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Use of summation methods in the calculation of nuclear double beta decay processes
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The use of summation methods, to deal with the calculation of matrix elements involved in the micro-
scopic description of nuclear double beta decay processes, is discussed. The analysis focuses on the accu-
racy of a procedure which formally expresses the matrix elements of the standard current-current weak
interaction, starting from the second-order perturbation treatment of the standard weak Lagrangian, as
divergent power series of energy denominators. It is shown that, when properly treated, the summation
method leads to results which coincide with the numerical sum of contributions due to virtual intermedi-

ate states.

PACS number(s): 23.40.Hc

The nuclear structure component of the double beta
decay mode with the emission of two neutrinos (2vf33)
[1-3] has been carefully examined during the last years
[4,5]. Theoretical results for the 2v38 mode, obtained by
using different models and/or approximations, have been
reported [6—11] and the existence of a suppression mech-
anism has been established. This suppression mechanism
[8,9] has been explained in terms of the competition be-
tween different channels of the residual two-body interac-
tion, regardless of the method used to treat the interac-
tions [6—-11]. A review of the existing literature and of
the status of the theory including comparison with data
[12—14] can be found in Refs. [4,5] and can be summa-
rized in the following.

(i) The nuclear matrix elements which are needed to
describe the experimental half-lives of several double beta
decay candidates, are strongly suppressed as compared
with single-particle values. The suppression mechanism
can be explained in terms of the competition between
repulsive and attractive channels of the residual two-body
proton-neutron interaction [8,9].

(i) The quasiparticle random-phase approximation
(QRPA) method [9,10] does indeed yield to results which
reproduce the data [12-14]. A highly selective test of
the QRPA wave functions and 2v33 matrix elements is
the ratio between half-lives for the decay of '**Te and
130Te, where the QRPA model [10] is able to predict the
recent experimental number very well [14].

(iii) Shell-model calculations, for the few cases which
can be computed in this fashion, do show that QRPA re-
sults are qualitatively correct and that they are also com-
parable in magnitude with the shell-model ones [11].

Finding new methods, other than the QRPA, to com-
pute nuclear double beta decay observables is a matter of
utmost interest. Recently a new technique has been re-
ported [15-17] which, if it can be proved to be correct,
greatly changes the situation since it yields matrix ele-
ments which are apparently not sensitive to the micro-
scopic description of the virtual states which are an
essential ingredient of the QRPA calculations.

Unfortunately, as we are going to show next, this can-
not be the case if the mathematical assumptions upon
which the new technique, the operator expansion method
(OEM) of Ref. [15], is based are reexamined. Since the
OEM has been explained in detail in Ref. [15], we shall
assume that the reader is already familiar with the for-
malism of Refs. [15-17]. We will show that, contrary to
what it is claimed by the OEM, the dependence of the nu-
clear matrix elements on the intermediate states remains
even if the matrix elements are written as a series.

To start with let us introduce the nuclear matrix ele-
ment which is relevant for the description of 2vf3f3 transi-
tions; it can be written as

PP () A DA ] (A T
ot % Eo+Ey—E, :

(1)

where E, is half of the total energy released
Ey=1Qgg+m,c% [0] ), |0f), and |15 ) are the initial,
final, and virtual intermediate states, respectively; and E
and E; are intermediate and initial energies, respectively.
In the derivation of Eq. (1) it is assumed that the decay
involves only left-handed currents and that energy
denominators, which explicitly contain leptonic energies,
are already approximated by the denominator of Eq. (1)
[2,5]. The information about leptonic wave function is
given by the factor F,,, the phase-space factor, to
be included in the definition of the half-life:
(13%,) " 1'=F,,|M%;|%. Therefore, one has to perform a
sum over all intermediate states in order to compute Eq.
(1).
The OEM expansion aims at elimination of the sum
over intermediate states by using an analytic continuation
of the sum and be replacing it by an expansion in terms of
commutators of the nuclear Hamiltonian with the transi-
tion operator 61u=r+61”. In Ref. [15] the summation is
performed by (a) Taylor expanding the energy denomina-
tor of (1), and (b) commuting the transition operator with
a bare two-body interaction.

Concerning approximation (a) the divergent nature of
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the series expansion of the OEM is not enough to guaran-
tee that the techniques of Hardy [18,19] can be safely ap-
plied. Rather, if the behavior of a series is dominated by
few terms, then the analytic continuation of it past the
circle of convergence does not always yield to meaningful
results and more often it yields to meaningless results
[19,20]. The drawback of (b) is discussed in Ref. [21]. In
the following we shall show (i) that a summation method
can be used which does not require the Taylor expansion
of the OEM and (ii) that this method leads to the same
result as the brute-force sum over intermediate states,
when applied to (1), contrary to the results of Ref. [15].

In order to show that the advantages pointed out in
Refs. [15-17], concerning the independence on the inter-
mediate states, are only apparent let us compute (1) in a
slightly different fashion.

Since the energy denominator of Eq. (1) and the quanti-
ty xy=(Ey—E;)/E, are always positive, one can write
Eq. (1) as
—t(1+xy)

2v :L A A )
Mgr E, %<FPO|N)<NIOII)IO dte

(2)

By changing the variable of integration ¢ by g)=t/E0,
which is allowed gince E,>0, by replacing e~ |N) by
e @A|N) and e“"1|I) by e®d|I), which is allowed since
the intermediate states |N ) and the initial state |I) are
eigenstates of the nuclear Hamiltonian H, one has after
summing over all intermediate states:

Mg = [ " do(F|0e ~olpeefl|rye ~ “Fo 3)

By using the Baker-Hausdorff lemma the operator
e o 0,,e“" can be expanded in terms of multiple com-
mutators

gy B (D!
) Oe 0+1§l l!
X[A,[A,[....,[H,01] - 1] times)
4)

The integral (3) can now be performed and the result for
MY can be written:

M R 5
G E, (5)
where
© ; C(I)
M= (—1) "El—+1 (6)
=1 0
and
c"=(F|O[A,...[A,0]])...1"ime)|T) . @)

The above equations have been obtained without per-
forming the Taylor expansion of (1). Therefore, they can-
not be compared with a modified version of the OEM
presented in Ref. [17] [Eq. (12)].

Since the Hamiltonian A entering in Eq. (4) is the
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effective nuclear Hamiltonian, namely, a single-particle
term plus a residual two-body interaction term, all terms
of the series will contribute. That Eq. (5) should give the
same result as the brute-force sum of Eq. (1) can be easily
shown by computing it for the following cases. .

(1) Single-particle Hamiltonian: We can write for H
and O in second quantization

A= zeka}:ak +const (8)
k
and
51P=20(p,n)AT(p,n,lu) , 9)
pn
where
a(p,n)=—“—”—<p a_n)
V'3
and

A'(p,n, l,u'):[a;an]l,u. )

j, tm,

ajn’mn:(_l) ajn’_mn

For this case the /-times commutator gives
[[ﬁ, . .[}/\1,61#]]_ .. ] times)

=S alp,nlle,—€,) A (p,n,1n), (10
pn

and the corresponding series can be written as

MEr= 3 oalp,n)o(p’n’)
p,n,p',n'
i Tt 5t
X (F|A (p,n)A (p ,n )|I)F(pl,n,) .
E,
(11
The factor
* (€, —€,)
Flp',n)=1+ 3 (—1)—-—"— (12)
=1 E,
represents the divergent series expansion of

E,/[E,+(€,—¢€,)] thus the matrix element My is, for
this case, given by

ME%=3 3 olp,n)a(p’,n’)
pnp'n’
 SFl4"(p,n) A% p",n")|I)
Eyte,—e, ’

(13)

which is the correct result, namely, it is the result given
by the brute-force summation of terms in Eq. (1) when
the intermediate states N are replaced by uncorrelated
proton-neutron pairs.

(2) Tamm-Dancoff treatment of A: In this case the in-
termediate states |N) are described by correlated
proton-neutron pairs

rl=3X(p,ns)4 p,n1p), (14)
pn
and H has the form
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A=const+ 3 #io, T (s)0(s) ,

where o, is the energy of the sth correlated intermediate
virtual state. In the same bas1s the transition operator
01“ has the form O =3 A, r'f(s), with

A= X(p,n,s)a(p,n),
pn
and the multiple commutator of Eq. (7) can be written as

[[A,...[8,0]].. EA (%0, T(s) . (15)

](l times)

Thus the matrix element of Eq. (7) is readily obtained and
then Eq. (5) gives

F|TT(s)rT(s’ I
v — A (
MGT ZAS EO

F(tiwg) , (16)

where F(#w,) is the divergent series expansion of
E,/(E,+%w,) which is again what one would obtain by
explicitly performing the sum of Eq. (1) in the Tamm-
Damcoff approximation for the intermediate states.

(3) The QRPA treatment [9,10]: In this case, the Ham-
iltonian A and the transition operator Olu can be ex-
panded in the QRPA phonon basis

r])=3 [X(p,n,5) 4 (p,n, 1)
pn

—Y(p,n,s)A(p,n, )], 17)

where

(FI[A, T )+ AT ()][AT (s
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A(pn, p)=(—D'""H A(p,n,1,—p) .
In this representation

H=const+ > ﬁwsl"T(s)I“(s)

and

61,u= 2 [0(

p,n

pn) At (p,n 1)+ o' (p,n) A(p,n, 1u)] ,

where the proton-neutron pair configurations are ex-
pressed in quasiparticle basis and where the reduced ma-
trix elements o(p,n) and o'(p,n) include the BCS occupa-
tion factors u,v, and v,u,, respectively. The multiple
commutator of Eq. (7) now yields

[[A,...[A,0]]. .. tmes
_E (Fw, )[A FT )+ AL (s )], (18)
where
Liu(s)=(= DT, (s)

=3 [X(p,n,s)o(p,n)+Y(p,n,s)o’(p,n)],
p,n

and

A

"

s=>[X(p,n,s)a’(p,n)+Y(p,n,s)o(p,n)] .
pn

The matrix element M s is finally given by

NHALT(s)]IT)

MéVT= >

5,8’

E,+fiowg

which agrees with the result given by a direct computa-
tion of Eq. (1).

In the above-discussed examples, both Eqgs. (1) and (5)
give the same result for the matrix element Mgy. There-
fore, when the summation, both in the brute-force ap-
proach and in the fashion of Eq. (5), is properly done, the
result for M is always dependent on the structure of
the intermediate states, as well as on their energies. It
means that in going back and forth from one expression
to the other, namely, from Eq. (1) to Eq. (5), the relevant
information is always represented by the structure of the
virtual intermediate states and that no terms are missing.
Then, why do the OEM results [15-17] claim to be so
different from those presented above, particularly from
the QRPA results? The answer can be as follows: The
expansion of the series 1/(1+x), as is performed in the
OEM in order to bring the energies on the numerator of
(1), does not coincide with the expansion of the series
e~ *, which is obtained from the use of the integral repre-
sentation (2) and from the use of the Baker-Hausdorff
lemma (4)—except for the first two terms even inside the

resion of convergence |x|=1.

Concerning Egs. (1) and (5), we have shown that both
equations contain the same information and that the in-
dependence of Eq. (5) on the structure of the intermediate
states is only apparent. The same must be true with any
other summation method. Otherwise, one can end up
with results which are not necessarily of physical mean-
ing and which are produced by a mismatching between
series expansions. In view of the examples which we have
shown in this paper, we think that this is the case with
the OEM results of Refs. [15-17]. Similar conclusions
have been reported in Ref. [21].
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