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Abstract .  Sin& 0-decay strength distributions, for p+ transitions in 26Mg, are 
calculated using effect.ive two-body interactions in the framework of the shell model 
and quasiparticle random phase approximation (QRPA). It i s  found that the q R P A ,  

if treated in a consistent way, yields centroids for the strength distributions and 
predictions for the total strength, which are in good agreement with the shell model 
results. The detailed structure of the strength distribution, however, is different since 
the shell model generates more states than the QRPA.  This conclusion turns out to 
be independent of the effective nucleon-nucleon interaction used. 

1. I n t r o d u c t i o n  

-. l n e  theoreiicai anaiysis of single @-decay transitions is of interest because, among 
other reasons, i t  could lead to a better understanding of more rare events like, for 
example, double P-decay processes, in which @- and of decays occur as virtual steps. 
Theoretical studies of double p-decay modes strongly rely upon several nuclear struc- 
ture approximations [l-81, most of which are based on mean field and collective exci- 
tation models. It would be desirable to compare these approximations with full shell 
model treatments, in order io  tesi their vaiidiiy. Sucii a comparison is stiii unfeasibie 
for heavy nuclei. Moreover, the few data  available on double @-decay modes [9-121, 
do not allow for a systematic study of relevant nuclear structure effects, except for 
the well established suppression [l-81. However, single @- and P+ transitions have 
been better studied, both theoretically [13, 141 and experimentally [15]. Therefore, 
one can draw some conclusions about the validity of models frequently used in double 
@decay studies [I-81, like the quasiparticle random phase approximation (QRPA), by 
comparing their predictions with those of the shell model (SM)on single @- and @f 
transitions. Sach a comparison can only be meaningful if the two types of calculation 
are performed in the same model space and use the same two-body interaction. 
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Since SM calculations of nuclear wavefunctions and decay rates for charge-exchange 
transitions cannot he performed for heavy nuclei, the results of approximation schemes, 
like QRPA, must be compared with those of an exact SM calculation for cases in which 
both calculations can be performed. We have chosen the case of @+ transitions in 
26Mg for such a comparison. Another reason for the selection of the s-d shell is that  
for this model space several types of effective nucleon-nucleon (NN) interactions a.re 
available. Thus there are two-body matrix elements which have either been deter- 
mined empirically, trying to reproduce a large amount of experimental data in an SM 
calculation [16], or been derived directly from a realistic NN interaction [17]. 

While @- transitions are well reproduced, for the case of heavy nuclei and in the 
context of the QRPA approach [18], pt transitions are less well described. This is due 
to Pauli suppression, which means that the results to some extent are more sensitive to 
the nuclear structure model involved than the /3- transitions. Therefore a comparison 
between QRPA and SM predictions on @+ transitions could he of some use in dealing 
with further analysis of single and double @-decay processes. 

In order to test the accuracy of a certain approximation in a nuclear structure 
calculation, i t  is important to study the approximation for a realistic NN interaction 
and to demonstrate that  the conclusions are independent of the detailed structure of 
this interaction. Therefore, we have performed SM and QRPA calculations by using 
two different interactions. 

(i) The A-dependent interaction determined by Wildenthal[16] (hereafter denoted 
as WI). For this interaction SM calculations have been performed for all nuclei in 
the s-d shell adjusting all matrix elements of the effective Hamiltonian so that the 
energies of low-lying nuclear states are reproduced. In  order to obtain a good fit for 
all nuclei throughout the entire s-d shell, a smooth A-dependence of the two-body 
matrix elements has been considered. We are using the matrix elements for A = 26. 

(ii) The two-body interaction GA derived and tabulated in [17]. This effective inter- 
action GA has  heen derived from a modern version of the one-boson-exchange potential 
fitted to describe NN scattering phaseshifts. The effects of configurations outside the 
s-d SM space have heen taken into account using a non-perturbative approach. 

A systematic comparison between QRPA and SM results for single @-decay transi- 
tions in the s-d shell, has heen previously reported by Lauritzen [14]. However, there 
are differences in the manner in which our results and those of [14] were obtained. 
Thus, we performed our SM and QRPA calculations of /3+ strength functions starting 
from the same singleparticle basis, using the same interaction and taking the corre- 
sponding SM corrected single-particle energies and occupation factors as input for the 
QRPA calculations. Moreover, we have performed state-dependent BCS calculations 
to determine the BCS occupation factors and quasiparticle energies by using pairing 
channels of the same interaction which is used to generate the excited states connected 
by the charge-exchange transitions. 

Details of these calculations are described in sections 2 and 3. We have found that 
the QRPA results, for calculations corresponding to both WI and GA interactions, do 
indeed show that the strength and energy centroids for @+ transitions agree fairly well 
with the SM results. These results and acomparison between the features exhibited by 
the WI and GA forces are presented and discussed in section 3. Finally, our conclusions 
are summarized in section 4. 
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2. Formalism 

In this section we are going to describe the main steps which we have followed in the 
present work. First we shall briefly describe the SM approach which we have applied 
to treat the interactions WI and GA. Next we shall introduce the associated QRPA 
equations and the expression for the strength functions. 

The first step of our SM study corresponds t o  a conventional SM calculation for 
the ground state of 26Mg(J = 0,T = 1)  in a basis of SM configurations coupled to 
angular momentum J and isospin T.  Denoting this state by 'Zo one can calculate 
single-particle occupation probabilities for the protons in state i 

% C C ( i ? P )  = ~ ~ o l ~ ~ , p ~ ; , p l ~ o ~  

where c!,~ and ci, ,  refer to the particle creation and annihilation operator for a proton 
(index p) in state i, and 2 j i +  1 stands for the degeneracy of the state i. Corresponding 
equations hold for the neutrons (index n). If now we define the transition operator 
for the pt strength by 

one can calculate a state 

P I )  = O p t I ~ o ) .  (3) 

This state is a state of the daughter nucleus 26Na, which carries the whole Pc strength 
but which is not an eigenstate of the Hamiltonian. Now starting from the state Vl 
one can perform a Lanczos iteration scheme to evaluate eigenstates of the Hamiltonian 
which carry fit strength. This scheme turned out to be very efficient for the calculation 
of strength distributions [19, 201. 

We now turn to the discussion of the QRPA approach. Nuclear structure factors 
entering in the calculation of single @-decay rates [6] are given by matrix elements of 
the one-body transition density 

pPn(Jr,wk) = ( J " ~ ~ k l l [ ~ ~ ~ i i I ~ l l O ~ )  (4) 

and 

for p- and p+ transitions, respectively. After performing quasiparticle transforma- 
tions [21, 221 and representing the nuclear wavefunction of the states IJ" ,wk)  by 
linear combinations of unlike (proton-neutron) quasiparticle pair excitations, as they 
are given by the QRPA [18], these one-body transition densities can be written as 
follows 

p,. ( J " ,  w k )  = ~ D T T ( u , v , X , , ( J " ,  W E )  + up~nYpn(  Jr,  w x ) )  (6) 
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and 

p,,(J',w,) = m ( u . ~ , x , " ( J * , w ~ )  + v"upYpn(Jr,W,)) (7) 

for p -  and p+ decays, respectively. Here J" represents aligular momentum and 
parity ( J "  = 1+) while wk the energy of the excited states of the final nucleus which 
are involved in the transition from thc ground state of thc initial nucleus IO+). BCS 
occupation factors are denoted by U and U. X,,(J",w,) (Y,,(J",w,)) are forward 
(backward)-going amplitudes corresponding to  the QRPA structure of the final states, 

The QRPA treatment of a given Hamiltonian H ,  defined as the sum of a single 
particle, H,, and of a two-body, V, terms is performed in two steps, namely: (a) 
by solving the state-dependent BCS equations [23] for the pairing sector of H ;  and 
(b) by transforming the remaining part of H to  the resulting quasiparticle basis and 
diagonalizing it in a two quasiparticle basis. 

The matrix elements of the two-body interaction, V ,  are usually given in an an- 
gular momentum-isospin coupled representation. The transformation of these matrix 
elements to a particle-hole and particle-particle representation is given by the well- 
known expressions 

1 
(jl(p)j,(n) : JIVlj3(p)j4(n) : J )  = 2 (jliz : JTlVlj3j4 : JT) 

T=O,l 

for the proton-neutron particle-particle configurations and 

x ( j l (P)L(n)  : J'IVlh(P)j,(.) : J') (9) 

for the proton-neutron particle-hole matrix elements, respectively. The particle- 
particle isospin-dependent matrix elements ( j&:  JTlVl j i j i :  JT)  are antisymmetrized 

The starting values for the bare single-particle energies, E ) " ' ,  which are given with 
respect to the l60 core of the s-d SM calculation, are shifted by a state-dependent 
correction 'Ik(Vp); , where p is the one-body density associated with H ;  we have 
expressed corrected single-particle energies, E ; ,  by 

and normalized. , "~ 

where no&) are the SM occupation probabilities defined in equation (1). 
With these corrected single-particle energies one ca,n then solve state-dependent 

BCS equations [23] in order to  determine BCS occupation factors ui and vi and quasi- 
particle energies E;. This is done by taking pairing (T = 1) channels of the SM 
interaction V. Therefore the state-dependent BCS equations are given by 

Ai = ~ u , v , V l k L  : 0 , l )  
k J 2 j ;  + 1 
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with the matrix element of the NN interaction in equation ( 1 1 ~ )  referring to anti- 
symmetrized and normalized matrix elements introduced earlier. The  Fermi energies 
A are adjusted independently for protons (A,) and neutrons (A,) such that  the par- 
ticle numbers for the two kinds of nucleons agree with those of the nucleus under 
consideration. 

Finally, QRPA matrix equations [l ,  2 ,  41 can be solved by defining the block- 
matrices: 

A,,,,,,, = 6(pp')6(nn')[Ep + E,,] + g,,G(pn, p'n', J )  x (uPup,ununI + U ~ U ~ , U , U ~ ~ )  

+ gphF(pn,p'u',  J )  x (upup8u,w,, + u , u , , u ~ u ~ ~ )  

- gPhF(pn,p'n',J) x (upvpju,u,~ + upupJununl) 

(12Q) 

(126) 

B,,,,,,, = gp,C(pn,p'n', J )  x ( ~ , ~ , ~ u , v n I  + ~ p ~ p ~ v , u , , )  

where G(pn, p'n') and F(pn,  p'n') areshorthand notations for the particle-particle and 
particle-hole proton-neutron matrix elements, equations (8)-(g), respectively, and g,, 
(gph) are renormalization factors corresponding t o  these channels. The quasiparticle 
energies E, and E, for the protons and neutrons have t o  be readjusted in such a way 
that the Fermi energies for protons and neutrons correspond t o  the same energy. For 
neutron-particle proton-hole states this can be achieved by evaluating - 

E, = E, - A, + A, 
(13) - \ ,  

E, = E, 
with quasiparticle energies E and Fermi energies X as obtained from the solution of the 
6CS equation (11). General properties of the QRPA approach can be found in textbooks 
[21, 221. We have applied this technique for the case of unlike quasiparticle pairs 
AA,(JM) = [aLa!,lJM and in this basis we  have defined phonon creation operators 

r ? * v w  = CI~,,(J*,W,)AA,,(J~) - Y , , ( J ~ ~ ~ A , ~ ( J M ) I .  (14) 
P" 

With these matrix elements we can thus solve the corresponding QRPA eigenvalue 
problem and obtain the wavefunctions and eigenvalues associated with excited J" 
states in the final nucleus. 

We can now introduce the definitions which are needed to compute unperturbed 
and QRPA strength functions for single P-decay transitions. The  unperturbed strength 
functions in the BCS approximation are given by 
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The QRPA strength functions are defined by folding the one-body transition density, 
equations (4)-(5), with the QRPA wavefunctions: 

From (15)-(17) we can compute the strength sum (Gamow-Teller sum rule) and it 
can he expressed as 

which is preserved by the QRPA 

3. Results and discussion 

Results for the occupation factors of the single-particle states calculated in the SM 
approach (see equation (1)) and the corrected single-particle energies calculated with 
the occupation probabilities (equation (10)) are listed in table 1. These numbers show 
a significant dependence on the interaction used. For the protons as well as for the 
neutrons one observes a large occupation probability and a large binding energy for 
the d31z state if the interaction GA is used. The d312 state turns out to be even more 
bound than the ls,12 state. This might be an artifact of the interaction GA. Actually 
this interaction has been derived microscopically for SM calculations in the beginning 
of the s-d shell. I t  yields very reasonable results for those nuclei [I71 but bas not 
yet been used to evaluate nuclear states in the middle of the shell. For our present 
investigation, however, it is quite useful to test the agreement of QRPA and the SM 
using two interactions (GA and WI), which display different features. 

Table 1. Shell model. Corrected single partide energies, c. (in MeV) (see equation 
(IO)), and SM occupation factors us", (see equation (I)) ,  for proton and neutron 
states in the s-d shell. Results indicated by G A  and W I  correspond to calculations 
performed with the G A  [I71 and WI [I61 interactions, respectively. 

Neutrons Protons 

State c, (MeV) $" e ,  (MeV) v;" 
~ ~ ~~~ 

Interaction W I  
d5p -10.15 0.891 -6.76 0.728 
d3p -4.53 0.415 -1.33 0.351 
1s1l2 -7.21 0.523 -4.47 0.406 
Interaction G A  

d5p -12.76 0.778 -10.32 0.675 
d31z -9.69 0.686 -7.22 0.466 
1 ~ ~ ) ~  -6.50 0.469 -6.81 0.449 
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As outlined earlier we have solved state-dependent BCS equations (equations (11)) 
in order to determine BCS occupation factors and quasiparticle energies from the same 
interaction which enters the SM calculation. Our method of obtaining the BCS factors is 
different from the procedure followed by Lauritzen 1141. Thus  in the calculation of 1141 
effective gap parameters were determined from the observed odd-even mass differences 
and then the values of these parameters were used to calculate quasiparticle energies 
and occupation factors. In our method we try to treat pairing effects consistently, 
both in the SM and in the QRPA calculation. The values obtained for the occupation 
factors up(.,),  for the quasiparticle energies E,(&) and for the BCS gaps A are listed 
in table 2. 

Table 2. BCS calculations. Quasiparticle energies E, (MeV),  gap parameters A, 
(MeV) and BCS factors occupation facton U, for the proton and neutron slate8 in 
the s-d shell (see equation (11)). Results labelled with WI and GA correspond to  the 
WI and GA interactions, respecliwly. The Fermi energies obtained for WI are -8.240 
MeV for the neutrons (-6.433 for protons) while the corresponding valus for G A  are 
-11.159 MeV (-10.170). 

Interaction W I  
dim 2.493 1.604 0.940 1.976 1.945 0.767 " r -  
dais 4.137 1.831 0.227 5.609 2.340 0.215 

hteraetion G A  
d 5 p  3.217 2.780 0.867 2.641 2.636 0.727 
d 3 / =  3.540 3.304 0.566 4.482 3.377 0.414 

IS,(z 2.042 1.766 0.499 2.762 1.943 0.380 

IS,/* 3.353 2.044 0.322 3.902 1.989 0.264 

Comparing the occupation factors obtained in the BGS approach with those re- 
su!?ing fro= ?he SM ca!cu!a?ion, o~ find. ?hat t h s  depletion of the !owest she!! (djji.) 
is slightly smaller in the BCS than in the SM approach. This indicates that the SM 
describes correlations in addition to the BCS, which enhance the depletion of the low- 
lying states and in general smear out the occupation probability around the Fermi 
surface. The general agreement between the SM and the QRPA, however, is fairly 
good. If one considers the dependence of the results on the interaction, similar fea- 
tures are observed to those discussed earlier for the SM. In addition the occupation 
factors obtained in the BCS approach using the interaction GA show quite a strong 
population for the d, state. This can be traced back t,o diagonal matrix elements 
between nucleons in a,nd d,,> stat.es, which m e  more attractive for GA than for 
the wr interaction. Furthermore one finds that the pairing gaps obtained are slightly 
larger for the interaction GA indicating stronger pairing components for this interac- 
tion. 

QRFA strength distributions, for of transitions i n  26h4g, are shown in figure 1.  In 
performing t h e  calculations we liave fixed the renormalization factors g,, and gph 
at the value: gpp = gph = 1.0, which means that  we have used the SM interaction 
without any renormalization. In the same figure QRPA results are also compared with 
results obtained wit!i the quasiparticle Tamm-Dancoff approximation (QTDA). The 
s-d shell allows for seven proton-neutron two-quasiparticle configurations with angular 
momentum J = 1. As one can see from figure 1, the pf strength is concentrated 
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QRPA a n d  QTDA 
o.8]  WI Interaction 

i 

Energy [MeV] 

Figure 1. QRPA Pt strength distribution Sa+, in fractions of the total st.rength, for 
transitions in “Mg. Results in full lines correspond to QRPA while those obtained 
in QTDA are presented by broken lines. The upper part of the figure shows results 
obtained for the interaction WI (161, and the lower part has been obtained assuming 
the G A  [I71 interaction. Force: gpp = gph  = 1.0. 

essentially in two states which are dominated by the superposition of the proton-d,/,, 
neutron-d,/, and the proton-d,,,, neutron-d,,, two-quasiparticle configurations. 

The energies for the QRPA states which carry tlie @+ strength are to a large 
extent determined by the residual interaction contained in the QTDA matrices Apn,ptnl 
of equation (IZa). Note that the sum of the quasiparticle energies h for the two 
dominant Configurations discussed earlier is 4.31 and 6.29 MeV for the interaction WI 
(5.19 and 6.71 MeV for GA) while the QRPA energies are a t  9.27 and 18.63 MeV (9.95 
and 27.94 MeV for G A ) .  The stronger interaction GA leads to a larger splitting and a 
shift to higher energies for the pt strength. 

The small differences between QRPA and QTDA results are to be attributed to 
the fact that we are dealing with a light nucleus and that the effect of backward 
moving QRPA amplitudes on the calculat,ed energies should be expected to be of minor 
importance. This is not a fault of tlie QRPA approach, as it has been suggested in [141, 
but rather it is due to the small dimension of the proton-neutron configuration space 
used in the.calculations. 

Accumulated strength functions: 
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QRPA and SM 
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Figure 2. Acclllnulaled strength function, S(@+ , E )  (see equation (19)), as a fun- 
tion of the energy, for SM and Q R P A  treatments of the wI [I61 (upper part) and G A  

[17] interactions. The strength function obtained in the SM approach are presenled 
by the full line, while the QRPA results are shown by the broken line. 

are shown in figure 2, where they are compared with the SM results. From the  results 
displayed in figure 2 we can observe t,hat the Pf st,rength is distributed over many 
more states in the SM than in the QRPA approach. This is t o  be expected from the 
iact t ha i  the SM considers many more coniiguraiions ihan ihose contained in the 
QRPA. Already from this figure, however, one can observe that  general features for the 
calculated strength distribution obtained in the SM are reproduced by the QRPA. To 
study this on a more quantitative level we define energy centroids by: 

Results for these centroids obtained from the SM, the  QRPA, the QTDA and for two- 
quasiparticle states without residual interaction are listed in table 3. One observes 
that the inclusion of QTDA effects increases the value for the centroids quite drastically 
compared with the unperturbed values and brings those values in the neighbourhood 

much affected by including the QRPA correlations compared with the QTDA. 
In contrast, the calculated total transition strength cannot be affected by per- 

forming the QTDA diagonalization. Therefore the QTDA result for the of strength is 
identical t o  the one obtained in the BCS approximation (equation (16)). Note, t ha t  

-P & L e  ..-I.,..- - - la . .B-&A,l  L.. &L- 0 x 1  A.. -T-....A.. A :  "",,"" ...1 +he __--- ;..- I_n ..-+ 
V I  U,= ",JII"ZU I_d,L.U,ObriU v y  but :  DIW. n a  d,,G,JUJ "LUC"UUC", (/,IC F L 1 C L 6 L " U  a,= L L V Y  "c,y 



Table 3. Results for P+ transitions. The total transition strength S (see equa 
tions (16) and (17)) and energy centroids ( E )  (MeV) (see equations (20)) for p+ 
transitions of lsMg calculated in the BCS, the QTnA,  the QRPA and the SM are 
listed. The results were obtained for the interadions wI and OA considering the full 
strength of the interaction: gpp = gph = 1.0. 

W I  GA 

Method S (E) (MeV) S ( E )  (Me") 

BCS 6.741 4.11 5.618 5.40 
Q T D A  6.741 14.88 5.618 25.12 
QRPA 4.739 14.42 4.535 24.20 
SM 3.407 18.28 4.162 21.73 

in the most naive SM, which assumes that protons and neutrons are only occupying 
the d5,2 shell, the p+ strength for 26Mg is given as 6.4. This means that the inclu- 
sion of BCS correlations alone yields a slight enhancement for the interaction WI but 
a decrease for GA. The QRPA correlations yield a sizable reduction for the total @+ 
strength compared with the unperturbed BCS values, independent of the interaction 
used. This improves the agreement with the SM results considerably (see table 3). 
The SM result, however, is even more reduced, because the SM contains even more 
correlations than those taken into account in the QRPA (see also the discussion of the 
occupation factors at the beginning of this section). 

To conclude the discussion of our results, let us comment on the dependence of 
QRPA results on the variation of the renormalization parameter g,,. As it has been 
extensively discussed in [ l ,  2 ,  7, 8, 24, 251, QRPA results are very sensitive to the 
variation of g,, in the vicinity of the unrenormalized value g,, = 1.0. The p+ strength 
to low-lying states has been found to decrease with an increase of g,, [13], when 
this decay is calculated as a virtual channel. The same feature also persists in our 
model calculation. However, reducing gpp by 10% leads to a reduction in the total 
p+ strength by around 4% for both interactions used in the present investigation. 
A similar feature is also observed for the energy centroid of the p+ distribution. In 
this case the reduction in the particle-particle interaction by 10% would also give a 
reduction in the calculated energy centroid of around 4% for both interactions used 
in our investigation. Note that neglecting the particleparticle interaction completely 
(by putting g,,=O.O) would lead to an energy centroid in a QRPA calculation with the 
WI interaction of only 8.37 MeV. 

4. Conclusions 

The distribution of strength for the p+ transition 26Mg to 26Na is evaluated in the 
QRPA considering the model space of the s-d shell. For this small model space one can 
also perform exact SM calculations and estimate the accuracy of the QRPA approach 
by a comparison of the results with those obtained in the SM calculation. For such a 
comparison we used the same Hamiltonian in both the QRPA and the SM calculation. 
One finds that the energy centroid of the calculated p+ distribution is affected in 
particular by the residual interaction taken into account in the QTDA approximation. 
Assuming the empirical interaction fitted by Wildenthal [16] the energy centroid is 
shifted by 10 MeV whereas the use of another realistic interaction [17] even yields 
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19 MeV of repulsion. The ground-state correlations taken into account by the QRPA 
have only a small effect on the energy centroid but reduce the total strength by around 
30%. 

The QRPA method, when consistently applied to describe correlations induced 
by a residual twebody interaction, gives results which show similar features to those 
obtained in the SM, in spite of the severe truncation of the configuration space which is 
inherent in the QRPA model. It gives a reasonable description of the strength functions 
and the agreement between the calculated QRPA and SM energy centroids for the 
transitions also gives some confidence in the QRPA method. It should be pointed out 
that this comparison has been made for a light nucleus, because SM calculations can 
only be made for such systems. One may expect, however, that the relative importance 
of the collective degrees of freedom, which are considered in the QRPA approach, may 
be larger for heavier nuclei. Therefore the predictive power of the QRPA might even 
be better for such systems than exhibited in our present comparison. 

. 

Acknowledgments  

Two of us (OC and LDS) would like to express their gratitude for the kind hospitality 
extended to them at  the Institut fur Theoretische Physik. 

References 

Vogel P and Zirnbauer M R 1986 Phys. Rev. Lett. 57 3148 
Civitarese 0, Faessler A and Tomoda T 1987 Phys. Lef t .  194B 11 
Tomoda T and Faessler A 1987 Phys. Lef t .  199B 475 
Engel J.  Vogel P and Zirnbauer M R 1988 Phys. Rev. C 37 731 
Engel J. Vogel P, Civitaree 0 and Zirnbauer M R 1988 Phys. Letf .  208B 187 
Vergdos J 1986 Phys. Rep. 133 1 
Civitarese 0, Faessler A, Suhonen J and Wu X R 1991 Phys. Lett. B in press 
Civitarese 0, Faesrler A,  Suhonen J and W u  X R 1991 Nucf. Phys. A in press 
Elliot S R, Hahn A A and Moe M I< 1986 Phya. Rcv. Lef t .  56 2582 
Avignone F T and Brodzinski R L 1988 Prog. Par t .  Nucl.  Phys. 21 99 
Caldwell D 0 et al  1985 Phya. Rev. Let t .  54 281; 1987 Phys. Rev. Lef t .  59 419; 1986 Phys. 

Morales A 1989 Double beta decays: theory and experiments TAUP'89 (University of I'Apuilo 

Suhonen J,  Taigel T and Faessler A 1988 Nuel. Phys. A 486 91 
Lauritzen B 1988 Nud.  Phys. A 489 237 
Blomni S D e t  af 1981 Phya. Lett. 107B 335 
Goodman e t  a1 1981 Phya. Lett. 107B 406 
Crawley G M e l  n l  1982 Phys. Rev. C 26 87 
Gaarde C 1983 Nucl. Phys. A 396 127c 
Kleinheim ef of 1985 PhyJ. Rev. Lef t .  55 2664 
Wildenthal B H 1984 Prog. Port .  Nucl. Phyr.  11 5 
Skouras L D and Mither H 1990 Nul .  Phys.  A 515 93 
Halbleib J A and Sorensen R A 1967 Nucl. Phys. A 98 542 
Miither H, Taigel T and Kuo T S 1988 Nucf .  Phyr. A 482 601 
Nay& R, Faessler A and Mii tha  H 1984 Nucf .  Phys. A 427 61 
Ring P and Schuck P 1980 The Nuclear Many Body Problem (Berlin: Springer) pp 458-66 
Rowe D J 1970 Nuclear Collective Motion (London: Methuen) 
Baranger M 1960 Phys. Rev. 120 157 
Faessler A 1988 Prog. Port. Ntrcl. Phya. 21 183 
Klapdor H V 1988 (ed) Neutrinos (Berlin: Sprinser) 

Rev. D 33 2737 

and Gran Soaao Notional Loboratory I taly)  and references therein 


