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A systematic study of low-lying K™=1" states and M1 transitions has been performed for the de-
formed nuclei **Sm, 1°°Gd, '**Gd %Dy, '%®Er, and '7*Yb within the framework of the quasiparticle
random phase approximation in axially symmetric deformed Woods-Saxon potentials. The model
Hamiltonian includes a separable quadrupole-quadrupole spin-independent residual interaction. The
theoretical results for 0" — 1% M1 transitions in the rare-earth nuclei studied are shown to be in
good agreement with the available experimental information.

I. INTRODUCTION

Experimental evidence about the existence of strong M1
transitions in deformed nuclei has been reported recent-
ly.!=* A detailed discussion of the experimental results
can be found in the review article by Richter.® The exper-
imental data, from (e,e’) reaction on deformed targets in
the mass region 150 < 4 < 174,'~2* showed the excitation
of K™=17 states with M1 transition strengths of the or-
der of 1—2 u% and energies of the order of 3—4 MeV.
Similar evidence about the existence of strong low-lying
M1 transitions, this time from photoexcitation reactions,
has been reported in Ref. 3.

The experimental information has been analyzed from
the theoretical side in a number of articles concerned with
different models.®~!° Some of the theoretical descriptions
have been already compared with the data in Refs. 1—4.
The theoretical descriptions, which have been proposed so
far, cover a variety of models, namely the following:

(i) Schematic two-level random-phase-approximation
(RPA) calculations of the quadrupole force in a Nilsson
potential.®

(ii) Deformed RPA calculations with the inclusion of
spin-dependent forces in a Woods-Saxon potential.’

(iii) A giant-angle dipole mode with single-particle
states obtained from the Skyrme interaction.®

(iv) A scissor mode, treated in a phenomenological
way® ™12 with a microscopic determination of the restoring
force.

(v) The interacting boson approximation (IBA).!*> An
earlier attempt to describe the physics of strong M1 tran-
sitions in deformed nuclei has been discussed in terms of a
two-rotor model.'* The picture which emerges from the
above mentioned calculations could be summarized in the
following:

(i) Strong M1 transitions can be expected even at the
level of uncorrelated two-quasiparticle states in a de-
formed potential.

(ii) The transitions are mainly of the isovector type.

(iii) They are described as orbital transitions, affected in
a minor sense by a spin-dependent interactions.

(iv) They can be produced by the rotation of protons
against neutrons.

Although the interest in the study of these transitions,
both experimental and theoretical, grew during the last
couple of years, favored by the new data, descriptions of
M1 transitions within the framework of microscopic
models were published some years ago.!’~!° Further-
more, the treatment of isovector vibrations within the
framework of the Bohr Hamiltonian was proposed even
earlier.?’

In dealing with the present work, we are motivated,
from the theoretical point of view, by the results of Refs.
6 and 7 and 9—12. As in the case of Ref. 6, our interest
lies in the fact that the Nilsson plus RPA estimates show
a large concentration of strength, even in the case of a
small basis. From the results of Ref. 7, a fragmentation
of the strength is observed when Woods-Saxon plus RPA
calculations are performed, and the predominant orbital
character of the transitions is also established. As for
Refs. 9—12, the results show a reasonable starting point
for a fully microscopical calculation. From the available
data we are also interested in a systematic study of the
transitions. We have performed, in the present work, a
systematic calculation of M1 transitions for several de-
formed nuclei. The calculations were performed at the
level of the QRPA (quasi-particle RPA) in axially sym-
metric Woods-Saxon potentials. Following the results of
Ref. 7, we have neglected spin-dependent interactions.
This approximation appears to be supported by the experi-
mental results.*

The theoretical details are presented in Sec. II; the re-
sults of the calculations for the cases of !’*Sm, !%°Gd,
138Gd, %Dy, ®Er, and '®*Yb are discussed in Sec. IIL
Some conclusions are drawn in Sec. IV.

II. FORMALISM

In this section we shall briefly describe the theoretical
concepts which are relevant for our calculations. To start,
we write the intrinsic Hamiltonian

H=Hp—7 3 X, QL6101 (1)
p,tz,tz'
where H,, denotes the unperturbed quasiparticle term,

Qz,,(tz) is the u component of the quadrupole tensor,
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R Nt
Ou(t)=3 riYy(#), (2)
k=1
and ¢, =p or n denotes either proton or neutron configura-
tions, N (¢,) being the corresponding number of particles.
The coupling constants for the neutron-neutron, proton-
proton, and neutron-proton channels are X, X,p, and X,
respectively. We shall further assume that X, =X ,,5X
Since we are interested in the K"=17 states, the projec-
tion p should be restricted to the values u==+1. The
Hamiltonian (1) can be written in the isoscalar and isovec-
tor channels by defining the linear combinations

@21('"’7):@21(’",“)-1-(—l)Tén(m,p) , (3a)
where
021(m, 1) =10 31(1,)+mDy(1,)] , (3b)

with m ==x1. The linear combinations (3b) for a given
value of ¢, define the two intrinsic operators associated
with a K™=17 state, while the isoscalar, =0, and iso-
vector, 7= 1, operators (3a) define the in- and out-of-phase
motion of neutrons and protons, respectively. The index
m could be related to the properties of the operators (3b)
under time-reversal transformations. In this representa-
tion, the Hamiltonian (1) takes the form

H=qu—%2)((r)é Ytm,7)0(m,7) , (4)

where X(7)=Xp,+(—1)"X,,. Since we have restricted the
angular momentum projection u to the value |[u | =1, we
have performed in (4) the sum over p and have, for the
sake of convenience, omitted this subindex as well as the
subindex 2 in the quadrupole operators.

We have to transform, consequently, the quadrupole-
quadrupole term of (4) to the quasiparticle basis. We
therefore have

Ni(t,)
Olm,t,)= > {q(ki,mtz)[AT(ik,mtz)—}—mA(ik,mtz)]
k,i
+q(ki,mt,)[4 (ik,mt,) +mA(ik,mt,)]} ,
(5)
where
q(ki,mtz)——%z(k 1 Om,1,) | ) Uulty) o
q(ki,mt —\—/l_g(k | O(m,t,) [ i)Y Upi(t,)
and
AT(ik,mtz)=%2(alia}; majag), ) ,
(7)
T(zk mt,) \/i a;:a;r-ﬁ—ma;taj)(, ).

The quantities Uy;(t,) are given by

Upi(t)=(UVi+ UiVi),) » ®

in terms of the BCS occupation numbers U and V; a}:
(ar) are the quasiparticle creation (annihilation) opera-
tors. The states k (k) are the one-particle eigenstates of
an axially symmetric Woods-Saxon potential, with posi-
tive (negative) intrinsic angular momentum projection {1,
(—Qk) expanded in a cylindrical basis. The pair opera-
tors A and 4 ' fulfill the commutation rules

[A(ik’mtz)’A (jl’m’t‘.:)]ZSm,m'a '(6k18ij+m8kj8il) ’

1t
(]l m t )] 8,,, m 8 (8k18” 8kj811) ’ 9)
Ylm'e))]=[4( tk,mtz),A Yjl,m't))]=0.

[4(ik,mt,), A
[4(ik,mt,), 4

The above given definitions are related to those of Pyatov
et al.'® The equivalence between the treatment of Ref. 18
and the present one is shown in the Appendix.

We introduce the phonon creation operators

F (m 1 2 [(P(M) vt T(lk mt)
klt

— ™ (v,1,)A (ik,mt,)

+ A (v, 1,)A T(ik,mt,)

— (v, 1,) A ik,mt,)] , (10)

and with them we linearize the Hamiltonian (4), following
the standard RPA procedure, in order to determine the
energies and amplitudes of the vth phonon. The corre-
sponding dispersion relation is given by the equation

1—k(+)[S,(n)+S,(p)]
+[kH+)—=k¥(—=)]S,(n)S,(p)=0, (11)
where k(+)=X(0)1+X(1), and

N(t,) 2(1,; .
z (ki,mt,)E (ki,t,)

Su)=4 3 I
k,i [E (ki’tz)—Wv]

q(ki,mt,)E (ki,t,)
[E%(ki,t,)—W?2]

) (12)

W, being the energy of the vth state and
E(ki,tz)z[E(k)+E(i)](,z)

being the unperturbed energy of the two-quasiparticle
configurations. It should be noted that (11) is valid both
for m= + and m = —, since

q*(ki,mty)=q* ki, —mt,)

and

qz(Ei,mtz)qu(/:i, —mt,),

and thus the quantities S,(z,) do not depend on m. It
means that the m =+ phonons are degenerate for a given
energy W,. Nevertheless, the construction of the intrinsic
states requires both types of phonons, as we shall see later.
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The corresponding forward- and backward-going am-
plitudes, which appear in (10), are given by
q(ki,mt,)

(m) SRR
o ) =L o — W,

(m) q(ki,mt,)

i ,tz = L’V tz -——_— b
ki (v,t;)=mL,[( )E(kz,tz)+WV
@ (13)
q(ki,mt;)

A(M) ) =L (t,)) —————————

W) =Lt o —w,

(ki,mt,)
#(I(T)(V’tz):va(tz)u_i R

E(ki,t,)+ W,
where the normalization factor L,(¢,) is given by

1—k(+)S g
L,(t,)= ‘%WV [s;(n>+ 1-k(+)S,(m)

—172
ks | 5P ]

I it=n), (14)
X 1 1—k(4+)S,(n) (=)
K()sp) P
The quantities S.(¢,) are defined by

1
1
S(t,)= W, aW (15)

and, like S,(¢,), they have the same value for m =+. The
phonons I'l(m) are normalized, i.e.,

1=3 3 ([P, t,) P~ (v, 1)1

k,i,t,

H AP ) P =[P (vt 1% (16)

which follows from the commutation relation

[Cym),Th(m")]=8, ,Smm - (17)
The linearized RPA Hamiltonian can be written as
H=H,+ 3 W,ll(m)T(m), (18)
m,v

where H|, is a constant.
As has been pointed out in Refs. 6, 7, 15, and 18, we

have to remove the spurious 17 state, which in the present
context is generated by the action of the angular momen-
tum operator J 4 on the unperturbed intrinsic ground
state. We thus impose the condition

[H,7,]1=0, (19)

in order to get the spurious state at zero energy. Condi-
tion (19) relates the matrix elements of the quadrupole
operators with the matrix elements of the angular momen-
tum operator J 4. In the case of a Woods-Saxon poten-
tial, this condition can be approximately satisfied by solv-
ing the secular equation (11) for W,=0. One obtains in
this way

1—k (4+)[So(n)+So(p)]

+[k2(+)—k2—=)]So(n)S(p)=0. (20)
Equation (20) should be considered as the equation which
determines one of the two coupling constants k(+) or
k (—) in a way consistent with (19). The quantities Sy(z,)
which appear in (20) are given by (12) for W,=0. The
numerical verification of the relationship between the ma-
trix elements of the quadrupole operator and the matrix
elements of the angular momentum operator, in the quasi-
particle basis and in a deformed, axially symmetric
Woods-Saxon potential, is an interesting problem by it-
self,2! but for the present discussion we shall assume, as
has been assumed in Refs. 6, 7, and 15, that (20) suffices
for the elimination of the spurious 17 state from the in-
trinsic spectrum. A self-consistent treatment of the sym-
metry restoring mechanism would require the definition
of an effective residual interaction.?? Since the coupling
constants k( + ) and k(—) are linear combinations of the
isoscalar, X(0), and isovector, X(1), ones, we shall further-
more introduce the ratio r =X(1)/X(0), as a parameter®’
and, in this way, Eq. (20) determines the value of the iso-
scalar coupling constant and with it the corresponding
value, r dependent, of the isovector coupling constant.

Once the structure of the phonon states is determined,
by solving the dispersion relation (11) for the energies W,
with the coupling constants obtained from (20) and by cal-
culating the amplitudes (13), the rotationally invariant
wave functions can be written as

172
|IMK7=1+,v) = | 2] S [Dig1(w)—m(— 1Dl ()]0 (m)|0) @
3277' m=+
where
QI(m):VL_Z[r&m — ) +mTim =1, (22)

with W,5£0.
The correspondence between (22) and the conventional wave function,
o 41 172
| IM,K,v)= 16+2 (DY k(@) P (v)+(— 1 +EDL, _
T

23

x(@)Px(1)]]0), (23)
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is straightforward and is based on the realization of the
m =+ phonons as members of an intrinsic time-reversal
pair, such as ®g(v) and ®x(v), in the notation of Eq.
(23).

The tensor components of the intrinsic M1 operator
read
172

M'(Mlu)= pNAL, (24)

47

while in the laboratory frame we have

The operators 71, are the tensor components of the mag-
netic dipole operator,

a= 281

expanded in the quasiparticle basis, g;(z,) and g,(¢,) are
the orbital and spin gyromagnetic factors, respectively,
un=/(e#i/2Mc) is the Bohr magneton, and 7( t,) and &(t,)
are the one-body angular momentum and spin operators,
respectively. More specifically, we have

it + 5 18:(1,) —gi(2,)16(2, (26)

Ay =T —=Hs , 27
MM1,u) = ZD,” M(M1,v) . (25) Mu=t1=+7 75 Ms
with
|
Miy= L (ki,t){[A TGk, +1,)F A (ik, +1,) ]+ [ A (ik, $1,) £ 4 (ik, 71,)]}
k,i,tz
+ 3 Atk t){ T[4k, +6,)F A Gk, +,)] 2[4 ik, T1,) + A (ik, 51,)]} ,
k,it,
where
: (k |m+ |l~>
mi(ki,tz)=—72<k |’?li |i>Lki(tz)’ ~J_r(ki,lz)=— B or Lki(tz) s (28)
(k|lm_1i)
and
Lii(t)=(UV; = Ui Vi), -

After the evaluation of the matrix elements (IM,K"=1",v| MM 1,u)|I=0,M =0, K =0, g.s. ), we obtain, for the

corresponding transition probabilities in the laboratory frame,

BM1v)t= |—— |uim?, (29)
where
my= 3 m kit i)+ )1+ (ki) (v t) 4k ()] (30)
k>i>0 k>i>0
tz tz

It should be noted that the intrinsic matrix element m,
receives contributions both from the m= + and m = —
phonons for a given energy W,. Since the terms of (30)
are ordered (Qj > Q; >0), the amplitudes of the m= +
and m = — phonons have been already related and the fi-
nal expression is written, for convenience, by using only
one type of amplitude.

III. RESULTS AND DISCUSSION

In this section we will show the results of our calcula-
tions, performed for the deformed nuclei 154§m, 156Gd,
158Gd, 164Dy, 168Er’ and 174Yb.

The single-particle states, both for protons and neutrons
and for each nucleus, correspond to the solutions of an ax-
ially symmetric Woods-Saxon potential. The parameters
of the Woods-Saxon potential are taken from Ref. 24, ex-
cept for the spin-orbit coupling constant for protons, A,
depending on the mass of the nuclei quoted above. We

T

used A=19 for all the nuclei except for '*Gd and '®Dy,
where A=15. The basis includes states up to the max-
imum allowed shell number N=11. As shown in Ref. 24,
the single-particle wave functions are expanded in a
cylindrical basis and the states are labeled by their parity,
m, and by their angular momentum projection, 2, along
the symmetry axis. In the notation of Sec. III, the single-

TABLE 1. Deformation and gap parameters (from Ref. 11)
used in the calculations.

A, A,
Nucleus B Ba (MeV) (MeV)
154Sm 0.290 0.080 0.95 1.22
136Gd 0.290 0.055 1.02 1.16
18Gd 0.306 0.035 0.97 1.10
164Dy 0.310 0.0 0.91 0.97
168 0.306 0.0 0.88 0.98
74Yb 0.290 0.0 0.83 1.04
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particle states are denoted by k =(Q,7;) and the corre-
sponding time-reversed states by k =(—Q,m). The
quality of the adopted parametrization has been discussed
in Ref. 22, where the resulting values for moments of in-
ertia and quadrupole moments are presented.

The deformation parameters and gap energies are given
in Table I. They are taken from Ref. 11, where experi-
mental values were adopted for the hexadecapole defor-
mation, while the quadrupole deformation was chosen to
reproduce microscopically the experimental charge quad-
rupole moments. The gap energies were obtained by solv-
ing the BCS equations for neighboring nuclei in order to
reproduce the experimental even-odd mass differences.

We have performed the QRPA calculations for the
K™=17" states by following the procedure described in
Sec. II. To start, we determined for each case the strength
of the isoscalar coupling constant, X(0), by solving (20).
The ratio between the isovector and isoscalar coupling
constants was fixed at r =—3.5, as Ref. 7. Next, we
solved Eq. (11) and verified the accuracy of the procedure
by comparing the QRPA energy-weighted sum rule

EWSR(QRPA)= > W, B(M1,v)t, (31)

with the corresponding sum rule for two quasiparticle
states,

2 174Yb
T=1
1 r_ J T=1
0 1 b | I 1 llﬂ[ 111 1l [
2k - 168Er
1 B ~— [
0 1 I Ly ll L !
- =0 164
? T=1 Oy
1 T=1 (
~o0 L L ’ L Ll Ly |
=3
:2 B T=1 1580d
§1 B T=1
&0 | N “
2+ 156Gd
1L T=1 tjl =1
0 L 1 |
2k =0 1SLSm
T= T
- =t
0 ; ‘ ol !
T T T
2 3 4 5 6

Energy (MeV)

FIG. 1. Transition probabilities B(M1) for the low-lying
QRPA states K™=1% of 'Sm, '%°Gd, '*Gd, '“Dy, '®*Er, and
174yb, respectively. The values are given in units of uX. The
dominant isoscalar (7=0) or isovector (r=1) character of the
states is indicated in the figure. The states where this indication
is not inserted have almost equal isovector-isoscalar admixture
[comparable absolute values of the two overlaps (33)]. The
values of the spin g factors, for protons and neutrons, are given
in the text.

EWSR(TQP)=+(0|[M ",[H,M]]|0) . (32)

In all the cases the agreement was of the order of 99%.
The dimension of the configuration space was of the order
of 1500 quasiparticle pairs.

The results for B(M 1)1 transition probabilities are
shown in Fig. 1. In this figure we show the low energy re-
gion, 2—6 MeV, where strong M1 transitions have been
observed experimentally. We consider the overlap I(r,v)
of the phonon wave function with the isoscalar and iso-
vector components T(r=0,1) of the intrinsic angular
momentum:

I(n=T,+(-1T,,
o (33)
I(r,v)={(I(7),T,) .

We assign to each state isoscalar, =0, or isovector, 7=1,
character, when the relative phase of the neutron and pro-
ton contributions to the overlaps (33) is, respectively, posi-
tive or negative and, moreover, I (7,v) has larger absolute
value than I(—7,v).

The accumulated B(M1) strengths, in bins of 0.5 MeV,
are shown in Fig. 2, for the case of '**Sm. The transition
probabilities were calculated with the effective values
g°(z,)=0.70g™(z,) for the spin gyromagnetic factors.
The comparison between the experimental and theoretical
values, for the measured strong M1 transitions, is shown
in Fig. 3. The corresponding energies are shown in Fig. 4.
As can be seen from Figs. 3 and 4, the agreement between
the data and the theoretical results is a good one. Both
the calculated transition probabilities and energies are
very near to the experimental values. The dependence of
the results on the value of the parameter r is shown in
Fig. 5, for the cases of '**Sm and '7*Yb, and they do not
differ much when r takes the values of —3.5 and —0.5,
respectively. Concerning the wave functions for the states
which have been compared with the data in Figs. 3 and 4,
they are given in Table II.

Let us analyze, briefly, the main features of each transi-
tion.

(i) '**Sm: The QRPA results gave a root at W=3.495
MeV, which exhausted 2.2% of the EWSR(QRPA), with
a transition strength of 0.94 u%. This state is an isovector

| |
|
|

[ieh g

T
15 20 25 30
Energy (MeV)

2

o)

w
T

B(M1)t (K

FIG. 2. Histogram corresponding to the theoretical distribu-
tion of strength, for M1 transitions, in '**Sm.
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wooL
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00 0
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1Bbgm 156&1 1584 ‘IGLDy 168, ayp,

FIG. 3. Comparison between experimental and theoretical re-

sults for the low-lying M1 transitions analyzed in the text. The
experimental values, for the cases of '*Sm, **Gd, and '*Dy,
are taken from Ref. 4, while the corresponding ones for '*®Gd,

18Er, and '7*Yb are taken from Ref. 2.

T T T T T
151.Sm 1566d 1580d 1640y 168Er

T
174Yb

FIG. 4. Comparison between experimental and theoretical
values for the energies of the low-lying K"=1% states corre-
sponding to the transitions shown in Fig. 3. The experimental

values are taken from the references in the caption to Fig. 3.

TABLE II. RPA wave functions of the low-lying K”=1"% states with largest contributions to the
B(M 1)t transition probabilities, as discussed in the text. Only the forward-going amplitudes with ab-
solute values greater than 0.10 are listed. The numbers in square brackets correspond to the asymptotic
quantum numbers of the quasiparticle states. They are denoted by the quantum numbers (Nn,A)Q.

Energy
Nucleus (MeV) Protons Neutrons
154Sm 3.495 0.93 [(541)+, (541)3] —0.20 [(532)3,(523)3]
0.23 [(413)3, (404) %]
0.31 [(541)3, (532)3]
1%6Gd 3.478 —0.63 [(413)3, (404) 7] 0.47 [(532)3, (523)3]
—0.46 [(541),(541)3]
—0.22 [(541)%,(532)3]
0.32 [(532)3, (523)%]
1%%Gq 3.818 —0.92 [(404)7, (404)% ] 0.30 [(400)+, (651)5]
—0.22 [(532)3,(523)%]
16Dy 3.203 —0.94 [(532)%, (532)3] 0.11 [(633)7,(624)7]
—0.29 [(541)%,(532)3]
18Er 3.520 0.99 [(532)3, (532)%1] 0.10 [(523)%, (514)71]
174Yb 3.562 —0.88 [(532)3, (532)3] 0.15 [(521)3, (512)3]

2
—0.20 [(523)%F, (514)5]

3

>
0.11 [(624)5, (615)5]
—0.32 [(521)+, (512)3]
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T T T
2 174Yb
1 (r=-05)
0 PR I | .‘4 [ | 'A |l L 1
2+ 171.Yb
— 1 (r=-35)
Sol o ol b
= 2+ 15/.Sm
E 1 (r=-05)
® 0 .‘ I II.ALL L
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0 : l \ ] L “ |
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FIG. 5. Results for the theoretical B(M 1)1 values, in '**Sm
and '"*Yb, as a function of the ratio r between the isovector and
the isoscalar coupling constants.

one and its wave function is dominated by a proton quasi-
particle pair. The experimental results for >*Sm show a
B(M 1)1 of the order of 0.8+0.2 u} at 3.2 MeV.>* We
have found, from the theoretical results, also some transi-
tions at energies of the order of 4.5—5 MeV.

(ii) '*°Gd: The theoretical results gave one isovector
state at 3.478 MeV, with a B(M 1)1 of 1.06 uX, or 2.4%
of the EWSR(QRPA). The corresponding experimental
values are 3.075 MeV and 1.3+0.2 u%,>* respectively. In
this case, as it is shown in Table I, the wave function is
more fragmented than that for the state at 3.495 MeV in
154Sm. Again, in this case, there are strong transitions in
the region between 4.5 and 5 MeV.

(iii) °8Gd: We obtained one strong isovector M1 tran-
sition, at 3.818 MeV, with a B(M 1)1 of 1.33 u%, 3.6% of
the EWSR(QRPA), while the data show a transition with
1.4+0.3 u¥ at 3.200 MeV. The low-lying state at about 3
MeV, with a B(M 1)t of the order of 0.5 ‘U.%q, is also an
isovector one. In this case, the strength in the region be-
tween 4.5 and 5 MeV is fragmented. The wave function
of this state is concentrated in a proton pair.

(iv) 'Dy: We have obtained one isovector state at
3.203 MeV with a transition strength of 1.10 u}, or 2.3%
of the EWSR(QPRA). The corresponding experimental
values are E=3.110 MeV, B(M1)1=1.5+0.3 uX,?> and
E=3.160 MeV, B(M1)1=14%0.4 pu},* respectively.
The wave function is, in this case also, peaked around a
proton pair configuration. The strong transition we ob-
tained at about 3.6 MeV corresponds to an isoscalar state.

(v) '8Er: In this case we obtained one state at 3.520
MeV, with a B(M 1)1 of 1.12 uk, or 2.4% of the
EWSR(QRPA). The data are’ 3.390 MeV and 0.940.2
‘Ll,%q, respectively. This state is, for us, an isovector state
built on a single proton pair. As a difference from the
cases of !8Gd and !'®*Dy, the results for '*®Er show the
presence of one strong transition at about 4.6 MeV, as in
the case of '**Sm and '°°Gd.

(vi) 7*Yb: Our results, for this case, show one isovector

state at 3.562 MeV with B(M 1)1=0.90 uy, or 2.1% of
the EWSR(QRPA). The corresponding data are’ 3.555
MeV and 0.8+0.2 3, respectively. The wave function is
dominated by one proton pair and fragmented in neutron
pairs. There is, in this case, a fragmentation of M1
strength at energies of the order of 4.5—5 MeV.

The above discussed results show that the strong low-
lying M1 transitions in deformed nuclei could be inter-
preted in terms of the excitation of isovector modes. The
structure of these modes is, in our model, mainly built on
one or two quasiproton pairs with a moderate fragmenta-
tion of the quasineutron pair configurations. In addition
to the already observed transitions at about 3—4 MeV, the
theoretical results show for some cases, other strong tran-
sitions in the region between 4 and 5 MeV.

As it is known, from other theoretical attempts,f’~14 the
states which we have described above were associated with
a collective motion of protons against neutrons.

From the present results, which are on the line of the
results presented in Ref. 7, we cannot conclude, in a defin-
ite sense, that in all cases the structure of the states meets
the requirements of a collective mode. However, the iso-
vector character of the states appears to be confirmed
within the framework of the QRPA treatment. Finally,
concerning the dominance of orbital or spin contributions
to the transition matrix elements, we have found that both
contributions are in phase and that the contributions from
the spin part of the magnetic dipole operator are compar-
able to or even larger than the contributions from the or-
bital part. These conclusions apply, of course, to the tran-
sitions we analyzed above.

IV. CONCLUSIONS

In this work we studied, within the QRPA formalism,
the main features of the low-lying M1 transitions in
1349m, 196Gd, 1%8Gd, %Dy, 18Fy and '7*Yb. The calcula-
tions were performed in a deformed, axially symmetric
Woods-Saxon potential. The residual interactions, of the
quadrupole-quadrupole type, do not include a spin-
dependent term, since these interactions have already been
found to play a minor role.” We have analyzed the region
between 3 and 4 MeV and the theoretical results are in
good agreement with the available experimental informa-
tion.!~> In addition, we have found some other transi-
tions in the region between 4 and 5 MeV, in agreement
with the results of Ref. 7. From the analysis of the wave
functions, we can conclude that the states have an isovec-
tor character, although their collectivity is not so well es-
tablished because of the dominance of few quasiproton-
pair configurations.

An open problem is the interpretation of these states as
scissor vibrations. This would request an almost pure or-
bital excitation of these states. But this seems not to be
the case. The states are much less collective than that
which a phenomenological description of scissor vibra-
tions would require. They are essentially a superposition
of a few two-quasiparticle proton h;,,, excitations. It is
obvious that for such an excitation the orbital contribu-
tion to the M1 transition | g1 |>=25, and the isovector
part of the spin part, | 5(g5—gn)|*=25, are roughly of
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the same order. This is found in the present work. This
seems to disagree with recent experimental findings,*
where inelastic excitations with electrons and protons into
these states are performed. The argument goes so that
electrons excite both a state of spin and orbital nature,
while a proton can only excite a 1 state due to the spin
degrees of freedom. (See, for example, the discussion of
Faessler.?®) It seems to us that the larger background in
proton scattering due to the possible two step processes in
hadron reactions modifies the conclusions. Thus a more
accurate measurement of the orbital and the spin contri-
bution to the M1 transition is needed. This can be ob-
tained by doing the measurement in the “window” be-
tween 200 and 400 MeV proton energy. An even better
background reduction can be obtained by using polarized
protons in the energy window?’ and doing a double
scattering. The protons exciting, via V,,00,7 75, a 1T
state can be seen in spin flip, while the two-step processes
leading to neighboring states with the strong central force
cannot be seen if one looks to the spin flip contribution
only. Such a measurement—although difficult—would
help to suppress the neighboring background.
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APPENDIX

For the sake of completeness, here we shall discuss the
equivalence between our formalism and that of Pyatov
et al.,'® which is an application of the method due to
Marshalek and Weneser.>> This equivalence could be easi-
ly established by defining the relationship between our
phonon operators I‘:r,(m) and the Q*(m) phonons of Pya-
tov et al.'® and the (P'™,L'™)) operators of Marshalek
and Weneser.”> The corresponding identities are as fol-
lows:

p‘;"’z—”zW[ri(+)+Fv<+)]+m[F1<—)+rV(—>],
(m) i t t (Al
LY = — I [T+ =Ty ]+ m [T ) =Ty )],
0l (m)= \/zl_W P 4 iw L) (A2)
and
Qi(m)=%2[l‘:r,(+)+mfv(+)] . (A3)
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