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We present a scheme of quantum computation that consists entirely of one-qubit measurements on a
particular class of entangled states, the cluster states. The measurements are used to imprint a quantum
logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus
one-way quantum computers and the measurements form the program.
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A quantum computer promises efficient processing of
certain computational tasks that are intractable with clas-
sical computer technology [1]. While basic principles of a
quantum computer have been demonstrated in the labora-
tory [2], scalability of these systems to a large number of
qubits [3], essential for practical applications such as the
Shor algorithm, represents a formidable challenge. Most
of the current experiments are designed to implement se-
quences of highly controlled interactions between selected
particles (qubits), thereby following models of a quan-
tum computer as a (sequential) network of quantum logic
gates [4,5].

Here we propose a different model of a scalable quan-
tum computer. In our model, the entire resource for the
quantum computation is provided initially in the form of
a specific entangled state (a so-called cluster state [6]) of
a large number of qubits. Information is then written onto
the cluster, processed, and read out from the cluster by
one-particle measurements only. The entangled state of
the cluster thereby serves as a universal “substrate” for any
quantum computation. Cluster states can be created effi-
ciently in any system with a quantum Ising-type interaction
(at very low temperatures) between two-state particles in
a lattice configuration.

We consider two- and three-dimensional arrays of
qubits that interact via an Ising-type next-neighbor in-
teraction [6] described by a Hamiltonian Hint � g�t� 3
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strength g�t� can be controlled externally. A possible
realization of such a system is discussed below. A qubit at
site a can be in two states j0�a � j0�z,a or j1�a � j1�z,a,
the eigenstates of the Pauli phase flip operator s�a�

z
�s�a�

z ji�a � �21�iji�a�. These two states form the compu-
tational basis. Each qubit can equally be in an arbitrary
superposition state aj0� 1 bj1�, jaj2 1 jbj2 � 1. For
our purpose, we initially prepare all qubits in the su-
perposition j1� � �j0� 1 j1��	

p
2, an eigenstate of the

Pauli spin flip operator sx �sxj6� � 6j6��. Hint is
then switched on for an appropriately chosen finite time
interval T , where

RT
0 dt g�t� � p, by which a unitary

transformation S is realized. Since Hint acts uniformly on
the lattice, entire clusters of neighboring particles become
entangled in one single step. The quantum state jF�C ,
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the state of a cluster �C � of neighboring qubits, which is
thereby created provides in advance all entanglement that
is involved in the subsequent quantum computation. It has
been shown [6] that the cluster state jF�C is characterized
by a set of eigenvalue equations
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z jF�C � 6jF�C , (1)

where ngbh�a� specifies the sites of all qubits that inter-
act with the qubit at site a [ C . The eigenvalues are de-
termined by the distribution of the qubits on the lattice.
The equations (1) are central for the proposed computation
scheme. As an example, a measurement on an individual
qubit of a cluster has a random outcome. On the other
hand, Eqs. (1) imply that any two qubits at sites a, a0 [ C
can be projected into a Bell state by measuring a subset of
the other qubits in the cluster. This property will be used to
define quantum channels that allow us to propagate quan-
tum information through a cluster.

We show that a cluster state jF�C can be used as a sub-
strate on which any quantum circuit can be imprinted by
one-qubit measurements. In Fig. 1 this scheme is illus-
trated. For simplicity, we assume that in a certain region
of the lattice each site is occupied by a qubit. This re-
quirement is not essential as will be explained below [see
(d)]. In the first step of the computation, a subset of
qubits is measured in the basis of sz which effectively
removes them. In Fig. 1 these qubits are denoted by “ Ø.”

quantum gate

information flow

FIG. 1. Quantum computation by measuring two-state parti-
cles on a lattice. Before the measurements the qubits are in the
cluster state jF�C of (1). Circles Ø symbolize measurements of
sz , vertical arrows are measurements of sx , while tilted arrows
refer to measurements in the x-y plane.
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The state jF�C is thereby projected into a tensor prod-
uct jm�CnN ≠ jF̃�N consisting of the state jm�CnN of
all measured particles (subset CnN ) on one side and an
entangled state jF̃�N of yet unmeasured particles (subset
N , C ), on the other side. These unmeasured particles
define a “network” N corresponding to the shaded struc-
ture in Fig. 1. The state jF̃�N of the network is related
to a cluster state jF�N on N by a local unitary transfor-
mation which depends on the set of measurement results
m. More specifically, jF̃�N satisfies Eqs. (1)—with C
replaced by the subcluster N —except for a possible dif-
ference in the sign factors, which are determined by the
measurement results m.

To process quantum information with this network, it
suffices to measure its particles in a certain order and in a
certain basis. Quantum information is thereby propagated
horizontally through the cluster by measuring the qubits
on the wire while qubits on vertical connections are used
to realize two-bit quantum gates. The basis in which a
certain qubit is measured depends in general on the results
of preceding measurements. The processing is finished
once all qubits except the last one on each wire have been
measured. At this point, the results of previous measure-
ments determine in which basis these “output” qubits need
to be measured for the final readout. We note that, in the
entire process, only one-qubit measurements are required.
The amount of entanglement therefore decreases with ev-
ery measurement [8] and all entanglement involved in the
process is provided by the initial resource, the cluster state.
This is different from the scheme of Ref. [11], which uses
Bell measurements (capable of producing entanglement)
to realize quantum gates.

In the following, we show that any quantum logic circuit
can be implemented on a cluster state. The purpose of this
is twofold. First, it serves as an illustration of how to im-
plement a particular quantum circuit in practice. Second,
in showing that any quantum circuit can be implemented
on a sufficiently large cluster we demonstrate the univer-
sality of the proposed scheme. For pedagogical reasons we
first explain a scheme with one essential modification with
respect to the proposed scheme: before the entanglement
operation S, certain qubits are selected as input qubits and
the input information is written onto them, while the re-
maining qubits are prepared in j1�. This step weakens the
scheme since it affects the character of the cluster state as
a genuine resource. It can, however, be avoided [see (e)].
Points (a) to (c) are concerned with the basic elements of a
quantum circuit, quantum gates, and wires, point (d) with
the composition of gates to circuits.

(a) Information propagation in a wire for qubits. A qubit
can be teleported from one site of a cluster to any other
site. In particular, consider a chain of an odd number of
qubits 1 to n prepared in the state jcin�1 ≠ j1�2 ≠ · · · ≠
j1�n and subsequently entangled by S. The state that was
originally encoded in qubit 1, jcin�, is now delocalized
and can be transferred to site n by performing sx mea-
surements (basis 
j1�j � j0�x,j , j2�j � j1�x,j�) at qubit
sites j � 1, . . . , n 2 1 with measurement outcomes sj [

0, 1�. The resulting state is js1�x,1 ≠ · · · ≠ jsn21�x,n21 ≠
jcout�n. The output state jcout� is related to the input state
jcin� by a unitary transformation US [ 
1, sx , sz , sxsz�
which depends on the outcomes of the sx measurements
at sites 1 to n 2 1. A similar argument can be given for an
even number of qubits. The effect of US can be accounted
for at the end of a computation as shown below [see (d)].
It is noteworthy that not all classical information gained
by the sx measurements needs to be stored to identify the
transformation US. Instead, US is determined by the val-
ues of only two classical bits which are updated with every
measurement.

(b) An arbitrary rotation UR [ SU�2� can be achieved
in a chain of five qubits. Consider a rotation in its
Euler representation UR�j, h, z � � Ux�z �Uz�h�Ux�j�,
where Ux�a� � exp�2ia

sx

2 �,Uz�a� � exp�2ia
sz

2 �. Ini-
tially, the first qubit is in some state jcin�, which
is to be rotated, and the other qubits are in j1�;
i.e., their common state reads jC�1,...,5 � jcin�1 ≠
j1�2 ≠ j1�3 ≠ j1�4 ≠ j1�5. After the five qubits are
entangled by S they are in the state SjC�1,...,5 �
1	2jcin�1j0�2j2�3j0�4j2�5 2 1	2jcin�1j0�2j1�3j1�4j1�5 2

1	2jc�
in�1j1�2j1�3j0�4j2�5 1 1	2jc�

in�1j1�2j2�3j1�4j1�5,
where jc�

in� � sz jcin�. Now, the state jcin� can be rotated
by measuring qubits 1 to 4, while it is teleported to site 5 at
the same time. The qubits 1, . . . , 4 are measured in appro-

priately chosen bases Bj�aj� � 
 j0�j1eiaj j1�jp
2

,
j0�j2eiaj j1�jp

2
�

whereby the measurement outcomes sj [ 
0, 1� for j �
1, . . . , 4 are obtained. Here, sj � 0 means that qubit j is
projected into the first state of Bj�aj�. The resulting
state is js1�a1,1 ≠ js2�a2,2 ≠ js3�a3,3 ≠ js4�a4,4 ≠ jcout�5
with jcout� � Ujcin�. For the choice a1 � 0 (measur-
ing sx of qubit 1) the rotation U has the form U �
ss21s4

x ss11s3
z UR��21�s111a2, �21�s2a3, �21�s11s3a4�. In

summary, the procedure to implement an arbitrary
rotation UR�j, h, z �, specified by its Euler angles
j, h, z is (i) measure qubit 1 in B1�0�; (ii) measure
qubit 2 in B2����21�s111j���; (iii) measure qubit 3 in
B3����21�s2h���; (iv) measure qubit 4 in B4����21�s11s3z ���.
In this way the rotation U 0

R is realized: U 0
R�j, h, z � �

ss21s4
x ss11s3

z UR�j, h, z �. The extra rotation US �
ss21s4

x ss11s3
z can be accounted for at the end of the com-

putation, as is described below in (d).
(c) To perform the gate CNOT�c, tin ! tout� �

j0�cc�0j ≠ 1�tin!tout� 1 j1�cc�1j ≠ s
�tin!tout�
x between a con-

trol qubit c and a target qubit t, four qubits, arranged
as depicted Fig. 2a, are required. During the action
of the gate, the target qubit t is transferred from tin
to tout. The following procedure has to be imple-
mented. Let qubit 4 be the control qubit. First, the state
ji1�z,1 ≠ ji4�z,4 ≠ j1�2 ≠ j1�3 is prepared and then the
entanglement operation S is performed. Second, sx of
qubits 1 and 2 is measured. The measurement results
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FIG. 2. Realization of a CNOT gate by one-particle measure-
ments. See text.

sj [ 
0, 1� correspond to projections of the qubits j into
jsj�x,j , j � 1, 2. The quantum state created by this proce-

dure is js1�x,1 ≠ js2�x,2 ≠ U
�34�
S ji4�z,4 ≠ ji1 1 i4 mod2�z,3,

where U
�34�
S � s�3�s111

z s�3�s2

x s�4�s1

z . The input state is thus
acted upon by the CNOT and successive sx and sz rota-
tions U

�34�
S , depending on the measurement results s1, s2.

These unwanted extra rotations can again be accounted
for as described in (d). For practical purposes it is more
convenient if the control qubit is, as the target qubit,
transferred to another site during the action of the gate.
When a CNOT is combined with other gates to form a
quantum circuit it will be used in the form shown in
Fig. 2b.

To explain the working principle of the CNOT gate we,
for simplicity, refer to the minimal implementation with
four qubits. The minimal CNOT can be viewed as a wire
from qubit 1 to qubit 3 with an additional qubit, No. 4,
attached. From the eigenvalue equations (1) it can now be
derived that, if qubit 4 is in an eigenstate ji4�z,4 of sz , then
the value of i4 [ 
0, 1� determines whether a unit wire or
a spin flip sx (modulo the same correction U

�3�
S for both

values of i4) is being implemented. In other words, once
sx of qubits 1 and 2 have been measured, the value i4 of
qubit 4 controls whether the target qubit is flipped or not.

(d) Quantum circuits. The gates described — the CNOT

and arbitrary one-qubit rotations — form a universal set
[5]. In the implementation of a quantum circuit on a clus-
ter state the site of every output qubit of a gate overlaps
with the site of an input qubit of a subsequent gate. Be-
cause of this, the entire entanglement operation can be
performed at the beginning. To see this, compare the
following two strategies. Given a quantum circuit im-
plemented on a network N of qubits which is divided
into two consecutive circuits, circuit 1 is implemented on
network N1 and circuit 2 is implemented on network
N2, and N � N1 < N2. There is an overlap O �
N1 > N2 which contains the sites of the output qubits
of circuit 1 (these are identical to the sites of the input
qubits of circuit 2). The sites of the readout qubits form a
set R , N2. Strategy (i) consists of the following steps:
(1) write input and entangle all qubits on N ; (2) mea-
sure qubits [ N nR to implement the circuit. Strategy
(ii) consists of (1) write input and entangle the qubits on
N1, (2) measure the qubits in N1nO . This implements
the circuit on N1 and writes the intermediate output to
5190
O ; (3) entangle the qubits on N2; (4) measure all qubits
in N2nR. Steps 3 and 4 implement the circuit 2 on N2.
The measurements on N1nO commute with the entangle-
ment operation restricted to N2, since they act on differ-
ent subsets of particles. Therefore the two strategies are
mathematically equivalent and yield the same results. It
is therefore consistent to entangle in a single step at the
beginning and perform all measurements afterwards.

Two further points should be addressed in connection
with circuits. First, the randomness of the measurement
results does not jeopardize the function of the circuit.
Depending on the measurement results, extra rotations
sx and sz act on the output qubit of every implemented
gate. By use of the relations UR�j, h, z �ss

zss0
x �

ss
zss0

x UR����21�sj, �21�s0h, �21�sz ���, and CNOT�c, t�s�t�st

z
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0
t
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0
c
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z s�c�sc1st

z s�t�s
0
c1s0t

x s�c�s
0
c

x CNOT�c, t�,
these extra rotations can be pulled through the network to
act upon the output state. There they can be accounted
for by adjusting the measurement basis for the final
readout. The above relations imply that for a rotation
UR�j, h, z �—different from the CNOT gate— the accu-
mulated extra rotations US at the input side of UR need to
be determined before the measurement bases that realize
UR can be specified. This introduces a partial temporal
ordering of the measurements on the whole cluster.
Second, quantum circuits can also be implemented on
irregular clusters. In that case, qubits may be missing
which are required for the standard implementation of the
circuit. This can be compensated by a large flexibility in
shape of the gates and wires. The components can be bent
and stretched to fit to the cluster structure as long as the
topology of the circuit implementation does not change.
Irregular clusters are found in lattices with a finite site
occupation probability 0 , p , 1. In such a situation,
the possibility of universal quantum computation is
closely linked to the phenomenon of percolation. For p
above a certain critical value pc, which depends on the
dimension of the lattice, an infinitely extended cluster
exists that may be used as the carrier of the quantum
circuit. In two dimensions, for example, exactly one
such cluster C exists. Suppose this cluster is divided
into two subclusters C1 and C2 by a one-dimensional cut
O � C1 > C2. It can be shown, e.g., by using Russo’s
formula [12] from percolation theory that, for any cut O ,
jO j � `. Therefore there is no upper bound, in principle,
to the “capacity” of the cluster, i.e., to the number of
qubits that can be processed across such a cut.

(e) Full scheme. It is important to note that the step
of writing the input information onto the qubits before
the cluster is entangled was introduced only for peda-
gogical reasons. For illustration of this point consider
a chain of five qubits in the state Sj1�1 ≠ j1�2 ≠ · · · ≠
j1�5. Clearly, there is no local information on any of the
qubits. However, by measuring qubits 1 to 4 along suitable
directions, qubit 5 can be projected into any desired state
(modulo US). What is used here is the knowledge that the
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resource has been prepared with qubit 1 in the state j1�1
before the entanglement operation. By the four measure-
ments, this qubit is then rotated as described in (b). In
order to use qubit 5 for further processing, the five-qubit
chain considered here should, of course, be part of a larger
cluster such that particle 5 is still entangled with the re-
maining network, after particles 1 to 4 have been mea-
sured. The method of preparing the input state remains the
same, in this case, as explained in (d). In a similar man-
ner any desired input state can be prepared if the rotations
are replaced by a circuit preceding the proper circuit for
computation. In summary, no input information needs to
be written to the qubits before they are entangled. Cluster
states are thus a genuine resource for quantum computa-
tion via measurements only.

For a cluster of a given finite size, the number of compu-
tational steps may be too large to fit on the cluster. In this
case, the computation can be split into consecutive parts,
for each of which there is sufficient space on the cluster.
The modified procedure consists then of repeatedly (re)en-
tangling the cluster and imprinting the actual part of the
circuit —by measuring all of the lattice qubits except
the ones carrying the intermediate quantum output — until
the whole calculation is performed. This procedure has
also the virtue that qubits involved in the later part of a
calculation need not be protected from decoherence for a
long time while the calculation is still being performed at
a remote place of the cluster. Standard error-correction
techniques [13,14] may then be used on each part of the
circuit to stabilize the computation against decoherence.

A possible implementation of such a quantum computer
uses neutral atoms stored in periodic micropotentials
[15–18] where Ising-type interactions can be realized
by controlled collisions between atoms in neighboring
potential wells [16,18]. This system combines small
decoherence rates with a high scalability. The question
of scalability is linked to the percolation phenomenon,
as mentioned earlier. For a site occupation probability
above the percolation threshold, there exists a cluster
which is bounded in size only by the trap dimensions.
For optical lattices in three dimensions, single-atom site
occupation with a filling factor of 0.44 has been reported
[19] which is significantly above the percolation threshold
of 0.31 [20]. As in other proposed implementations for
quantum computing, the addressability of single qubits
in the lattice is, however, still a problem. (For recent
progress, see Ref. [21]). Recently, it has also been shown
that implementations based on arrays of capacitively cou-
pled quantum dots may be used to realize an Ising-type
interaction [22].
In conclusion, we have described a new scheme of
quantum computation that consists entirely of one-qubit
measurements on a particular class of entangled states,
the cluster states. The measurements are used to imprint a
quantum circuit on the state, thereby destroying its entan-
glement at the same time. Cluster states are thus one-way
quantum computers and the measurements form the
program.
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