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The space of analytical test functionsj, rapidly decreasing on the real axis~i.e.,
Schwartz test functions of the typeS on the real axis!, is used to construct the
rigged Hilbert space~RHS! ~j,H,j8!. Gamow states~GS! can be defined in RHS
starting from Dirac’s formula. It is shown that the expectation value of a self-
adjoint operator acting on a GS is real. We have computed exactly the probability
of finding a system in a GS and found that it is finite. The validity of recently
proposed approximations to calculate the expectation value of self-adjoint operators
in a GS is discussed. ©1996 American Institute of Physics.
@S0022-2488~96!00209-5#

I. INTRODUCTION

The proper treatment of the continuum and the inclusion of decaying states belonging to it in
the definition of Green’s functions of physical interest is a long-standing problem in various fields
of physics. The mathematical consequences of the inclusion of the continuum in the scattering of
particles by a central potential have been explored by Gamow long ago.1 A modern review of the
scattering theory can be found in Ref. 2 where the basic elements of the involved radial differen-
tial equations are presented in great detail. The use of these states, as it has been shown by
Gamow,1 is of central importance in building the physical interpretation of thea-decay mode of
heavy atomic nuclei.3 The so-called Gamow resonant states@for simplicity Gamow states~GS!#
fulfill purely outgoing boundary conditions with an exponential behavior at infinity.2 Several
methods have been proposed since the publication of Gamow’s work,4 particularly in connection
with the normalizability of Green’s functions in the presence of GS and in the treatment of
completeness relations.5 The mathematical equivalence between some of these methods has been
discussed recently and the correspondence between Bergreen’s and Mittag-Lefler’s representations
has been explored at length.6 Presently a rich literature is available regarding the application of
these concepts to nuclear reactions and to nuclear structure problems.7

The amount of information about mathematical properties of representations which include
GS is also very rich. The use of decaying states of complex energy in the framework of the
Hamiltonian formalism, and the use of deformed contours to compute survival amplitudes, has
been reported in Ref. 8 by Sudarshan and co-workers. The formulation of quantum mechanics in
the rigged Hilbert space~RHS! has been also studied by Bohm.9 In Ref. 10 it is shown that
idealized resonances are described, within the RHS, by generalized eigenvectors of a self-adjoint
Hamiltonian with complex eigenvalues and a Breit–Wigner energy distribution. Similar argu-
ments have been advanced by Gadella.11,12,13Among the difficulties posed by the use of GS one
can mention the appearance of the exponential catastrophe and the need to include nonphysical
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states of negative energy in the definition of GS by an integral on the real axis.14 A nonrigorous
cure for the exponential catastrophe would be the use of some regularization techniques, such as
the one proposed by Zel’dovich.15 However, and with reference to explicit numerical applications,
the use of these techniques does not guarantee the stability of the results since the onset of the
exponential dominance of the GS can manifest itself at physical scales.5 Among the recent refer-
ences on GS we shall mention the work of T. Berggren,16 where the possibility of defining
expectation values of operators in a resonant state is considered. In the present work we shall
focus our attention on the mathematical aspects of representations which include Gamow states.
At variance with the usually adopted approach, i.e., by using the class of functions known as
Hardy class functions,11–13we shall use tempered ultradistributions.17,–20The space of analytical
functionals j8 ~tempered ultradistributions! is the minimal space whose Fourier antitransform
accomodates real exponential functions as distributions. In the first part of this work the definition
of the space of analytical test functionsj is given and the corresponding RHS is constructed. Then
Dirac’s formulation of quantum mechanics in RHS is shown, the structure of GS is given explic-
itly, and the norm of GS in RHS is calculated. The contribution of GS toP(E), the probability
distribution of a system at energyE, is obtained and the relation with the Breit–Wigner weighted
energy distribution is studied. Next, some examples of GS as analytical functionals are given.
Finally, a comparison with Berggren’s results on expectation values with resonant states is pre-
sented.

II. THE RIGGED HILBERT SPACE ( j,H,j8)

Let us consider the spacej of entire analytical test functionsf̂(z) rapidly decreasing on the
real axis, i.e.,f̂(z)uy505f(x) is a test function of the Schwartz spaceS ~see Refs. 17–21!.

The structure of a countable normed space ofj is given by the family of norms

if̂in5 sup
uzu5n

uf̂~z!u, nPN . ~1!

These norms are compatible since

if̂in,if̂in11 . ~2!

In j we define the scalar product

^ĉ,f̂&5E
2`

1`

dE ĉ̄~E!f̂~E! ~3!

and the norm

if̂i25^f̂,f̂&. ~4!

The spacej is completed by using the norm of Eq.~4!; the resulting space is the Hilbert space
H of square-integrable functions~j,H!.

If j8 are linear continuous functionals~distributions! over j, we have~Refs. 17–21!

j,H,j8. ~5!

Herej is a nuclear space~see Ref. 22! and~j,H,j8! is a RHS or a Guelfand’s triplet~GT!. In
this RHS a linear and symmetric operatorA acting onj, which admits a self-adjoint prolongation

Ā acting on H, has a complete set of eigen-functionals onj8 with real generalized
eigenvalues.23,24Let us introduce the GT~j̃,H,j̃8! which is related to the GT given in Eq.~5! by
the Fourier transform
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f~ t !5F 21$f̂~E!%5
1

2p E
2`

1`

eiEtf̂~E!dE. ~6!

If ĉ(E)Pj8, we definec(t) by

^c~ t !,f~ t !&5
1

2p
^ĉ~E!,f̂~E!&. ~7!

Consequently, one has

c~ t !5F 21$ĉ~E!% ~8!

with

f~ t !P j̃, c~ t !P j̃8. ~9!

The Schwartz spaceS 8 ~of tempered distributions! is included inj8 and in j̃ 8~S 8,j8!.
The distributions ofS 8 fulfill Dirac’s formula17

S~x!5E
2`

1`

d~x2y!S~y!dy. ~10!

The extension toj8 of Dirac’s formula is given by17

ĉc~z!5
1

2p i E2`

1` 1

E2z
ĉ~E!dE, ~11!

where

ĉ~E!5ĉc~E1 i0!2ĉc~E2 i0!. ~12!

Related to the RHS~j̃,H,j̃8! @and ~j,H,j8!#, it exists the abstract GT (ja ,Ha ,ja8). This
relation is established with the help of the operatorx̂, representing inHa the position operatorx
of H. The operatorx̂ has a complete set of eigenfunctions inja8 . We use for them Dirac’s
notation ux&. To each abstract ketuf&Pja it corresponds a function̂xuf&5f(x)P j̃. In other
words, to each functionf(x)P j̃, it corresponds an abstract ketuf&Pja , such that̂ xuf&5f(x).
This procedure establishes the above-mentioned relation betweenj̃ andja . When the spacej̃ is
completed we obtain the Hilbert spaceH, while the correspondence just established leads to the
complete abstract spaceHa(.ja). Finally, any linear continuous functionalc in j̃8 is made to
correspond to that abstract ket,uc& P ja8 , such that

c~f!5^cuf& ~13!

for all fPj̃.
These relations represent Dirac’s formalism of quantum mechanics in a RHS. For more details

see the works cited in Ref. 25.
The principal difference between the triplets defined above and those considered in Ref. 11 are

due to the fact that our spacej is formed by ‘‘ultra analytic’’ test functions; i.e., anyfPj is
entire-analytic and rapidly decreasing on the real axis. The dual spacej8 is formed by ‘‘ultradis-
tributions’’ ~see Refs. 17–20!. The spacej̃8 is the minimal space that contains real exponentials.
It also allows the representation of any ultradistribution by a pair of analytic functions that can be
determined by Eqs.~11! and ~12!.
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Let us now introduce a self-adjoint operatorHPH, such that

HuE&5EuE&, E0,E,E1 . ~14!

We shall consider all theĉPj8 with support~in the sense of Ref. 17! in the interval (E0 ,E1).
This means thatĉ can be determined from the discontinuityc(E) of the pair of analytic functions
on the real axis. Furthermore,c(E)50 if E¹(E0 ,E1).

Following Eq.~11! one can write

ĉ~EG!5
1

2p i EE0
E1 1

E2EG
ĉ~E!dE ~15!

and

„ĉ~EG!…*5
1

2p i EE0
E1 1

EG*2E
„ĉ~E!…* dE ~16!

with

EG5ED1 iG, G.0.

In Dirac’s notation,ĉ(E)5^Euc&. Thus

ĉ~EG!5
1

2p i EE0
E1 1

E2EG
^Euc&dE, ~17!

„ĉ~EG!…*5
1

2p i EE0
E1 1

EG*2E
^cuE&dE. ~18!

We can also write Eq.~17! as

ĉ~EG!5
1

2p i EE0
E1 1

E2EG
^EudEuc&.

We now define

^EGu5
1

2p i EE0
E1 1

E2EG
^EudE ~19!

and

uEG* &5
1

2p i EE0
E1 1

EG*2E
uE&dE. ~20!

In consequence,

ĉ~EG!5^EGuc&, ~21!

„ĉ~EG!…*5^cuEG* &. ~22!

The stateuEG* & is by definition a Gamow state. Note that ifĉ(E) is the discontinuity ofĉc(z)
on the real axis, thenEnĉ(E) is the discontinuity ofznĉ(z) also on the real axis.

4238 Bollini et al.: Gamow states as continuous linear...

J. Math. Phys., Vol. 37, No. 9, September 1996

Downloaded¬03¬May¬2011¬to¬163.10.1.26.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jmp.aip.org/about/rights_and_permissions



Then we have@cf. Eq. ~20!#

EG*
nuEG* &5

1

2p i EE0
E1 1

EG*2E
EnuE&dE,

i.e.,

HnuEG* &5
1

2p i EE0
E1 1

EG*2E
HnuE&dE ~23!

5EG*
nuEG* &, ~24!

and uEG* & is an eigenstate ofH.
The statesuEG* & are normalizable and the norm is given by

^EGuEG* &5
1

4p2G FarctanSE12ED

G D2arctanSE02ED

G D G . ~25!

With this normalization, and for theE1→` andE0→2`, the normalized GS can be cast in
the more familiar form of Ref. 14.

In consequence, the diagonal matrix element ofH between GS is given by the expression

^EGuHuEG* &5ED1
G

2

lnF ~E12ED!21G2

~E02ED!21G2G
FarctanSE12ED

G D2arctanSE02ED

G D G . ~26!

With this result it is readily seen that the imaginary part of the diagonal matrix element
satisfies

Im^EGuHuEG* &50, ~27!

and that for the limitsE0→2` andE1→1` one has

^EGuHuEG* &5ED . ~28!

The time evolution of a GS is given by

^cue2 iHt uEG* &5e2 iEG* t
„ĉ~EG!…* ~29!

as a consequence of Eqs.~11! and ~23!.
The probability distribution associated to a GS is given by

P~E!5u^EuEG* &u25
G

~E2ED!21G2
•

1

FarctanSE12ED

G D2arctanSE02ED

G D G . ~30!

In the limit E1→1`, E0→2`, the above equation yields

P~E!5
G/p

~E2ED!21G2
, ~31!
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which is the Breit–Wigner form proposed by Ref. 16.
Let us introduce the self-adjoint operatorA, which is acting onHa ,

A5E
2`

1`

ul&ldsa~l!^lu, ~32!

wheresa~l! is given by

sa~l!5H (
n52`

1`

Q~l2ln!, l,l0

l, l0,l,l1 ,

~33!

and whereQ is a Heaviside step function. The expectation value ofA between GS

^EGuAuEG* &5E
2`

1`

^EGul&ldsa~l!^luEG* & ~34!

is real sincêEGul& 5 (^luEG* &)* . So far, the results which we have presented are based on the use
of the theory of tempered ultradistributions. In order to illustrate them we shall discuss some
simple examples.

For the first case we have adopted the plane waves

^Eux&5
e2 iEx

A2p
.

From Eq.~11! one obtains

^EGux&5A2G sgn@ Im~EG!#e2 iEGx ~35!

for the wavefunction of a GS.26

The second example is given by the function

^Eux&5@Q~E2E0!2Q~E2E1!#
e2 iEx

A2p
,

and for this case Eq.~11! yields

^EGux&5
C

2p i
@ ln~EG2E1!2 ln~EG2E0!#e

2 iEGx, ~36!

whereC is a constant.26

As it can be seen from these examples, the GS can be obtained as tempered ultradistributions.

III. BERGGREN APPROXIMATION

In the following we shall discuss the validity of the approximation proposed by Berggren16 to
calculate the expectation value of an operator in a resonant state. Following Berggren’s notation,
let us introduce the stateuk,k̂,l & and the continuum wavefunction̂xuk,k̂,l &5fk

(1)~r !.
Then, since the energyE is given by

E~k!5
k2

2m
, ~37!
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the GS can be defined by

uEG* &5
AG

iAp/2
E
0

1` uE~k!,k̂,l &
EG*2E

dE. ~38!

One can write

uk,k̂,l &5Ak

m
uE~k!,k̂,l & ~39!

and, consequently,

uEG* &5
AG

iAp/2
E
0

1`Ak

m

uk,k̂,l &
EG*2E~k!

dk, ~40!

^EGuAuEG* &5
2G

p (
l ,l 8

E
0

1`

dkE
0

1`

dk8
Akk8
m

^k8,k̂8,l 8uAuk,k̂,l &
„E~k8!2EG…„E~k!2EG* …

~41!

@see Eq.~2! of Ref. 16#. We are now in a position to compare the result provided by the present
method, about the expectation value of an operator in a resonant GS, and Berggren’s conjecture,
namely,

^A&5Rê EG* uAuEG* &, ~42!

where

^EG* uAuEG* &5
2G

p (
l ,l 8

E
0

1`

dkE
0

1`

dk8
Akk8
m

^k8,k̂8,l 8uAuk,k̂,l &
„E~k8!2EG* …„E~k!2EG* …

. ~43!

The relation between Eqs.~40! and ~42! can be expressed as

^A&5^EGuAuEG* &5Rê EG* uAuEG* &2
2iG2

p (
l ,l 8

E
0

1`

dkE
0

1`

dk8
Akk8
m

@E~k!2E~k8!#

3
^k8,k̂8,l 8uAuk,k̂,l &

uE~k8!2EGu2uE~k!2EGu2

1
4G3

p (
l ,l 8

E
0

1`

dkE
0

1`

dk8
Akk8
m

^k8,k̂8,l 8uAuk,k̂,l &

uE~k8!2EGu2uE~k!2EGu2
. ~44!

It means that the result obtained by Berggren16 is valid at leading order inG. At this order one
obtains, from the above equation,

^A&5^EGuAuEG* &5Rê EG* uAuEG* &. ~45!

The contributions of higher-order terms, for any value ofG, is given by Eq.~43!. From this
equation it is seen that the expectation value of the operatorA in a GS differs from the estimate
Rê EG* uAuEG* & and that it shows a power-law dependence uponG.
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IV. CONCLUSIONS

In this work we have presented a mathematical representation of GS based on the theory of
tempered ultradistributions. The use of them has been shown to be useful, particularly in discuss-
ing the normalization of GS. The connection with Berggren’s approximation, concerning the
expectation value of an operator on a resonant state, has been established. We have shown that
Berggren’s expansion is valid at leading order in the imaginary part of the energyEG . A general
expression for this expectation value has been introduced which is not restricted by any prior
assumption about the order of magnitude of the imaginary part ofEG as compared with the value
of the real part of it. These results show that the space of ultradistributions together with the RHS
discussed seems to be an appropriate framework for the description of GS and its main properties.
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