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Symmetry-restoring treatment of the pairing Hamiltonian in the quasiparticle representation
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In analogy with a symmetry-restoring treatment of rotational invariance for deformed Hamiltoni-
ans, we discuss the case of a separable monopole pairing Hamiltonian in the quasiparticle basis.
The results are compared to estimates of a conventional treatment based on the quasiparticle ran-

dom phase approximation.

I. INTRODUCTION

The method of Marshalek and Weneser' was used by
Pyatov et al.®?® to reconstruct, in the boson approxima-
tion, the rotational invariance of deformed average fields.
It has also been shown?? that general equations can be
obtained which relate the single-particle matrix elements
of the angular momentum operator with those of the
multipole operator which generates a rotational symme-
try restoring effective interaction. These equations are
valid for any average field and are invariant against turn-
ing on residual interactions.>? In this context the rota-
tional invariance of the Hamiltonian is violated by the
adoption of a deformed, oriented in space, single-particle
average field. The rotational invariance must be restored,
in principle, by residual interactions which will allow for
rotations of the average field thus providing a rotational
energy. Similar considerations apply for the case of the
pairing Hamiltonian, where the adoption of a quasiparti-
cle basis, with the subsequent “orientation” in the sense
of particle number, violates particle number conserva-
tion. In both cases a collective rotation in normal or in
gauge space, respectively, would result from the oc-
currence of a zero energy mode. This zero energy mode
is to be associated with the generator of the broken sym-
metry, i.e., the angular momentum or the number opera-
tor, for rotational or pairing degrees of freedom, respec-
tively.

The coupling of this zero energy mode with intrinsic
modes of the system has been investigated in detail*> by
using boson mapping techniques and particle number
conserving versions of the BCS formalism.

It is the aim of the present paper to show that the
method of Refs. 2 and 3 can also be applied for the case
of the pairing Hamiltonian. The equivalence between the
above-mentioned cases of broken symmetries is shown in
Sec. II where an effective, number symmetry restoring,
interaction is constructed from the commutator of the
quasiparticle Hamiltonian, the ‘“deformed” average field,
and the two quasiparticle components of the number
operator. The random phase approximation (RPA) treat-
ment of the resulting Hamiltonian and the contribution
of the zero energy mode, represented by a quadratic term
in the collective number variable, are discussed in Sec. II
together with the corresponding mapping of collective
and intrinsic excitations in terms of canonically conjugate
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operators, like the ones introduced by Marshalek and
Weneser.! Numerical applications of the formalism are

discussed in Sec. III. Some conclusions are drawn in Sec.
IV.

II. FORMALISM

A. Conventional BCS plus RPA treatment
of the pairing Hamiltonian

In order to set up the formalism, we shall briefly dis-
cuss in this section the main features of the BCS treat-
ment of the pairing Hamiltonian; namely, the appearance
of a zero energy mode in addition to the nonadiabatic
RPA modes. The problem is by now a well-known one
and it has been treated in detail in Ref. 6. To start with,
let us write the following pairing Hamiltonian:

ajma]maj,majm ,
jj'ymm'>0

where €; are single-particle energies, G is the pairing
force constant, and aj,,(a;, ) are creation (annihilation)
operators of fermions in the single-particle orbits

=(Nlj); a,, are the usual time reversed operators
a; =(—=Y""a;_,. The BCS transformation

ajtn U, v a;m

a —v, U, , ()

to the quasiparticle basis a;m(aj,,,) leads to the
transformed Hamiltonian

H=H,+H +H 40 +H; +H, . 3)

The terms on the right-hand side (rhs) of Eq. (3) are
defined by

Hy=—(A%/G)+32Q,V}(E,—GV}/2),
J
H“:EEjﬁj ,

Hpa0= 2 PP +s (PTPL PP, @)
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where A is the pairing gap, E; are quasiparticle energies,

and the factors Q T Sijs Mjrs and g, are defined by

Q=i+
ry=—GUM:+V}V]),
2y/2 2772
—(G /UMW +VIUE), 5)
2 2
—=(G/2(U*=VD)g;
9;=2U;V;,

respectively. The single-particle energies €; are defined as
‘E =€ .
T

—A, A being the Lagrange multiplier which
guarantees the ‘“‘on the average” conservatlon of the
number of particles, and the operators N pt i and P are
given by

“_‘za/m jm

=2 ajm jm ’ 6)

m >0
=(13})T :
respectively These operators obey conmutation relations
[ ] 8,(Q; N ),
[ j'Pj']Zij'ZPj ,

@)

which follow from the SU(2) structure of the operators.’
The collective solutions of the Hamiltonian

Hppa(BCS)=H |, +H 3 40 &)
can be obtained by solving the RPA equation of motion
[Hgpa(BCS), I 1=w,IT, 9)
where
j
is the operator which creates a vibrational mode of ener-
gy w,.
Equation (9) leads to the secular equation®
1-GS,, —-Gw,S,,
Det —Gw,S;, 1—GSy =0. (n)
The quantities S which appear in Eq. (11) are defined by
Q,k}2E;
Sllzz _1_2; 12 ’
s Lk (12)
? _§ 4E}—w?’
Q2E;
S — Tl
- ? 4AE}—w?

where k; = sz-— ij.
Equation (11) admits a solution w, =0, since for it
S5, | w,_,=(1/G) and the BCS gap equatlon is recovered.

In thls case the amplitudes A;, and u;, diverge as®

Ay
lim =(w,)" "2 , (13)
w,—0 :u’jv w_ =0

with
A A (a,k.—b,)

M QE—w,) T
Ay (a k;,+b,)
:u"vzwav + v’y
M(2Ej+w,) /
aVZGw‘,Slz N
b,=—14+GSy, ,
and
aki—b, |° [ak;+b, |?

EQ

]—1/2

Therefore, among the physical nonzero energy solutions
of Eq. (11), intrinsic vibrational modes, we obtain a zero
energy mode of infinite amplitude, i.e., a collective rota-
tional mode. In the present case the appearance of this
mode results from the choice of the quasiparticle average
field H;, which breaks the particle number symmetry.
The structure of this zero energy mode is to be related to
the action of the two quasiparticle, 2¢gp, terms of the
number operator upon the BCS ground state. In fact, we
have for

ﬁquzij(ﬁj_.'ﬁ/) )
J

—w, 2E;+w,

that
[H“,ﬁqu]io ’ (14)

which implies that the above-mentioned conditions of
dynamical symmetry breaking are fulfilled once a formal
analogy is established between the deformed average field
and the angular momentum, for the rotational case, and
H,, and qup, for the pairing case, respectively.

B. Symmetry restoring effective interaction

The spontaneous symmetry breaking, in this case
represented by the violation of the particle number con-
servation in the quasiparticle basis, manifests itself in the
appearance of a zero energy mode. In order to restore
this broken symmetry, additional terms should be added
to the Hamiltonian H ;. The structure of these terms has
been studied, among other methods, within the frame-
work of the quantization of systems with constraints,®
which is particularly suitable for perturbative treatments
of the coupling term H 3, of Eq. (3) within a nuclear field
theory.” Here we aim at a more restricted scope than that
of Ref. 8. Particularly, we would like to show the conse-
quences of the use of Pyatov’s method?? in dealing with
the construction of effective symmetry restoring interac-
tions for the pairing Hamiltonian. We start with the
evaluation of the conmutator

[H,,N,,1=203(PT—P)). (15)
J
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Next, we can introduce the effective Hamiltonian>*

Hg=H, +Hg, ,
with
Hy=7[Hy 1, Ny I'lH N1, (16)
where the coupling constant v is fixed by the condition
(O [[H,y, N5 1N, 110)=(1/27), (17)

where | 0) is the quasiparticle vacuum.

In this way H .4 is, by construction, a symmetry con-
serving Hamiltonian in the quasiparticle basis. Its struc-
ture is similar to that of Hgp, (BCS), Eq. (8), and it reads

Heﬂ'_H11+g2 ﬁj g +ﬁjﬁ;r)—g2(ﬁ;/\7\,+ﬁﬁ‘,) ,
i’ i

where g =4A%y for y = —G /16A?, as it is determined by
Eq. (17). The RPA treatment of H g can be performed in
the basis of phonon operators

M=, Pl-v,P). (19)
J
The corresponding RPA secular equation is
wif(w,)=0, (20)
where
fw,)=(G/2 )2 + 21
E;(4E; —w})

The amplitudes X, and Y}, are given by

AV
T 22)
AV
Y, =— QE,+w,)
with
< 8E,Q,

v

—-172
v 2 232 :
j (4Ej—w,,) ]

We can write H., Eq. (16), in the phonon basis
(T! T,) and extract from it the contribution to the en-
ergy due to the collective rotatlon hereby generated by
the one-phonon components of N 2gp- The result is

H g=const+ Sw,T vl"‘, . (23)

In order to show that the contribution to Eq. (23) from
the w, =0 mode is given by the rotational term generated
by ﬁqu, we shall introduce Marshalek and Weneser’s
transformation'

Po=(w,/2)VATI4+T,),

L,=—i2w,)"VuT!I-T,),

v

and, consequently, we have

l=w,)" 2P, +iw,/2)' 2L,
r,=[ThHt.

v v

(25)

The inversion of Eq. (19) and its expansion in terms
of Eq. (25) gives, for the pair creation (annihilation)
operators ﬁ; (ﬁj) of Eq. (6), the result

Pl=q,;30w,) "X+ Y,,)P,

+ilw,/2) X, — YL, ,
S (26)

and with them, the 2gp components of the number opera-
tor can be written as

Nop=3 [39,¢,(X,,+Y,,) |2/w,) P, . @7
v L

As expected, with transformatjon (24), H 4 reduces to

eﬁ—zz (Pl4will), (28)

finally, the contribution from w, =0 reads

Hg(w,=0)=1P3=(1/20)N } ,(v=0) (29)
where
g2 7!
/= |3+~ (30)
j EJ

is the corresponding moment of inertia associated to the
rotational pairing mode. Equation (30) has to be com-
pared with the value (1/X)pcs, rpa Obtained from the
conventional BCS plus RPA treatment; namely,

(1/X)pcs - rpa
[29 /E3] —2G [29 ik; /252]
2

- 31)
A? [29,/12}] (
j

Therefore, Eq. (23) is transformed in terms of the opera-
tors £, and P, into the form

Hg=(1/20N},(v=0)+13 (P24+wll?), (32)

v£0
which guarantees the explicit separation of a rotational
term, associated to the number operator, and a vibration-
al term, given by the intrinsic excitations with w 0.

It should be noted that Eq. (32) has been obtained from
the RPA treatment of the symmetry conserving Hamil-
tonian H 4 of Eq. (16). Since this H.4 has been construct-
ed in order to obey condition (17), it would be relevant
for our discussion to write it in terms of 7, and L,
which play the role of number and angle variables, re-
spectively.

The conmutator (15) reads

(H,,Ny,1=—iShL,, (33)
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with
2 2
>8E;Q;/(4E; —w3)

h,=a)2— ,
Y S8E;Q;/(4E} —w?)* |7
J

while H; can be written as

H]lzzevwﬁv?\)w+0vrjvzw ’ (34)

v

and for H 4 the corresponding expression is

Heﬂ'zzsvo)ﬁ)vf)w+(avm+yhvhw)st’Zw . (35)

In Egs. (34) and (35), €,,, and o, are given by
=0, w, )V *SOQE(X;,+ Y )X, +Y,,),
j

(36)
oo=ww, )" *SYE (X, ~Y,)X;,—Y;,),

jo
J
respectively. The coefficients for ’f-’é and 23 in (35) are
straightforwardly obtained; namely,

800:% >
(37
4 64A2

G+7’ G2

ow+rh= [zaj/E}]*' =0,
J

for y = —G /16A%.

It means that the divergency contained in H,; is can-
celed out by the divergency contained in H,,,, both
represented by terms proportional to £ 3 in Eq. (35).

The coefficients for nonzero energies w,, given by Egs.
(22) and (36), lead to the diagonal form of Eq. (32), as ex-
pected. In other words, the orientation in number, or
gauge, space introduced in H,; is removed by H,,.
Consequently, the symmetry restoring term H,, could
be interpreted as a quadratic form in the angle variable
L, as it has been already shown by the result of Eq. (33).

In consequence, we have shown that arguments which
have been used to reconstruct the rotational invariance of
deformed axially symmetric average fields>>'® can also
be used for the pairing Hamiltonian. We remind the
reader that the treatment of the rotational case has been
discussed'® in terms of the relationship between the ma-
trix elements of the angular momentum and of the quad-
rupole operators, once a global rotational invariance was

TABLE 1. Intrinsic RPA energies. The roots of the secular
equations corresponding to Hgpa (BCS) and H s are shown for
the case of N =14 particles in the single-particle basis described
in the text.

v w, [Hgpa(BCS)] (MeV) w, (Hg) (MeV)
1 2.841 2.873
2 2.989 3.303
3 3.571 3.811
4 4.032 4.071

TABLE II. Overlaps between RPA wave functions. The
second column shows the overlaps between intrinsic states be-
longing to Hgps (BCS) and H 4.

v [Hrpa(BCS), H] (%)
1 91
2 79
3 83
4 95

imposed. For this reason, in Ref. 10 H,=[H,,
J ]T[Hq ,J] was employed, rather than a more conven-
tional quadrupole-quadrupole interaction.

In order to complete the analogy with the pairing case,
we shall show that the spectrum of nonzero excitations
given by Hpypa (BCS) of Eq. (8) and H 4 of Eq. (32) are
comparable. This is shown in Sec. III, where results of
calculations based on both formalisms are discussed.

III. RESULTS AND DISCUSSION

From the results of the above-developed formalism, we
can conclude that, like in the case of space rotations, we
can either adopt a model residual interaction or construct
it directly from a symmetry restoring treatment of the de-
formed average field. The case of the pairing force Ham-
iltonian is a particularly interesting one because we know
beforehand the structure of the residual interaction;
namely, H ,;, 40,(BCS), once H,; has been chosen as a
deformed single quasiparticle field. Therefore, the sym-
metry restoring procedure of Sec. II, via H ¢, should pro-
vide a residual two quasiparticle interaction with similar

v=1 v=2
o.o_d,,f n,a.:ED%Ua[?Da
o
© 10|
)=
= 1.0
a = =
5 v=3 v
U
10

J d5/2.972 sy2 2932 ds/2 9772 S172 b2 932
Configurations

FIG. 1. RPA wave functions. Forward-going RPA ampli-
tudes A;,, and X;, for intrinsic excitations evaluated with
Hgpa(BCS), open histogram, and H., dashed histogram, are
shown. The index v, like in the tables, indicates the associated
state with energy w,. The two quasiparticle configurations are
indicated at the bottom.
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TABLE III. Matrix elements, |{v|T]0)|? for two-
particle transfer. The matrix elements of the transfer operator
T=02)"V B> j[aja]]g, connecting zero and one phonon states,
are evaluated with the RPA wave functions corresponding to
Hpgpa(BCS) and H 4, respectively.

v | {v|T]0)|*Hgpa(BCS) | {(v|T|0)|*Hq
1 0.216 0.059
2 0.185 0.168
3 0.010 0.054
4 0.206 0.335
Total 0.617 0.616

effects upon the RPA intrinsic spectrum, as for H ,;_, 49),
but free of collective contributions induced by the num-
ber operator. To show it we have performed calculations
for a system of 14 particles distributed in the single-
particle states j =(Nlj)=4ds,,, 48,5, 45,2, Shy, 5, and
4d;,,, with energies fixed at the values €;=0.0, 0.8, 2.40,
2.50, and 2.80 MeV, respectively. This model space cor-
responds to shell model orbits above the N =50 closed
shell and the single-particle energy spacing has been tak-
en from Ref. 11. We have determined BCS quasiparticle
energies E; and occupation numbers U; and V; for
G =0.22 MeV. For this coupling constant we have ob-
tained, for the pairing gap, the value A=1.42 MeV.
Next we have solved RPA dispersion relations for
Hygpa(BCS), Eq. (11), and for H.4, Eq. (20). The results
for the intrinsic RPA energies are shown in Table I. The
results of both approximations do not differ much al-
though roots corresponding to H.; are slightly shifted
upwards. Forward-going amplitudes of intrinsic,
nonzero energy modes for both cases are shown in Fig. 1.
The dominant components of the first three states, for
H_;, have opposite phase with respect to those of
Hpgpa(BCS), and they are in phase for the last state.
Some differences could be observed concerning absolute
values of the amplitudes of the states shown in Fig. 1.
Their overlaps are shown in Table II. In order to esti-
mate the effect of these differences, in magnitude and in

phase, upon a physical observable, we have calculated
matrix elements for two-particle transfer processes con-
necting the RPA vacuum with one-phonon states, in both
approximations. The results are shown in Table III. Al-
though some differences are observed concerning the
population of individual states, the strengths shown in
Table III closely agree for both methods. Finally, as an
additional test of the method, we have calculated the
quantities (1/X) and (1/X)pcs, rpa» Of Egs. (30) and (31);
their values have been found to be of the order of 0.155
and 0.158 MeV, respectively.

IV. CONCLUSIONS

We have shown that the symmetry restoring procedure
developed by Pyatov et al.,>3 for axially symmetric de-
formed single-particle fields, can also be applied to the
case of the pairing Hamiltonian treated in the quasiparti-
cle basis. The analogy between orientations in normal
space and in gauge or number space, means between de-
formed rotational noninvariant single-particle fields and
number nonconserving quasiparticle fields, enable us to
construct symmetry restoring effective interactions. The
overall agreement which has been obtained for the intrin-
sic two quasiparticle modes, both with the conventional
Hgpa(BCS) and with H.4, shows that the zero energy
mode can be unambiguously removed.

Finally, we should also note that the symmetry restor-
ing procedure is valid for only one sector of the original
Hamiltonian; namely, Hyp, (BCS). The coupling terms
between rotational and vibrational modes, which in the
original BCS Hamiltonian are of the form H 3, still have
to be treated, eventually, in the form which is described
in'? or by more involved techniques.” Work is in pro-
gress concerning this problem.'3

ACKNOWLEDGMENTS

This work was supported in part by the Consejo Na-
cional de Investigaciones Cientificas y Tecnicas (CONI-
CET), Argentina; the authors are fellows of the CONI-
CET, Argentina. We thank Professor A. Zuker for useful
discussions.

IE. R. Marshalek and J. Weneser, Ann. Phys. (NY) 53, 569
(1969).

2N. I. Pyatov and M. I. Chernei, Sov. J. Nucl. Phys. 16, 514
(1973) [Yad. Fiz. 16, 931 (1972)].

3M. I. Baznat and N. L. Pyatov, Sov. J. Nucl. Phys. 21, 365
(1975) [Yad. Fiz. 21, 708 (1975)].

4T. Suzuki and K. Matsuyanagi, Prog. Theor. Phys. 56, 1156
(1976).

5T. Suzuki, M. Fuyuki, and K. Matsuyanagi, Prog. Theor. Phys.
61, 1682 (1979); 62, 690 (1979); 65, 1667 (1981).

6D. R.Besand R. A. Broglia, Nucl. Phys. 80, 289 (1966).

3. Hogaasen, Nucl. Phys. 28, 358 (1961).

8V. Alessandrini, D. R. Bes, and C.-Machet, Nucl. Phys. B142,
489 (1978).

9V. Alessandrini, D. R. Bes, O. Civitarese, and M. T. Mehr,
Phys. Lett. 148B, 395 (1984).

10R. Nojarov, A. Faessler, and O. Civitarese, Phys. Lett. B 183,
122 (1987).

IR, A. Uher and R. A. Sorensen, Nucl. Phys. 86, 1 (1966).

12A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,
Reading, Mass., 1975), Vol. II, p. 392-398.

130. Civitarese and M. C. Licciardo (unpublished).



