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Quantum Discord: A Measure of the Quantumness of Correlations
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Two classically identical expressions for the mutual information generally differ when the systems
involved are quantum. This difference defines the quantum discord. It can be used as a measure of the
quantumness of correlations. Separability of the density matrix describing a pair of systems does not
guarantee vanishing of the discord, thus showing that absence of entanglement does not imply classicality.
We relate this to the quantum superposition principle, and consider the vanishing of discord as a criterion
for the preferred effectively classical states of a system, i.e., the pointer states.
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The original motivation for the pointer states —states
that are monitored by the environment but do not entangle
with it, and are therefore stable in spite of the openness
of the system—comes from the study of quantum mea-
surements [1–3]. When the quantum apparatus A inter-
acts with the system S (premeasurement), the S -A pair
becomes entangled. The nature of the resulting quantum
correlations makes it impossible to ascribe any indepen-
dent reality to, say, the state of the apparatus [4]. One dra-
matic manifestation of this “unreality” of the state of the
apparatus is its malleability: a measurement of different
observables on the state of the system will force the appa-
ratus into mutually incompatible pure quantum states. This
is a consequence of the basis ambiguity. It is best exhibited
by noting that the S -A state after the premeasurement,

jcS ,A�P �
X

i

aijsi� jai� , (1)

is typically entangled. One can rewrite it in a different ba-
sis of, e.g., the system, and one-to-one correlation with a
corresponding set of pure, but not necessarily orthogonal,
states of the apparatus will remain. Thus, it is obviously
impossible to maintain that before the measurements the
apparatus had an unknown but real (i.e., existing indepen-
dently of the system) quantum state.

Decoherence leads to environment-induced superselec-
tion (or einselection) which singles out the pointer states
and thus removes quantum excess of correlation respon-
sible for the basis ambiguity. The density matrix of the
decohering quantum apparatus loses its off-diagonal terms
as a result of the interaction with the environment [5–8]:

r
P
S ,A � jcS ,A�P�cS ,AjP

!
X

i

jaij
2jsi� �sij ≠ jai� �ai j � r

D
S ,A . (2)

Above �ai jaj� � di,j following the ideal einselection pro-
cess, which transforms a pure r

P
S ,A into a decohered r

D
S ,A

satisfying the superselection identity [9,10]

r
D
S ,A �

X

i

PA
i r

D
S ,APA

i . (3)

Above PA
i correspond to the superselection sectors of the

apparatus, e.g., the record states of its pointer (in our ex-
0031-9007�02�88(1)�017901(4)$15.00
ample PA
i � jai� �ai j). One implication of this equation is

that —once einselection has forced the apparatus to abide
by Eq. (3)—its state can be consulted (measured) in the
basis corresponding to the superselection sectors PA

i leav-
ing r

D
S ,A unchanged [5,8].

Einselection, Eq. (2), obviously decreases correla-
tions between S and A. Yet, in a good measurement,
one-to-one correlations between the pointer states of the
apparatus and a corresponding set of system states must
survive. We shall use two classically equivalent formulas
for the mutual information to quantify the quantum and the
classical strength of the correlations present in a joint den-
sity matrix rS ,A, and study the difference between these
two as a measure of the quantum excess of correlations—
the quantum discord —in rS ,A.

Mutual information.— In classical information theory
[11] the entropy, H�X �, describes the ignorance about a
random variable X , H�X � � 2

P
x pX�x LogpX�x . The

correlation between two random variables X and Y is
measured by the mutual information,

J �X :Y � � H�X � 2 H�X jY � , (4)

where H�X jY � �
P

y pY�yH�X jY � y� is the condi-
tional entropy of X given Y . All the probability distribu-
tions are derived from the joint one, pX ,Y :

pX �
X

y
pX ,Y�y , pY �

X

x
pX�x,Y , (5)

pX jY�y � pX ,Y�y�pY�y �Bayes rule� . (6)

Hence, the mutual information measures the average
decrease of entropy on X when Y is found out. Using
the Bayes rule, Eq. (6), one can show that H�X jY � �
H�X ,Y � 2 H�Y �. This leads to another classically
equivalent expression for the mutual information:

I �X :Y � � H�X � 1 H�Y � 2 H�X ,Y � . (7)

One would like to generalize the concept of mutual in-
formation to quantum systems. One route to this goal, mo-
tivated by discussions of quantum information processing,
has been put forward [12,13]. We shall pursue a different
strategy, using Eqs. (4) and (7). We start by defining I

and J for a pair of quantum systems.
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I .—All the ingredients involved in the definition of
I are easily generalized to deal with arbitrary quantum
systems by replacing the classical probability distributions
by the appropriate density matrices rS , rA, and rS ,A
and the Shannon entropy by the von Neumann entropy,
e.g., H�S � � H�rS � � 2TrSrS LogrS :

I �S :A� � H�S � 1 H�A� 2 H�S ,A� . (8)

In this formula, H�S � 1 H�A� represents the uncertainty
of S and A treated separately, and H�S ,A� is the un-
certainty about the combined system described by rS ,A.
However, in contrast with the classical case, extracting
all information potentially present in a combined quan-
tum system described by rS ,A will, in general, require
a measurement on the combined Hilbert space HS ,A �
HS ≠ HA. The quantum version of I has been used
some years ago to study entanglement [14], and subse-
quently rediscovered [15].

J .—The generalization of this expression is not as au-
tomatic as for I , since the conditional entropy H�S jA�
requires us to specify the state of S given the state of
A. Such statement in quantum theory is ambiguous until
the to-be-measured set of states A is selected. We focus
on perfect measurements of A defined by a set of one-
dimensional projectors �PA

j �. The label j distinguishes
different outcomes of this measurement.

The state of S , after the outcome corresponding to P
A
j

has been detected, is

rS jP
A
j

� PA
j rS ,APA

j �TrS ,APA
j rS ,A , (9)

with probability pj � TrS ,AP
A
j rS ,A. H�rS jP

A
j

� is the
missing information about S . The entropies H�rS jP

A
j

�,
weighted by probabilities, pj, yield to the conditional en-
tropy of S given the complete measurement �PA

j � on A,

H�S j�PA
j �� �

X

j

pjH�rS jP
A
j

� . (10)

This leads to the following quantum generalization of J :

J �S :A��PA
j � � H�S � 2 H�S j�PA

j �� . (11)

This quantity represents the information gained about the
system S as a result of the measurement �PA

j �.
Quantum discord.—The two classically identical ex-

pressions for the mutual information, Eqs. (4) and (7), dif-
fer in a quantum case [16]. The quantum discord is the
difference

d�S :A��PA
j � � I �S :A� 2 J �S :A��PA

j � (12)

� H�A� 2 H�S ,A� 1 H�S j�PA
j �� .

(13)

It depends both on rS ,A and on the projectors �PA
j �.

The quantum discord is asymmetric under the change
S $ A since the definition of the conditional entropy
H�S j�PA

j �� involves a measurement on one end (in our
case the apparatus A) that allows the observer to infer
the state of S . This typically involves an increase of en-
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tropy. Hence H�S j�PA
j �� $ H�S ,A� 2 H�A�, which

implies that for any measurement �PA
j �,

d�S :A��PA
j � $ 0 . (14)

The proofs are postponed to the end of this Letter.
We shall usually be concerned about the set �PA

j � that
minimizes the discord given a certain rS ,A. Minimizing
the discord over the possible measurements on A corre-
sponds to finding the measurement that disturbs least the
overall quantum state and that, at the same time, allows
one to extract the most information about S . Decoherence
picks out a set of stable states and converts their possible
superpositions into mixtures, Eq. (2). Moreover, an unread
measurement �PA

j � on the apparatus has an effect analo-
gous to einselection in the corresponding basis through the
reduction postulate [1]. Hence it is rather natural to expect
that when the set �PA

j � corresponds to the superselection
sectors �PA

i � of Eq. (3), there would be no extra increase
of entropy:

rS ,A �
X

j

PA
j rS ,APA

j ) d�S :A��PA
j � � 0 . (15)

Thus, following einselection, the information can be ex-
tracted from S -A with a local measurement on Awithout
disturbing the overall state. The state of S can be inferred
from the outcome of the measurement on A only. The
converse of Eq. (15) is also true:

d�S :A��PA
j � � 0 ) rS ,A �

X

j

PA
j rS ,APA

j . (16)

Hence, a vanishing discord can be considered as an indica-
tor of the superselection rule, or — in the case of interest —
its value is a measure of the efficiency of einselection.
When d is large for any set of projectors �PA

j �, a lot of
information is missed and destroyed by any measurement
on the apparatus alone, but when d is small almost all the
information about S that exists in the S -A correlations is
locally recoverable from the state of the apparatus.

The quantum discord can be illustrated in a simple
model of measurement. Let us assume the initial state
of S is �j0� 1 j1���

p
2. The premeasurement is a CNOT

gate yielding jcS ,A�P � �j00� 1 j11���
p

2. If j0� and j1�
of A are pointer states, partial decoherence will suppress
off-diagonal terms of the density matrix:

rS ,A �
1
2

�j00� �00j 1 j11� �11j�

1
z
2

�j00� �11j 1 j11� �00j� , (17)

with 0 # z , 1. Figure 1 shows d for various values of
z and various bases of measurement parametrized by u,

�cos�u� j0� 1 eif sinuj1�, e2if sinuj0� 2 cosuj1�� ,
(18)

with f � 1 rad. Only in the case of complete einselection
(z � 0) there exists a basis for which discord disappears.
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FIG. 1. Discord for the states given in Eq. (17), with the mea-
surement basis defined as in Eq. (18).

The corresponding basis of measurement is �j0�, j1�� (u �
0); i.e., it must be carried out in the pointer basis.

Classical aspect of quantum correlations.—Separa-
bility has often been regarded as synonymous of classical-
ity. The temptation that leads one to this conclusion starts
with an observation that —by definition —a separable
density matrix is a mixture of density matrices

rS ,A �
X

i

pir
i
S ,A (19)

that have explicit product eigenstates,

r
i
S ,A �

X

j

p
�i�
j js

�i�
j � ja�i�

j � �a�i�
j j �s�i�

j j (20)

and hence classical correlations. One might have thought
that mixing such obviously classical density matrices can-
not bring in anything quantum: After all, it involves only
loss of information — forgetting of the label i in r

i
S ,A.

Yet this is not the case. One symptom of the quantum-
ness of a separable rS ,A with nonzero discord is imme-
diately apparent: Unless there exists a complete set of
projectors �PA

j � for which d�S :A��PA
j � � 0, rS ,A is

perturbed by all local measurements. By contrast, when
d�S :A��PA

j � � 0, then the measurement �PA
j � on A,

and an appropriate conditional measurement (i.e., condi-
tioned by the outcome of the measurement on A) will re-
veal all of the information in S -A; i.e., the resulting state
of the pair will be pure. Moreover, this procedure can be
accomplished without perturbing the rS ,A for another ob-
server, a bystander not aware of the outcomes.

Thus, for each outcome j there exists a set �pS
j,k� of

conditional one-dimensional projectors such that

rS ,A �
X

j

X

k

p
S
j,kPA

j rS ,APA
j p

S
j,k , (21)

and p
S
j,kP

A
j rS ,AP

A
j p

S
j,k is pure for any j and k. Above,

the sets �pS
j,k� for different j will not coincide in general
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(�pS
j,k� is a function of j) and do not need to commute.

Classical information is locally accessible, and can be ob-
tained without perturbing the state of the system: One can
interrogate just one part of a composite system and dis-
cover its state while leaving the overall density matrix (as
perceived by observers that do not have access to the mea-
surement outcome) unaltered. A general separable rS ,A

does not allow for such insensitivity to measurements: In-
formation can be extracted from the apparatus but only at
a price of perturbing rS ,A, even when this density ma-
trix is separable. However, when discord disappears, such
insensitivity (which may be the defining feature of “clas-
sical reality,” as it allows acquisition of information with-
out perturbation of the underlying state) becomes possible
for correlated quantum systems. This quantum character
of separable density matrices with nonzero discord is a
consequence of the superposition principle for A, since
more than one basis �ja�i�

j ��j for the apparatus is needed in
Eq. (20) in order to warrant a nonvanishing discord.

The difference between separability and vanishing
discord can be illustrated by a specific example. Fig-
ure 2 shows discord for a Werner state rS ,A �

12z
4 1 1

zjc� �cj with jc� � �j00� 1 j11���
p

2. It can be seen
that discord is greater than 0 in any basis when z . 0,
which contrasts with the well-known separability of such
states when z , 1�3.

Conclusion.—The quantum discord is a measure of the
information that cannot be extracted by the reading of the
state of the apparatus (i.e., without joint measurements).
Hence the quantum discord is a good indicator of the quan-
tum nature of the correlations. The pointer states obtained
by minimizing the quantum discord over the possible mea-
surements should coincide with the ones obtained with the
predictability sieve criterion [5,7], hence showing that the
accessible information remains in the most stable pointer
states.

Proposition 1: H�S j�PA
j �� � H�rD

S ,A� 2 H�rD
A�,

with r
D
S ,A �

P
j P

A
j rS ,AP

A
j .

FIG. 2. Value of the discord for Werner states 12z
4 1 1

zjc� �cj, with jc� � �j00� 1 j11���
p

2. Discord does not
depend on the basis of measurement in this case because both
1 and jc� are invariant under local rotations.
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Proof 1: r
D
S ,A is block diagonal. The jth block equals

pjrS jP
A
j

. By doing calculations block by block one has

H�rD
S ,A� �

X

j

H�pjrS jP
A
j

�

�
X

j

pjH�rS jP
A
j

� 2
X

j

pj Logpj

� H�S j�PA
j �� 2 H�rD

A� ,

which completes the proof.
Proposition 2: d�S :A��PA

j � $ 0.
Proof 2: This is a direct consequence of the previous

proposition and the concavity of H�S ,A� 2 H�A� with
respect to rS ,A [17].

Proposition 3:

d�S :A��PA
j � � 0 , rS ,A �

X
j PA

j rS ,APA
j .

Proof 3: Proposition 1 already shows the converse.
To prove the direct implication we will start with rS ,A

and �PA
j �, a complete set of orthogonal projectors,

such that d�S :A��PA
j � � 0. Without loss of generality,

we can write the density matrix of S -A as rS ,A �P
j P

A
j rS ,AP

A
j 1 additional terms. If we choose �jsi��

a basis of S and �jak j j��k a basis of the subspace of
A defined by P

A
j , the general form of the additional

terms in the above formula will be c�si , si 0 , ak j j , ak 0 j j 0� 3

jsi� �si 0 j ≠ jak j j� �ak 0 j j 0 j with j fi j0. Suppose that one
of those coefficients is nonzero. By changing the basis
�jsi ��i, we can suppose i fi i0. We introduce now a
new density matrix r̂S ,A obtained from rS ,A by re-
moving the preceding matrix element and its complex
conjugate. This ensures that r̂S ,A is associated with a
physical state. This state satisfies H�r̂S ,A� . H�rS ,A�
and H�r̂A� � H�rA�. The concavity of H�rS ,A� 2

H�rA� with respect to rS ,A implies inequalities:

H�rS ,A� 2 H�rA� , H�r̂S ,A� 2 H�r̂A� ,

H�r̂S ,A� 2 H�r̂A� # H�rD
S ,A� 2 H�rD

A� .

Then d�S :A��PA
j � , 0, which contradicts our primary

assumption and proves our last result.
Remark.—We defined J with the help of a measure-

ment associated with one-dimensional projectors. One
can be interested in looking at multidimensional projec-
tive measurements. Depending on the context, two differ-
ent generalizations can be used.

For measurement purposes, one may adopt

rS jP
A
j

� TrAPA
j rS ,A�TrS ,APA

j rS ,A ,

since all the correlations (quantum as well as classical)
between S and the subspace of the apparatus defined by
017901-4
P
A
j are not observed. Proposition 1 no longer holds, but

using the same techniques we still have d�S :A��PA
j � $ 0

and if d�S :A��PA
j � � 0, then rS ,A �

P
j P

A
j rS ,AP

A
j .

For decoherence purposes, one may prefer to define J

as H�S � 1 H�A�D 2 H�S ,A�D . With this definition,
Proposition 3 is valid. J now represents the average in-
formation, quantum and classical, that remains in the pair
S -A after a decoherence process leading to einselection
of the superselection sectors �PA

j �.
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Note added.—After completion of this work, we
became aware of a related work by Henderson and
Vedral [18].
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