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Abstract 

The correspondence between dual thermal transformations of the thermo field dynamics (TFD) 
and gauge fields is studied both for abelian and non-abelian theories. It is found that the action for 
the TFD representation of a Dirac's lagrangian remains invariant under local transformations in k- 
space. The conserved charge coincides with the TFD vacunm-generator G introduced by Takahashi 
and Umezawa. The relationship between the rules of the TFD and the principle of gauge invariance 
in a thermal subspace is discussed in the context of a thermal symmetry breaking. 

1. Introduction 

The connection between statistical mechanics and field theory at finite temperature 

has been studied in a series of  fundamental papers by Umezawa and co-workers [ 1-10]. 
The formal aspects of  the problem and the corresponding mathematical tools are the 

basis of  the thermo field dynamics (TFD). The theory has been discussed and reviewed 
more recently by other authors [ 11,12] and compared with other methods [ 13-18]. 
It is a very useful formalism which has already been applied to describe equilibrium 

and non-equilibrium physical systems [ 19-22]. Applications of  the TFD to many body 
theories have also been reported [23-28].  

In the framework of the TFD it exists a complete correspondence between statistical 
averages and expectation values of  field theories at finite temperature. The TFD is 
based on the doubling of fermion and boson fields and on the use of constraints which 
are imposed to separate physical and spurious degrees of  freedom. This procedure is 
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accompanied by the introduction of a thermal symmetry and by the use of a correlated 
thermal vacuum [ 29]. 

Recently, a formal connection between the TFD and the concept of gauge invariance 
has been developed [30]. In the work of Ref. [30] the degrees of freedom introduced by 
the thermal doubling are absorbed by the definition of a gauge field minimally coupled 
to physical fields. The structure of this gauge field can be obtained from the group 
structure of the underlying field theory [ 31 ]. 

The equivalence between the rules of the TFD and the principle of gauge invariance 
in a thermal subspace has been shown starting from the invariance of the TFD action 
under local thermal transformations in k-space [ 31 ]. 

In this paper we continue with the study of the connection between TFD and the 
principle of gauge invariance. In the present context the concept of gauge invariance 
will be always applied in relation with the explicit invariance exhibited by transformed 
TFD-lagrangians. These transformed lagrangians are obtained by absorbing the degrees 
of freedom introduced by the thermal doubling. We have extended the correspondence 
established in Ref. [31] for the abelian U(1) case to a non-abelian U(N) model. The 
structure of the solution for the TFD vacuum is discussed starting from the concept of a 
conserved charge, as deduced from the invariance of the TFD action under infinitesimal 
thermal transformations. The concept of thermal weak equalities is reviewed and the 
coupling between physical and gauge fields is analyzed. 

Some basic concepts of the TFD are briefly presented in Section 2. The structure of the 
TFD in a thermal subspace is studied in Section 3. Infinitesimal thermal transformations 
are introduced in the same section. Applications for different group symmetries are given 
in Section 4. Conclusions are drawn in Section 5. Details of the formalism are given in 
the Appendices A and B. 

2. TFD as a gauge theory 

The average values of the statistical mechanics and the expectation values of a field 
theory can be related, within the TFD, provided the Hilbert space is enlarged to include 
physical and tilde (or dual) degrees of freedom. In addition, the a degree of freedom is 
introduced [4] and to a particular value of t~ (0 ~< a ~< 1) it is assigned a given closed 
time-path Green function formalism [3,17]. The TFD representation is defined by a set 
of operators which are bilinear in physical and dual fields [29]. From the TFD tilde 
substitution rule the Kubo-Martin-Schwinger (KMS) condition can be derived [2,5]. 
The tilde substitution rule determines the structure of the thermal vacuum. 

An interesting aspect of the TFD theory is its strong similarity with a gauge theory 
manifested in a restricted subspace Hth [30]. Due to it a lagrangian representing free 
fermions can be expressed as a gauge invariant lagrangian which includes the coupling 
of the fermion fields to an effective gauge field. 

The starting point of the discussion presented in Ref. [30] is the fact that in the TFD 
the matrix elements of the lagrangian are always invariants under gauge transformations 
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provided the space of physical states is restricted to the subspace Ha,. This subspace is 
composed by the states I phys) restricted by the condition 

( a + ( k , s ) a ( k , s )  - h + ( k , s ) ~ ( k , s ) )  I phys) = 0. (1) 

This condition can be deduced by enforcing the gauge symmetry ~ la Wigner-Weyl, as 
is shown below. 

To illustrate these postulates of the TFD we can start with the definition of the 
equalities which are satisfied by operators and by their dual partners, namely: 

/ ~ (o) O)th = th, (2) 

where 0th denotes matrix elements in Hth. These conditions are known as thermal weak 
equalities (t.w.e.) [30]. 

Let us consider the case of a free Dirac lagrangian for a massive field. We have 

L = ½i~Y u Ot~ ~b - mt~ O. (3) 

Introducing the dual field ~ the TFD lagrangian reads 

L = L -  L = ½iffy # ~u ~b - m ~ O  + ½i~ty ~* 0'~ ~ + m~t~. (4) 

Due to t.w.e, the lagrangian L is gauge invariant in Hth since [30] 

(¢;y'¢,>~ = ( ~ r ' * ¢ ; ) ~ .  (5)  

The structure of the TFD theory and the conditions imposed to construct the subspace 
( 1 ) can be understood by applying standard techniques of the gauge theory, namely: by 
searching for the global gauge invariance of L under the transformation of the fermion 
fields. Let us assume that fermion fields transform like 

Ct = eia • (6) 

and similarly for the field ~. 
By keeping first order terms in a the variation of the action reads 

and it obviously vanishes. Thus the current 

3 ~ = ,/;y~+,p - ,~y*,+,~ (8)  

can be defined and from it the charge 

0 =/~(/~--0) d3x (9) 

can be computed. It is given by 

0= f [ ,+~- ¢;+¢;] d~. (10) 
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By construction this charge is conserved. The connection with the TFD rule (1) can 
be obtained if the condition 

0 I phy s) = 0. 

is imposed. 
To show that it is equivalent to (1) we can expand the fermion fields ~h and ~ in 

terms of a complete set of particle (antiparticle) creation (annihilation) operators and 
their corresponding dual operators. 

The final result is given by 

= Q -  O~ = ~ ( n ( k , s )  - h ( k , s ) ) ,  ( l l )  
k,s 

where 

n(k, s) = a+(k, s)a(k, s) - b+(k, s)b(k, s) (12) 

and h(k, s) has a similar expression in terms of tilde creation and annihilation operators. 
Obviously the result (11) is fully consistent with condition (1) and it shows that the 
TFD is a realization of a global gauge invariance. Following Ref. [30] we can introduce 
a gauge field A~ such that 

(--gA~Y~'~h)th = (½ i~yu* ~ ~)th + (m~)th" (13) 

Therefore it is possible to write for the fermion sector of the lagrangian the expression 

L ~ Lg = ½i~ ,~ O~ ~ - g A ~ ' Y ~  - m ~ b  (14) 

which is manifestly U( 1)-invariant. 
This construction can be generalized for the U(N) case as follows. Starting from the 

TFD lagrangian 

L = L - L = ½i~y" 0'# ~b - m ~  + ½i~Y'* ~ ,  ~ + m ~ ,  (15) 

where ~ and ~ denote multiplets of N Dirac spinors (hereafter denoted as Dirac's 
N-plets) with components ~h (n), with n = 1 ~ N, and using the t.w.e. 

( -gAz  . ~'y"T~b)t h = (½i~ '~* ~ ~)th + (m~) th '  (16) 

where T are the generators of U(N),  thus 

L ~ Lg = ½i~'y ~ ~ d / -  gAa~3,ar~b . . . .  - m~ ~h. (17) 

Therefore, the TFD tilde-degrees of freedom have been replaced by the coupling 
of the original fermionic current with a vector potential. In the present work we are 
focussing on the converse, namely: on the conditions which should be imposed on a 
gauge theory in order to describe thermal effects in some subspace, as we shall discuss 
in the next section. 
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3. Infinitesimal thermal transformations 

851 

In the following we shall show how to construct the TFD vacuum starting from 
i) the definition of infinitesimal thermal Bogoliubov transformations, 
ii) the definition of a TFD conserved charge from the introduction of the dual thermal 
action and by using Noetber's theorem and 
iii) the explicit construction of Hth. 

Let us start with an abelian theory. The Dirac lagrangian for a free massive fermion 
field, L, and its TFD representation, L, are given by Eqs. (3) and (4), respectively. 

The field ~p and ~ can be expanded as 

I~(X) = I~a(X ) -~- ~-t(x), (18) 

where we have used a compact notation for the particle sector of the field 

1 ( m )  '/2 
~b,(x) = --~ E E [a(k's)U(k's)e-ii'x] ' 

k s=-+ 

as well as for the anti-particle sector 

1 k~ 1/2 eik'x] 

s=± 

respectively. 
In the above expressions the operators a(k, s) (b(k, s)) are particle (antiparticle) 

operators, U(k, s) and V(k,s) are spinors of four components and the superscript t 
denotes transposition. 

Similarly, the dual field is written 

~ ( X )  = ~ a ( X )  + ~-t(x). (19) 

By Fourier-transforming these components one can define the fermion fields in mo- 
mentum space. They will be denoted by ~ba (k), ~p~-t (k), ffa (k) and ~+t (k), respectively. 

The inverse temperature fl can be introduced by transforming the fields ~Pa (k), ~b~-t (k) 
and the dual (tilde) fields. For the infinitesimal thermal transformation we have chosen 
a local-abelian form in ( k, ,8) -space 

U ( O ) = e -iatrc21Oi( k'fl ), (20) 

where a is an infinitesimal real number, O±(k,~) is a scalar function and o .(2) is a 
Panli matrix 

,) 0 
(the notation of Bjorken and Drell [32] for Lorentz and spin-indices and the convention 
for the metric tensor are adopted). 
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The index -4- indicates that the function O has different values for particle (+ )  and 
antiparticle ( - )  states. The transformed fields are given by 

( Oa(k, fl) Oa(k) ~+t(k, fl) ) =e-imr(2'O+(k'#) ( ) ~a+t (k) ' 

( Ob(k, fl) (Oh(k) e-iao-(2) O_ ( k,~) 
~- t (k ,  fl) ] = \ ~_t(k)  ) (21) 

The TFD action ~3 = f L d4x is invariant under this transformation. To show it the 
fields (21) are expanded at leading order in the parameter ot and transformed hack to 
coordinates. The resulting components are 

Oa (X, t~) = Oa (X) - -  aF -1 {0+ ( k, t )  } * ~+t (x),  

~+t(x, ]~) = ,~+t(x) "1- otF-~{O+(k, fl)I*Oa(x), 

Ob(X, fl) = Oh(X) -- aF-l {o-(  k, fl) } e ~ t (x ) ,  

~- t (x ,  fl) = ~ - t ( x )  q- aF-l{O_(k, fl)}*Ob(X), (22) 

w h e r e ,  indicates the convolution operation. 
The functional form of O±(k, fl) is given by 

sinE(O±) = 1 (23) 
1 + eft(Ik°l~:~) 

and it guarantees that the product of infinitesimal thermal transformations is a thermal 
Bogoliubov transformation. The transformed lagrangian L is a function of the form 

~, --~ L + cd(fl) + O(a2).  (24) 

Neglecting terms of order O(o~ 2) the action is written as 

---* ~ -t- o t f  ~(fl) d4x. (25) 

The term a f  ~(fl)d4x has a rather involved structure. To write it down in a compact 
form we have defined the auxiliary fields 

2(x,¢~) = O+(x ,B)  . ¢;.+t(x) + O _ ( x , # )  * ~b(x), 

X(x, fl) = O+(x, fl) * 0 f t ( x )  + O_(x, fl) * 0b(x) ,  (26) 

where O± (x, fl) is a short-hand notation for the inverse Fourier transform of O± (k,/3).  
The expression for f / ' ( f l )  d4x becomes: 

i ~'(/~) d4x= i iOlz~(x)Y#z)t(x'[7)- i~((x'fl)YtlOllO(x) 
+m~(x) 2(x, fl) + m~((x, fl)O(x) - iOa~ (x)ya* X(x, fl) 

+if((x, fl)'ya*Og~(x) + m~(x)x(x, fl) + m2(x, fl)~(x). (27) 
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Due to the equation of motion for ~ and 

(iyuea - m) ¢ (  x) = (iy~*ea + m) ~(  x) = O, (28) 

the integral (27) vanishes independently of fl and the action S remains invariant. The 
use of Noether's theorem yields a conserved charge Q ~  and its structure is determined 
by performing the variation 

~ =  o~ o(o~4~c) ' 

where ~bc represents each one of the fields 0, ~, ~, ~- 
This variation can be written in terms of the auxiliary fields X and ~ as 

i~S=a f 0 a [-½i~(x),a~(x, fl) + ½iY((x,,)~"~(x) 

+½it}(x)g ~**X(x,fl) - ½iY((x, fl)'gu*~(x)] d4x. (30) 

The quantity in the square bracket is the current Jr,; hence the corresponding conserved 
charge can be defined by 

QTFD = / J 0 ( x 0 ,  x) d3x. (31) 

To compute Eq. (31) we have replaced the fields entering in Eq. (30) by the expansion 
(18). The result is 

QTFo=i y~ ~ [0+ (co) (a+(k,s)a+(k,s) -a(k ,s)a(k ,s))  
k s=+ 

+O_(w)  (b+(k,s)b+(k,s) - b(k,s)b(k,s))], (32) 

where 04-(o9) is defined as 04-( I k ° l= w, fl). 
The formal relation between the structure of this conserved charge and the generator 

of the TFD vacuum has been already shown in Ref. [31]. An interesting question is the 
meaning of the spontaneous symmetry breaking of the thermal symmetry. To illustrate 
this point more clearly we have computed the fermionic current j~' = ff3,J*O by acting 
upon the fields with thermal Bogoliubov transformations [ 11,23-25] and by normal- 
ordering the operator products with respect to the thermal vacuum. The result is given 
by 

(j**} = 0 for # = 1,2, 3, 
1 =-~(s in20+(to) -s in20_( to) )  for/z = 0. (33) 

k,s 

This regularized value for the current is the source of the equation which defines the 
average value of the gauge field A jz 

~](A ~) = g(j~ }. (34) 
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The standard field theory leads to a vanishing expectation value of the fermionic 
current. In the present context, that is to say by enforcing the t.w.e., this result can 
be interpreted as a consequence of a spontaneous symmetry breaking. Thus, within the 
scope of the t.w.e., the gauge field can be interpreted as a massive one. The equation 
which determines the gauge field in presence of the spontaneous symmetry breaking is 
given by 

([-q + M  2) (Ao) = g(joeff), (Ai) =0,  i =  1,2,3. (35) 

The current j~ff includes the screening due to the spontaneous symmetry breaking. The 
expression for M is obtained from the system of equations 

(iyuOu - g¢ 'Au - m) ~b = 0, aUF~u - g~yu~b = 0. (36) 

The fermionic current can be written 

i 
~%'~P = ~m (~YJzY~O~b - a~Y~Y~b) - g ~ ¢ A ~  (37) 

and together with F_xt. (34) it leads to 

g2_ A ig 
DA~ + ~b~b  ~ = ~mm ($Yu¢'0"0 - a,,$¢',yu~b) , (38) 

where the Lorentz gauge has been used. Noticing that 

(39) 

2g2 T 1 (sin20+(to) 

Eqs. (37) - (41)  we have obtained 

[:](A0}th + ~-'~(~b>th(Ao}~ = g00"°~ )~- 
From Eq. (35) one gets 

(42) 

+ sin 2 O_ ( to)) .  (43) 

The structure of M resembles the result corresponding to the screening of the elec- 
tromagnetic field in a superconductor [34,35]. 

it follows that 

($~bA~}th = 0. (40) 

This last equality can be worked out by using a theorem [33] on chronological products 
of the first type 

($~bAu)th = ($~b)th(A~}th + (Bjz)t h = 0, (41) 

where B~ symbolize all the remaining terms appearing in the complete expression. We 
are now in position to evaluate the equation of motion for the mean value of A~,. Using 
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4. Extensions to the U(N)  and scalar eases 

8 5 5  

For the case of a lagrangian with a U(N) symmetry we have adopted the form (15) 
and the corresponding infinitesimal thermal transformation is given by 

U( O) = e -i'~'(2)~I~+ ] , (44) 

where the symbol ® denotes the tensor product, the exponent [O+] is a diagonal 
N-dimensional matrix and a is a real infinitesimal. The elements O±(n,, ) are scalar 
functions of (1 k ° I, fl)- The particle and antiparticle components of the N-plets are 
denoted by (¢a(X)) and (~bb+t(x)), respectively. The same notation is adopted for the 

dual fields ~, 

( ea(k ,~)  ( C a ( k )  

t~b+t(k, fl) ) =e-i"¢(2'®[e-(~'#)] ~ ~_~b+t(k) ) . (45) 

Following the arguments introduced in the previous section the components of the 
transformed fields can be written in terms of auxiliary fields and expanded at leading 
order in the parameter a. The details are given in Appendix A. The final result for the 
conserved TFD charge of the U(N) case is given by 

N 

QTFD=iZ ~ Z [e+(nn)(tO)(a+(k,s)a+(k,s) -Etn(k,s)an(k,s)) 
n = l  k s=-±  

+O-(nn) (o~) (b+(k, s)[~+(k, s) - bn(k, s)bn(k, s)) ] .  (45) 

The current 

j~ = ~._~#T~ (47) 

acquires a non-vanishing expectation value only for its/z = 0 component, which is given 
by 

2 
~j~) = ~ ~ (sin20+/(to) - sin20_t(to)) T~. (48) 

k,l 

The equation of motion for the gauge field is 

~A ~, = gjl, _ ig [A~, F ~ - a~A~], (49) 

where 

N 2 - -  1 N 2 - -  1 

Alz= ~ m~Ta and Jlz = ~ j~Ta. 
a=l a=l 
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Eq. (49) can be solved by keeping the first term of the r.h.s, as the source for the 
mean value of the gauge field. This procedure is allowed in presence of the spontaneous 
symmetry breaking of the thermal symmetry and neglecting the mean value of the 
commutator which appears in the r.h.s, of the above equation. 

For each index a the mass Ma reads 

M a 2 _ -  ,__.(Ta)2 _ , t h r U m  (~ ~ = ~2g2zl(s in20+(nn)(W)+sinZO-(nn ' (w))(Ta)~n")"  
n,l¢ 

(50) 

Following the arguments already discussed for the abelian case the spontaneous symme- 
try breaking of the thermal symmetry leads to a screening mechanism of the fermionic 
current [34,35] and the gauge field acquires a mass; i.e., a non-vanishing mean value. 

Similar conclusions can be drawn from the analysis of a scalar field. The lagrangian 
for this field is 

L = ½ (aa~baa~b - m2~b2). (51) 

Introducing the dual field ~ we have for the TFD lagrangian the expression 

L =  L -  L =  ½ (Ou~b0~'~b - m2~b 2) -- ½ (0/zq~0/zq~ -- m2q~2) . (52) 

By following the steps outlined for the previous cases the TFD conserved charge is 
given by 

QVFD = f JO(x0, x) d3x. (53) 

The intermediate steps of the derivation are given in Appendix B. The final result is 
given by the expression 

QvFo = i E [O(to) (a+(k)?t+(k) - ? t (k )a(k) )] .  (54) 
k 

Again for this case the conserved TFD charge has the structure of the TFD vacuum 
generator. 

5. Conclusions 

In this paper we have discussed the gauge structure of the TFD. The formalism is 
based on the substitution of a portion of the TFD lagrangian by a minimal coupling 
between the original fermion fields and an induced gauge field. 

The connection between the gauge invariant form of the lagrangian in the thermal 
subspace Hth and the full TFD lagrangian is established by computing the screening 
of the induced gauge field. This has been done by introducing infinitesimal thermal 
transformations and the breaking of the TFD symmetry. 
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The structure of the transformation rules, equations of motion and the source terms 
of the induced gauge field, which are obtained by transforming the fields with the set of 
infinitesimal thermal transformations discussed in the text, suggest that the TFD vacuum 
can be interpreted as a condensate. The explicit structure of this condensate, in terms of 
original and dual fermion (or boson) fields, can be obtained from the conserved charge 
associated to the above mentioned thermal transformations. We have also shown that 
this conserved charge coincides with the vacuum generator G of the TFD. 

To conclude we think that the TFD can be interpreted from a less axiomatic point 
of view by exploring the gauge structure of the theory. It becomes evident from the 
examples of thermal transformations studied in this work. 

Appendix A 

In this appendix we are presenting some of the intermediate steps of the treatment of 
the U(N) case. The fermion fields (45) are expanded, at first order in the parameter a~, 

Ca(k, fl) = ~/ta (k) - a(  [0+ (k, fl)] ~a+t(k) ), 
~ +t ~b__~ (k, fl) =~a+t(k) + ot([O+(k, fl) ]¢a(k) ), 

Cb(k, ¢~) = ¢~(k)  -- a (  [ ~ _  (k, 13) ] ffb+t(k)),  

~b+t(k, fl) = ~b+t(k) + ce( [O- (k,/3) ] ~k__bb(k) ). 

Then, these fields ~ (x ,  fl) and ~(x ,  fl) are transformed back to coordinate space 

__~a(x, fl) = ~9a (x)__ - otF-l([O+(k, fl)]) *Ca~ +t (X), 
~ +t ~a (x, ff)=~a+t(x) +otF-l([O+(k, fl)]}*~ta(X), 

¢___.bb (X, fl) = ~._.~b (X) -- RE-l{  [O_ (k, #)  ] } ~r ~_..~b+t (X), 
~ ÷t 6~ (x, /~)  =¢Tb+t(x) + ~F-l{[~9_Ck, C~)l}*¢b(x). 

The operation * indicates the matrix convolution operation defined as 

F-l{O+(ll)(k'fl)}*~b(al)(x) 3 
F-l{[O+(k, f l)]}*Oa(x) = V-l{O+(E2)(k'fl)}*~b(aZ)(x). • 

F -1  { O + ( u u ) ( k ,  ~ )  } * ~//a ( u )  ( x )  

A similar expression holds for the transformation of the antiparticle components which 
are transformed with O_ instead of 0+. The value of O+(nn)(k, fl) is 

sin2 ( O+fnn )) = I 
1 + eta(Ik°l:vt") " 
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Explicit expressions for the transformed lagrangian and the associated action are similar 
to the ones given by Eqs. (24)-(25). 

The auxiliary fields, for this case, are written as 

= + 

___~(X,/~) ---- [O+(X,  f l ) ]  * ~//a+t(x) "1- [ O - ( X ,  f l ) ]  "k~l..bb(X), 

where [O+(x, fl)] is a short-hand notation for the inverse Fourier transform of the 
matrix [O+(k, fl)]. 

The expression for the term f l(fl) d4x resulting from the variation of the action, cf. 
Eq. (25), is similar to the one given in Eq. (27). 

The variation of the transformed action vanishes identically. The proof is straight- 
forward and it is based on the use of the equation of motion of the fields. The steps 
leading to the expression of the conserved charge coincide with the ones given in 
Eqs. (30)-(32).  

Appendix B 

The scalar fields ~b and q~ of Eq. (52) are expanded in a plane wave basis 

1 1 qb(x) = --~ ~ ~ (a(k)e -ik'x +a+(k)eik'x) , 

~(x)  = ~ 1  ~ - ~ 1  (a(k) e ik'x -4-a+(k) e -ik'x) 

The corresponding local infinitesimal thermal transformations are given by 

U( ~ )  = e -a~r(uO(k'13), 

where a is an infinitesimal real number and 

Under U(O) the thermal doublets transform as 

( ( e(k) 
Jp(k, fl) ) =e-'~'~'"O(k'13) k, 6(k) ) , 

where ~b(k), ~(k) ,  dp(k, fl) and $(k,/3) are the Fourier transforms of ~b(x), ~(x) ,  
~b(x, t )  and q~(x, fl), respectively. 

The transformed fields read, at leading order in the parameter a, 

dp( k, fl) = ~b(k) - a( O( k, fl)~b( k ) ), 
q~(k, fl) = $ ( k )  - a(~)(k, fl)dp(k)) 

and the t-dependent fields are given by 
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~b(x, fl) = ~bfx) - otF-t{(9(k, fl)} * ~(x) ,  

~(x, fl) =~(x )  - aF-l{O(k, fl)}*c~(x). 

The functional form of O(k, fl) is 

1 
sinh2(O) = e#lk°l-1" 

Similarly to the case of fermions this form for O(k, fl) guarantees that the product of 
infinitesimal thermal transformations is a thermal Bogoliubov transformation. 

The auxiliary fields are defined, for this case, 

,~ (x ,~ )  = O(x, /~)  . :~(x) 

and 

~,(x,/~) = O(x, ~ ) .  ~ (x ) ,  

where O(x, fl) is a short-hand notation for the inverse Fourier transform of O(k, fl). 
Thus the expression for f t(fl) d4x becomes 

f l'(fl)d4x= f N~b(x)~(x, fl)+ m2dp(x)~o(x, fl) 

-- [] ~b (x )q~(x ,~ )  -- m 2 ~ ( x ) ~ o ( x ,  f l ) .  

From the equation of motion for ~b and q~ 

(['q -4- m 2) ~b(x) = 0, 

the above defined integral vanishes independently of ft. The use of Noether's theorem 
yields the conserved charge Q~D of Eq. (54). 
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