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The comparison between effective Hamiltonians, constructed within the framework'of symmetry
restoring techniques, is discussed for the case of intrinsic K™=1" vibrations in deformed systems.
The methods, which are based on self-consistent and global rotational invariance conditions, allow
for the separation of rotational and vibrational degrees of freedom.

I. INTRODUCTION

The description of intrinsic K™=1% excitations in de-
formed systems has been discussed recently.!~> It has
been motivated both by new data about strong low-lying
M1 transitions® and by the very interesting and challeng-
ing theoretical problem associated with the decoupling
between rotational and vibrational degrees of freedom in
deformed basis.”® These intrinsic K™=17 states have
been described rather satisfactorily in terms of spin-
independent quadrupole-quadrupole (QQ) forces.* Al-
though the choice of quadrupole forces can be justified by
the fact that the u==1 components of the quadrupole
operator, Q,,, induce strong two quasiparticle correla-
tions,!~> its use base on first principles, i.e., rotational in-
variance, has not been demonstrated yet. Currently, the
description of K™=17 states in deformed systems can be
attempted in different manners, namely, (i) with model
two-body Hamiltonians supplemented by constraints;'~>
(ii) with effective interactions extracted from one-body
Hamiltonians under global symmetry restoring condi-
tions.’

It is our aim to demonstrate herein that, with the ran-
dom phase approximation (RPA), both methods are
equivalent. However, some significant differences appear
in a more detailed description of the decoupling mecha-
nism associated with the interplay between rotational and
vibrational degrees of freedom.

In this paper we are going to describe, analytically, the
equivalences and theoretical limitations posed by both
methods. Concerning these aspects we shall show that
the occurrence of a spurious mode at zero energy, gen-
erated by the action of the angular momentum operator
on the correlated ground state, when it is included as a
constraint of the equation of motion, does not suffice for
a complete decoupling between rotational and vibrational
modes. This theoretical shortcoming of method (i) could
be avoided by adopting the procedure of method (ii). We
shall also show that global symmetry restoring conditions
are not automatically guaranteed by a renormalization of
the quadrupole coupling constants or by the adoption of
relationships between the matrix elements of quadrupole
and angular momentum operators in the quasiparticle
basis.

The formalism is discussed in Sec. II, where the com-
parison between the results of methods (i) and (ii) is
presented. The theoretical results, which are relevant for
calculations of M1 transitions in deformed systems, are
discussed in Sec. III. We are also presenting in Sec. III
an example of the decoupling mechanism for the case of a
simplified Hamiltonian. Finally, some conclusions are
drawn in Sec. IV.

Since we have organized this material on a theoretical
basisl,0 we shall present numerical results somewhere
else.

II. FORMALISM

The treatment of multipole-multipole (MM) forces of a
quadrupole type, Hqq, in the random phase approxima-
tion (RPA), for the case of K™=1" states in axially sym-
metric deformed basis, has been discussed in detail in
Refs. 1 and 2. The choice of these model interactions has
been justified, previously, in analogy with the use of
quadrupole forces in deformed Nilsson’s basis.® Al-
though the results of calculations performed with these
interactions describe fairly well bulk properties of the ex-
perimentally observed K m=1% states,’’? the question
concerning the validity of the theoretical procedure can
be raised, namely, with reference to the use of non-self-
consistent model interaction in deformed basis. On the
other hand, self-consistent residual interactions, Hgg,
which are suitable for the microscopical description of
the same states, have been introduced by Baznat et al.’
Therefore we are confronted with two different possibili-
ties. In this context the study of the removal of the spuri-
ous state becomes important. The removal of the spuri-
ous state associated with collective rotational degrees of
freedom, for the case of HQQ, could be partially achieved
by .an adequate choice of the coupling constants.>* How-
ever, additional constraints are required in order to elimi-
nate spurious components from intrinsic RPA wave func-
tions.>!® Since the structure of self-consistent residual in-
teractions Hgg is obtained under global symmetry restor-
ing conditions, the spurious state would be automatically
decoupled from intrinsic excitations, as we shall show
later on. In order to determine the characteristic features
of each approximation we are going to show, in the fol-
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lowing subsections, some of the physical consequences of
the use of schematic and self-consistent model interac-
tions.

A. Multipole-multipole forces

Let us write the multipole-multipole Hamiltonian,
H v, in the quasiparticle representation. Following the
notation given in the Appendix, we have,

HMM=qu+HQQ ’ (1)

where H, is the unperturbed single quasiparticle term
defined by

H,,= 2 E;Blii;z) , )
iz
and Hgq is the quadrupole-quadrupole interaction
(u==1) given by
Hyo=— zlmxzle(m,z)Q(m,z’) . (3)
m,z,z
The index m takes the values m ==*1 and it denotes
linear combinations of two quasiparticle operators
A T(ik, mz), which are defined in the Appendix.
The RPA treatment of Hyyy, Eq. (1), can be per-
formed! introducing phonon operators defined by

Ciim)=1'S [¢,(ki,mz) 4 ik, mz)
ik,z

— ¢ (ki,mz) A (ik,mz)] (4)

and solving the RPA equation of motion
[Hyy, Tlm) 1=w,Tl(m) (5)

we can obtain. the energy w, of the vth correlated state
from the RPA secular equation’

(1—x()S,(m)(1—x(+)S,(p)—x*(—)S,(n)S,(p)=0,
(6)

where y'* are linear combinations of the isoscalar and
isovector coupling constants Y(£)=x(0)xx(1), see the
Appendix, and

(2) E;q*(ki,mz)
S()=4Y ——— N
i,k Eik —w,
where E; are quasiparticle pair energies, and g (ki,mz)
are the matrix elements of the quadrupole operator Q in
the quasiparticle basis.
In terms of these quantities we have, for the phonon
amplitudes,

N, (z)q (ki,mz)

vk ma) = e, (8)
(ki maz) = mN ,(z)q (ki,mz)
P e,

where

=172

v

N,(n)= S+ —=5(p)
a

v

’

2) E,; q2(ki,mz)
S, (2)=4Y ————5 9

2 232
ik (Ex—wy)

_ x(—)8,(p)
T X (s, ()

and N (p)=a,N (n).

The quantities S,(z) and S, (z) do not depend on m,
since g*(ki, +z)=q%ki,—z).! Thus, the m==+1 pho-
nons are degenerated for a given energy w,. However,
the construction of the intrinsic states requires both types
of phonons. The linearized RPA Hamiltonian, Hgp,,
can be written as

Hypa = const+ 3 w, [l(m)T (m) . (10)

m,v

As has been pointed out in Ref. 3, among the solutions of
(5) there is a zero-energy solution: The spurious 17 state,
which is generated by the action of the angular momen-
tum operator, J, on the unperturbed ground state. The
condition

[Hym,J(m)]=0, an

with J(m)=J, —mJ _, would thus imply that the spuri-
ous mode will occur at zero energy and that a global rota-
tional invariance will be satisfied by the schematic model
Hamiltonian Hy;,. However, since H, has been intro-
duced like a non-self-consistent mean field which is not
rotational invariant and because the model residual
quadrupole-quadrupole interaction is also non-self-
consistent and noninvariant under rotations, condition
(11) will be approximately fulfilled. Consequently a rela-
tionship between matrix elements of the quadrupole and
angular momentum operators should be established.!
This relationship is exactly fulfilled for the case of
Nilsson’s basis,” but it has not been verified for axially
symmetric deformed single-particle potentials'’ and we
do not have an aprioristic argument to support it.

However, condition (11) has been replaced!~> by the
secular equation (6) for the w,=0 case, which can be
written as

1—x(+)(Sp(n)+Sy(p))
+OHH)—xH—=)S(n)Sy(p)=0, (12)

where S,(z) is given by (7) with w,=0.

This choice of the coupling constants will give us a
spurious 1 state at zero energy. The question is how
good, or reliable, this procedure would be if one is deal-
ing with intrinsic wave functions. The answer to this
question can be formulated in terms of the conmutator
between the angular momentum and the phonon opera-
tors

2w, N (z)q (ki,mz)j(ki,mz)

2 ’
v

[J(m),Tim) =3 (13)

2
ikz E;—w
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where j(ki,mz) are matrix elements of the angular
momentum operator, J(m), in the quasiparticle basis.
The overlap (13) measures the amount of spuriosity car-
ried by intrinsic states. It should also be noted that (13)
does not vanishes for values of w,5£0, as it should if the
spurious 17 state would be effectively decoupled from the
spectrum of intrinsic 17 excitations. If we now use Egs.
(11) and (12) to determine the relationship between ma-
trix elements of J and Q, we can write for it

(i, mz)= E; j(ki,mz) 14
q(ki,mz)=m F(m.2) (14)
where

F(m,z=")=x(£)E(m,n)+x(F)E(m,p) , (15)

with E(m,z)=4m 3P q (ki,mz)j (ki,mz).

We can therefore argue that condition (11) does not
guarantee a complete decoupling between spurious and
intrinsic 17 states although it fixes the spurious 17 state
at zero energy. This shortcoming could be due to the
lack of self-consistency exhibited by the multipole-
multipole model interaction, Hqq. A possible solution to
this problem has been attempted to in Refs. 16 and 17
where an additional term of the form

Hrotation vibration = 2 X( m)J (m)( FI(m )—m rv(m ))

vim

has been introduced in order to minimize the overlap be-
tween rotational and vibrational degrees of freedom.

B. Self-consistent residual interaction

The use of effective, self-consistent, and symmetry re-
storing interactions for the description of intrinsic excita-
tions in deformed systems has been proposed, for the case
of nuclear rotations, by Baznat et al.,’ and recently ex-
tended to rotations in gauge space.'? The starting point
is the definition of an effective Hamiltonian which is writ-
ten as

Hsc=H,tHg , (16)

where H, is the quasiparticle Hamiltonian (2) and Hgg
is a symmetry restoring term. The structure of this term
is obtained from the conmutator

[Hp,J(m)] . (17)

This conmutator has the structure of a one-body operator
in the quasiparticle basis, namely, it includes scattering
terms which are proportional to B, and pair creation (an-
nihilation) terms which are proportional to AT(4). In
terms of (17), we can define Hgg by

Hst_%Z[qu’J(m)][qu’J(m)] s (18)

where the coupling constant y is determined from the
condition’
[Hgc,J (m)]=0, (19)

which is satisfied by construction, provided

y=4({J(m),[Hp,d (m)]}) =16 3 Ey jXki,mz) . (20)
ikz

The coupling constant ¥, is independent of m, since

Jj2(ki, +z)=j%(ki,—z). The spectrum of intrinsic excita-

tions associated to Hgc can be obtained after performing

a RPA linearization in a new phonon basis, I~“I,(m ), name-

ly:

[Hye, Tlm) 1=, Tl(m) (21)
with
Flim)=1 % [§,(ki,mz) 4 (ik,mz)
—¢,(ki,mz) A (ik,mz)] .

The forward and backward-going amplitudes, ¥,(ki,mz)
and ¢, (ki,mz), can be written as

. 8mE; N3Cj(ki,mz)

Bk, mz) = ——k v ,

'V(Eik - wv )
8E, N5Cj (ki,mz)

1

Y(Eik +lT)V)

b (ki,mz)=
where

SC
NJ-=

and
, E} jYki,mz)
P,=47 3
ikz (Eik wv)

The corresponding RPA dispersion relation can be writ-
ten as

y=4P, , (23)
where
E}, j*(ki,mz)

Pv=42
ikz El?i(_w%’

C. Comparison between the RPA solutions of Hyy and Hgc

In order to establish a correspondence between both
Hamiltonians, Hy and Hgc, we can perform a compar-
ison between their RPA wave functions, which leads to
the following equations:

q(ki,mz)=

zz'

172
] E, j(ki,mz), (24)

and, consequently, from Egs. (14) and (24), we have

Y X2z
—"—2 .

Therefore Eq. (25) implies that the RPA structure of both
Hamiltonians, Hpyy and Hge, will coincide, provided

FXm,z)= (25)
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F*mz)=const. The solutions for F*(mz), obtained from
the RPA treatment of Hy, with the coupling constants
(%) adjusted in order to get the spurious 17 state at
zero energy, have been found to differ from a constant
value.'® It means that, for the above mentioned
equivalence to be valid, we have to force Eq. (24) to be
fulfilled. Clearly it will not be valid for a realistic basis.

The reason for this discrepancy between both Hamil-
tonians lies in the fact that a zero-energy mode generated
by Hpyy is not orthogonal to intrinsic states Tl(m). This
is not the case for Hgc, where the orthogonality condi-
tion (13) for the new phonon operators I'|(m) is automat-
ically fulfilled; as it can be verified straightforwardly.'®
Moreover, from Eq. (20), we can see that all the informa-
tion related to the restoring symmetry mechanism is con-
tained, for Hgqc, at the level of the single quasiparticle
basis, by the matrix elements of J, which is the operator
associated with the broken symmetry.

In order to illustrate the above mentioned differences
between both methods let us now calculate the rotational
contribution by extracting the w, =0 term from the cor-
responding RPA Hamiltonians.

For the case of the RPA solution of Hy, we have ob-
tained, from Egs. (8)-(10) and (14)

2

—_—J. (26)
(Soln)+Sy(p))

S (w,Lim)T(m)),, o=

It should be noted that this equation has been obtained
under strongly limitative conditions, namely, (1) the iso-
vector channel of the quadrupole force has to be switched
off, (2) the factors F(m,z), Eq. (15), should be fixed at the
arbitrary value F(m,z)=1, with the adequate dimen-
sions, as imposed by the dispersion relation Eq. (12), and
(3) the relationship, Eq. (14), should be exactly fulfilled.

At this point it should be noted that conditions (1)-(3)
cannot be avoided in dealing with the separation of a ro-
tational term from the RPA spectrum but they are not
satisfied for an arbitrary deformed mean field, except for
Nilsson’s one.’

The corresponding moment of inertia can be written as

Y
=3 J————(’;’"’Z) . @7
ikz ik

For the second case, the RPA treatment of Hy. gives
the result

> (w‘,I‘:',(m)I‘V(m))wv=0=—“J2 , (28)

without the requirement of additional conditions, and the
associated moment of inertia coincides with the above
given value, Eq. (27).

In summary, we are dealing with two different ap-
proaches. In the first, described in Sec. II A, we have
started from a nonsymmetry invariant representation of
the quasiparticle term, i.e., Hg,, in an axially symmetric
deformed Woods-Saxon field, and from a model
multipole-multipole residual interaction, Hyo. The treat-
ment of this Hamiltonian in the RPA basis determines a
spurious state at zero energy and a set of intrinsic excita-

tions, which are not completely decoupled from the
spurious state. In the second, described in Sec. II B we
have started from the same H,, and constructed an
effective, symmetry restoring, interaction that in the
RPA treatment gives an intrinsic spectrum which is
decoupled from the spurious state.

While the first method does require the validity of a re-
lationship between matrix elements of the multipole
operators and those of the angular momentum operator,
which in general will not be fulfilled for any given de-
formed single particle or quasiparticle mean field; the
second one does not require this sort of relationship and
it is able to produce effective residual interactions which
approximately restore, at the RPA level, the symmetry
broken by the deformed quasiparticle mean field. In
some respect the second method could be representative
of a more general technique to restore symmetries.'3

In Sec. III we are going to describe some other
differences between both methods, particularly, reflected
upon transition probabilities.

III. RESULTS AND DISCUSSION

In the previous section we have already pointed out
some of the major differences between the solutions for
Hyy and Hge, the multipole-multipole and self-
consistent Hamiltonians, respectively. A numerical com-
parison between the spectrum of intrinsic excitations for
both Hamiltonians will be presented somewhere else!®
and herein we shall discuss, analytically, some conse-
quences of both formalisms.

A. M1 transition probabilities

As pointed out in Ref. 1, rotationally invariant wave
functions, with K™=17, can be written as

iIMK"=1+,v)
2 +1 |
= 3277.2 m§:t [ﬂ{ul(W)_m(“)Iﬂﬂl_l(w)]
X(%)‘/Z[Fi(m:+)+ml‘:’,(m=~)]|o) : (29)

with w,5£0, based on the realization of the unified mod-
el for T'f(m =+) and T'l(m = —) as members of an in-
trinsic time reversal pair. The tensor components of the
intrinsic M 1 operators can be written as

M'(M1,u)=(3/4m)"*uym (30)

o

where py is the Bohr magneton and m,, are the tensor

components of the magnetic dipole operator,
p=3[g,(2)j(2)+ g, (2)—g,(2)8(2)] . 31
z
After some algebra, we get, for the associated reduced
transition probabilities in the laboratory frame, the result
B(M1,v)1=(3/4m)uim? , (32)
with



1554

¥ ki, —z)+ ¢, (ki, —z)

m,=>m(ki,z)\+ . - 33)
kziz N 1/}v(klr —-z)+¢v(kl, —2z) .

where m . are the matrix elements of the tensor com-
ponents of u in the quasiparticle basis, and the upper
(lower) RPA amplitudes are associated to Hpyw(Hgc),
more explicitly:

2w,
m,= > m (ki,z)q (ki,—2z)N (z)—— , (34)
kiz Ej—w;
for the case of Hypy, and
16N3¢ o E,
mv:_2m+(ki’z)j(ki’—2) 2 R (35)
kiz Y Eik_wv

for the case of Hgc, respectively. Equations (34) and (35)
will, of course, not give the same result unless the rela-
tionship between g (ki,mz) and j (ki,mz), Eq. (14), would
be exactly fulfilled. It means that the main differences be-
tween both formalisms will be reflected upon the transi-
tion probabilities. To a certain degree these differences
could be attributed to the noncomplete removal of the
spurious state from the intrinsic spectra of Hyg. In or-
der to set up a limit for them it would be necessary to
perform systematic numerical calculations for both Ham-
iltonians,'° but it becomes evident that these differences
will be particularly noticeable for K"=1" states dom-
inated by few two-quasiparticle configurations. From the
results of Ref. 1 it appears to be the case, in view of the
weak collectivity associated to low-lying K”™=17 states
in rare-earth nuclei.

B. Results for a simplified model

The above discussed formalism can be illustrated for
the case of a simplified model Hamiltonian.!* We shall
assume that the deformed single-particle Hamiltonian
H, represents a system of 20} particles distributed in a

=2 multiplet, namely

split j
Hy,=e3 (a fa,+alay —blb,—blby ), (36)

where the energy spacing e(m;==%3)—e(m;==11) is
fixed at the value 2e and the number of available single-
_ particle states is twice the number of particles. The lower
levels (m; =) are degenerate and they are fully occu-
pied while the upper levels (m;==3) are also degenerate
and empty. The operators a,(a,) create (anmhllate) a
particle in a m; =i state and the operators b! +(b,) create
(annihilate) a partlcle in a m;= state; a reversed state
(m;=—3 and m;= — 1) is denoted with ¥. Various prop-
erties associated with nuclear rotations in this model
space have been described in terms of group theoretical
classifications by Krumlinde and Szymanski.!> As it has
been shown in Ref. 15, rotational effects can be intro-
duced, in this model space, by defining a rotational term
of the form aI?/2, where a is inverse proportional to the
moment of inertia. In order to show that the formalism
of Sec. II B correctly decouples rotational and intrinsic
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excitations we shall apply it to the Hamiltonian (36). The
angular momentum operators J . and J_ can be written
as

J=3)""23 alp,—blay)+23 b5 ,

37
_=)".

With these expressions, we can define J(m)=

J, —mJ _ and calculate the conmutator of Eq. (17); the
result is
[Hy,,J (m)]=2e(6)2 [ 3 (AT (v,m)+m A (v,m))
(38)
where the pair operators
A'v,m)=2)""2alp,+malb. ),
(39)

A(v,m)=(A4T(v,mN",

correspond, in this model space, to those of the Appen-
dix. From Eq. (37) we have, for the matrix elements
j(v,m), the value j(v,m)=(6)!”2. We can now construct
the Hamiltonian (16), from Eq. (38). The result is
Hy=H,—C, 3 A'(v,m)4(0,m)

vom
—(C,/2) S, m(At(v,m) 4 (w,m)

vom

+ A(v,m)A(w,m))+ const. ,
(40)

with C,, =g /Q; it has been obtained from the value of y
fixed by Eq. (20).

The RPA treatment of Hgc; Egs. (21)-(23), allows for
the following definitions of forward and backward-going
amplitudes,

- C,A(m)
Am)y=——-—,
(2e—m,)
41)
_ mC, A (m)
Bom)=" T
(2e+wm,)
where  A,(m)=1/C, (@,P, W2 and  P,=2eQ/
(42— w2)2.

The dlspersion relation which determines the frequen-
cies i, reads

1=C,P,, (42)

where P, =4eQ /(462 —2).

Due to the two level structure of the single-particle
model basis Eq. (42) has only one solution at w, =0. The
intrinsic excitations are, in this model, represented by un-
perturbed two quasiparticle excitations.

We can now extract the i, =0 contribution from the

RPA Hamiltonian )
Hgpa= 3 o, Flm)Tm) , (43)
m,v
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and the result is

Hyppa=(/2Q) S [247(v,m) 4 (w0, m)

—m(AY(v,m) AT (0,m)
+A(v,m)A (w,m))]

w, Tl (m)T (m) . (44)
mv£0

The first term can also be written as

Hgpa(@,=0)=—(e/12Q) S mJ*(m) , (45)

m

and it is the rotational term of Ref. 15, with the inverse
moment of inertia a =2¢/3(). The above described re-
sults show that the method of Sec. II B enables us to ex-
tract, from the deformed single particle Hamiltonian, a
rotational term with a correct value for the moment of
inertia.

We can now turn to the case of the quadrupole-
quadrupole interaction. Since the single-particle basis
defined by Eq. (36) could be interpreted as an extreme
Nilsson’s case it will be enough to show that the RPA
treatment of Hyy, yields the results which have been
presented above. To start with let us write the quadru-
pole operator in the form

Q(m)=3 qgv,m) (A (v,m)+m A (v,m)), (46)

with it the Hamiltonian (1) takes the form

Hyy=H,—K(©0) 3 m(AT(v,m) 4 (w,m)

+A(vyvm)A(w,m) _
+24%(v,m)A(0,m)), @7

with K (0)=¢/24.

The comparison of Egs. (40) and (47) shows that both
Hamiltonians coincide, since 2K (0)=C,. Concerning
the relationships between the matrix elements g (v,m)
and j(v,m) we have from Eqgs. (14) and (15) that
F(m)q(v,m)=m2ej(v,m) which implies g*(v,m)=m?
[or g(v,m)=—m]. Since Eq. (14) is, for this very crude
single-particle space, exactly fulfilled both Hamiltonians
(40) and (47) yield, at the RPA level of approximation,
the same result. Clearly, for any deformed single-particle
mean field or for a case with neutron excess, calculations
based on quadrupole-quadrupole interactions will not
give the correct separation of rotational terms.!’

IV. CONCLUSIONS

In this paper we have shown that the use of multipole-
multipole interactions, of the spin-independent quadru-
pole type for the description of K"=1" states in de-
formed basis, requires the fulfillment of proportion condi-
tions between matrix elements of the quadrupole and an-
gular momentum operators. These conditions are not au-
tomatically fulfilled for any deformed single-particle field
and the choice of isoscalar and isovector coupling con-
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stants under global rotational invariance conditions does
not guarantee the decoupling between spurious and in-
trinsic K"=1" excitations. On the other hand, we have
shown that a symmetry restoring technique allows for the
complete decoupling from the intrinsic spectrum of the
spurious 17 state generated by the angular momentum
operator. The structure of the effective residual interac-
tion, generated in this fashion, is similar but not
equivalent to the structure of the model multipole-
multipole force.

We think that these results could be of some
significance concerning the theoretical interpretation of
the available data about M1 transitions in deformed sys-
tems.
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APPENDIX

The expression of the quadrupole operator Q in the
quasiparticle basis requires the definition of the following
two quasiparticle operators:

Aik,mz)=(1)"Xala —mala}), ,
-t 172 1 1 Tof (A
A'(ik,mz)=(]) agat+maa;), ,

in terms of which we can write
(z)
Q(m,2)="3 q(ki,mz)( A (ik,mz)+m 4 (ik,mz)) , (A2)
ik ‘
where g (ki,mz) are matrix elements of the quadrupole
operator

Q51 (m,2)=(1)(Q1,(2)+mQ,,(2)) , (A3)

in the quasiparticle basis. The linear combination (A3),
for a given value of z, defines the two intrinsic operators
associated with a K™=17 state, for m =+1 or —1, re-
spectively. For the one quasiparticle operator B we have

Blii;z)=(ala; +ala;r), . (A4)
The index i (k) reads for all the quantum numbers which
are needed to specify a quasiparticle state in a deformed
central field, which we assume to be an axially symmetric
Woods-Saxon potential;!! single quasiparticle energies are
denoted by E;; the operators B and Q are defined in terms
of quasiparticle creation and annihilation operators; the
index z reads for the type of particles, namely, neutrons
(z =n) and protons (z =p) and x,,- are coupling constants
associated with the product operator Q(m,z)Q (m,z’).
The index m takes the values m ==%1 and it denotes
linear combinations of two quasiparticle operators
4% ik,mz).
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For the sake of simplicity, we have omitted in Eq. (A2)
configurations of the form (ik), where k denotes a re-
versed state, which are obtained by reversing one of the
quasiparticle states included in a given pair (ik) and
changing A'(ik,mz) and A (ik,mz) by 4 '(ik,mz) and
A(ik,mz), respectively. In the present notation these
configurations are implicitly included in every sum run-
ning over pairs (ik).

Following the notation of Ref. 1 we can define isoscalar
(7=0) and isovector (r=1) components of the quadrupole

operator, namely

Q(m,7)=Q(m,n)+(—=)"Q(m,p) , (A5)

and in this representation the quadrupole-quadrupole
term Hqq [cf., Eq. (3)] can be written as

Hoo=—13 x(1Q%(m,1Q(m,7) , (A6)

where X(7)= X, + (= )X ,p-
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