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Feeding of hole states by proton decay of Gamow-Teller and isobaric analog state resonances
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Partial decay widths corresponding to the proton decay from the Gamow-Teller and isobaric analog state
resonances irf°Bi to hole states i?*’Pb are evaluated. The giant resonances are described by using the
random-phase approximation within the Berggren representation. A good agreement with available experimen-
tal data is obtained.

PACS numbgs): 21.10.Re, 23.56-z, 24.30.Cz, 25.70.Ef

The study of giant resonances in nuclei is attracting much riepi2.
attention both experimentally and theoretic4lly2]. The im- Seer () =%t 2| 5., —i >, % ,
portance of these studies is that they may provide informa- no 7 ®n
tion about the continuum part of nuclear spectra as well as an
understanding of the nuclear dynamics in the continuumwherel'}”z is the partial decay amplitude from tineh reso-
However, there is not much experimental evidence regardingance to the final channel state) ( These channels are rep-
partial decay widths from giant resonances—even the thed€sented by the emitted particle and by the residual nuclear
retical results are scarce. The reason for this is that the préitate. For the case of the decay of the IAS and GTGR the
cesses of formation and decay of giant resonances are tinfdnitted particle is a proton and the final nuclear states are

dependent and a proper treatment of such processes is a v I -r}eutaog-hole stactj_es. Trf:e partial decay am?IiLude can ge
difficult task. Experimentally, it is not easy to subtract the ¢2/culated by expanding the outgoing wave of the emitte

interesting signals from the background. Moreover, if theparticle in partial waves and using the spectral representation

resonance is not isolated what one measures is not related ?(f) t_he continuum RPA Green f“”Ct'OfP- Usmg_&aforce as
residual interaction and after performing the integration on

the resonance |tsehf but rather to the _resultpf the gontrlbutloqhe direction of the emitted particle one gets
of all the overlapping resonances, including their interfer-

@

ence. _
The relativistic random-phase approximati@®RPA) [3] r, C:2(2]h+1)2 y(1j,h,n)2, @)
is a natural extension of the random-phase approximation v (23+1) !

(RPA) which allows for the treatment of particle-hole states

in the continuum. The eigenvalues of the RRPA can be comwith

plex due to the admixture of bound and resonant states in the

unperturbed particle-hole bas{Berggren’s representatinn ) ) o
The imaginary part of a complex eigenvalue is associated y(lj,h,n)= \/Evozi X(i,mG(lj,h.i)
with the escape width of the stafd]. The formalism has
been presented in detail previously and several applications
of it have been given, particularly for the description of
charge-conserving multipole excitations #fPb[7]. As has

been discussed if#] the residues of th& matrix at a com-  yhere (j) denotes the partial wave of the outgoing particle,
plex energyw, are the partial decay widths of the resonancey js the strength of the interaction, the indetabels the

n if the resonance is |solat_e(d10noverlapp|ng For such a particle-hole configuratiop;,n;} of the giant resonance
resonance there exists a direct correspondence between thgp energyw,, and total angular momentudy X(i,n) is the
total escape width and the imaginary part of the energy, i-ecorresponding RRPA amplitude, ahddenotes the final one

I'y=—2Im(w,). This result has been confirmebd for the casengle state. The factad(lj,h,i) is a geometrical factor given
of the decay of the giant monopole resonancé’f®b[7]. In b

the present case we shall show that similar results are also
valid for charge-exchange modes, i.e., the isobaric analog

XfdrrZU”(r)Rh(r)Rpi(r)Rni(r), (3)

(ZIE)ASS) and Gamow-Teller giant resonancé&TGR’S) in G(j,h,i)=>, Z(j i, LS DZ i pnin,LSD)S,,
i LS

Following the notation off4,5] and assuming that the 4
resonances are isolated one can write for $hmatrix the
Breit-Wigner form whereZ(l4j1,l5j,,LS;J) is the recoupling coefficient:
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TABLE |. Experimental and theoretical partial decay widths in ~ TABLE Il. Experimental and theoretical partial decay width in
units of keV, for the decay of the GTGR iff®Bi to neutron-hole  units of keV, for the decay of the IAS ifP®Bi to neutron-hole states

states in?%%b. in 20%pp,
Hole state Experimen6] Theory Hole state Experimen6] Theory
P 489+ 9.3 29-i21 P12 51.3+ 5.6 36-i7
g incl. in pyy 46—-i24 fsio incl. in pap, 42—i6
[ 84.9+ 13.1 47-i33 P32 79.4+ 9.4 36-i8
Total 153.8+ 57.2 125-i79 Total 134.2+ 35.6 118-i21
(213 +1)(21,+1) pared with the experiment is the branching ratio between the

Z(141.,15j2,LS9)= (1,01,0[L0)

4(2L+1) decay and the excitation cross sectidqdsl0. When the
resonance is an isolated state, the partial decay width, as
X((112)j1(12)j2:3|(1112)L(32)S:3),  defined in Eq(2), is a quantity which can be directly com-
(5) pared with the experimental resuft].

Once the structure of the giant resonances is defined by
andS,=(S||(c0)||S) for the GTGR and5,=1 for the IAS.  the RRPA procedure we are in position to evaluate the other
The radial wave functions for the initial proton and neu-important ingredient entering Ed2), i.e., the scattering
tron states and for the final neutron hole are indicated byvave of the outgoing proton. Different from the case of the
Ry(r), Ry(r), andRy(r), respectively, while the radial wave giant monopole resonance, where the outgoing particle is a
of the scattered particle is given hy;(r). All these func- neutron, the decay of the IAS and GTGR states proceeds
tions are normalized and in this representation the partialhrough the emission of a proton. Therefore one has to cal-
widthsT',, . are given in units of energy. culate the Coulomb scattering wave functions well below the

Since the partial decay width, . is proportional to the Coulomb barrier, where the regular Coulomb functinis
probability that the resonance decays to the chacnehe  Ppractically zero and the irregular solutio®, H,", and
expects that,==.I', ./T',=1. The physical meaning of the H, coincide within the machine precision. Therefore we
quantityu,, will be discussed in the applications below. were not able to calculate the scattered proton wave function

The scattering wave has been calculated by using a Cowccurately at energies less than 100 keV. The Coulomb wave
lomb corrected Woods-Saxon potential with a spin-orbitfunctions were calculated by the codeuLcc[9].
term; the particle-hole residual interaction is the spin-isospin We have calculated the partial decay width for the decay
dependent delta force. The strength of the residual interamf the IAS and GTGR ir*%®Bi leading to neutron-hole states
tion has been adjusted to reproduce the observed energy f 2°’Pb. The results are listed in Tables | and Il. Considering
the GTGR in?%Bi (wgrgr = 15.6 MeV) and the observed the difficulties associated with these calculations, one can
position of the IAS (@55 = 15.2 MeV) [6]. Thus, for the say that the agreement between theory and experiment is
GTGR it is V=320 MeV fm® while for the IAS it is rather good. One notices that for the GTGR the sum of the
V(=260 MeV fm?. partial decay widths practically coincides with twice the ab-

The particléproton-hole(neutron basis has been con- solute value of the imaginary part of the GTGR energy, i.e.,
structed by using as a representation the eigenvalues of the=1. This is another indication of the consistency of the
Woods-Saxon potential ¢B8]. All single-particle states up to theory: The GTGR resonance is isolated. Yet, the imaginary
an energy of 120 MeV and narrower than 5 MeV have beerparts of the partial decay widths in Table | are rather large,
included. The resulting number of single-particle states id.e.,|Im(I')/Re(l")|= 0.63. We have looked into this feature
244 for neutrons and 185 for protons. The largest dimensioin detail and found that the imaginary parts of the partial
allowed for the RRPA basis was 500. decay widths are sensitive to variations of the interaction

The first significant quantity extracted from our RRPA strength. For instance, fov,=280 MeV fm* one obtains
calculation is the imaginary part of the complex energies. Wavgrgr=14.83 MeV and|Im(T")/Re(’)|= 0.30, still main-
have obtained Imp,s)=—78 keV and Impgrgr) = —62  taining the consistency conditiar~=1. We have traced down
keV, i.e.,I'jas=156 keV andl' 5tgr=124 keV. This agrees this sensitivity and found that it is due to the Coulomb
well with the corresponding experimental data of Tables Iwaves, which feel the difference in energy between the two
and II. casedi.e., 0.77 MeV very strongly.

With the RRPA wave functions obtained for the IAS and For the case of the IAS in Table Il the imaginary parts of
the GTGR we have calculated the contribution of each statthe partial decay widths ar@n absolute valugsmall, butu
to the associated sum rulg¢8] and found that these two is not unity. Again in this case we found that by changing the
states indeed exhaust most of the strength. Moreover, th&trength of the interaction within reasonable limits the con-
sum rules are almost purely real, showing that the resonancesstency criterion improves. For instance, =235 MeV
are isolated4]. It guarantees that the partial decay widths,fm? it is u=1 while w;zs=(13.80 —i 0.076 MeV. This
calculated in this fashion, are physically meaningful. Whenvariation of the energy causes, as before, strong changes in
the resonance is not an isolated one the quantity to be conthe Coulomb wave.
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One feature to be noticed in Tables | and Il is that the In conclusion, in this paper we have calculated partial
agreement between theory and experiment is good althougtecay widths corresponding to the decay of the Gamow-
no effects induced by two-particle—two-hole excitations haveTeller and IAS giant resonances #Bi. We found that these
been introduced in our formalism. As mentioned above, thigesonances, contrary to the case of the isoscalar monopole
is expected since the resonance is isolated. However, in Refgiant resonance if®Pb[7], are isolated, and therefore the
[11,17 the contribution of the particle-hole excitations to the concept of partial decay width is meaningful. This is sup-
partial decay widths was found to be larger, and the agreeRorted by the good agreement between our calculated quan-
ment with experiment is not as good as here. This may bélties and the available experimental data.
due to precision problems related to the calculation of the pijscussions with N. Van Giai are gratefully acknowl-
Coulomb scattering wave, but it may also be due to theedged. One of u$T.V.) would like to acknowledge partial
use in Refs[11,12 of a Hartree-Fock mean field, which financial support by the OTKA Foundation Hunga@on-
is nonlocal, instead of the local Woods-Saxon potentiakract No. 17298 and the Royal Swedish Academy of Sci-
used here. ences. E.D.K. was supported by the Swedish Institute.
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