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Abstract. The half-life for the 2vfg decay transition in "™Mo is calculated by using a
conventional proton—-neutron quasiparticle random phase approximation method and a
recently proposed particle number projected quasipatticle random phase approximation
formalism. The calculations of the rclevant matrix clements have been performed by
using a realistic effective two-body interaction constructed from the Bonn one-boson
exchange potential. Suppression of the 2vfff decay matrix element is found both in the
unprojected and projected models. The collapse of the quasiparticle random phase
approximation formalism, induced by renormalized particle—particle interactions, is
found to play an important role in dealing with the numerical stability of the results. The
particle number projected results are found to be more stable than those corresponding
to the unprojected formalism although the particle number projection does not suffice
for a complete elimination of spuricus ground-state correlations near the collapse of the
quasiparticle random phase approximation.

1. Introduction

Theoretical and experimental analyses of 2v8§ decay transitions have been receiving
considerable attention [1-14], particularly in view of the consequences of these
studies upon currently adopted concepts of the theory of weak interactions as well
as for the information which can be extracted about the nature of the participant
neutrinos [15]. Since all the theoretical concepts which are involved in the physics
of the nuclear double beta decay have been reviewed recently [15, 16] we shall
avoid discussing them here and we shall concentrate our attention on the nuclear struc-
ture problem associated with the theoretical estimate of the 2vff decay transition
in '®Mo. The reader is kindly referred to the already published work for further
details about the current status of the experiments [17] as well as on the models
[15-17] which have been applied. A common feature of the experimental data about
2vBp decay transitions is the large order of magnitude of the corresponding
half-lives, which are in the range 10**~10** years [10-14, 17]. This means that the
associated nuclear matrix elements are strongly suppressed. This suppression effect
has been studied in considerable detail [2—8] and various microscopic mechanisms
have been proposed in order to explain it. This effect has been discussed first by the
group at Caltech, in the context of schematic two-body interactions [5]. We have
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shown that this suppression is related to the renormalization of particle~particle
channels of the residual proton—neutron interaction and that a realistic effective
two-body interaction, like the interaction construcied from the Bonn one-boson
exchange potential [18], could indeed provide the necessary strength for this
attractive particle~particle channel to become operative [6]. Furthermore, this
suppression has been found to be present in models which are qualitatively different
from the quasiparticle random phase approximation (orea) [7, 8]. Recently, we have
presented a particle number projected formalism of the orea(porea) [19, 20]
wherein the suppression of 2vf38 nuclear matrix elements is also found. Therefore
little can be said about the underlying physics except for the fact that orea
calculations with the inclusion of renormalized particle-particle channels of the
residual proton—neutron interaction could explain the above mentioned suppression.
In order to determine physical values for the associated coupling constants, studies
of single beta decay transitions have been conducted [21] which have shown that the
required renormalization was indeed compatible with the findings of the two
neutrino double beta decay calculations [6, 19, 20]. In this work we would like to
discuss the case of the 2vfB decay mode in '“Mo, since data are available which
show that for this case the half-life is much shorter than for other 2vgf decay
transitions [22-25]. The essentials of the formalism which we have used are briefly
described in section 2 and the results of our calculations are presented and discussed
in section 3. Conclusions are drawn in section 4.

2. Formalism

The half-life for a 2vf decay transition can be written in a factorized form which
includes leptonic and nuclear contributions [26]

[712Q2VBAN ™" = F |Mcr|? (1)
where Fis a leptonic phase space integral and Mg is the nuclear matrix element [6]

(07 [ o 11)(1E |17 X1 =7 ol [07)
Mgr= 2 L 2k 1 . l ! : . (2)
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In equation (2) we have used standard notation [6]. It includes orpA amplitudes for
the intermediate 17 states which are described as excitations of the initial and final
nuclei, The vacuum for these states is a correlated vacuum and the QRPA assumes
that the 1% states constructed from the initial nucleus and the ones constructed from
the final one are indeed the same. This is of course not true but the consistency of
the approximation is enforced by the overlap factors {1; |1} included in equation
(2). Since the proton—neutron excitations of the intermediate odd—odd nucleus are
described in terms of unlike (proton—neutron) quasiparticle pair excitations,
spurious effects associated with the violation of the particle number symmetry have
to be eliminated. In order to cure for these spurious effects we have developed a
formalism [19, 20] which is based on: (i) the restoration of the particle number
symmetrics at the level of the Bcs approximation for the quasiparticle mean fields,
by using particle number projection techniques [27, 28], and (ii) the construction of
particle number conserving wavefunctions for the intermediate 1% states in the
odd-odd nucleus, by solving particle number projected Qrpa equations (PQRPA}
[20,29]. It should be noted that in case (i) the violation of the particle number
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symmetry is a consequence of the adoption of the Bcs quasiparticle mean fields to
describe single particle degrees of freedom in presence of pairing correlations while
in case (ii) the violation of the particle number is to be associated with the fact that
the greaA excitations describe not only an intermediate nucleus but rather a chain of
nuclei with N+ 1, N+3, etcand Z+1, Z+3, etc. In order to carry on with the
formulation of (i) and (ii), in the specific case of a nucleus with open shells both in
protons and neutrons, let us write the final expression for the equations which we
have solved. The formalism has been discussed in detail in our recent publications

19 2nl and we would like to refer the reader to these references for further details.
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The solution of number projected Bcs state-dependent equations can be obtained
once the projected norm, I, and projected energy, Ir, are calculated. The equations
which have to be solved to determine particle number projected BCs occupation
factors and guasiparticle energies are of the form:

I{)V(u}-, Uj)IE - IEV(uj, U}-)Iﬂ = 0, (3)
where V(u,, v;} is given by
d v\ 9
VG, v) = - (F) =, 4
(u5, v;) Bu; \uy/ du; @)

and the projected norm and energy integrals are given by

1 (> . ,
I, = {Bcs| By |Bcs) = oy d¢ e [ (u} + v} e %) (5a)
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In these equations the factors f(k, ¢) are blocked Bcs overlaps, ¢ is the gauge
angle, the quantities G(kk, k'k’,0) and G(kk’', kk’,J} are particle-particle matrix
elements of the two-body interaction, N is the number of particles, v; and w, are BCS
occupation factors, &, are single particle energies and the index & represents the full
set of quantum numbers which are needed to define a single particle state. The
projected functionals I and Iz can be obtained in analytical form and then we can
perform the variation

V{w;, v)EY =0. (6)

This variation determines the values of the occupation numbers «; and v; under the
condition of particle number conservation. From it equation (3) can readily be
obtained, since E} = I;/I,. Next we have to soive the corresponding equations, as
they are given by the orRPa model, to describe excitations in the basis of
proton—neutron quasiparticle pairs coupled to J*=1". The conventional (un-
projected) oRPA equations have been presented before [6,21] and for the projected
ones the formalism which we have developed prescribes the following structure for
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A and B matrix elements [20]

AN 1241 = (Bcs(N, Z)| ba(JM)PN 1Pz+1[H b s(JM)] [Bcs(N, Z))
BY 4T = (BoS(N, Z) bo(IM) Py s Py fH, by (TM)] [BeS(N, z)) @)
and they can be written in terms of particle number projected overlaps
AT =2 2 0 {8(pp)8(nn NE, + EMz.i(p)y-i(n)
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—_ gp,,F(pn,p'n', J)Upvp'unun’IZ+1(eﬁpMp')IN—](eﬂnNn')} (8“)
By = 2, 2‘ Nt {8 G(pn, P’ I ) UpUp iV + U1, Ul )
pn p'n’
- gphF(pnv Pln':‘])(upvp'vnun’ + vpup’unvn')}
X 3z (pMn—1(n) + Lz (p ) n-1(n")] (8b)

where
1 2
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(10)

with Q,=(2j+1),g=Nor Z, N,=N—-lorZ+1.

In equation (7) we have denoted the particle number projected Bcs ground state
as |Bcs(N, Z)) and the structure of this particle number pro;ected ground state is
defined by two independent projections, namely: |Bcs(N, Z)) = PyP; |Bcs). The

quantities N and Z correspond to the neutron and proton numbers, respectively, of
the initial double-even nucleus. The second nnrhr‘lp number nroiection, which has

OLIITEGL WUV W ¥ Wil LW T . Ban asAsaste pARL e aataiiinSwn Py

been indicated by the projection operators Py_ 1Py is performed in order to
eliminate spurious components in the wavefunctions of the intermediate double-odd
nucleus.
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The quantities 7, which appear in equations (84) and (8b) are amplitudes of the
linear combination of two quasiparticles

bLUIM) =2, nilalal}'™ (11)
pn

which diagonalize the projected norm matrix

N, p=(BcS(N, Z)| b(IM)By_, B, ,b3(IM) |Bcs(N, Z))

N W .o onr - B 4
=2 2 HpnlNpap'nllprnr (12)
pn p'n’
where

Npn pin = 3(pp")d(nn" Mz 1 (p)n_i(n).

The associated creation operator, for a particie number projected correlated
state J* =17 of the double-odd nucleus, has been defined by [20]

TLUM) = D [X b IM) — Yob, (IM)). (13)

In deriving these equations we have written the two-body matrix elements of the
Hamiltonian in terms of particle-hole and particle-particle channels, by following
the notation which has been presented in [6, 20]. The quantities G(pn,p'n’,J) and
F(pn, p'n',J) are particle-particle and particle—hole matrix elements of the
effective two-body interaction, respectively, With these matrix elements A and B,
both for the particle number projected case and for the conventional unprojected
one, we have solved the corresponding eigenvalue problem [20,29] and we have

obtained the wavefunctions which are needed to evaluate M, cf equation (2).

3. Results and discussion

The half-life, 7,,(2vBB), for the two-neutrino double beta decay mode in 'Mo has
been determined recently by the INR-Baksan group [22], by the OSAKA-
ELEGANTS experiments [23] and by the group at the University of California at
Irvine [24]. The reported values are shown in table 1. The order of magnitude of
these experimentally determined half-lives is out of the range of values which have
been determined for other 2vBB transitions [25] by two to three orders of
magnitude.

Table 1. Experimental values for the half life, 7,,(2vg8), for the two neutrino double
beta decay mode of ®Ma.

Experiment 1,2(2vBP) (years) cL(%) Reference

INR-Baksan 33x10"% 95 [22]
+0.60 0

OSAKA-ELEGANTS IV 0.93(" 0.26) % 10 68 {23]

OSAKA-ELEGANTS V !=16(+g';;) x10% 68 [23)

. +0.34 15
UC-Irvine ]'16(—0.08) x 10 68 [24}
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Data from INR-Baksan [22] are preliminary data with 95% cL. Details
concerning the experimental set-up which has been used in each case have been
discussed in {22, 24].

There is a significant aspect, from the nuclear structure point of view, which
makes the study of this transition particularly interesting. It is related to the value of
Mg, which could be extracted from the data, once the phase space integral F which
appears in equation (1) is calculated. We have obtained for this factor the value:
F=234x10""*MeV?y~'. Consequently for a half-life of the order of 10" years
one can extract the value of M+, which is therefore fixed by equation (1), and it is
found to be of the order of |Ms;,] = 0.207 MeV™,

This is a relatively large value as compared with the values which are needed to
explain other 2vf8f decay transitions [6]. This is an indication about the possible
dominant character of some specific proton—neutron configurations of the inter-
mediate excited states. Also it indicates that the single particle states involved
should have nearly the same pairing occupation factors, otherwise suppression
effects due to the Pauli principle would be larger than in the present case. By this we
mean that both particle—hole and particle—particle (proton-neutron) quasiparticle
pair configurations are expected to be almost equally weighted by their correspond-
ing BCcs occupation factors and that the Pauli suppression of the quasiproton to
quasineutron transition would not be operative if Bcs occupation factors of the sort
U, X v, are comparable with factors of the sort v, Xu, In the context of the
pn-grPA formalism almost comparable probabilities associated to particle-hole and
particle-particle configurations and the fact that forward (quasineutron to quasi-
proton) and backward (quasiproton to quasineutron) matrix elements of the ot
operator are comparable means that backward-going amplitudes, resulting from
ground-state correlations, could be rather large. On the other hand, if low-energy
proton—neutron excitations are going to be described mainly by few configurations,
one shouid expeci to obiain reiatively large values for Mg uniess a breakdown of
the pn-qrea is induced by attractive proton—neutron interactions.

In the following discussion we would like to show, from the analysis of our
results, that the above advanced features do emerge in relation with the 2vB8 decay
of ™Mao. To start with let us briefly describe the main steps which we have followed
in dealing with the calculation of Mgy matrix elements in the framework of the orea
and porPA models [19, 20]. For the single pariicle mean fields we have selected the
eigenstates of a Coulomb-corrected Woods—Saxon potential. We have included 15
single particle states, both for protons and neutrons, taken “Ca as a core and
included three major oscillator shells up to the shell closure at N = Z =126. This
single particle basis is required in order to build up enough proton-neutron pair
configurations so as to exhaust the Gamow—Teller sum rule (GTsR} up to the 1%
limit. For the two-body interaction we have used the nuclear G-matrix calculated from
the Bonn one-boson exchange potential [18]. Renormalization effects due to finite
particle number have been treated in the manner which is described in [6]. A similar
procedure has been adopted to determine the strength of proton and neutron
pairing channels. Next, we have solved state-dependent Bcs equations by using

particle-particle matrix elements obtained from this G-matrix. We multiplied these

G-matrix elements, for proton and neutron pairing channels, by factors g,...(p) and

Zoaic(nt), respectively, in such a way that experimental odd—evcn mass differences are
reproduced. The values for these factors gp.i{p) and g, (n) are of the order of 0. 98
and 1.10, respectively. We have solved two different sets of equations in order to
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determine BCS occupation factors and quasiparticle energies, both for protons and
neutrons, namely: (i) conventional state-dependent Bcs equations and (ji) particle
number projected BCs equations. In the case of the particle number projected BCs
solutions, equation {3), we have followed the method which has been reported in our
previous work [19,20]. With these occupation factors, quasiparticle energies and
matrix elements of the effective two-body interaction we have solved unprojected
(projected) orpA (PORPA) equations and we have obtained two sets of 1* states, |17);
and [1*),, associated with unlike quasiparticle pair excitations of ‘Mo and "™Ru,
respectively. The constant, gy, for particle—hole channels of the residual interaction
has been fixed at the value g, = 1.2 and with this value we have reproduced the
excitation energy of the giant Gamow-Teller resonance in the odd-odd nucleus
%Tgc, as it is given by the experimentally known systematics [30]. Our configuration
space, for unlike quasiparticle pairs, contains 61 configurations of proton-neutron
pairs coupled to 17. The dependence of M, upon the constant multiplying the
attractive proton—neutron particle—particle G-matrix elements of the residual
interaction, gpp, has been studied. Thus we have varied it within the range
O=gp=1

The dependence of the matrix element Mg, upon the factor g, is shown in
figure 1. Both crPA and porPa results show cancellation nearby the value g, = 1.
This trend is somehow a common-place feature which has been found practically in
all previous calculations of 2vBf matrix elements [1-8, 19, 20] and it cannot be
attributed to the approximations which are involved in the orpa description. it has
been found in a variety of other model descriptions [16,17] and it is well
understood in terms of the strong attraction which is induced by particle—particle 17
channels of the proton—neutron interaction.

It seems, from the results which are shown in figure 1, that porrPA and oQrra
results do not differ much.

it has io be mentioned that in the inierval of g, values shown in figure 1 the
associated G1srR =3(N — Z) is conserved both for orra and porpa calculations. It
should also be mentioned that the value of the factor g,, for which the qrra
collapses does not coincide with the value at which the matrix element Mgy is
completely suppressed. To make the point clearer let us show the dependence of the

Mgp[Mev] 1

_5] . Figure 1. Dependence of the matrix element, Mg,
! cquation (2), upon the coupling constant for attrac-
; tive proton—neutron particle—particle interactions,
! 2pp- Full and broken curves correspond to particle
f number projected (PQrRPA) and unprojected (QPRA)
—1.3) " QRPA results, respectively.
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first orPA root, for 1* excitations in '™Tc, upon the particle~particle strength g,
The results are shown in figure 2. It is evident that the attraction which is coming
from proton—neutron particle—particle interactions dominates over the repulsion
which is coming from proton—neutron particle—hole channels of the two-body force.

The collapse of the orra description of pn excitations in the intermediate nucleus
190T¢ is in fact a breakdown induced by attractive proton—neutron two-particle
channels. It is of course obvious that the presence of this zero-energy mode, which is
reminiscent of the one found in the rea treatment of pairing excitations, invalidates
any attempt to extend the initial pn grra solutions beyond the point of collapse at
8pp = 1. Since this behaviour of the orea eigenvalues should also be accompanied by
a drastic change in the strucjure of the wavefunctions let us investigate its effect
upon them by calculating the contributions to Mg, which are obtained when: (i)
only the first Qrpa 1% state is included in the sum of equation (2), and (ii) by
excluding it from the same sum. The results are shown in figure 3, for some values
of g, nearby g, = 1. It is in fact observed that while the contribution coming from
the first ORPa state is strongly dependent upon g, the accumulated sum for all the
other states remains almost constant. In the neighbourhood of the value g, =1 the
contribution coming from the first Qrepa root changes its sign. In this example it is
also worthwhile to observe that below g,,=0.90 the main contribution to Mg is
coming from the first excited state and it is an order of magnitude larger than the
accumulated sumn of contributions coming from the other excited states.

This is due to the fact that in the case of the 2vB8 decay transition in ‘Mo the
extreme single particle model is dominated by a single pair configuration, namely:
[0g712(n)0gor(p)]:+-

This configuration has a relatively large matrix element (0go,(p)lf & [|0g72(n)),
which is of the order of four, and the inclusion of Bcs pairing occupation numbers u
and v reduces it to about 1.26 for the direct n to p transition. It is also worth
mentioning that the corresponding p to n transition is also large and comparable
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with the n to p transition. This is due to the fact that both orbitals have nearly the
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the associated matrix elements for or are comparable. It means that the usually
found suppression of the 8% branch of the decay will not be operative here and this is
the reason for the large values of Mgy at g, =0, as compared with other systems
[6]. Consequently, since both 8~ and " contributions are large, the suppression of
the matrix element Mgy around g, = 1.0 occurs if both forward- and backward-
going amplitudes acquire comparable values and have opposite signs. This observa-
tion s in fact confirmed by inspection of the 0rRra wavefunctions and we have found
that they have large backward-going amplitudes. The sign of this contribution
changes near the point g,, =1 and this is why M is suppressed. This statement is
of course supported by the dependence of Mg upon g, which is shown in figure 3.

The results obtained with the porpa formalism are not very much different from

tha ¢ whirh we h 1 1
the ones which we have discussed so far. For the orra case the matrix element M.

is totally suppressed if one fixes gpp in the interval 0. 96<gpp<0 97, where Mg
values from Mor=0.2647MeV™! t0o Mgr=—0.3728 MeV™!, respectively. If we
restrict the value of g, to g,, = 0.9 the corresponding theoretical lower Limit for
7,,(2vf3B) is of the order of T,,(2vBB) >0.50 x 10" y. Since the dependence of Mg
upon g, around g, = 1.0, is so strong the theoretical value for the half-life will
change very rapidly and a more accurate prediction becomes unfeasible. The total
suppression of My, for the PQrRPA model, occurs near the point g, = 0.93. From
this point and up to the point g,, =1 the particle number projected results for Mg
are of the order of —0.5070 MeV ™!, which corresponds to a half-life 7,,(2v8f)=
1.66 X 108y

From the above presented results it can be said that a slightly larger
renormalization of the particle—particle G-matrix elements is required by the porra
in order to suppress Msr, when compared with orPA results.

The fact that the porea formalism gives a pearly constant value for the matrix
element M7 in the neighbourhood of g,, =1 but is still unable to go through the
collapse means that another description of the microscopic wavefunctions is needed,
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particularly near this point. There are several possibilities. In fact one can argue that
it should be a mixing between low-lying 17 states of the intermediate nucleus and
other excitations of the initial and final nuclei. This mixing could reduce the effect of
the ground-state correlations which, as we have seen, are responsible for the
increase in the values of the grpa backward-going amplitudes. Higher order rra
correlations could also be important [{31]. Also mean field effects can be described in
a different framework like, i.e. in the MONSTER-VAMPIR approach [32] which is
free from the limitations which are posed by the quasiparticle mean field
approximation.

We think that the theoretical analysis of this 2vS8 decay transition should be
continued since it could offer some hints about the underlying physics of the nuclear
double beta decay.

4. Conclusion

We have presented the result of our calculations for the 2v8f decay transition in
1%Mo. The calculations have been performed by using a conventional orea method
and a particle number projected formalism [19,20]. We have used a realistic
effective two-body interaction based on the Bonn one-boson exchange potential
[18]. It has been shown that the microscopic analysis of this 2vBf decay transition
shows significant differences when compared to other transitions which we have
analysed previously [6].

We can summarize the features which can be extracted from our present work
as follows :

(i) The decay mode is dominated by a nearly pure proton—neutron
configuration.

(i) Renormalization of the particie-particie interaction between protons and
neutrons suffices for the suppression of the relevant nuclear matrix element,

(iii} This renormalization also induces the collapse of the proton—neutron
excitations in '’Tc. Some features which are similar to the so called pairing phase
transition are found to be exhibited by the low-lying 1* state in '®Tc.

(iv) The particle number projected version of the orra formalism shows the
same suppression of Mqr as is found in the unprojecied orPA modei {6].

(v) The above-mentioned features are characteristic of this decay where the
collectivity of the low-lying 1* excitations in "Tc, as given by the orPA model, is
rather poor. They have not been found for other cases [6, 19, 20] which have been
analysed by using the same models.

(vi) Due to the unusually strong dependence of the results on g,,, around
gop = 1.0, the calculations yield only a lower limit for the half life.

Further investigations are in progress concerning the breakdown of the orea and
its consequences upon 2vff decay observables.

Acknowledgments
This work has been supported by the Bundesministerium fur Forschung und

Technologie under contract no 06TU90/91. Three of us (OC, JS and XRW) would
like to express their gratitude for the kind hospitality extended to them at the Institut



Calculation of the transition Mo — "*Ru 953

fiir Theoretische Physik, University of Tiibingen. We thank Professsors K W Schmid
and Peter Ring, for useful discussions. One of us (OC) is a fellow of Argentina
National Research Council (CONICET).

References

[1] Haxton W C and Stephenson G J 1984 Prog. Part. Nucl, Phys. 12 409
[2] Grotz K and Klapdor H V 1985 Phys. Lers. 157B 242
[3] Grotz K and Klapdor H V 1985 Phys. Let. 1538 1
[4] Grotz K and Klapdor H V 1986 Nucl. Phys. A 460 395
[5] Vogel P and Zirnbauer M R 1986 Phys. Rev. Leur. 57 3148
[6] Civitarese O, Faessler A and Tomoda T 1987 Phys. Lett. 194B 11
[7] Engel J, Vogel P, Civitarese O and Zimbauer M R 1988 Phys. Lett. 208B 187
[8] Engel J, Vogel P and Zirnbauer M R 1988 Phys. Rev. C 37 731
9] Suhonen J, Khadkikar S8 B and Faessler A 1990 Phys. Let. 237B 8
[10] Caldwell D O, Eisberg R M, Grumm D M, Hale D L, Whiterell M S, Goulding F $, Landis D A,
Madden N W, Malone D F, Pehl P H and Smith A R 1985 Phys. Rev. Lett. 54 281; 1987 Phys.
Rev. Lett. 59 41%; 1986 Phys. Rev. I» 33 2737
[11] Caldwell D O 1989 Int. J. Mod. Phys. A 4 151
[12] Caldwell D O, Eisberg R M, Goulding F S, Magnusson B, Smith A R and Witherell M § 1989
Recent results from the UCSB/LBL double beta decay experiment UCSB/LBL preprint
[13] Avignone F T and Brodzinski R L 1988 Prog. Part. Nucl. Phys. 21 99 and references therein
[14] Elliot S R, Hahn A A and Moe M K 1986 Phys. Rev. Let. 56 2582
[15] Faessler A 1988 Prog. Part. Nucl. Phys. 21 183
[16] Kiapdor H V 1988 Neutrinos ed H V Klapdor (Berlin: Springer)
[17) Morales A 1989 Double Beta Decays: Theory and Experiments TAUP'89 (Ttaly: University of
I’Aquila and Gran Sasse National Laboratory) and references therein
[18] Holinde K 1981 Phys. Rep. 68 121
[19] Civitarese O, Faessler A, Suhonen I and Wu X R 1990 Phys. Lert. 2518 333
f20] Civitarese O, Faessler A, Suhonen J and Wu X R 1991 Nucl. Phys. A in press
[21] Suhonen J, Taigel T and Faessler A 1988 Nucl. Phys. A 486 91
(22] Klimenko A A, Osettov § B, Pomansky A A, Smolnikov A A, and Vasilyev S 11989 Proc Yamada
Conf. XXXHI (Osaka) ed M Morita, H Ejiri, H Ohtsubo and T Sato (Singapore: World
Scientific p 180
(23] Ejiri H 1990 Nuclear Europhysics Conference (Bratislaeva) J. Phys. G: Nucl. Part. Phys. to be
published
{24] Moe M K 1990 Nuclear Europhysics Conference (Bratistava) J. Phys. G: Nucl, Part. Phys. 10 be
published
[25] Avignone F T, Brodzinski R L, Miley H S and Reeves J H Proc Int. Sym. WEIN-89 (Montreal) ed P
Depommier (Montreal: Editions Frontieres) p 235
{26] Doi M, Kotani T and Takasugi E 1985 Prog. Theor. Phys, 83 1
[27] Hara K and Iwasaki S 1979 Nucl. Phys. A 332 61
(28] Hara K and Iwasaki S 1979 Nucl. Phys. A 332 69
[29] Federschmidt C and Ring P 1985 Nucl. Phys. A 435 110
[30] Horen D §, Goodman C D, Bainum D E, Foster C C, Gaarde C, Goulding C A, Greenfield M B,
Rapaport J, Taddeucci T N, Sugarbaker E, Masterson T, Austin § M, Galonsky A and
Sterrenberg W 1981 Phys. Len. 998 383
[31] Raduta A A, Faessler A, Stoka S and Kaminski W A 1990 Phys. Lett. submitted
[32] Schmidt K W, Griimmer F and Faessler A 1987 Ann. Phys., NY 180 1



