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Neutron and proton bound states and Gamow resonances (Berggren representation) are used as
single-particle states to calculate random-phase approximation (RPA) particle-hole multipole excitations
in 2%Pb and vertex functions for the coupling between particles and multipole vibrations. Escape
widths, corresponding to low-lying one-proton states in the neighborhood of the Z =82 shell, are calcu-
lated in the framework of the standard particle-vibration coupling model. It is shown that the inclusion
of Gamow resonances in the single-particle basis and in the RPA wave functions does not affect the
dominant one-particle character of low-lying states of the renormalized spectrum corresponding to the
odd-even system, as predicted by the particle-vibration coupling model. This result shows that the Berg-
gren representation is suitable to deal with the particle-vibration coupling mechanism and that it can be
applied to the study of high-lying single-particle states as well.

PACS number(s): 21.60.Jz, 27.80.+w

I. INTRODUCTION

The study of formal properties of resonant states and
its use in eigenfunction expansions of scattering and reac-
tion amplitudes, started by Berggren years ago [1], has
been continued in a series of works by other authors
[2-7] and is still a matter of interest in the literature
[8-12].

One issue of these studies has been the introduction of
Gamow states (GS’s), i.e., the solutions of the time in-
dependent Schrodinger equation with purely outgoing
waves at large distances, as basis elements in the expan-
sion of Green functions. This made it possible to apply
Gamow resonances in the study of the continuum in nu-
clear structure calculations [2—-12].

Since Gamow resonances diverge at infinity one has to
use a special definition of internal product to deal with
these resonances. In this paper, we will not go into the
mathematical details of this and similar features related
to Gamow resonances. For this, the reader is referred to
the references mentioned above. Instead, we will concen-
trate on the use of GS’s as basis elements to describe exci-
tations taking place in the continuum part of nuclear
spectra within the framework of the particle-vibration
coupling model [13].

The pole expansion of single-particle Green functions
in terms of GS’s and bound states approximates rather
well the corresponding exact Green function if enough
resonances are included in the expansion [8,9]. This
feature may allow one to use the set of GS’s and bound
states as a representation, which we call the Berggren
representation, to describe nuclear processes [9]. Even
the Mittag-Leffler pole expansion of the Green function is
adequate, but within this expansion one cannot define
random-phase approximation (RPA) wave functions [9].
Moreover, the appearance of antibound states and
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capturing resonances in the Mittag-Leffler expansion is
alien to the ideas that one usually attaches to a basis set
of states. This is not the case with the Berggren expan-
sion, where the bound single-particle states in the basis
are the same as in the shell model, while the unbound
states are outgoing resonances, which is a natural exten-
sion of the shell model.

The use of the Berggren representation to describe
particle-hole excitations results in a set of equations very
similar to the standard RPA equations. This method was
thus called [8,10] resonant RPA (RRPA). The quantities
calculated within the RRPA agree well with both the
corresponding experimental data and with exact calcula-
tions [8,9]. It was also found [10] that giant resonances
are mainly built upon single-particle states that are bound
or quasibound. This explains why bound (harmonic os-
cillator) representations also reproduce well the position
and electromagnetic transitions of the giant resonances.
These quantities are determined by the main (bound)
components. The limitations of bound representations
become apparent when quantities directly related to the
continuum (as partial decay widths) are analyzed. In
these cases one has to include the continuum explicitly,
and the corresponding calculations become difficult and
cumbersome [11,14]. However, some of the formal
difficulties concerning the treatment of the continuum
have been solved recently [20]. A new method is avail-
able [20] that allows for the calculation of nonstatistical
decay channels. The method of Ref. [20] is based on the
coupling between discrete and doorway configurations
belonging to the continuum.

The present formalism is based on similar ideas. In our
approach we have started from the RRPA and Berggren
representations as an alternative way to a complete diag-
onalization. We have adopted this representation since
within the RRPA the calculation of partial decay widths
can be conveniently performed [12]. In view of these re-
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sults it seems natural to extend the use of Berggren ex-
pansions to more complicated excitations. The simplest
case beyond particle-hole excitations is two-particle one-
hole excitations. These excitations have been thoroughly
studied in the past in relation to bound states. In particu-
lar, nuclear field theory was shown to be well suited to
study these kinds of excitations [13]. We will extend this
method to study decay widths of single-particle proton
resonances in the lead region.

The formalism is presented in Sec. II, applications are
in Sec. III, and the conclusions are in Sec. IV.

II. FORMALISM

In this section, we will present the extension of the nu-
clear field theory formalism to include excitations lying in
the continuum part of nuclear spectra. Since nuclear
field theory [13] is based on Green function expansions,
the inclusion of the Berggren representation in the for-
malism is rather straightforward. The set of single-
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particle states are obtained by solving the Schrodinger
equation with the boundary condition of outgoing waves
at infinity. For details about normalization and the inter-
nal product of Gamow states, see Ref. [10]. Using a se-
parable multipole-multipole interaction of the form

Vilry,r)=—k,0,(r)Q,(r,) , (1)
where

Qi (D= F(1Y,,(T), )
the RRPA response function can be written as [9,14]

R(E)=T+5K—i%za , (3)

where R%(E) is the uncorrelated particle-hole response
function and the strength «, is determined by fitting the
energy of a given state, as usual. The uncorrelated
response function R ° is given by [9]

RME)=S lM(ph,k)[zfdrdr’¢h(r)f}':(r)[gp(r,r’,E+eh)+gp(r,r’,—E+eh)]¢h(r')fx(r') , 4)

ph

where p and 4 label particle and hole states, gy(r,r') is
the single-particle Green function, and the quantity
M(ph,A) is the geometrical part of the reduced matrix
element of the O, operator.

The energies w solutions of the RRPA equations are
obtained by calculating the poles of the response function
R(E),i.e.,

R%w,)=—1/k; . (5)

With the corresponding residues, one then computes the
RRPA vertex functions. The widths of the single-particle
states proceeds through the coupling with the particle-
hole giant resonances. We calculate this coupling as in
Ref. [13]. The correction 8E(k,) to the energy of the
single-particle state k; due to coupling to intermediate
particle-phonon configurations can be written as

SE(k )= (k| VI(k, M)k, Y (kMK [ VK, )

Ky h

Xt ®)

(€x, —€x,— M)

where k, labels the intermediate single-particle states and
A labels the corresponding phonons with energy Q;.

In terms of the RRPA vertex functions A (k,,k,,A),
one obtains

aA+1 Ak, ky2)
8E(k,)= , @)
! k% 2k +1 g —e,— O

where

Ay(ky,kyM)=3 (27 +1)X(ph,A)
J,p,h

k, k, A
p h J
(8)

Xk, W) V|(p,k)JT) [

and X(ph,A) are the forward-going amplitudes of the
RRPA. In addition to the correction 8E(k, ), we have to
compute the contribution due to exchange. This has to
be subtracted [13] from 8E because exchange terms have
been included in the definition of the two-body matrix
elements appearing in the RRPA response function. The
contribution due to exchange is

_ a+1 ((hk DAV I(kEA)?
SEexCh(kl)_ k’kz,yh 2k1+1 .

9
€k1 T € T €T €y

In the present work we have neglected couplings with
holes and pair-addition phonons since, for protons above
Z =82, such mixings would be possible only with states
that belong to orbits that are two shells below the core
and that therefore have very large energy denominators.

It is worth stressing that all quantities related to the
RRPA solutions are complex. Therefore, the correction
S8E (k) to a given external single-particle line will in gen-
eral be complex even if the external single-particle line
would correspond to a bound state. That a bound state
can acquire a width can be explained by the fact that the
continuum Green function has been replaced, in the
present formalism, by the corresponding Berggren pole
expansion. Then, the coupling of the bound particle with
the phonons will play the role of a doorway to the contin-
uum via the phonon widths. This may be the mechanism
that induces the width of deep-lying single-particle states.
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III. RESULTS AND DISCUSSION

In this section we present applications of the formalism
developed above to study single-particle resonances in the
lead region. The single-particle states, which are shown
in Table I, have been obtained by using the computer
code GAMOW [3]. The parameters of the central Woods-
Saxon potential that we have adopted for protons (neu-
trons) are a=0.75 (0.70) fm, ry=1.19 (1.27) fm, and
V,=66.0 (44.4) MeV. The bound states in Table I are
approximately the same as in other calculations [15] but
the states lying in the continuum show the typical behav-
ior expected for resonances. That is, the imaginary part
of the energies are negative as they correspond to the
widths of the resonances (Gamow states). The widths of
proton Gamow states are generally smaller than those
corresponding to neutrons, just reflecting the influence of
the Coulomb barrier. In the same manner, states with
high angular momenta are narrow due to the trapping of
the particle by the centrifugal barrier. For even orbital
angular momenta the states lie higher as the angular mo-
menta increase. At the same time the widths also in-
crease, as can be seen from the values listed in Table I.

The single-particle states shown in Table I can be con-
sidered as a representation to treat processes occurring in

the continuum part of nuclear spectra (Berggren repre-
sentation [8,9]). One can see from Table I that the Berg-
gren representation is a natural extension of the shell-
model basis. This can be contrasted with other expan-
sions of the continuum, such as the Mittag-Leffler expan-
sion [9], where bizarre states may appear (e.g., antibound
states).

Within the Berggren basis of Table I, we have calculat-
ed RRPA response functions corresponding to multipole
excitations with A”=2", 37, and 4™ in *®®Pb. The cou-
pling constants k, of the separable multipole-multipole
residual interaction, described in the preceding section,
have been adjusted to reproduce the observed excitation
energies of the first excited states for each of the multipo-
larities included in the calculation. The experimental
values of these energies in 2°Pb have been taken from
Ref. [16]. In computing the matrix elements of the
RRPA response function, we have followed the method
of Refs. [8], [10], and [17] to deal with the divergent char-
acter of some of the GS’s included in the single-particle
basis. For the radial dependence of the operator (2), we
have adopted the parametrization given in Refs. [8], [10],
and [17], with constant values for f, (r), for 6 <r <8 fm.

The imaginary part of the RRPA energies are half the
widths of narrow particle-hole resonances [12]. In partic-

TABLE 1. Set of single-particle states used in the calculations. Bound states and GS’s are included in the basis, both for protons
and neutrons. The parameters of the Woods-Saxon potential that we used are given in the text.

N State €, (MeV) €, (MeV) N State €, (MeV) €, (MeV)

0 Osy,, —37.656 —40.231 7 2f7, 12.748 —i0.652 2.078—1i0.875
1 Ops,» —33.547 —36.328 7 3P 13.220—i2.502

1 Opy,, —32.926 —35.928 8 0k 7,2 14.066—i0.001 5.029—i0.001
2 0ds —28.485 —31.749 7 2fs, 14.650—1i1.566 2.698—1i2.322
2 0ds ), —27.075 —30.769 7 0j13,2 15.086—i0.005 5.411—i0.009
2 1s,,, —25.296 —29.622 7 1hy 15.964—i0.393 5.403—i0.726
3 0f7,, —22.671 —26.609 8 3ds,, 16.615—1i8.467 7.392—i13.206
3 0f's,» —20.172 —24.782 8 4s, 16.871—i11.907 7.206—i15.710
3 1p3. —18.320 —23.471 8 289> 17.844—i3.547 5.540—i6.376
3 1pis —17.329 —22.695 8 3d;,, 17.848—i10.932

4 0g9,» —16.232 —20.991 8 liy3n 18.143—0.575 7.662—i1.038
4 0g7,2 —12.365 —18.058 8 281,2 20.068 —i6.638 8.343—1i11.536
4 1ds,, —11.038 —17.055 9 3fsn 20.509—i17.795 9.837—i19.000
5 Ohyy —9.265 —14.960 9 3fi. 20.845—i16.660

4 1d; —9.098 —15.513 9 0l19,, 22.343—i0.043 12.021—:0.093
4 281, —8.712 —15.299 8 iy 23.243—{2.520 11.330—i3.745
5 Ohs —3.784 —10.691 9 2h1 23.403—19.227

5 1f7, —2.584 —10.487 9 1j15,2 24.683—i2.309 13.224—i3.518
6 0iy3,, —1.684 —8.572 8 0ks,» 24.819—i0.222 13.598 —i0.424
5 2ps3 ., —0.690 —8.355 8 3d,,, 14.131—i18.919
5 1fs,, —0.518 —8.078 10 Omyy 30.697—i0.314 19.116—i0.518
5 2pip 0.491 —7.413 9 1j13,2 30.849—1i6.870 18.467—1i9.957
6 1892 4.028 —3.926 10 1k, 31.493—1i5.298 19.463—i7.334
6 0i11 /2 5.434 —2.797 9 3fq, 20.605—i20.005
7 0j1s,2 5.960 —1.883 9 0ly7,2 22.138—i1.723
6 2ds,, 6.748—i0.002 —2.072 10 213, 32.485—i18.098 25.079—i20.060
6 351, 7.843—i0.037 —1.438 9 0117, 36.644—i1.229

6 1g1,2 8.087—i0.001 —0.768 10 3g9,2 35.886—1i22.146 27.582—i23.760
6 2d5,, 8.530—i0.028 —0.781 10 2iyy . 37.872—i21.765 28.334—i24.554
7 1hyy 2 11.390—:0.022 2.251—1i0.026 11 1119, 38.960—i9.475 26.754—i12.176
7 3pin 12.647—1i1.888 11 On,s3 .0 39.229—i1.007 26.492—i1.360
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ular, this is the case for the giant resonances. This is a re-
markable property of the RRPA since the residual in-
teraction induces the mixing of many single-particle
configurations in the collective states, and each of these
configurations contributes with its own width. In Fig. 1
we present the distribution of the widths as a function of
the position of the RRPA states for quadrupole, octu-
pole, and hexadecapole excitations. The large widths
seen in this figure have to be interpreted as the continu-
um background contribution to the particle-hole reso-
nances. This background is actually due to the unper-
turbed single-particle widths of Table I.

Some of the states shown in Fig. 1 display a large
width. They are mostly dominated by a single-
particle—hole configuration. Only the states with a nar-
row width are really collective, in the sense of the percen-
tage of the isoscalar energy weighted sum rule that they
have. These are the states that contribute to the energy
shift of one-particle states. The percentages of the energy
weighted sum rule of each multipole field, for dominant
RRPA eigenvalues, are shown in Table I1. In general,
narrow states between 10 and 15 MeV exhaust most of
the energy weighted sum rule [8,10].

We have computed the corrections to the energy of the
active states above the shell closure for protons by using
Eqgs. (6) and (9). We included as intermediate states all
single-particle states of Table I and all phonons of Fig. 1
with imaginary parts of the energy (in absolute value) up
to 15 MeV. Wider phonon resonances would be part of
the proper continuum, and its contribution to the energy
shift should be negligible. We have checked this by in-
cluding states up to 40 MeV wide in the calculation and
found that the results that we discuss below are not
significantly affected by the wider states.

First, we computed the energy shift corresponding to
bound states, which should be real quantities. Yet, one
may expect that the renormalization of a bound unper-
turbed state by the coupling to a particle-hole excitation
can result in a large value of the imaginary part of the re-
normalized energy. This can be produced by either inter-
mediate Gamow resonances or by phonons lying in the
continuum (like the giant resonances). However, a calcu-
lation performed within a bound representation gives re-
sults that agree well with experiment [13,18]. In order to
understand in detail the effect of the Gamow resonances
in this case we have also used a bound representation.
The results obtained with both the Berggren and the
bound representation are presented in Table III. As can
be seen in this table, our calculation predicts an energy
shift similar to that obtained within the bound represen-
tation. All multipole fields contribute coherently to the
shift, reflecting the isoscalar character of low-lying vibra-
tional states. The corresponding contributions to the
width are of the order of tenths of keV, and for some of
the states there is a cancellation i.e., for hy,, and f5 .

The values of the corresponding real parts are all nega-
tive, showing that the spectrum of bound states is
compressed by the particle-vibration coupling, as expect-
ed [18].

We have also calculated the energy shift of states lying
in the continuum part of the spectrum. In this case, the
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FIG. 1. (a) Real and imaginary parts of the RRPA one-

phonon spectrum, for A™=2"% states, in 2°°Pb. (b) Real and
imaginary parts of the RRPA one-phonon spectrum, for A"=3"
states, in 2°Pb. (c) Real and imaginary parts of the RRPA one-
phonon spectrum, for A"=4" states, in 2°’Pb.
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imaginary parts give the corrections to the widths of the
states. In Table IV we present the results of our calcula-
tion for the rather wide states 3p; ,, 2f;,,, and 2f5,,. In
these cases one should not expect the bound representa-
tion to provide a good description. The cases of Table IV
are examples of nuclear processes where the continuum
must be included explicitly. This explains the difference
between the calculated values performed within the Berg-
gren and the bound representations seen in Table IV.
Note that, while in the Berggren representation the inter-
mediate states contribute almost coherently to the energy
shift (exactly as in the cases of Table III), the bound rep-
resentation gives results that differ very much from what
it gave in the previous case. The correction to the
single-particle widths shown in Table IV are in all cases
positive. That is, the particle-vibration coupling tends to

narrow the single-particle resonances. Although the
present results are qualitatively correct, they are depen-
dent on the approximations that we have used to calcu-
late vertex functions for the particle-vibration coupling
(separable multipole-multipole interactions) and they are
certainly dependent on the use of Berggren’s representa-
tion for the treatment of the continuum. In order to gain
some quantitative information on the approach, we have
computed spectroscopic factors for the low-lying proton
states considered in the calculations. The results are
shown in Table V. The spectroscopic factors correspond-
ing to calculations using only bound states do not differ
much from those obtained with the present representa-
tion. This is true for low-lying proton states, since they
have small widths, as we have shown before. For states
with larger widths the present method leads to very small

TABLE II. Dominant unperturbed particle-hole configurations, phonon excitation energies, and per-
centages of the isoscalar energy weighted sum rules (EWSR’s), for the multipole fields included in the
calculations. Neutron (proton) particle-hole configurations have been denoted 7 (p); unperturbed (E ;)

and RRPA energies ({2, ) are given in units of MeV.

AT=0" E, Q, % EWSR
n(2fs,1fs,) 10.758—i2.322 10.705—i2.348 1.51
n(3s1,2251,2) 13.861 12.900 54.70
n(2ds,,1ds ) 14.732 13.905 1.86
n(2ds,,1ds,,) 14.983 14.798 —i0.001 1.00
n(1hg,,0h,,,) 16.094—i0.726 15.167—i0.012 3.65

AT=2" E Q, % EWSR
n(1go,20i13,,) 4.646 4.085 7.23
p(1f5,,0h},,,) 6.681 6.365—i0.003 4.50
n(2f s lfs) 10.760—i2.320 10.500—i0.100 48.80

AT=4" E Q, % EWSR
n(1go,,0i13,5) 4.646 4.320 4.15
n(0iy1,20i13,2) 5.770 5.690 1.20
n(2ds,,0i13,) 6.500 6.290—0.001 4.12
n(1g,,,0i13,,) 7.800 7.600—i0.003 7.41
p(2p;3,,0h1,,5) 8.570 7.900—i0.001 2.94
n(1hy1 22P3,) 10.610—i0.026 10.511—0.020 2.00
n(1ge,2s,,,) 11.370 11.180—i0.011 5.73
n(1gy,,1ds,,) 11.590 11.540—i0.002 1.31
n(2f101f7,) 12.580—i0.375 11.810—i0.016 8.17
n(0k,7,,0g9,2) 26.020—0i.001 25.770—i0.020 1.47
(280,251 2) 26.556—i3.547 26.585—i0.069 4.96
n(2fs,,0fs,,) 27.462—i2.320 27.457—i0.390 2.00
n(1ky7 20013 ,2) 28.035—i7.334 27.954—i7.342 1.29
P(0j15,,0f7,2) 28.631—i0.001 28.566—i0.018 1.00

AT=3" E Q, % EWSR
n(1ge,1f5,) 4.152 2.610 22.16
n(0iy ;2 1f5,) 5.281 4.615 1.46
n(2f 52251 ,) 17.979—i2.322 17.888—i0.075 27.31
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TABLE III. Real and imaginary parts of the energy shift due to the coupling between particle and
phonon states. Contributions to the real and imaginary parts of the shift corresponding to the vibra-
tional fields A™ for the states indicated in the first column are given. Given in the last column are the
corresponding contributions without the inclusion of Gamow states in the single-particle basis. These
are real quantities. The energy shifts are given in units of MeV.

State AT Re(8E —8E 1) Im(8E —8E 1) 8E —O8E 1
1f+,2 2+ —0.100 —0.017 —0.118
3~ —0.123 —0.009 —0.227
4% —0.278 —0.007 —0.299
Total —0.501 —0.033 —0.644
Ohyg 2% —0.057 —0.001 —0.059
3- —0.023 —0.001 —0.048
4+ —0.136 0.002 —0.152
Total —0.216 0.000 —0.259
0i13 2+ —0.111 —0.012 —0.141
3- —0.110 —0.012 —0.141
4+ —0.310 0.007 —0.353
Total —0.531 —0.017 —0.635
1f5,2 2+ —0.223 —0.012 —0.231
3" —0.091 0.002 —0.159
4% —0.459 0.012 —0.541
Total —0.773 0.002 —0.931
2p3,, 2+ —0.160 —0.013 —0.199
3- —0.067 —0.004 —0.117
4+ —0.510 —0.031 —0.604
Total —0.737 —0.048 —0.920

spectroscopic factors, as we have seen from our results.
This is the case for the states shown in Table IV.

IV. CONCLUSIONS

In this paper, we have presented a formalism to treat
bound and resonant states in a particle-vibration coupling

TABLE IV. Real and imaginary parts of the energy shift for the high-lying proton states 3p;,,,
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scheme. Both the particle and the phonon states can
themselves be resonances, i.e., states with complex ener-

gies.

We have found that, although the imaginary part of
the single-particle and particle-hole phonon energies may
be large, the particle-vibration coupling does not yield
unrealistic escape widths for low-lying single-particle

2f7,,and 2f5,,. The results are shown as in Table III.

State A" Re(8E —8E .o Im(SE —8E oepy) 8E —8E oy,
33 2+ —0.000 0.017 —0.005
3~ 0.007 0.005 —0.025
4+ 0.031 0.040 —0.032
Total 0.038 0.062 —0.062
2f1 2+ —0.014 0.005 —0.571
3~ —0.010 0.021 0.065
4+ —0.035 0.030 —0.100
Total —0.059 0.056 —0.606
2fsn 2+ —0.016 0.012 0.012
3~ 0.008 0.044 —0.043
4+ —0.005 0.135 —0.062
Total —0.013 0.191 —0.093
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TABLE V. Spectroscopic factors for proton states. Spectro-
scopic factors, for low-lying proton states, obtained in the calcu-
lations using (a) only bound states [S*(BS)] [21] and (b) the basis
with bound and resonant states [SZ(GS)].

State S}(B) S}GS)
ho ) 0.86 0.95
fin 0.76 0.88
i 0.74 0.90
fsn 0.47 0.52
Pin 0.44 0.70

states. We have found that, for the valence protons in
the Z =82 shell, the calculated widths are of the order of
few keV. The results obtained for the 1f,,, and 0i;,,
states, which are of the order of 60 and 30 keV, respec-
tively, are somehow large values since these states are in
fact bound states. This can be due to the approximations
since we have replaced Green functions in the continuum
by the corresponding Berggren representation. Never-
theless, and in view of the relatively large imaginary part
of the single-particle and phonon energies that are includ-

ed in the basis, the calculated escape widths are not too
large. This is because there are strong cancellations
among the contributions from components of the
different multipole fields to the calculated imaginary part
of the energy shift. However, the corresponding partial
contributions to the real parts of the energy shifts add up
coherently. The resulting values are in agreement with
the known systematics extracted from the complete per-
turbative treatment, which also includes pair collective
excitations [13,19,20,21]. We think that these results
constitute a good starting point concerning calculations
of one-particle escape widths in the continuum by using
the particle-vibration coupling model. In this respect,
the formalism that we reported above can be compared
with other treatments, particularly with the one present-
ed in Ref. [20]. Results of these calculations will be re-
ported elsewhere [19].
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