaceof entire analytical test functioné(z) rapidly decreasing on the
real axis, i.e.,¢>(z)|y=0= $(x) is a test function of the Schwartz spage(see Refs. 17-31
The structure of a countable normed space &f given by the family of norms

| ¢lla= supld(2)|, ne.s" @

lzl=n

These norms are compatible since

| ¢lln<llGlln-1- 2
In ¢ we define the scalar product
=] dEWEwE) €
and the norm
| $l2=(, ). @

The space is completed by using the norm of E@); the resulting space is the Hilbert space
¢ of square-integrable functiog§C.7%).
If ¢ are linear continuous functionafdistributions over & we have(Refs. 17-21

ECcowce. 6)

Hereéis a nuclear spacgee Ref. 22and(£,77,£') is a RHS or a Guelfand’s tripléGT). In
this RHS a linear and symmetric operatoiacting oné, which admits a self-adjoint prolongation

A acting on .77, has a complete set of eigen-functionals @gh with real generalized
eigenvalue€324Let us introduce the GTE,7,&') which is related to the GT given in E¢) by
the Fourier transform
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~ 1 too L
$(0)=7 H(E)}=5- f_me'E%(E)dE. 6)

If 4(E)e &', we definey(t) by

<w<t>,¢(t>>=$<¢(E),€/)<E>>. @)
Consequently, one has
y(t)=7 YY(E)} ®)
with
P eé, Pt)et. )

The Schwartz space”’ (of tempered distributionss included in& and inE’(.V/’Cg’).
The distributions of” fulfill Dirac’s formulal’

so0= [ ao-y)smdy, (10

The extension t@' of Dirac’s formula is given by

~ _ 1 + o0 1 N

bD)=5—= | EIP(E)dE, (11
where

WE) = ho(E+i0)— (E=i0). (12)

Related to the RHSé¢,77,¢") [and (€,.77,€')], it exists the abstract GTE(,. 7, ,£L). This
relation is established with the help of the operatprepresenting in7, the position operatox
of 7. The operatorx has a complete set of eigenfunctions dh. We use for them Dirac’s
notation |x). To each abstract kép) e &, it corresponds a functiokix| )= ¢(x) € €. In other
words, to each functiogy(x) € &, it corresponds an abstract ke e &, such that(x| )= ¢(X).
This procedure establishes the above-mentioned relation betyvard &, . When the spacé is
completed we obtain the Hilbert spac#, while the correspondence just established leads to the
complete abstract spac#,(D¢,). Finally, any linear continuous functional in £’ is made to
correspond to that abstract kbt e £, such that

P(d)=(¥| ) 13

for all peé.

These relations represent Dirac’s formalism of quantum mechanics in a RHS. For more details
see the works cited in Ref. 25.

The principal difference between the triplets defined above and those considered in Ref. 11 are
due to the fact that our spacgis formed by ‘“ultra analytic” test functions; i.e., angeé is
entire-analytic and rapidly decreasing on the real axis. The dual gpasdormed by “ultradis-
tributions” (see Refs. 17-30The space&’ is the minimal space that contains real exponentials.

It also allows the representation of any ultradistribution by a pair of analytic functions that can be
determined by Eq911) and (12).
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Let us now introduce a self-adjoint operatdie. 77, such that
H|E)=E|E), E <E<E;. (14

We shall consider all thes e £ with support(in the sense of Ref. 27n the interval €,,E;).
This means tha#/ can be determined from the discontinui#fE) of the pair of analytic functions
on the real axis. Furthermorg(E)=0 if E« (Eq,E;).

Following Eg.(11) one can write

1 B, 1 .
WEe)= 57 | g, MENE (15

and

E1 1
(WEg)* = 5— JEo-E (l!f(E))* dE (16)

2i
with
EG:ED+iF, F>0

In Dirac’s notation,fp(E)=<E|¢>. Thus

,\ _ 1 E, 1

1 =]
HE" =57 | g (IENE a9

We can also write Eq17) as

N 1 E1 1
lp(EG):ﬁ fE E_—EG<E|dE|¢//>-
We now define
1 Eq l
and
In consequence,
W(Ec)=(Eqlw), (D)
(H(Ee))* = (|Eg*). (22)

The statgEg*) is by definition a Gamow state. Note that}i(E) is the discontinuity o{bc(z)
on the real axis, the&"(E) is the discontinuity oz"(z) also on the real axis.
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Then we havdcf. Eq. (20)]

Ec*"Ec*)= % EEol Ec*_E E"|E)dE,
ie.,
HlE) = [ 1 HnEyE (23)
2mi Jg, Ec*—E
=Eg*"|Ec*), (24

and|Eg*) is an eigenstate dfl.
The state$Eg*) are normalizable and the norm is given by

) Eo—Ep
arcta —arcta

1
*\
<EG|EG>_ 4’7TZF r T (25)

With this normalization, and for th&,;— andEy;— —, the normalized GS can be cast in
the more familiar form of Ref. 14.
In consequence, the diagonal matrix elementHdbetween GS is given by the expression

(E;—Ep)?+T?
(Eo—Ep)?+TI?

W o Eo—Eo
arctal T arctal T

With this result it is readily seen that the imaginary part of the diagonal matrix element
satisfies

In

r
<EG|H|EE>:ED+E (26)

Im(Eg|H|EE)=0, 27
and that for the limitfe;— —~ andE;— +« one has
(EGIHIEE)=Ep. (28
The time evolution of a GS is given by
(¢le”M|Ec*)=e "E" (J(Eq))* (29

as a consequence of Eq4l) and(23).
The probability distribution associated to a GS is given by

r 1
P(E)=|(E|E&)|?= : : 30
(E) |< | G>| (E—ED)2+F2 E,—Ep Eo—Ep (30)

arcta —arcta
r r
In the limit E;— +o, Eq— —, the above equation yields
P(E)= — 7 (3D)
(E-Ep)?+T?%
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which is the Breit—Wigner form proposed by Ref. 16.
Let us introduce the self-adjoint operatlyr which is acting on7,,

+ o
A=f [MNdaa(M(N], (32
wherea,(\) is given by
+ 00
O'a()\): n;w @()\_)\n)a )\<)\O (33)
N Nog<A<\q,

and where® is a Heaviside step function. The expectation valué dfetween GS
—+ o
(EclalEc")= | (Eahrda N ES) 3

is real sinc€ Eg|\) = ((N|EE))*. So far, the results which we have presented are based on the use
of the theory of tempered ultradistributions. In order to illustrate them we shall discuss some
simple examples.

For the first case we have adopted the plane waves

—iEx

(E|x)= e
From Eqg.(11) one obtains
(Eglx)= 12T sgriim(Eg)Je™"Ee* (35)

for the wavefunction of a G&
The second example is given by the function

—iEx
<E|X>=[(E—Eo)—®(E—E1)JE,
and for this case Eq11) yields
C .
<EG|X>:ﬁ[ln(EG_El)_ln(EG_EO)]e_IEGXv (36)

whereC is a constant®
As it can be seen from these examples, the GS can be obtained as tempered ultradistributions.

IIl. BERGGREN APPROXIMATION

In the following we shall discuss the validity of the approximation proposed by Bertfgen
calculate the expectation value of an operator in a resonant state. Following Berggren’s notation,
let us introduce the staié,k,1) and the continuum wavefunctigm|k,k,1)= g (r).

Then, since the enerdy is given by

2
E(K) =5 (37
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the GS can be defined by

o |E(k—k|> dE. (39

|G=|Ff

N k ~
Ik, k1) = \/% IE(K), k1) (39)

One can write

and, consequently,

AT +w\ﬁ Ik, k,1)
=Tz jo mEer—E(k) ¥ 40
o 2r VKK (KK [ATKGK DD
(BolAlEs") =" ;J o, W o e £ @

[see Eq(2) of Ref. 16. We are now in a position to compare the result provided by the present
method, about the expectation value of an operator in a resonant GS, and Berggren’s conjecture,
namely,

(A)=Re(Eg*|A[EG™), (42)

where

v (e JKK K' k1Al K,
dkf dK ( |Alk,k,I)

<EG*|A|EG*>__E (E(k")—Eg*)(E(k)—Eg*)’

11’

(43

The relation between Eq#§40) and(42) can be expressed as

2ir +oo +oo kk'
(R)=(EclAlEG*)= Re(EG*IAIEG*>——2 Tak dk'%[E(k)—E(k')]

1,17
(k' K’ 17| AlK.K, 1)
|E(k’)—Eg|’|E(k)—Eg|?
473 Mdkf” KK (kK |AKGK DD
0

+— :
T M |E(k")—Eg|?|E(k)—Egl?

(44)

It means that the result obtained by Bergdfés valid at leading order iff. At this order one
obtains, from the above equation,

(A)=(EG|A|Ec*)=ReEg*|A[Ec*). (45)
The contributions of higher-order terms, for any valud’ofis given by Eq.(43). From this

equation it is seen that the expectation value of the operaiara GS differs from the estimate
Re(Eg* |A|Eg*) and that it shows a power-law dependence upon
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IV. CONCLUSIONS

In this work we have presented a mathematical representation of GS based on the theory of
tempered ultradistributions. The use of them has been shown to be useful, particularly in discuss-
ing the normalization of GS. The connection with Berggren’'s approximation, concerning the
expectation value of an operator on a resonant state, has been established. We have shown that
Berggren’s expansion is valid at leading order in the imaginary part of the eBgygy general
expression for this expectation value has been introduced which is not restricted by any prior
assumption about the order of magnitude of the imaginary pafciis compared with the value
of the real part of it. These results show that the space of ultradistributions together with the RHS
discussed seems to be an appropriate framework for the description of GS and its main properties.
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